gradio
This commit is contained in:
commit
f1a8a71624
60
README.md
60
README.md
|
@ -1,6 +1,5 @@
|
|||
# VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild
|
||||
[Demo](https://jasonppy.github.io/VoiceCraft_web) [Paper](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf)
|
||||
|
||||
[![Paper](https://img.shields.io/badge/arXiv-2301.12503-brightgreen.svg?style=flat-square)](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://jasonppy.github.io/VoiceCraft_web/) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/pyp1/VoiceCraft_gradio) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOjpglQyMTO2C3Y94LD9FY0Ocn-RJRg6?usp=sharing)
|
||||
|
||||
### TL;DR
|
||||
VoiceCraft is a token infilling neural codec language model, that achieves state-of-the-art performance on both **speech editing** and **zero-shot text-to-speech (TTS)** on in-the-wild data including audiobooks, internet videos, and podcasts.
|
||||
|
@ -8,20 +7,22 @@ VoiceCraft is a token infilling neural codec language model, that achieves state
|
|||
To clone or edit an unseen voice, VoiceCraft needs only a few seconds of reference.
|
||||
|
||||
## How to run inference
|
||||
There are three ways:
|
||||
There are three ways (besides running Gradio in Colab):
|
||||
|
||||
1. with Google Colab. see [quickstart colab](#quickstart-colab)
|
||||
1. More flexible inference beyond Gradio UI in Google Colab. see [quickstart colab](#quickstart-colab)
|
||||
2. with docker. see [quickstart docker](#quickstart-docker)
|
||||
3. without docker. see [environment setup](#environment-setup)
|
||||
3. without docker. see [environment setup](#environment-setup). You can also run gradio locally if you choose this option
|
||||
|
||||
When you are inside the docker image or you have installed all dependencies, Checkout [`inference_tts.ipynb`](./inference_tts.ipynb).
|
||||
|
||||
If you want to do model development such as training/finetuning, I recommend following [envrionment setup](#environment-setup) and [training](#training).
|
||||
|
||||
## News
|
||||
:star: 03/28/2024: Model weights for giga330M and giga830M are up on HuggingFace🤗 [here](https://huggingface.co/pyp1/VoiceCraft/tree/main)!
|
||||
:star: 04/11/2024: VoiceCraft Gradio is now available on HuggingFace Spaces [here](https://huggingface.co/spaces/pyp1/VoiceCraft_gradio)! Major thanks to [@zuev-stepan](https://github.com/zuev-stepan), [@Sewlell](https://github.com/Sewlell), [@pgsoar](https://github.com/pgosar) [@Ph0rk0z](https://github.com/Ph0rk0z).
|
||||
|
||||
:star: 04/05/2024: I finetuned giga330M with the TTS objective on gigaspeech and 1/5 of librilight, the model outperforms giga830M on TTS. Weights are [here](https://huggingface.co/pyp1/VoiceCraft/tree/main). Make sure maximal prompt + generation length <= 16 seconds (due to our limited compute, we had to drop utterances longer than 16s in training data)
|
||||
:star: 04/05/2024: I finetuned giga330M with the TTS objective on gigaspeech and 1/5 of librilight. Weights are [here](https://huggingface.co/pyp1/VoiceCraft/tree/main). Make sure maximal prompt + generation length <= 16 seconds (due to our limited compute, we had to drop utterances longer than 16s in training data). Even stronger models forthcomming, stay tuned!
|
||||
|
||||
:star: 03/28/2024: Model weights for giga330M and giga830M are up on HuggingFace🤗 [here](https://huggingface.co/pyp1/VoiceCraft/tree/main)!
|
||||
|
||||
## TODO
|
||||
- [x] Codebase upload
|
||||
|
@ -31,12 +32,13 @@ If you want to do model development such as training/finetuning, I recommend fol
|
|||
- [x] RealEdit dataset and training manifest
|
||||
- [x] Model weights (giga330M.pth, giga830M.pth, and gigaHalfLibri330M_TTSEnhanced_max16s.pth)
|
||||
- [x] Better guidance on training/finetuning
|
||||
- [x] Write colab notebooks for better hands-on experience
|
||||
- [ ] HuggingFace Spaces demo
|
||||
- [x] Colab notebooks
|
||||
- [x] HuggingFace Spaces demo
|
||||
- [ ] Command line
|
||||
- [ ] Improve efficiency
|
||||
|
||||
|
||||
|
||||
## QuickStart Colab
|
||||
|
||||
:star: To try out speech editing or TTS Inference with VoiceCraft, the simplest way is using Google Colab.
|
||||
|
@ -112,6 +114,46 @@ If you have encountered version issues when running things, checkout [environmen
|
|||
## Inference Examples
|
||||
Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) and [`inference_tts.ipynb`](./inference_tts.ipynb)
|
||||
|
||||
## Gradio
|
||||
### Run in colab
|
||||
|
||||
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOjpglQyMTO2C3Y94LD9FY0Ocn-RJRg6?usp=sharing)
|
||||
|
||||
### Run locally
|
||||
After environment setup install additional dependencies:
|
||||
```bash
|
||||
apt-get install -y espeak espeak-data libespeak1 libespeak-dev
|
||||
apt-get install -y festival*
|
||||
apt-get install -y build-essential
|
||||
apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools
|
||||
apt-get install -y libxml2-dev libxslt-dev zlib1g-dev
|
||||
pip install -r gradio_requirements.txt
|
||||
```
|
||||
|
||||
Run gradio server from terminal or [`gradio_app.ipynb`](./gradio_app.ipynb):
|
||||
```bash
|
||||
python gradio_app.py
|
||||
```
|
||||
It is ready to use on [default url](http://127.0.0.1:7860).
|
||||
|
||||
### How to use it
|
||||
1. (optionally) Select models
|
||||
2. Load models
|
||||
3. Transcribe
|
||||
4. (optionally) Tweak some parameters
|
||||
5. Run
|
||||
6. (optionally) Rerun part-by-part in Long TTS mode
|
||||
|
||||
### Some features
|
||||
Smart transcript: write only what you want to generate
|
||||
|
||||
TTS mode: Zero-shot TTS
|
||||
|
||||
Edit mode: Speech editing
|
||||
|
||||
Long TTS mode: Easy TTS on long texts
|
||||
|
||||
|
||||
## Training
|
||||
To train an VoiceCraft model, you need to prepare the following parts:
|
||||
1. utterances and their transcripts
|
||||
|
|
Binary file not shown.
|
@ -0,0 +1,87 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9b6a0c92",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Only do the below if you are using docker"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "961faa43",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!source ~/.bashrc && \\\n",
|
||||
" apt-get update && \\\n",
|
||||
" apt-get install -y espeak espeak-data libespeak1 libespeak-dev && \\\n",
|
||||
" apt-get install -y festival* && \\\n",
|
||||
" apt-get install -y build-essential && \\\n",
|
||||
" apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools && \\\n",
|
||||
" apt-get install -y libxml2-dev libxslt-dev zlib1g-dev"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "598d75cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!source ~/.bashrc && \\\n",
|
||||
" conda activate voicecraft && \\\n",
|
||||
" pip install -r gradio_requirements.txt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8b9c4436",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# STOP\n",
|
||||
"You have to do this part manually using the mouse/keyboard and the tabs at the top.\n",
|
||||
"\n",
|
||||
"* Refresh your browser to make sure it picks up the new kernel.\n",
|
||||
"* Kernel -> Change Kernel -> Select Kernel -> voicecraft\n",
|
||||
"* Kernel -> Restart Kernel -> Yes\n",
|
||||
"\n",
|
||||
"Now you can run the rest of the notebook and get an audio sample output. It will automatically download more models and such. The next time you use this container, you can just start below here as the dependencies will remain available until you delete the docker container."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f089aa96",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gradio_app import app\n",
|
||||
"app.launch()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "voicecraft",
|
||||
"language": "python",
|
||||
"name": "voicecraft"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.19"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
|
@ -0,0 +1,618 @@
|
|||
import os
|
||||
import gradio as gr
|
||||
import torch
|
||||
import torchaudio
|
||||
from data.tokenizer import (
|
||||
AudioTokenizer,
|
||||
TextTokenizer,
|
||||
)
|
||||
from models import voicecraft
|
||||
import io
|
||||
import numpy as np
|
||||
import random
|
||||
import uuid
|
||||
|
||||
|
||||
DEMO_PATH = os.getenv("DEMO_PATH", "./demo")
|
||||
TMP_PATH = os.getenv("TMP_PATH", "./demo/temp")
|
||||
MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models")
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
whisper_model, align_model, voicecraft_model = None, None, None
|
||||
|
||||
|
||||
def get_random_string():
|
||||
return "".join(str(uuid.uuid4()).split("-"))
|
||||
|
||||
|
||||
def seed_everything(seed):
|
||||
if seed != -1:
|
||||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
|
||||
class WhisperxAlignModel:
|
||||
def __init__(self):
|
||||
from whisperx import load_align_model
|
||||
self.model, self.metadata = load_align_model(language_code="en", device=device)
|
||||
|
||||
def align(self, segments, audio_path):
|
||||
from whisperx import align, load_audio
|
||||
audio = load_audio(audio_path)
|
||||
return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"]
|
||||
|
||||
|
||||
class WhisperModel:
|
||||
def __init__(self, model_name):
|
||||
from whisper import load_model
|
||||
self.model = load_model(model_name, device)
|
||||
|
||||
from whisper.tokenizer import get_tokenizer
|
||||
tokenizer = get_tokenizer(multilingual=False)
|
||||
self.supress_tokens = [-1] + [
|
||||
i
|
||||
for i in range(tokenizer.eot)
|
||||
if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" "))
|
||||
]
|
||||
|
||||
def transcribe(self, audio_path):
|
||||
return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"]
|
||||
|
||||
|
||||
class WhisperxModel:
|
||||
def __init__(self, model_name, align_model: WhisperxAlignModel):
|
||||
from whisperx import load_model
|
||||
self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None})
|
||||
self.align_model = align_model
|
||||
|
||||
def transcribe(self, audio_path):
|
||||
segments = self.model.transcribe(audio_path, batch_size=8)["segments"]
|
||||
return self.align_model.align(segments, audio_path)
|
||||
|
||||
|
||||
def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, voicecraft_model_name):
|
||||
global transcribe_model, align_model, voicecraft_model
|
||||
|
||||
if voicecraft_model_name == "giga330M_TTSEnhanced":
|
||||
voicecraft_model_name = "gigaHalfLibri330M_TTSEnhanced_max16s"
|
||||
|
||||
if alignment_model_name is not None:
|
||||
align_model = WhisperxAlignModel()
|
||||
|
||||
if whisper_model_name is not None:
|
||||
if whisper_backend_name == "whisper":
|
||||
transcribe_model = WhisperModel(whisper_model_name)
|
||||
else:
|
||||
if align_model is None:
|
||||
raise gr.Error("Align model required for whisperx backend")
|
||||
transcribe_model = WhisperxModel(whisper_model_name, align_model)
|
||||
|
||||
voicecraft_name = f"{voicecraft_model_name}.pth"
|
||||
ckpt_fn = f"{MODELS_PATH}/{voicecraft_name}"
|
||||
encodec_fn = f"{MODELS_PATH}/encodec_4cb2048_giga.th"
|
||||
if not os.path.exists(ckpt_fn):
|
||||
os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true")
|
||||
os.system(f"mv {voicecraft_name}\?download\=true {MODELS_PATH}/{voicecraft_name}")
|
||||
if not os.path.exists(encodec_fn):
|
||||
os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th")
|
||||
os.system(f"mv encodec_4cb2048_giga.th {MODELS_PATH}/encodec_4cb2048_giga.th")
|
||||
|
||||
ckpt = torch.load(ckpt_fn, map_location="cpu")
|
||||
model = voicecraft.VoiceCraft(ckpt["config"])
|
||||
model.load_state_dict(ckpt["model"])
|
||||
model.to(device)
|
||||
model.eval()
|
||||
voicecraft_model = {
|
||||
"ckpt": ckpt,
|
||||
"model": model,
|
||||
"text_tokenizer": TextTokenizer(backend="espeak"),
|
||||
"audio_tokenizer": AudioTokenizer(signature=encodec_fn)
|
||||
}
|
||||
|
||||
return gr.Accordion()
|
||||
|
||||
|
||||
def get_transcribe_state(segments):
|
||||
words_info = [word_info for segment in segments for word_info in segment["words"]]
|
||||
return {
|
||||
"segments": segments,
|
||||
"transcript": " ".join([segment["text"] for segment in segments]),
|
||||
"words_info": words_info,
|
||||
"transcript_with_start_time": " ".join([f"{word['start']} {word['word']}" for word in words_info]),
|
||||
"transcript_with_end_time": " ".join([f"{word['word']} {word['end']}" for word in words_info]),
|
||||
"word_bounds": [f"{word['start']} {word['word']} {word['end']}" for word in words_info]
|
||||
}
|
||||
|
||||
|
||||
def transcribe(seed, audio_path):
|
||||
if transcribe_model is None:
|
||||
raise gr.Error("Transcription model not loaded")
|
||||
seed_everything(seed)
|
||||
|
||||
segments = transcribe_model.transcribe(audio_path)
|
||||
state = get_transcribe_state(segments)
|
||||
|
||||
return [
|
||||
state["transcript"], state["transcript_with_start_time"], state["transcript_with_end_time"],
|
||||
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # prompt_to_word
|
||||
gr.Dropdown(value=state["word_bounds"][0], choices=state["word_bounds"], interactive=True), # edit_from_word
|
||||
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # edit_to_word
|
||||
state
|
||||
]
|
||||
|
||||
|
||||
def align_segments(transcript, audio_path):
|
||||
from aeneas.executetask import ExecuteTask
|
||||
from aeneas.task import Task
|
||||
import json
|
||||
config_string = 'task_language=eng|os_task_file_format=json|is_text_type=plain'
|
||||
|
||||
tmp_transcript_path = os.path.join(TMP_PATH, f"{get_random_string()}.txt")
|
||||
tmp_sync_map_path = os.path.join(TMP_PATH, f"{get_random_string()}.json")
|
||||
with open(tmp_transcript_path, "w") as f:
|
||||
f.write(transcript)
|
||||
|
||||
task = Task(config_string=config_string)
|
||||
task.audio_file_path_absolute = os.path.abspath(audio_path)
|
||||
task.text_file_path_absolute = os.path.abspath(tmp_transcript_path)
|
||||
task.sync_map_file_path_absolute = os.path.abspath(tmp_sync_map_path)
|
||||
ExecuteTask(task).execute()
|
||||
task.output_sync_map_file()
|
||||
|
||||
with open(tmp_sync_map_path, "r") as f:
|
||||
return json.load(f)
|
||||
|
||||
|
||||
def align(seed, transcript, audio_path):
|
||||
if align_model is None:
|
||||
raise gr.Error("Align model not loaded")
|
||||
seed_everything(seed)
|
||||
|
||||
fragments = align_segments(transcript, audio_path)
|
||||
segments = [{
|
||||
"start": float(fragment["begin"]),
|
||||
"end": float(fragment["end"]),
|
||||
"text": " ".join(fragment["lines"])
|
||||
} for fragment in fragments["fragments"]]
|
||||
segments = align_model.align(segments, audio_path)
|
||||
state = get_transcribe_state(segments)
|
||||
|
||||
return [
|
||||
state["transcript_with_start_time"], state["transcript_with_end_time"],
|
||||
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # prompt_to_word
|
||||
gr.Dropdown(value=state["word_bounds"][0], choices=state["word_bounds"], interactive=True), # edit_from_word
|
||||
gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # edit_to_word
|
||||
state
|
||||
]
|
||||
|
||||
|
||||
def get_output_audio(audio_tensors, codec_audio_sr):
|
||||
result = torch.cat(audio_tensors, 1)
|
||||
buffer = io.BytesIO()
|
||||
torchaudio.save(buffer, result, int(codec_audio_sr), format="wav")
|
||||
buffer.seek(0)
|
||||
return buffer.read()
|
||||
|
||||
|
||||
def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature,
|
||||
stop_repetition, sample_batch_size, kvcache, silence_tokens,
|
||||
audio_path, transcribe_state, transcript, smart_transcript,
|
||||
mode, prompt_end_time, edit_start_time, edit_end_time,
|
||||
split_text, selected_sentence, previous_audio_tensors):
|
||||
if voicecraft_model is None:
|
||||
raise gr.Error("VoiceCraft model not loaded")
|
||||
if smart_transcript and (transcribe_state is None):
|
||||
raise gr.Error("Can't use smart transcript: whisper transcript not found")
|
||||
|
||||
seed_everything(seed)
|
||||
if mode == "Long TTS":
|
||||
if split_text == "Newline":
|
||||
sentences = transcript.split('\n')
|
||||
else:
|
||||
from nltk.tokenize import sent_tokenize
|
||||
sentences = sent_tokenize(transcript.replace("\n", " "))
|
||||
elif mode == "Rerun":
|
||||
colon_position = selected_sentence.find(':')
|
||||
selected_sentence_idx = int(selected_sentence[:colon_position])
|
||||
sentences = [selected_sentence[colon_position + 1:]]
|
||||
else:
|
||||
sentences = [transcript.replace("\n", " ")]
|
||||
|
||||
info = torchaudio.info(audio_path)
|
||||
audio_dur = info.num_frames / info.sample_rate
|
||||
|
||||
audio_tensors = []
|
||||
inference_transcript = ""
|
||||
for sentence in sentences:
|
||||
decode_config = {"top_k": top_k, "top_p": top_p, "temperature": temperature, "stop_repetition": stop_repetition,
|
||||
"kvcache": kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr,
|
||||
"silence_tokens": silence_tokens, "sample_batch_size": sample_batch_size}
|
||||
if mode != "Edit":
|
||||
from inference_tts_scale import inference_one_sample
|
||||
|
||||
if smart_transcript:
|
||||
target_transcript = ""
|
||||
for word in transcribe_state["words_info"]:
|
||||
if word["end"] < prompt_end_time:
|
||||
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||
elif (word["start"] + word["end"]) / 2 < prompt_end_time:
|
||||
# include part of the word it it's big, but adjust prompt_end_time
|
||||
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||
prompt_end_time = word["end"]
|
||||
break
|
||||
else:
|
||||
break
|
||||
target_transcript += f" {sentence}"
|
||||
else:
|
||||
target_transcript = sentence
|
||||
|
||||
inference_transcript += target_transcript + "\n"
|
||||
|
||||
prompt_end_frame = int(min(audio_dur, prompt_end_time) * info.sample_rate)
|
||||
_, gen_audio = inference_one_sample(voicecraft_model["model"],
|
||||
voicecraft_model["ckpt"]["config"],
|
||||
voicecraft_model["ckpt"]["phn2num"],
|
||||
voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"],
|
||||
audio_path, target_transcript, device, decode_config,
|
||||
prompt_end_frame)
|
||||
else:
|
||||
from inference_speech_editing_scale import inference_one_sample
|
||||
|
||||
if smart_transcript:
|
||||
target_transcript = ""
|
||||
for word in transcribe_state["words_info"]:
|
||||
if word["start"] < edit_start_time:
|
||||
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||
else:
|
||||
break
|
||||
target_transcript += f" {sentence}"
|
||||
for word in transcribe_state["words_info"]:
|
||||
if word["end"] > edit_end_time:
|
||||
target_transcript += word["word"] + (" " if word["word"][-1] != " " else "")
|
||||
else:
|
||||
target_transcript = sentence
|
||||
|
||||
inference_transcript += target_transcript + "\n"
|
||||
|
||||
morphed_span = (max(edit_start_time - left_margin, 1 / codec_sr), min(edit_end_time + right_margin, audio_dur))
|
||||
mask_interval = [[round(morphed_span[0]*codec_sr), round(morphed_span[1]*codec_sr)]]
|
||||
mask_interval = torch.LongTensor(mask_interval)
|
||||
|
||||
_, gen_audio = inference_one_sample(voicecraft_model["model"],
|
||||
voicecraft_model["ckpt"]["config"],
|
||||
voicecraft_model["ckpt"]["phn2num"],
|
||||
voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"],
|
||||
audio_path, target_transcript, mask_interval, device, decode_config)
|
||||
gen_audio = gen_audio[0].cpu()
|
||||
audio_tensors.append(gen_audio)
|
||||
|
||||
if mode != "Rerun":
|
||||
output_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
||||
sentences = [f"{idx}: {text}" for idx, text in enumerate(sentences)]
|
||||
component = gr.Dropdown(choices=sentences, value=sentences[0])
|
||||
return output_audio, inference_transcript, component, audio_tensors
|
||||
else:
|
||||
previous_audio_tensors[selected_sentence_idx] = audio_tensors[0]
|
||||
output_audio = get_output_audio(previous_audio_tensors, codec_audio_sr)
|
||||
sentence_audio = get_output_audio(audio_tensors, codec_audio_sr)
|
||||
return output_audio, inference_transcript, sentence_audio, previous_audio_tensors
|
||||
|
||||
|
||||
def update_input_audio(audio_path):
|
||||
if audio_path is None:
|
||||
return 0, 0, 0
|
||||
|
||||
info = torchaudio.info(audio_path)
|
||||
max_time = round(info.num_frames / info.sample_rate, 2)
|
||||
return [
|
||||
gr.Slider(maximum=max_time, value=max_time),
|
||||
gr.Slider(maximum=max_time, value=0),
|
||||
gr.Slider(maximum=max_time, value=max_time),
|
||||
]
|
||||
|
||||
|
||||
def change_mode(mode):
|
||||
tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor
|
||||
return [
|
||||
gr.Group(visible=mode != "Edit"),
|
||||
gr.Group(visible=mode == "Edit"),
|
||||
gr.Radio(visible=mode == "Edit"),
|
||||
gr.Radio(visible=mode == "Long TTS"),
|
||||
gr.Group(visible=mode == "Long TTS"),
|
||||
]
|
||||
|
||||
|
||||
def load_sentence(selected_sentence, codec_audio_sr, audio_tensors):
|
||||
if selected_sentence is None:
|
||||
return None
|
||||
colon_position = selected_sentence.find(':')
|
||||
selected_sentence_idx = int(selected_sentence[:colon_position])
|
||||
return get_output_audio([audio_tensors[selected_sentence_idx]], codec_audio_sr)
|
||||
|
||||
|
||||
def update_bound_word(is_first_word, selected_word, edit_word_mode):
|
||||
if selected_word is None:
|
||||
return None
|
||||
|
||||
word_start_time = float(selected_word.split(' ')[0])
|
||||
word_end_time = float(selected_word.split(' ')[-1])
|
||||
if edit_word_mode == "Replace half":
|
||||
bound_time = (word_start_time + word_end_time) / 2
|
||||
elif is_first_word:
|
||||
bound_time = word_start_time
|
||||
else:
|
||||
bound_time = word_end_time
|
||||
|
||||
return bound_time
|
||||
|
||||
|
||||
def update_bound_words(from_selected_word, to_selected_word, edit_word_mode):
|
||||
return [
|
||||
update_bound_word(True, from_selected_word, edit_word_mode),
|
||||
update_bound_word(False, to_selected_word, edit_word_mode),
|
||||
]
|
||||
|
||||
|
||||
smart_transcript_info = """
|
||||
If enabled, the target transcript will be constructed for you:</br>
|
||||
- In TTS and Long TTS mode just write the text you want to synthesize.</br>
|
||||
- In Edit mode just write the text to replace selected editing segment.</br>
|
||||
If disabled, you should write the target transcript yourself:</br>
|
||||
- In TTS mode write prompt transcript followed by generation transcript.</br>
|
||||
- In Long TTS select split by newline (<b>SENTENCE SPLIT WON'T WORK</b>) and start each line with a prompt transcript.</br>
|
||||
- In Edit mode write full prompt</br>
|
||||
"""
|
||||
|
||||
demo_original_transcript = " But when I had approached so near to them, the common object, which the sense deceives, lost not by distance any of its marks."
|
||||
|
||||
demo_text = {
|
||||
"TTS": {
|
||||
"smart": "I cannot believe that the same model can also do text to speech synthesis too!",
|
||||
"regular": "But when I had approached so near to them, the common I cannot believe that the same model can also do text to speech synthesis too!"
|
||||
},
|
||||
"Edit": {
|
||||
"smart": "saw the mirage of the lake in the distance,",
|
||||
"regular": "But when I saw the mirage of the lake in the distance, which the sense deceives, Lost not by distance any of its marks,"
|
||||
},
|
||||
"Long TTS": {
|
||||
"smart": "You can run the model on a big text!\n"
|
||||
"Just write it line-by-line. Or sentence-by-sentence.\n"
|
||||
"If some sentences sound odd, just rerun the model on them, no need to generate the whole text again!",
|
||||
"regular": "But when I had approached so near to them, the common You can run the model on a big text!\n"
|
||||
"But when I had approached so near to them, the common Just write it line-by-line. Or sentence-by-sentence.\n"
|
||||
"But when I had approached so near to them, the common If some sentences sound odd, just rerun the model on them, no need to generate the whole text again!"
|
||||
}
|
||||
}
|
||||
|
||||
all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()}
|
||||
|
||||
demo_words = [
|
||||
'0.029 But 0.149', '0.189 when 0.33', '0.43 I 0.49', '0.53 had 0.65', '0.711 approached 1.152', '1.352 so 1.593',
|
||||
'1.693 near 1.933', '1.994 to 2.074', '2.134 them, 2.354', '2.535 the 2.655', '2.695 common 3.016', '3.196 object, 3.577',
|
||||
'3.717 which 3.898', '3.958 the 4.058', '4.098 sense 4.359', '4.419 deceives, 4.92', '5.101 lost 5.481', '5.682 not 5.963',
|
||||
'6.043 by 6.183', '6.223 distance 6.644', '6.905 any 7.065', '7.125 of 7.185', '7.245 its 7.346', '7.406 marks. 7.727'
|
||||
]
|
||||
|
||||
demo_words_info = [
|
||||
{'word': 'But', 'start': 0.029, 'end': 0.149, 'score': 0.834}, {'word': 'when', 'start': 0.189, 'end': 0.33, 'score': 0.879},
|
||||
{'word': 'I', 'start': 0.43, 'end': 0.49, 'score': 0.984}, {'word': 'had', 'start': 0.53, 'end': 0.65, 'score': 0.998},
|
||||
{'word': 'approached', 'start': 0.711, 'end': 1.152, 'score': 0.822}, {'word': 'so', 'start': 1.352, 'end': 1.593, 'score': 0.822},
|
||||
{'word': 'near', 'start': 1.693, 'end': 1.933, 'score': 0.752}, {'word': 'to', 'start': 1.994, 'end': 2.074, 'score': 0.924},
|
||||
{'word': 'them,', 'start': 2.134, 'end': 2.354, 'score': 0.914}, {'word': 'the', 'start': 2.535, 'end': 2.655, 'score': 0.818},
|
||||
{'word': 'common', 'start': 2.695, 'end': 3.016, 'score': 0.971}, {'word': 'object,', 'start': 3.196, 'end': 3.577, 'score': 0.823},
|
||||
{'word': 'which', 'start': 3.717, 'end': 3.898, 'score': 0.701}, {'word': 'the', 'start': 3.958, 'end': 4.058, 'score': 0.798},
|
||||
{'word': 'sense', 'start': 4.098, 'end': 4.359, 'score': 0.797}, {'word': 'deceives,', 'start': 4.419, 'end': 4.92, 'score': 0.802},
|
||||
{'word': 'lost', 'start': 5.101, 'end': 5.481, 'score': 0.71}, {'word': 'not', 'start': 5.682, 'end': 5.963, 'score': 0.781},
|
||||
{'word': 'by', 'start': 6.043, 'end': 6.183, 'score': 0.834}, {'word': 'distance', 'start': 6.223, 'end': 6.644, 'score': 0.899},
|
||||
{'word': 'any', 'start': 6.905, 'end': 7.065, 'score': 0.893}, {'word': 'of', 'start': 7.125, 'end': 7.185, 'score': 0.772},
|
||||
{'word': 'its', 'start': 7.245, 'end': 7.346, 'score': 0.778}, {'word': 'marks.', 'start': 7.406, 'end': 7.727, 'score': 0.955}
|
||||
]
|
||||
|
||||
|
||||
def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word):
|
||||
if transcript not in all_demo_texts:
|
||||
return transcript, edit_from_word, edit_to_word
|
||||
|
||||
replace_half = edit_word_mode == "Replace half"
|
||||
change_edit_from_word = edit_from_word == demo_words[2] or edit_from_word == demo_words[3]
|
||||
change_edit_to_word = edit_to_word == demo_words[11] or edit_to_word == demo_words[12]
|
||||
demo_edit_from_word_value = demo_words[2] if replace_half else demo_words[3]
|
||||
demo_edit_to_word_value = demo_words[12] if replace_half else demo_words[11]
|
||||
return [
|
||||
demo_text[mode]["smart" if smart_transcript else "regular"],
|
||||
demo_edit_from_word_value if change_edit_from_word else edit_from_word,
|
||||
demo_edit_to_word_value if change_edit_to_word else edit_to_word,
|
||||
]
|
||||
|
||||
|
||||
def get_app():
|
||||
with gr.Blocks() as app:
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
load_models_btn = gr.Button(value="Load models")
|
||||
with gr.Column(scale=5):
|
||||
with gr.Accordion("Select models", open=False) as models_selector:
|
||||
with gr.Row():
|
||||
voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M",
|
||||
choices=["giga330M", "giga830M", "giga330M_TTSEnhanced"])
|
||||
whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisper", "whisperX"])
|
||||
whisper_model_choice = gr.Radio(label="Whisper model", value="base.en",
|
||||
choices=[None, "base.en", "small.en", "medium.en", "large"])
|
||||
align_model_choice = gr.Radio(label="Forced alignment model", value="whisperX", choices=[None, "whisperX"])
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
input_audio = gr.Audio(value=f"{DEMO_PATH}/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True)
|
||||
with gr.Group():
|
||||
original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript,
|
||||
info="Use whisper model to get the transcript. Fix and align it if necessary.")
|
||||
with gr.Accordion("Word start time", open=False):
|
||||
transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word")
|
||||
with gr.Accordion("Word end time", open=False):
|
||||
transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word")
|
||||
|
||||
transcribe_btn = gr.Button(value="Transcribe")
|
||||
align_btn = gr.Button(value="Align")
|
||||
|
||||
with gr.Column(scale=3):
|
||||
with gr.Group():
|
||||
transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"])
|
||||
with gr.Row():
|
||||
smart_transcript = gr.Checkbox(label="Smart transcript", value=True)
|
||||
with gr.Accordion(label="?", open=False):
|
||||
info = gr.Markdown(value=smart_transcript_info)
|
||||
|
||||
with gr.Row():
|
||||
mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS")
|
||||
split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline",
|
||||
info="Split text into parts and run TTS for each part.", visible=False)
|
||||
edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half",
|
||||
info="What to do with first and last word", visible=False)
|
||||
|
||||
with gr.Group() as tts_mode_controls:
|
||||
prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True)
|
||||
prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.001, value=3.016)
|
||||
|
||||
with gr.Group(visible=False) as edit_mode_controls:
|
||||
with gr.Row():
|
||||
edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True)
|
||||
edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True)
|
||||
with gr.Row():
|
||||
edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.001, value=0.46)
|
||||
edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.001, value=3.808)
|
||||
|
||||
run_btn = gr.Button(value="Run")
|
||||
|
||||
with gr.Column(scale=2):
|
||||
output_audio = gr.Audio(label="Output Audio")
|
||||
with gr.Accordion("Inference transcript", open=False):
|
||||
inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False,
|
||||
info="Inference was performed on this transcript.")
|
||||
with gr.Group(visible=False) as long_tts_sentence_editor:
|
||||
sentence_selector = gr.Dropdown(label="Sentence", value=None,
|
||||
info="Select sentence you want to regenerate")
|
||||
sentence_audio = gr.Audio(label="Sentence Audio", scale=2)
|
||||
rerun_btn = gr.Button(value="Rerun")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False):
|
||||
stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=3,
|
||||
info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled")
|
||||
sample_batch_size = gr.Number(label="speech rate", value=4, precision=0,
|
||||
info="The higher the number, the faster the output will be. "
|
||||
"Under the hood, the model will generate this many samples and choose the shortest one. "
|
||||
"For giga330M_TTSEnhanced, 1 or 2 should be fine since the model is trained to do TTS.")
|
||||
seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)")
|
||||
kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1,
|
||||
info="set to 0 to use less VRAM, but with slower inference")
|
||||
left_margin = gr.Number(label="left_margin", value=0.08, info="margin to the left of the editing segment")
|
||||
right_margin = gr.Number(label="right_margin", value=0.08, info="margin to the right of the editing segment")
|
||||
top_p = gr.Number(label="top_p", value=0.9, info="0.9 is a good value, 0.8 is also good")
|
||||
temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change")
|
||||
top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling")
|
||||
codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change')
|
||||
codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change')
|
||||
silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change")
|
||||
|
||||
|
||||
audio_tensors = gr.State()
|
||||
transcribe_state = gr.State(value={"words_info": demo_words_info})
|
||||
|
||||
|
||||
mode.change(fn=update_demo,
|
||||
inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
|
||||
outputs=[transcript, edit_from_word, edit_to_word])
|
||||
edit_word_mode.change(fn=update_demo,
|
||||
inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
|
||||
outputs=[transcript, edit_from_word, edit_to_word])
|
||||
smart_transcript.change(fn=update_demo,
|
||||
inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word],
|
||||
outputs=[transcript, edit_from_word, edit_to_word])
|
||||
|
||||
load_models_btn.click(fn=load_models,
|
||||
inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, voicecraft_model_choice],
|
||||
outputs=[models_selector])
|
||||
|
||||
input_audio.upload(fn=update_input_audio,
|
||||
inputs=[input_audio],
|
||||
outputs=[prompt_end_time, edit_start_time, edit_end_time])
|
||||
transcribe_btn.click(fn=transcribe,
|
||||
inputs=[seed, input_audio],
|
||||
outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time,
|
||||
prompt_to_word, edit_from_word, edit_to_word, transcribe_state])
|
||||
align_btn.click(fn=align,
|
||||
inputs=[seed, original_transcript, input_audio],
|
||||
outputs=[transcript_with_start_time, transcript_with_end_time,
|
||||
prompt_to_word, edit_from_word, edit_to_word, transcribe_state])
|
||||
|
||||
mode.change(fn=change_mode,
|
||||
inputs=[mode],
|
||||
outputs=[tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor])
|
||||
|
||||
run_btn.click(fn=run,
|
||||
inputs=[
|
||||
seed, left_margin, right_margin,
|
||||
codec_audio_sr, codec_sr,
|
||||
top_k, top_p, temperature,
|
||||
stop_repetition, sample_batch_size,
|
||||
kvcache, silence_tokens,
|
||||
input_audio, transcribe_state, transcript, smart_transcript,
|
||||
mode, prompt_end_time, edit_start_time, edit_end_time,
|
||||
split_text, sentence_selector, audio_tensors
|
||||
],
|
||||
outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors])
|
||||
|
||||
sentence_selector.change(fn=load_sentence,
|
||||
inputs=[sentence_selector, codec_audio_sr, audio_tensors],
|
||||
outputs=[sentence_audio])
|
||||
rerun_btn.click(fn=run,
|
||||
inputs=[
|
||||
seed, left_margin, right_margin,
|
||||
codec_audio_sr, codec_sr,
|
||||
top_k, top_p, temperature,
|
||||
stop_repetition, sample_batch_size,
|
||||
kvcache, silence_tokens,
|
||||
input_audio, transcribe_state, transcript, smart_transcript,
|
||||
gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time,
|
||||
split_text, sentence_selector, audio_tensors
|
||||
],
|
||||
outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors])
|
||||
|
||||
prompt_to_word.change(fn=update_bound_word,
|
||||
inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")],
|
||||
outputs=[prompt_end_time])
|
||||
edit_from_word.change(fn=update_bound_word,
|
||||
inputs=[gr.State(True), edit_from_word, edit_word_mode],
|
||||
outputs=[edit_start_time])
|
||||
edit_to_word.change(fn=update_bound_word,
|
||||
inputs=[gr.State(False), edit_to_word, edit_word_mode],
|
||||
outputs=[edit_end_time])
|
||||
edit_word_mode.change(fn=update_bound_words,
|
||||
inputs=[edit_from_word, edit_to_word, edit_word_mode],
|
||||
outputs=[edit_start_time, edit_end_time])
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="VoiceCraft gradio app.")
|
||||
|
||||
parser.add_argument("--demo-path", default="./demo", help="Path to demo directory")
|
||||
parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory")
|
||||
parser.add_argument("--models-path", default="./pretrained_models", help="Path to voicecraft models directory")
|
||||
parser.add_argument("--port", default=7860, type=int, help="App port")
|
||||
parser.add_argument("--share", action="store_true", help="Launch with public url")
|
||||
|
||||
os.environ["USER"] = os.getenv("USER", "user")
|
||||
args = parser.parse_args()
|
||||
DEMO_PATH = args.demo_path
|
||||
TMP_PATH = args.tmp_path
|
||||
MODELS_PATH = args.models_path
|
||||
|
||||
app = get_app()
|
||||
app.queue().launch(share=args.share, server_port=args.port)
|
|
@ -0,0 +1,5 @@
|
|||
gradio==3.50.2
|
||||
nltk>=3.8.1
|
||||
openai-whisper>=20231117
|
||||
aeneas>=1.7.3.0
|
||||
whisperx>=3.1.1
|
|
@ -5,6 +5,7 @@ echo Creating and running the Jupyter container...
|
|||
docker run -it -d ^
|
||||
--gpus all ^
|
||||
-p 8888:8888 ^
|
||||
-p 7860:7860 ^
|
||||
--name jupyter ^
|
||||
--user root ^
|
||||
-e NB_USER="%username%" ^
|
||||
|
|
|
@ -8,6 +8,7 @@ docker run -it \
|
|||
-d \
|
||||
--gpus all \
|
||||
-p 8888:8888 \
|
||||
-p 7860:7860 \
|
||||
--name jupyter \
|
||||
--user root \
|
||||
-e NB_USER="$USER" \
|
||||
|
|
|
@ -0,0 +1,125 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "view-in-github"
|
||||
},
|
||||
"source": [
|
||||
"<a href=\"https://colab.research.google.com/github/Sewlell/VoiceCraft-gradio-colab/blob/master/voicecraft.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Y87ixxsUVIhM"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!git clone https://github.com/jasonppy/VoiceCraft"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "-w3USR91XdxY"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install tensorboard\n",
|
||||
"!pip install phonemizer\n",
|
||||
"!pip install datasets\n",
|
||||
"!pip install torchmetrics\n",
|
||||
"\n",
|
||||
"!apt-get install -y espeak espeak-data libespeak1 libespeak-dev\n",
|
||||
"!apt-get install -y festival*\n",
|
||||
"!apt-get install -y build-essential\n",
|
||||
"!apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools\n",
|
||||
"!apt-get install -y libxml2-dev libxslt-dev zlib1g-dev\n",
|
||||
"\n",
|
||||
"!pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft\n",
|
||||
"\n",
|
||||
"!pip install -r \"/content/VoiceCraft/gradio_requirements.txt\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "jNuzjrtmv2n1"
|
||||
},
|
||||
"source": [
|
||||
"# Let it restarted, it won't let your entire installation be aborted."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "AnqGEwZ4NxtJ"
|
||||
},
|
||||
"source": [
|
||||
"# Note before launching the `gradio_app.py`\n",
|
||||
"\n",
|
||||
"***You will get JSON warning if you move anything beside `sample_batch_size`, `stop_repetition` and `seed`.*** Which for most advanced setting, `kvache` and `temperature` unable to set in different value.\n",
|
||||
"\n",
|
||||
"You will download a .file File when you download the output audio for some reason. You will need to **convert the file from .snd to .wav/.mp3 manually**. Or if you enable showing file type in the name in Windows or wherever you are, change the file name to \"xxx.wav\" or \"xxx.mp3\". (know the solution? pull request my repository)\n",
|
||||
"\n",
|
||||
"Frequency of VRAM spikes no longer exist as well in April 5 Update.\n",
|
||||
"* Nevermind, I have observed some weird usage on Colab's GPU Memory Monitor. It can spike up to 13.5GB VRAM even in WhisperX mode. (April 11)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "dE0W76cMN3Si"
|
||||
},
|
||||
"source": [
|
||||
"Don't make your `prompt end time` too long, 6-9s is fine. Or else it will **either raise up JSON issue or cut off your generated audio**. This one is due to how VoiceCraft worked (so probably unfixable). It will add those text you want to get audio from at the end of the input audio transcript. It was way too much word for application or code to handle as it added up with original transcript. So please keep it short.\n",
|
||||
"\n",
|
||||
"Your total audio length (`prompt end time` + add-up audio) must not exceed 16 or 17s."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "nnu2cY4t8P6X"
|
||||
},
|
||||
"source": [
|
||||
"For voice cloning, I suggest you to probably have a monotone input to feed the voice cloning. Of course you can always try input that have tons of tone variety, but I find that as per April 11 Update, it's much more easy to replicate in monotone rather than audio that have laugh, scream, crying inside.\n",
|
||||
"\n",
|
||||
"The inference speed is much stable. With sample text, T4 (Free Tier Colab GPU) can do 6-15s on 6s-8s of `prompt end time`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "NDt4r4DiXAwG"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!python /content/VoiceCraft/gradio_app.py --demo-path=/content/VoiceCraft/demo --tmp-path=/content/VoiceCraft/demo/temp --models-path=/content/VoiceCraft/pretrained_models --share"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"authorship_tag": "ABX9TyPsqFhtOeQ18CXHnRkWAQSk",
|
||||
"gpuType": "T4",
|
||||
"include_colab_link": true,
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
Loading…
Reference in New Issue