From 5cef625c1b9d4e5c1757842d536db37fd0691bda Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Tue, 2 Apr 2024 17:58:15 +0300 Subject: [PATCH 01/24] gradio app added --- README.md | 30 +++ gradio_app.ipynb | 143 +++++++++++++ gradio_app.py | 437 ++++++++++++++++++++++++++++++++++++++++ gradio_requirements.txt | 3 + start-jupyter.bat | 1 + start-jupyter.sh | 1 + 6 files changed, 615 insertions(+) create mode 100644 gradio_app.ipynb create mode 100644 gradio_app.py create mode 100644 gradio_requirements.txt diff --git a/README.md b/README.md index 74713fa..2a5be3a 100644 --- a/README.md +++ b/README.md @@ -90,6 +90,36 @@ If you have encountered version issues when running things, checkout [environmen ## Inference Examples Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) and [`inference_tts.ipynb`](./inference_tts.ipynb) +## Gradio +After environment setup install additional dependencies: +```bash +pip install -r gradio_requirements.txt +``` + +Run gradio server from terminal or [`gradio_app.ipynb`](./gradio_app.ipynb): +```bash +python gradio_app.py +``` +It is ready to use on [default url](http://127.0.0.1:7860). + +### How to use it +1. (optionally) Select models +2. Load models +3. Transcribe +4. (optionally) Tweak some parameters +5. Run +6. (optionally) Rerun part-by-part in Long TTS mode + +### Some features +Smart transcript: write only what you want to generate, but don't work if you edit original transcript + +TTS mode: Zero-shot TTS + +Edit mode: Speech editing + +Long TTS mode: Easy TTS on long texts + + ## Training To train an VoiceCraft model, you need to prepare the following parts: 1. utterances and their transcripts diff --git a/gradio_app.ipynb b/gradio_app.ipynb new file mode 100644 index 0000000..0d3f946 --- /dev/null +++ b/gradio_app.ipynb @@ -0,0 +1,143 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9b6a0c92", + "metadata": {}, + "source": [ + "### Only do the below if you are using docker" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "270aa2cc", + "metadata": {}, + "outputs": [], + "source": [ + "# install OS deps\n", + "!sudo apt-get update && sudo apt-get install -y \\\n", + " git-core \\\n", + " ffmpeg \\\n", + " espeak-ng" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ba5f452", + "metadata": {}, + "outputs": [], + "source": [ + "# Update and setup Conda voicecraft environment\n", + "!conda update -y -n base -c conda-forge conda\n", + "!conda create -y -n voicecraft python=3.9.16 && \\\n", + " conda init bash" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4ef2935c", + "metadata": {}, + "outputs": [], + "source": [ + "# install conda and pip stuff in the activated conda above context\n", + "!echo -e \"Grab a cup a coffee and a slice of pizza...\\n\\n\"\n", + "\n", + "# make sure $HOME and $USER are setup so this will source the conda environment\n", + "!source ~/.bashrc && \\\n", + " conda activate voicecraft && \\\n", + " conda install -y -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi=5.5.1068 && \\\n", + " pip install torch==2.0.1 && \\\n", + " pip install tensorboard==2.16.2 && \\\n", + " pip install phonemizer==3.2.1 && \\\n", + " pip install torchaudio==2.0.2 && \\\n", + " pip install datasets==2.16.0 && \\\n", + " pip install torchmetrics==0.11.1\n", + "\n", + "# do this one last otherwise you'll get an error about torch compiler missing due to xformer mismatch\n", + "!source ~/.bashrc && \\\n", + " conda activate voicecraft && \\\n", + " pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2fca57eb", + "metadata": {}, + "outputs": [], + "source": [ + "# okay setup the conda environment such that jupyter notebook can find the kernel\n", + "!source ~/.bashrc && \\\n", + " conda activate voicecraft && \\\n", + " conda install -y -n voicecraft ipykernel --update-deps --force-reinstall\n", + "\n", + "# installs the Jupyter kernel into /home/myusername/.local/share/jupyter/kernels/voicecraft\n", + "!source ~/.bashrc && \\\n", + " conda activate voicecraft && \\\n", + " python3 -m ipykernel install --user --name=voicecraft" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "961faa43", + "metadata": {}, + "outputs": [], + "source": [ + "!source ~/.bashrc && \\\n", + " conda activate voicecraft && \\\n", + " pip install -r gradio_requirements.txt" + ] + }, + { + "cell_type": "markdown", + "id": "8b9c4436", + "metadata": {}, + "source": [ + "# STOP\n", + "You have to do this part manually using the mouse/keyboard and the tabs at the top.\n", + "\n", + "* Refresh your browser to make sure it picks up the new kernel.\n", + "* Kernel -> Change Kernel -> Select Kernel -> voicecraft\n", + "* Kernel -> Restart Kernel -> Yes\n", + "\n", + "Now you can run the rest of the notebook and get an audio sample output. It will automatically download more models and such. The next time you use this container, you can just start below here as the dependencies will remain available until you delete the docker container." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f089aa96", + "metadata": {}, + "outputs": [], + "source": [ + "from gradio_app import app\n", + "app.launch()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "voicecraft", + "language": "python", + "name": "voicecraft" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/gradio_app.py b/gradio_app.py new file mode 100644 index 0000000..956175c --- /dev/null +++ b/gradio_app.py @@ -0,0 +1,437 @@ +import gradio as gr +import torch +import torchaudio +from data.tokenizer import ( + AudioTokenizer, + TextTokenizer, +) +from models import voicecraft +import whisper +from whisper.tokenizer import get_tokenizer +import os +import io + + +whisper_model = None +voicecraft_model = None +device = "cuda" if torch.cuda.is_available() else "cpu" + + +def load_models(input_audio, transcribe_btn, run_btn, rerun_btn): + def impl(whisper_model_choice, voicecraft_model_choice): + global whisper_model, voicecraft_model + whisper_model = whisper.load_model(whisper_model_choice) + + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + os.environ["CUDA_VISIBLE_DEVICES"] = "0" + + voicecraft_name = f"{voicecraft_model_choice}.pth" + ckpt_fn = f"./pretrained_models/{voicecraft_name}" + encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th" + if not os.path.exists(ckpt_fn): + os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true") + os.system(f"mv {voicecraft_name}\?download\=true ./pretrained_models/{voicecraft_name}") + if not os.path.exists(encodec_fn): + os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th") + os.system(f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th") + + voicecraft_model = {} + voicecraft_model["ckpt"] = torch.load(ckpt_fn, map_location="cpu") + voicecraft_model["model"] = voicecraft.VoiceCraft(voicecraft_model["ckpt"]["config"]) + voicecraft_model["model"].load_state_dict(voicecraft_model["ckpt"]["model"]) + voicecraft_model["model"].to(device) + voicecraft_model["model"].eval() + + voicecraft_model["text_tokenizer"] = TextTokenizer(backend="espeak") + voicecraft_model["audio_tokenizer"] = AudioTokenizer(signature=encodec_fn) + + return [ + input_audio.update(interactive=True), + transcribe_btn.update(interactive=True), + run_btn.update(interactive=True), + rerun_btn.update(interactive=True) + ] + return impl + + +def transcribe(audio_path): + tokenizer = get_tokenizer(multilingual=False) + number_tokens = [ + i + for i in range(tokenizer.eot) + if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" ")) + ] + result = whisper_model.transcribe(audio_path, suppress_tokens=[-1] + number_tokens, word_timestamps=True) + words = [word_info for segment in result["segments"] for word_info in segment["words"]] + + transcript = result["text"] + transcript_with_start_time = " ".join([f"{word['start']} {word['word']}" for word in words]) + transcript_with_end_time = " ".join([f"{word['word']} {word['end']}" for word in words]) + + choices = [f"{word['start']} {word['word']} {word['end']}" for word in words] + edit_from_word = gr.Dropdown(label="First word to edit", value=choices[0], choices=choices, interactive=True) + edit_to_word = gr.Dropdown(label="Last word to edit", value=choices[-1], choices=choices, interactive=True) + + return [ + transcript, transcript_with_start_time, transcript_with_end_time, + edit_from_word, edit_to_word, words + ] + + +def get_output_audio(audio_tensors, codec_audio_sr): + result = torch.cat(audio_tensors, 1) + buffer = io.BytesIO() + torchaudio.save(buffer, result, int(codec_audio_sr), format="wav") + buffer.seek(0) + return buffer.read() + + +def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, + stop_repetition, sample_batch_size, kvcache, silence_tokens, + audio_path, word_info, transcript, smart_transcript, + mode, prompt_end_time, edit_start_time, edit_end_time, + split_text, selected_sentence, previous_audio_tensors): + if mode == "Long TTS": + if split_text == "Newline": + sentences = transcript.split('\n') + else: + from nltk.tokenize import sent_tokenize + sentences = sent_tokenize(transcript.replace("\n", " ")) + elif mode == "Rerun": + colon_position = selected_sentence.find(':') + selected_sentence_idx = int(selected_sentence[:colon_position]) + sentences = [selected_sentence[colon_position + 1:]] + else: + sentences = [transcript.replace("\n", " ")] + + info = torchaudio.info(audio_path) + audio_dur = info.num_frames / info.sample_rate + + audio_tensors = [] + inference_transcript = "" + for sentence in sentences: + decode_config = {"top_k": top_k, "top_p": top_p, "temperature": temperature, "stop_repetition": stop_repetition, + "kvcache": kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr, + "silence_tokens": silence_tokens, "sample_batch_size": sample_batch_size} + if mode != "Edit": + from inference_tts_scale import inference_one_sample + + if smart_transcript: + target_transcript = "" + for word in word_info: + if word["end"] < prompt_end_time: + target_transcript += word["word"] + elif (word["start"] + word["end"]) / 2 < prompt_end_time: + # include part of the word it it's big, but adjust prompt_end_time + target_transcript += word["word"] + prompt_end_time = word["end"] + break + else: + break + target_transcript += f" {sentence}" + else: + target_transcript = sentence + + inference_transcript += target_transcript + "\n" + + prompt_end_frame = int(min(audio_dur, prompt_end_time) * info.sample_rate) + _, gen_audio = inference_one_sample(voicecraft_model["model"], + voicecraft_model["ckpt"]["config"], + voicecraft_model["ckpt"]["phn2num"], + voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"], + audio_path, target_transcript, device, decode_config, + prompt_end_frame) + else: + from inference_speech_editing_scale import inference_one_sample + + if smart_transcript: + target_transcript = "" + for word in word_info: + if word["start"] < edit_start_time: + target_transcript += word["word"] + else: + break + target_transcript += f" {sentence}" + for word in word_info: + if word["end"] > edit_end_time: + target_transcript += word["word"] + else: + target_transcript = sentence + + inference_transcript += target_transcript + "\n" + + morphed_span = (max(edit_start_time - left_margin, 1 / codec_sr), min(edit_end_time + right_margin, audio_dur)) + mask_interval = [[round(morphed_span[0]*codec_sr), round(morphed_span[1]*codec_sr)]] + mask_interval = torch.LongTensor(mask_interval) + + _, gen_audio = inference_one_sample(voicecraft_model["model"], + voicecraft_model["ckpt"]["config"], + voicecraft_model["ckpt"]["phn2num"], + voicecraft_model["text_tokenizer"], voicecraft_model["audio_tokenizer"], + audio_path, target_transcript, mask_interval, device, decode_config) + gen_audio = gen_audio[0].cpu() + audio_tensors.append(gen_audio) + + if mode != "Rerun": + output_audio = get_output_audio(audio_tensors, codec_audio_sr) + sentences = [f"{idx}: {text}" for idx, text in enumerate(sentences)] + component = gr.Dropdown(label="Sentence", choices=sentences, value=sentences[0], + info="Select sentence you want to regenerate") + return output_audio, inference_transcript, component, audio_tensors + else: + previous_audio_tensors[selected_sentence_idx] = audio_tensors[0] + output_audio = get_output_audio(previous_audio_tensors, codec_audio_sr) + sentence_audio = get_output_audio(audio_tensors, codec_audio_sr) + return output_audio, inference_transcript, sentence_audio, previous_audio_tensors + + +def update_input_audio(prompt_end_time, edit_start_time, edit_end_time): + def impl(audio_path): + info = torchaudio.info(audio_path) + max_time = round(info.num_frames / info.sample_rate, 2) + return [ + prompt_end_time.update(maximum=max_time, value=max_time), + edit_start_time.update(maximum=max_time, value=0), + edit_end_time.update(maximum=max_time, value=max_time), + ] + return impl + + +def change_mode(prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls): + def impl(mode): + return [ + prompt_end_time.update(visible=mode != "Edit"), + split_text.update(visible=mode == "Long TTS"), + edit_word_mode.update(visible=mode == "Edit"), + segment_control.update(visible=mode == "Edit"), + precise_segment_control.update(visible=mode == "Edit"), + long_tts_controls.update(visible=mode == "Long TTS"), + ] + return impl + + +def load_sentence(selected_sentence, codec_audio_sr, audio_tensors): + if selected_sentence is None: + return None + colon_position = selected_sentence.find(':') + selected_sentence_idx = int(selected_sentence[:colon_position]) + return get_output_audio([audio_tensors[selected_sentence_idx]], codec_audio_sr) + + +def update_bound_word(is_first_word, edit_time): + def impl(selected_word, edit_word_mode): + word_start_time = float(selected_word.split(' ')[0]) + word_end_time = float(selected_word.split(' ')[-1]) + if edit_word_mode == "Replace half": + bound_time = (word_start_time + word_end_time) / 2 + elif is_first_word: + bound_time = word_start_time + else: + bound_time = word_end_time + + return edit_time.update(value=bound_time) + return impl + + +def update_bound_words(edit_start_time, edit_end_time): + def impl(from_selected_word, to_selected_word, edit_word_mode): + return [ + update_bound_word(True, edit_start_time)(from_selected_word, edit_word_mode), + update_bound_word(True, edit_end_time)(to_selected_word, edit_word_mode), + ] + return impl + + +smart_transcript_info = """ +If enabled, the target transcript will be constructed for you:
+ - In TTS and Long TTS mode just write the text you want to synthesize.
+ - In Edit mode just write the text to replace selected editing segment.
+If disabled, you should write the target transcript yourself:
+ - In TTS mode write prompt transcript followed by generation transcript.
+ - In Long TTS select split by newline (SENTENCE SPLIT WON'T WORK) and start each line with a prompt transcript.
+ - In Edit mode write full prompt
+""" +demo_text = { + "TTS": { + "smart": "I cannot believe that the same model can also do text to speech synthesis as well!", + "regular": "But when I had approached so near to them, the common I cannot believe that the same model can also do text to speech synthesis as well!" + }, + "Edit": { + "smart": "saw the mirage of the lake in the distance,", + "regular": "But when I saw the mirage of the lake in the distance, which the sense deceives, Lost not by distance any of its marks," + }, + "Long TTS": { + "smart": "You can run TTS on a big text!\n" + "Just write it line-by-line. Or sentence-by-sentence.\n" + "If some sentences sound odd, just rerun TTS on them, no need to generate the whole text again!", + "regular": "But when I had approached so near to them, the common You can run TTS on a big text!\n" + "But when I had approached so near to them, the common Just write it line-by-line. Or sentence-by-sentence.\n" + "But when I had approached so near to them, the common If some sentences sound odd, just rerun TTS on them, no need to generate the whole text again!" + } +} +all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()} +demo_words = [ + '0.0 But 0.12', '0.12 when 0.26', '0.26 I 0.44', '0.44 had 0.6', '0.6 approached 0.94', '0.94 so 1.42', + '1.42 near 1.78', '1.78 to 2.02', '2.02 them, 2.24', '2.52 the 2.58', '2.58 common 2.9', '2.9 object, 3.3', + '3.72 which 3.78', '3.78 the 3.98', '3.98 sense 4.18', '4.18 deceives, 4.88', '5.06 lost 5.26', '5.26 not 5.74', + '5.74 by 6.08', '6.08 distance 6.36', '6.36 any 6.92', '6.92 of 7.12', '7.12 its 7.26', '7.26 marks. 7.54' +] + + +def update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time): + def impl(mode, smart_transcript, edit_word_mode): + if transcript.value not in all_demo_texts: + return [transcript, edit_from_word, edit_to_word, prompt_end_time] + + replace_half = edit_word_mode == "Replace half" + return [ + transcript.update(value=demo_text[mode]["smart" if smart_transcript else "regular"]), + edit_from_word.update(value="0.26 I 0.44" if replace_half else "0.44 had 0.6"), + edit_to_word.update(value="3.72 which 3.78" if replace_half else "2.9 object, 3.3"), + prompt_end_time.update(value=3.01), + ] + return impl + + +with gr.Blocks() as app: + with gr.Row(): + with gr.Column(scale=2): + load_models_btn = gr.Button(value="Load models") + with gr.Column(scale=5): + with gr.Accordion("Select models", open=False): + with gr.Row(): + voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"]) + whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", + choices=["tiny.en", "base.en", "small.en", "medium.en", "large"]) + + with gr.Row(): + with gr.Column(scale=2): + input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=False) + with gr.Group(): + original_transcript = gr.Textbox(label="Original transcript", lines=5, interactive=False, + info="Use whisper model to get the transcript. Fix it if necessary.") + with gr.Accordion("Word start time", open=False): + transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word") + with gr.Accordion("Word end time", open=False): + transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word") + + transcribe_btn = gr.Button(value="Transcribe", interactive=False) + + with gr.Column(scale=3): + with gr.Group(): + transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"]) + with gr.Row(): + smart_transcript = gr.Checkbox(label="Smart transcript", value=True) + with gr.Accordion(label="?", open=False): + info = gr.HTML(value=smart_transcript_info) + mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS") + + prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.01, value=3.01) + split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline", visible=False, + info="Split text into parts and run TTS for each part.") + edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half", visible=False, + info="What to do with first and last word") + with gr.Row(visible=False) as segment_control: + edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, interactive=True) + edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, interactive=True) + with gr.Accordion("Precise segment control", open=False, visible=False) as precise_segment_control: + edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=60, step=0.01, value=0) + edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=60, step=0.01, value=60) + + run_btn = gr.Button(value="Run", interactive=False) + + with gr.Column(scale=2): + output_audio = gr.Audio(label="Output Audio") + with gr.Accordion("Inference transcript", open=False): + inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False, + info="Inference was performed on this transcript.") + with gr.Group(visible=False) as long_tts_controls: + sentence_selector = gr.Dropdown(label="Sentence", value=None, + info="Select sentence you want to regenerate") + sentence_audio = gr.Audio(label="Sentence Audio", scale=2) + rerun_btn = gr.Button(value="Rerun", interactive=False) + + with gr.Row(): + with gr.Accordion("VoiceCraft config", open=False): + left_margin = gr.Number(label="left_margin", value=0.08) + right_margin = gr.Number(label="right_margin", value=0.08) + codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000) + codec_sr = gr.Number(label="codec_sr", value=50) + top_k = gr.Number(label="top_k", value=0) + top_p = gr.Number(label="top_p", value=0.8) + temperature = gr.Number(label="temperature", value=1) + stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3], value=3, + info="if there are long silence in the generated audio, reduce the stop_repetition to 3, 2 or even 1, -1 = disabled") + sample_batch_size = gr.Number(label="sample_batch_size", value=4, precision=0, + info="generate this many samples and choose the shortest one") + kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1, + info="set to 0 to use less VRAM, but with slower inference") + silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]") + + + audio_tensors = gr.State() + word_info = gr.State() + + mode.change(fn=update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time), + inputs=[mode, smart_transcript, edit_word_mode], + outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) + edit_word_mode.change(fn=update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time), + inputs=[mode, smart_transcript, edit_word_mode], + outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) + smart_transcript.change(fn=update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time), + inputs=[mode, smart_transcript, edit_word_mode], + outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) + + load_models_btn.click(fn=load_models(input_audio, transcribe_btn, run_btn, rerun_btn), + inputs=[whisper_model_choice, voicecraft_model_choice], + outputs=[input_audio, transcribe_btn, run_btn, rerun_btn]) + + input_audio.change(fn=update_input_audio(prompt_end_time, edit_start_time, edit_end_time), + inputs=[input_audio], outputs=[prompt_end_time, edit_start_time, edit_end_time]) + transcribe_btn.click(fn=transcribe, inputs=[input_audio], + outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, edit_from_word, edit_to_word, word_info]) + + mode.change(fn=change_mode(prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls), + inputs=[mode], outputs=[prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls]) + + run_btn.click(fn=run, + inputs=[ + left_margin, right_margin, + codec_audio_sr, codec_sr, + top_k, top_p, temperature, + stop_repetition, sample_batch_size, + kvcache, silence_tokens, + input_audio, word_info, transcript, smart_transcript, + mode, prompt_end_time, edit_start_time, edit_end_time, + split_text, sentence_selector, audio_tensors + ], + outputs=[ + output_audio, inference_transcript, sentence_selector, audio_tensors + ]) + + sentence_selector.change(fn=load_sentence, inputs=[sentence_selector, codec_audio_sr, audio_tensors], outputs=[sentence_audio]) + rerun_btn.click(fn=run, + inputs=[ + left_margin, right_margin, + codec_audio_sr, codec_sr, + top_k, top_p, temperature, + stop_repetition, sample_batch_size, + kvcache, silence_tokens, + input_audio, word_info, transcript, smart_transcript, + gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time, + split_text, sentence_selector, audio_tensors + ], + outputs=[ + output_audio, inference_transcript, sentence_audio, audio_tensors + ]) + + edit_word_mode.change(fn=update_bound_words(edit_start_time, edit_end_time), + inputs=[edit_from_word, edit_to_word, edit_word_mode], outputs=[edit_start_time, edit_end_time]) + edit_from_word.change(fn=update_bound_word(True, edit_start_time), + inputs=[edit_from_word, edit_word_mode], outputs=[edit_start_time]) + edit_to_word.change(fn=update_bound_word(False, edit_end_time), + inputs=[edit_to_word, edit_word_mode], outputs=[edit_end_time]) + + +if __name__ == "__main__": + app.launch() \ No newline at end of file diff --git a/gradio_requirements.txt b/gradio_requirements.txt new file mode 100644 index 0000000..949acc7 --- /dev/null +++ b/gradio_requirements.txt @@ -0,0 +1,3 @@ +gradio==3.50.2 +nltk>=3.8.1 +openai-whisper>=20231117 \ No newline at end of file diff --git a/start-jupyter.bat b/start-jupyter.bat index fc69502..eb98b66 100644 --- a/start-jupyter.bat +++ b/start-jupyter.bat @@ -5,6 +5,7 @@ echo Creating and running the Jupyter container... docker run -it -d ^ --gpus all ^ -p 8888:8888 ^ + -p 7860:7860 ^ --name jupyter ^ --user root ^ -e NB_USER="%username%" ^ diff --git a/start-jupyter.sh b/start-jupyter.sh index 5888bfb..cb54572 100755 --- a/start-jupyter.sh +++ b/start-jupyter.sh @@ -8,6 +8,7 @@ docker run -it \ -d \ --gpus all \ -p 8888:8888 \ + -p 7860:7860 \ --name jupyter \ --user root \ -e NB_USER="$USER" \ From 74fa65979d65acc74bdf7cb05c2eaa65c877acca Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Wed, 3 Apr 2024 05:01:55 +0300 Subject: [PATCH 02/24] deprecated .update not used anymore, better error handling, can use voicecraft without whisper --- gradio_app.py | 289 ++++++++++++++++++++++++++------------------------ 1 file changed, 149 insertions(+), 140 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 956175c..cab37c4 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -6,62 +6,63 @@ from data.tokenizer import ( TextTokenizer, ) from models import voicecraft -import whisper -from whisper.tokenizer import get_tokenizer import os import io -whisper_model = None -voicecraft_model = None -device = "cuda" if torch.cuda.is_available() else "cpu" +def load_models(whisper_model_choice, voicecraft_model_choice): + whisper_model, voicecraft_model = None, None + if whisper_model_choice is not None: + import whisper + from whisper.tokenizer import get_tokenizer + whisper_model = { + "model": whisper.load_model(whisper_model_choice), + "tokenizer": get_tokenizer(multilingual=False) + } + + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + os.environ["CUDA_VISIBLE_DEVICES"] = "0" + device = "cuda" if torch.cuda.is_available() else "cpu" + + voicecraft_name = f"{voicecraft_model_choice}.pth" + ckpt_fn = f"./pretrained_models/{voicecraft_name}" + encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th" + if not os.path.exists(ckpt_fn): + os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true") + os.system(f"mv {voicecraft_name}\?download\=true ./pretrained_models/{voicecraft_name}") + if not os.path.exists(encodec_fn): + os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th") + os.system(f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th") + + ckpt = torch.load(ckpt_fn, map_location="cpu") + model = voicecraft.VoiceCraft(ckpt["config"]) + model.load_state_dict(ckpt["model"]) + model.to(device) + model.eval() + voicecraft_model = { + "ckpt": ckpt, + "model": model, + "text_tokenizer": TextTokenizer(backend="espeak"), + "audio_tokenizer": AudioTokenizer(signature=encodec_fn) + } + + return [ + whisper_model, + voicecraft_model, + gr.Audio(interactive=True), + ] -def load_models(input_audio, transcribe_btn, run_btn, rerun_btn): - def impl(whisper_model_choice, voicecraft_model_choice): - global whisper_model, voicecraft_model - whisper_model = whisper.load_model(whisper_model_choice) - - os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" - os.environ["CUDA_VISIBLE_DEVICES"] = "0" - - voicecraft_name = f"{voicecraft_model_choice}.pth" - ckpt_fn = f"./pretrained_models/{voicecraft_name}" - encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th" - if not os.path.exists(ckpt_fn): - os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true") - os.system(f"mv {voicecraft_name}\?download\=true ./pretrained_models/{voicecraft_name}") - if not os.path.exists(encodec_fn): - os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th") - os.system(f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th") - - voicecraft_model = {} - voicecraft_model["ckpt"] = torch.load(ckpt_fn, map_location="cpu") - voicecraft_model["model"] = voicecraft.VoiceCraft(voicecraft_model["ckpt"]["config"]) - voicecraft_model["model"].load_state_dict(voicecraft_model["ckpt"]["model"]) - voicecraft_model["model"].to(device) - voicecraft_model["model"].eval() - - voicecraft_model["text_tokenizer"] = TextTokenizer(backend="espeak") - voicecraft_model["audio_tokenizer"] = AudioTokenizer(signature=encodec_fn) - - return [ - input_audio.update(interactive=True), - transcribe_btn.update(interactive=True), - run_btn.update(interactive=True), - rerun_btn.update(interactive=True) - ] - return impl - - -def transcribe(audio_path): - tokenizer = get_tokenizer(multilingual=False) +def transcribe(whisper_model, audio_path): + if whisper_model is None: + raise gr.Error("Whisper model not loaded") + number_tokens = [ i - for i in range(tokenizer.eot) - if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" ")) + for i in range(whisper_model["tokenizer"].eot) + if all(c in "0123456789" for c in whisper_model["tokenizer"].decode([i]).removeprefix(" ")) ] - result = whisper_model.transcribe(audio_path, suppress_tokens=[-1] + number_tokens, word_timestamps=True) + result = whisper_model["model"].transcribe(audio_path, suppress_tokens=[-1] + number_tokens, word_timestamps=True) words = [word_info for segment in result["segments"] for word_info in segment["words"]] transcript = result["text"] @@ -69,12 +70,12 @@ def transcribe(audio_path): transcript_with_end_time = " ".join([f"{word['word']} {word['end']}" for word in words]) choices = [f"{word['start']} {word['word']} {word['end']}" for word in words] - edit_from_word = gr.Dropdown(label="First word to edit", value=choices[0], choices=choices, interactive=True) - edit_to_word = gr.Dropdown(label="Last word to edit", value=choices[-1], choices=choices, interactive=True) return [ transcript, transcript_with_start_time, transcript_with_end_time, - edit_from_word, edit_to_word, words + gr.Dropdown(value=choices[0], choices=choices, interactive=True), # edit_from_word + gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # edit_to_word + words ] @@ -86,11 +87,16 @@ def get_output_audio(audio_tensors, codec_audio_sr): return buffer.read() -def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, +def run(voicecraft_model, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, kvcache, silence_tokens, audio_path, word_info, transcript, smart_transcript, mode, prompt_end_time, edit_start_time, edit_end_time, split_text, selected_sentence, previous_audio_tensors): + if voicecraft_model is None: + raise gr.Error("VoiceCraft model not loaded") + if smart_transcript and (word_info is None): + raise gr.Error("Can't use smart transcript: whisper transcript not found") + if mode == "Long TTS": if split_text == "Newline": sentences = transcript.split('\n') @@ -104,6 +110,7 @@ def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, tempe else: sentences = [transcript.replace("\n", " ")] + device = "cuda" if torch.cuda.is_available() else "cpu" info = torchaudio.info(audio_path) audio_dur = info.num_frames / info.sample_rate @@ -116,7 +123,7 @@ def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, tempe if mode != "Edit": from inference_tts_scale import inference_one_sample - if smart_transcript: + if smart_transcript: target_transcript = "" for word in word_info: if word["end"] < prompt_end_time: @@ -175,8 +182,7 @@ def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, tempe if mode != "Rerun": output_audio = get_output_audio(audio_tensors, codec_audio_sr) sentences = [f"{idx}: {text}" for idx, text in enumerate(sentences)] - component = gr.Dropdown(label="Sentence", choices=sentences, value=sentences[0], - info="Select sentence you want to regenerate") + component = gr.Dropdown(choices=sentences, value=sentences[0]) return output_audio, inference_transcript, component, audio_tensors else: previous_audio_tensors[selected_sentence_idx] = audio_tensors[0] @@ -185,29 +191,25 @@ def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, tempe return output_audio, inference_transcript, sentence_audio, previous_audio_tensors -def update_input_audio(prompt_end_time, edit_start_time, edit_end_time): - def impl(audio_path): - info = torchaudio.info(audio_path) - max_time = round(info.num_frames / info.sample_rate, 2) - return [ - prompt_end_time.update(maximum=max_time, value=max_time), - edit_start_time.update(maximum=max_time, value=0), - edit_end_time.update(maximum=max_time, value=max_time), - ] - return impl +def update_input_audio(audio_path): + info = torchaudio.info(audio_path) + max_time = round(info.num_frames / info.sample_rate, 2) + return [ + gr.Slider(maximum=max_time, value=max_time), + gr.Slider(maximum=max_time, value=0), + gr.Slider(maximum=max_time, value=max_time), + ] -def change_mode(prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls): - def impl(mode): - return [ - prompt_end_time.update(visible=mode != "Edit"), - split_text.update(visible=mode == "Long TTS"), - edit_word_mode.update(visible=mode == "Edit"), - segment_control.update(visible=mode == "Edit"), - precise_segment_control.update(visible=mode == "Edit"), - long_tts_controls.update(visible=mode == "Long TTS"), - ] - return impl +def change_mode(mode): + return [ + gr.Slider(visible=mode != "Edit"), + gr.Radio(visible=mode == "Long TTS"), + gr.Radio(visible=mode == "Edit"), + gr.Row(visible=mode == "Edit"), + gr.Accordion(visible=mode == "Edit"), + gr.Group(visible=mode == "Long TTS"), + ] def load_sentence(selected_sentence, codec_audio_sr, audio_tensors): @@ -218,28 +220,27 @@ def load_sentence(selected_sentence, codec_audio_sr, audio_tensors): return get_output_audio([audio_tensors[selected_sentence_idx]], codec_audio_sr) -def update_bound_word(is_first_word, edit_time): - def impl(selected_word, edit_word_mode): - word_start_time = float(selected_word.split(' ')[0]) - word_end_time = float(selected_word.split(' ')[-1]) - if edit_word_mode == "Replace half": - bound_time = (word_start_time + word_end_time) / 2 - elif is_first_word: - bound_time = word_start_time - else: - bound_time = word_end_time +def update_bound_word(is_first_word, selected_word, edit_word_mode): + if selected_word is None: + return None - return edit_time.update(value=bound_time) - return impl + word_start_time = float(selected_word.split(' ')[0]) + word_end_time = float(selected_word.split(' ')[-1]) + if edit_word_mode == "Replace half": + bound_time = (word_start_time + word_end_time) / 2 + elif is_first_word: + bound_time = word_start_time + else: + bound_time = word_end_time + + return bound_time -def update_bound_words(edit_start_time, edit_end_time): - def impl(from_selected_word, to_selected_word, edit_word_mode): - return [ - update_bound_word(True, edit_start_time)(from_selected_word, edit_word_mode), - update_bound_word(True, edit_end_time)(to_selected_word, edit_word_mode), - ] - return impl +def update_bound_words(from_selected_word, to_selected_word, edit_word_mode): + return [ + update_bound_word(True, from_selected_word, edit_word_mode), + update_bound_word(False, to_selected_word, edit_word_mode), + ] smart_transcript_info = """ @@ -251,6 +252,7 @@ If disabled, you should write the target transcript yourself:
- In Long TTS select split by newline (SENTENCE SPLIT WON'T WORK) and start each line with a prompt transcript.
- In Edit mode write full prompt
""" + demo_text = { "TTS": { "smart": "I cannot believe that the same model can also do text to speech synthesis as well!", @@ -269,7 +271,9 @@ demo_text = { "But when I had approached so near to them, the common If some sentences sound odd, just rerun TTS on them, no need to generate the whole text again!" } } + all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()} + demo_words = [ '0.0 But 0.12', '0.12 when 0.26', '0.26 I 0.44', '0.44 had 0.6', '0.6 approached 0.94', '0.94 so 1.42', '1.42 near 1.78', '1.78 to 2.02', '2.02 them, 2.24', '2.52 the 2.58', '2.58 common 2.9', '2.9 object, 3.3', @@ -278,19 +282,17 @@ demo_words = [ ] -def update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time): - def impl(mode, smart_transcript, edit_word_mode): - if transcript.value not in all_demo_texts: - return [transcript, edit_from_word, edit_to_word, prompt_end_time] - - replace_half = edit_word_mode == "Replace half" - return [ - transcript.update(value=demo_text[mode]["smart" if smart_transcript else "regular"]), - edit_from_word.update(value="0.26 I 0.44" if replace_half else "0.44 had 0.6"), - edit_to_word.update(value="3.72 which 3.78" if replace_half else "2.9 object, 3.3"), - prompt_end_time.update(value=3.01), - ] - return impl +def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time): + if transcript not in all_demo_texts: + return transcript, edit_from_word, edit_to_word, prompt_end_time + + replace_half = edit_word_mode == "Replace half" + return [ + demo_text[mode]["smart" if smart_transcript else "regular"], + "0.26 I 0.44" if replace_half else "0.44 had 0.6", + "3.72 which 3.78" if replace_half else "2.9 object, 3.3", + 3.01, + ] with gr.Blocks() as app: @@ -302,7 +304,7 @@ with gr.Blocks() as app: with gr.Row(): voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"]) whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", - choices=["tiny.en", "base.en", "small.en", "medium.en", "large"]) + choices=[None, "tiny.en", "base.en", "small.en", "medium.en", "large"]) with gr.Row(): with gr.Column(scale=2): @@ -315,7 +317,7 @@ with gr.Blocks() as app: with gr.Accordion("Word end time", open=False): transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word") - transcribe_btn = gr.Button(value="Transcribe", interactive=False) + transcribe_btn = gr.Button(value="Transcribe") with gr.Column(scale=3): with gr.Group(): @@ -338,7 +340,7 @@ with gr.Blocks() as app: edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=60, step=0.01, value=0) edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=60, step=0.01, value=60) - run_btn = gr.Button(value="Run", interactive=False) + run_btn = gr.Button(value="Run") with gr.Column(scale=2): output_audio = gr.Audio(label="Output Audio") @@ -349,7 +351,7 @@ with gr.Blocks() as app: sentence_selector = gr.Dropdown(label="Sentence", value=None, info="Select sentence you want to regenerate") sentence_audio = gr.Audio(label="Sentence Audio", scale=2) - rerun_btn = gr.Button(value="Rerun", interactive=False) + rerun_btn = gr.Button(value="Rerun") with gr.Row(): with gr.Accordion("VoiceCraft config", open=False): @@ -369,34 +371,40 @@ with gr.Blocks() as app: silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]") + whisper_model = gr.State() + voicecraft_model = gr.State() audio_tensors = gr.State() word_info = gr.State() - mode.change(fn=update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time), - inputs=[mode, smart_transcript, edit_word_mode], + + mode.change(fn=update_demo, + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time], outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) - edit_word_mode.change(fn=update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time), - inputs=[mode, smart_transcript, edit_word_mode], + edit_word_mode.change(fn=update_demo, + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time], outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) - smart_transcript.change(fn=update_demo(transcript, edit_from_word, edit_to_word, prompt_end_time), - inputs=[mode, smart_transcript, edit_word_mode], + smart_transcript.change(fn=update_demo, + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time], outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) - load_models_btn.click(fn=load_models(input_audio, transcribe_btn, run_btn, rerun_btn), + load_models_btn.click(fn=load_models, inputs=[whisper_model_choice, voicecraft_model_choice], - outputs=[input_audio, transcribe_btn, run_btn, rerun_btn]) - - input_audio.change(fn=update_input_audio(prompt_end_time, edit_start_time, edit_end_time), - inputs=[input_audio], outputs=[prompt_end_time, edit_start_time, edit_end_time]) - transcribe_btn.click(fn=transcribe, inputs=[input_audio], + outputs=[whisper_model, voicecraft_model, input_audio]) + + input_audio.change(fn=update_input_audio, + inputs=[input_audio], + outputs=[prompt_end_time, edit_start_time, edit_end_time]) + transcribe_btn.click(fn=transcribe, + inputs=[whisper_model, input_audio], outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, edit_from_word, edit_to_word, word_info]) - mode.change(fn=change_mode(prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls), - inputs=[mode], outputs=[prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls]) + mode.change(fn=change_mode, + inputs=[mode], + outputs=[prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls]) run_btn.click(fn=run, inputs=[ - left_margin, right_margin, + voicecraft_model, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, @@ -405,14 +413,14 @@ with gr.Blocks() as app: mode, prompt_end_time, edit_start_time, edit_end_time, split_text, sentence_selector, audio_tensors ], - outputs=[ - output_audio, inference_transcript, sentence_selector, audio_tensors - ]) + outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors]) - sentence_selector.change(fn=load_sentence, inputs=[sentence_selector, codec_audio_sr, audio_tensors], outputs=[sentence_audio]) + sentence_selector.change(fn=load_sentence, + inputs=[sentence_selector, codec_audio_sr, audio_tensors], + outputs=[sentence_audio]) rerun_btn.click(fn=run, inputs=[ - left_margin, right_margin, + voicecraft_model, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, @@ -421,16 +429,17 @@ with gr.Blocks() as app: gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time, split_text, sentence_selector, audio_tensors ], - outputs=[ - output_audio, inference_transcript, sentence_audio, audio_tensors - ]) + outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors]) - edit_word_mode.change(fn=update_bound_words(edit_start_time, edit_end_time), - inputs=[edit_from_word, edit_to_word, edit_word_mode], outputs=[edit_start_time, edit_end_time]) - edit_from_word.change(fn=update_bound_word(True, edit_start_time), - inputs=[edit_from_word, edit_word_mode], outputs=[edit_start_time]) - edit_to_word.change(fn=update_bound_word(False, edit_end_time), - inputs=[edit_to_word, edit_word_mode], outputs=[edit_end_time]) + edit_from_word.change(fn=update_bound_word, + inputs=[gr.State(True), edit_from_word, edit_word_mode], + outputs=[edit_start_time]) + edit_to_word.change(fn=update_bound_word, + inputs=[gr.State(False), edit_to_word, edit_word_mode], + outputs=[edit_end_time]) + edit_word_mode.change(fn=update_bound_words, + inputs=[edit_from_word, edit_to_word, edit_word_mode], + outputs=[edit_start_time, edit_end_time]) if __name__ == "__main__": From f9fed26b15515697965e7da9bad3d46eadc96816 Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Wed, 3 Apr 2024 05:16:22 +0300 Subject: [PATCH 03/24] global models --- gradio_app.py | 26 ++++++++++++-------------- 1 file changed, 12 insertions(+), 14 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index cab37c4..4124444 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -10,8 +10,12 @@ import os import io +whisper_model, voicecraft_model = None, None + + def load_models(whisper_model_choice, voicecraft_model_choice): - whisper_model, voicecraft_model = None, None + global whisper_model, voicecraft_model + if whisper_model_choice is not None: import whisper from whisper.tokenizer import get_tokenizer @@ -46,14 +50,10 @@ def load_models(whisper_model_choice, voicecraft_model_choice): "audio_tokenizer": AudioTokenizer(signature=encodec_fn) } - return [ - whisper_model, - voicecraft_model, - gr.Audio(interactive=True), - ] + return gr.Audio(interactive=True) -def transcribe(whisper_model, audio_path): +def transcribe(audio_path): if whisper_model is None: raise gr.Error("Whisper model not loaded") @@ -87,7 +87,7 @@ def get_output_audio(audio_tensors, codec_audio_sr): return buffer.read() -def run(voicecraft_model, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, +def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, kvcache, silence_tokens, audio_path, word_info, transcript, smart_transcript, mode, prompt_end_time, edit_start_time, edit_end_time, @@ -371,8 +371,6 @@ with gr.Blocks() as app: silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]") - whisper_model = gr.State() - voicecraft_model = gr.State() audio_tensors = gr.State() word_info = gr.State() @@ -389,13 +387,13 @@ with gr.Blocks() as app: load_models_btn.click(fn=load_models, inputs=[whisper_model_choice, voicecraft_model_choice], - outputs=[whisper_model, voicecraft_model, input_audio]) + outputs=[input_audio]) input_audio.change(fn=update_input_audio, inputs=[input_audio], outputs=[prompt_end_time, edit_start_time, edit_end_time]) transcribe_btn.click(fn=transcribe, - inputs=[whisper_model, input_audio], + inputs=[input_audio], outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, edit_from_word, edit_to_word, word_info]) mode.change(fn=change_mode, @@ -404,7 +402,7 @@ with gr.Blocks() as app: run_btn.click(fn=run, inputs=[ - voicecraft_model, left_margin, right_margin, + left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, @@ -420,7 +418,7 @@ with gr.Blocks() as app: outputs=[sentence_audio]) rerun_btn.click(fn=run, inputs=[ - voicecraft_model, left_margin, right_margin, + left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, From 1a219cf6da69df070cf03966f06433c9a0362de2 Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Wed, 3 Apr 2024 20:24:34 +0300 Subject: [PATCH 04/24] bugfixes, seed support, better ui --- gradio_app.py | 136 ++++++++++++++++++++++++++++++++++---------------- 1 file changed, 93 insertions(+), 43 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 4124444..707defa 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -8,11 +8,24 @@ from data.tokenizer import ( from models import voicecraft import os import io +import numpy as np +import random whisper_model, voicecraft_model = None, None +def seed_everything(seed): + if seed != -1: + os.environ['PYTHONHASHSEED'] = str(seed) + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed(seed) + torch.backends.cudnn.benchmark = False + torch.backends.cudnn.deterministic = True + + def load_models(whisper_model_choice, voicecraft_model_choice): global whisper_model, voicecraft_model @@ -50,12 +63,13 @@ def load_models(whisper_model_choice, voicecraft_model_choice): "audio_tokenizer": AudioTokenizer(signature=encodec_fn) } - return gr.Audio(interactive=True) + return gr.Accordion() -def transcribe(audio_path): +def transcribe(seed, audio_path): if whisper_model is None: raise gr.Error("Whisper model not loaded") + seed_everything(seed) number_tokens = [ i @@ -73,6 +87,7 @@ def transcribe(audio_path): return [ transcript, transcript_with_start_time, transcript_with_end_time, + gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # prompt_to_word gr.Dropdown(value=choices[0], choices=choices, interactive=True), # edit_from_word gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # edit_to_word words @@ -87,7 +102,7 @@ def get_output_audio(audio_tensors, codec_audio_sr): return buffer.read() -def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, +def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, kvcache, silence_tokens, audio_path, word_info, transcript, smart_transcript, mode, prompt_end_time, edit_start_time, edit_end_time, @@ -97,6 +112,7 @@ def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, tempe if smart_transcript and (word_info is None): raise gr.Error("Can't use smart transcript: whisper transcript not found") + seed_everything(seed) if mode == "Long TTS": if split_text == "Newline": sentences = transcript.split('\n') @@ -192,6 +208,9 @@ def run(left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, tempe def update_input_audio(audio_path): + if audio_path is None: + return 0, 0, 0 + info = torchaudio.info(audio_path) max_time = round(info.num_frames / info.sample_rate, 2) return [ @@ -202,12 +221,12 @@ def update_input_audio(audio_path): def change_mode(mode): + tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor return [ - gr.Slider(visible=mode != "Edit"), - gr.Radio(visible=mode == "Long TTS"), + gr.Group(visible=mode != "Edit"), + gr.Group(visible=mode == "Edit"), gr.Radio(visible=mode == "Edit"), - gr.Row(visible=mode == "Edit"), - gr.Accordion(visible=mode == "Edit"), + gr.Radio(visible=mode == "Long TTS"), gr.Group(visible=mode == "Long TTS"), ] @@ -253,6 +272,8 @@ If disabled, you should write the target transcript yourself:
- In Edit mode write full prompt
""" +demo_original_transcript = " But when I had approached so near to them, the common object, which the sense deceives, lost not by distance any of its marks." + demo_text = { "TTS": { "smart": "I cannot believe that the same model can also do text to speech synthesis as well!", @@ -281,17 +302,35 @@ demo_words = [ '5.74 by 6.08', '6.08 distance 6.36', '6.36 any 6.92', '6.92 of 7.12', '7.12 its 7.26', '7.26 marks. 7.54' ] +demo_word_info = [ + {'word': ' But', 'start': 0.0, 'end': 0.12}, {'word': ' when', 'start': 0.12, 'end': 0.26}, + {'word': ' I', 'start': 0.26, 'end': 0.44}, {'word': ' had', 'start': 0.44, 'end': 0.6}, + {'word': ' approached', 'start': 0.6, 'end': 0.94}, {'word': ' so', 'start': 0.94, 'end': 1.42}, + {'word': ' near', 'start': 1.42, 'end': 1.78}, {'word': ' to', 'start': 1.78, 'end': 2.02}, + {'word': ' them,', 'start': 2.02, 'end': 2.24}, {'word': ' the', 'start': 2.52, 'end': 2.58}, + {'word': ' common', 'start': 2.58, 'end': 2.9}, {'word': ' object,', 'start': 2.9, 'end': 3.3}, + {'word': ' which', 'start': 3.72, 'end': 3.78}, {'word': ' the', 'start': 3.78, 'end': 3.98}, + {'word': ' sense', 'start': 3.98, 'end': 4.18}, {'word': ' deceives,', 'start': 4.18, 'end': 4.88}, + {'word': ' lost', 'start': 5.06, 'end': 5.26}, {'word': ' not', 'start': 5.26, 'end': 5.74}, + {'word': ' by', 'start': 5.74, 'end': 6.08}, {'word': ' distance', 'start': 6.08, 'end': 6.36}, + {'word': ' any', 'start': 6.36, 'end': 6.92}, {'word': ' of', 'start': 6.92, 'end': 7.12}, + {'word': ' its', 'start': 7.12, 'end': 7.26}, {'word': ' marks.', 'start': 7.26, 'end': 7.54} +] -def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time): + +def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word): if transcript not in all_demo_texts: - return transcript, edit_from_word, edit_to_word, prompt_end_time + return transcript, edit_from_word, edit_to_word replace_half = edit_word_mode == "Replace half" + change_edit_from_word = edit_from_word == demo_words[2] or edit_from_word == demo_words[3] + change_edit_to_word = edit_to_word == demo_words[11] or edit_to_word == demo_words[12] + demo_edit_from_word_value = demo_words[2] if replace_half else demo_words[3] + demo_edit_to_word_value = demo_words[12] if replace_half else demo_words[11] return [ demo_text[mode]["smart" if smart_transcript else "regular"], - "0.26 I 0.44" if replace_half else "0.44 had 0.6", - "3.72 which 3.78" if replace_half else "2.9 object, 3.3", - 3.01, + demo_edit_from_word_value if change_edit_from_word else edit_from_word, + demo_edit_to_word_value if change_edit_to_word else edit_to_word, ] @@ -300,7 +339,7 @@ with gr.Blocks() as app: with gr.Column(scale=2): load_models_btn = gr.Button(value="Load models") with gr.Column(scale=5): - with gr.Accordion("Select models", open=False): + with gr.Accordion("Select models", open=False) as models_selector: with gr.Row(): voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"]) whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", @@ -308,9 +347,9 @@ with gr.Blocks() as app: with gr.Row(): with gr.Column(scale=2): - input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=False) + input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath") with gr.Group(): - original_transcript = gr.Textbox(label="Original transcript", lines=5, interactive=False, + original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, interactive=False, info="Use whisper model to get the transcript. Fix it if necessary.") with gr.Accordion("Word start time", open=False): transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word") @@ -325,20 +364,26 @@ with gr.Blocks() as app: with gr.Row(): smart_transcript = gr.Checkbox(label="Smart transcript", value=True) with gr.Accordion(label="?", open=False): - info = gr.HTML(value=smart_transcript_info) - mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS") + info = gr.Markdown(value=smart_transcript_info) + + with gr.Row(): + mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS") + split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline", + info="Split text into parts and run TTS for each part.", visible=False) + edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half", + info="What to do with first and last word", visible=False) - prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.01, value=3.01) - split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline", visible=False, - info="Split text into parts and run TTS for each part.") - edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half", visible=False, - info="What to do with first and last word") - with gr.Row(visible=False) as segment_control: - edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, interactive=True) - edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, interactive=True) - with gr.Accordion("Precise segment control", open=False, visible=False) as precise_segment_control: - edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=60, step=0.01, value=0) - edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=60, step=0.01, value=60) + with gr.Group() as tts_mode_controls: + prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True) + prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.01, value=3.01) + + with gr.Group(visible=False) as edit_mode_controls: + with gr.Row(): + edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True) + edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True) + with gr.Row(): + edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.01, value=0.35) + edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.01, value=3.75) run_btn = gr.Button(value="Run") @@ -347,7 +392,7 @@ with gr.Blocks() as app: with gr.Accordion("Inference transcript", open=False): inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False, info="Inference was performed on this transcript.") - with gr.Group(visible=False) as long_tts_controls: + with gr.Group(visible=False) as long_tts_sentence_editor: sentence_selector = gr.Dropdown(label="Sentence", value=None, info="Select sentence you want to regenerate") sentence_audio = gr.Audio(label="Sentence Audio", scale=2) @@ -355,6 +400,7 @@ with gr.Blocks() as app: with gr.Row(): with gr.Accordion("VoiceCraft config", open=False): + seed = gr.Number(label="seed", value=-1, precision=0) left_margin = gr.Number(label="left_margin", value=0.08) right_margin = gr.Number(label="right_margin", value=0.08) codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000) @@ -372,37 +418,38 @@ with gr.Blocks() as app: audio_tensors = gr.State() - word_info = gr.State() + word_info = gr.State(value=demo_word_info) mode.change(fn=update_demo, - inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time], - outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], + outputs=[transcript, edit_from_word, edit_to_word]) edit_word_mode.change(fn=update_demo, - inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time], - outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], + outputs=[transcript, edit_from_word, edit_to_word]) smart_transcript.change(fn=update_demo, - inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word, prompt_end_time], - outputs=[transcript, edit_from_word, edit_to_word, prompt_end_time]) + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], + outputs=[transcript, edit_from_word, edit_to_word]) load_models_btn.click(fn=load_models, inputs=[whisper_model_choice, voicecraft_model_choice], - outputs=[input_audio]) + outputs=[models_selector]) - input_audio.change(fn=update_input_audio, + input_audio.upload(fn=update_input_audio, inputs=[input_audio], outputs=[prompt_end_time, edit_start_time, edit_end_time]) transcribe_btn.click(fn=transcribe, - inputs=[input_audio], - outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, edit_from_word, edit_to_word, word_info]) + inputs=[seed, input_audio], + outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, + prompt_to_word, edit_from_word, edit_to_word, word_info]) mode.change(fn=change_mode, inputs=[mode], - outputs=[prompt_end_time, split_text, edit_word_mode, segment_control, precise_segment_control, long_tts_controls]) + outputs=[tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor]) run_btn.click(fn=run, inputs=[ - left_margin, right_margin, + seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, @@ -418,7 +465,7 @@ with gr.Blocks() as app: outputs=[sentence_audio]) rerun_btn.click(fn=run, inputs=[ - left_margin, right_margin, + seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, @@ -429,6 +476,9 @@ with gr.Blocks() as app: ], outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors]) + prompt_to_word.change(fn=update_bound_word, + inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")], + outputs=[prompt_end_time]) edit_from_word.change(fn=update_bound_word, inputs=[gr.State(True), edit_from_word, edit_word_mode], outputs=[edit_start_time]) From 3d3f32ba7e3bfb3ef2d7514c6081911f06d5fb2b Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Thu, 4 Apr 2024 22:22:27 +0300 Subject: [PATCH 05/24] whisperx added --- README.md | 2 +- gradio_app.py | 231 +++++++++++++++++++++++++++++----------- gradio_requirements.txt | 4 +- 3 files changed, 170 insertions(+), 67 deletions(-) diff --git a/README.md b/README.md index 2a5be3a..5e78082 100644 --- a/README.md +++ b/README.md @@ -111,7 +111,7 @@ It is ready to use on [default url](http://127.0.0.1:7860). 6. (optionally) Rerun part-by-part in Long TTS mode ### Some features -Smart transcript: write only what you want to generate, but don't work if you edit original transcript +Smart transcript: write only what you want to generate TTS mode: Zero-shot TTS diff --git a/gradio_app.py b/gradio_app.py index 707defa..4321a11 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -10,9 +10,16 @@ import os import io import numpy as np import random +import uuid -whisper_model, voicecraft_model = None, None +TMP_PATH = "./demo/temp" +device = "cuda" if torch.cuda.is_available() else "cpu" +whisper_model, align_model, voicecraft_model = None, None, None + + +def get_random_string(): + return "".join(str(uuid.uuid4()).split("-")) def seed_everything(seed): @@ -26,22 +33,63 @@ def seed_everything(seed): torch.backends.cudnn.deterministic = True -def load_models(whisper_model_choice, voicecraft_model_choice): - global whisper_model, voicecraft_model +class WhisperxAlignModel: + def __init__(self): + from whisperx import load_align_model + self.model, self.metadata = load_align_model(language_code="en", device=device) + + def align(self, segments, audio_path): + from whisperx import align, load_audio + audio = load_audio(audio_path) + return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"] + + +class WhisperModel: + def __init__(self, model_name): + from whisper import load_model + self.model = load_model(model_name, device) - if whisper_model_choice is not None: - import whisper from whisper.tokenizer import get_tokenizer - whisper_model = { - "model": whisper.load_model(whisper_model_choice), - "tokenizer": get_tokenizer(multilingual=False) - } + tokenizer = get_tokenizer(multilingual=False) + self.supress_tokens = [-1] + [ + i + for i in range(tokenizer.eot) + if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" ")) + ] + + def transcribe(self, audio_path): + return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"] + + +class WhisperxModel: + def __init__(self, model_name, align_model: WhisperxAlignModel): + from whisperx import load_model + self.model = load_model(model_name, device, asr_options={"suppress_numerals": True}) + self.align_model = align_model + + def transcribe(self, audio_path): + segments = self.model.transcribe(audio_path, batch_size=8)["segments"] + return self.align_model.align(segments, audio_path) + + +def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, voicecraft_model_name): + global transcribe_model, align_model, voicecraft_model os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" - device = "cuda" if torch.cuda.is_available() else "cpu" + + if alignment_model_name is not None: + align_model = WhisperxAlignModel() + + if whisper_model_name is not None: + if whisper_backend_name == "whisper": + transcribe_model = WhisperModel(whisper_model_name) + else: + if align_model is None: + raise gr.Error("Align model required for whisperx backend") + transcribe_model = WhisperxModel(whisper_model_name, align_model) - voicecraft_name = f"{voicecraft_model_choice}.pth" + voicecraft_name = f"{voicecraft_model_name}.pth" ckpt_fn = f"./pretrained_models/{voicecraft_name}" encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th" if not os.path.exists(ckpt_fn): @@ -66,31 +114,78 @@ def load_models(whisper_model_choice, voicecraft_model_choice): return gr.Accordion() +def get_transcribe_state(segments): + words_info = [word_info for segment in segments for word_info in segment["words"]] + return { + "segments": segments, + "transcript": " ".join([segment["text"] for segment in segments]), + "words_info": words_info, + "transcript_with_start_time": " ".join([f"{word['start']} {word['word']}" for word in words_info]), + "transcript_with_end_time": " ".join([f"{word['word']} {word['end']}" for word in words_info]), + "word_bounds": [f"{word['start']} {word['word']} {word['end']}" for word in words_info] + } + + def transcribe(seed, audio_path): - if whisper_model is None: - raise gr.Error("Whisper model not loaded") + if transcribe_model is None: + raise gr.Error("Transcription model not loaded") seed_everything(seed) - number_tokens = [ - i - for i in range(whisper_model["tokenizer"].eot) - if all(c in "0123456789" for c in whisper_model["tokenizer"].decode([i]).removeprefix(" ")) - ] - result = whisper_model["model"].transcribe(audio_path, suppress_tokens=[-1] + number_tokens, word_timestamps=True) - words = [word_info for segment in result["segments"] for word_info in segment["words"]] - - transcript = result["text"] - transcript_with_start_time = " ".join([f"{word['start']} {word['word']}" for word in words]) - transcript_with_end_time = " ".join([f"{word['word']} {word['end']}" for word in words]) - - choices = [f"{word['start']} {word['word']} {word['end']}" for word in words] + segments = transcribe_model.transcribe(audio_path) + state = get_transcribe_state(segments) return [ - transcript, transcript_with_start_time, transcript_with_end_time, - gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # prompt_to_word - gr.Dropdown(value=choices[0], choices=choices, interactive=True), # edit_from_word - gr.Dropdown(value=choices[-1], choices=choices, interactive=True), # edit_to_word - words + state["transcript"], state["transcript_with_start_time"], state["transcript_with_end_time"], + gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # prompt_to_word + gr.Dropdown(value=state["word_bounds"][0], choices=state["word_bounds"], interactive=True), # edit_from_word + gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # edit_to_word + state + ] + + +def align_segments(transcript, audio_path): + from aeneas.executetask import ExecuteTask + from aeneas.task import Task + import json + config_string = 'task_language=eng|os_task_file_format=json|is_text_type=plain' + + tmp_transcript_path = os.path.join(TMP_PATH, f"{get_random_string()}.txt") + tmp_sync_map_path = os.path.join(TMP_PATH, f"{get_random_string()}.json") + with open(tmp_transcript_path, "w") as f: + f.write(transcript) + + task = Task(config_string=config_string) + task.audio_file_path_absolute = os.path.abspath(audio_path) + task.text_file_path_absolute = os.path.abspath(tmp_transcript_path) + task.sync_map_file_path_absolute = os.path.abspath(tmp_sync_map_path) + ExecuteTask(task).execute() + task.output_sync_map_file() + + with open(tmp_sync_map_path, "r") as f: + return json.load(f) + + +def align(seed, transcript, audio_path): + if align_model is None: + raise gr.Error("Align model not loaded") + seed_everything(seed) + + fragments = align_segments(transcript, audio_path) + segments = [{ + "start": float(fragment["begin"]), + "end": float(fragment["end"]), + "text": " ".join(fragment["lines"]) + } for fragment in fragments["fragments"]] + segments = align_model.align(segments, audio_path) + state = get_transcribe_state(segments) + print(state) + + return [ + state["transcript_with_start_time"], state["transcript_with_end_time"], + gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # prompt_to_word + gr.Dropdown(value=state["word_bounds"][0], choices=state["word_bounds"], interactive=True), # edit_from_word + gr.Dropdown(value=state["word_bounds"][-1], choices=state["word_bounds"], interactive=True), # edit_to_word + state ] @@ -104,12 +199,12 @@ def get_output_audio(audio_tensors, codec_audio_sr): def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, sample_batch_size, kvcache, silence_tokens, - audio_path, word_info, transcript, smart_transcript, + audio_path, transcribe_state, transcript, smart_transcript, mode, prompt_end_time, edit_start_time, edit_end_time, split_text, selected_sentence, previous_audio_tensors): if voicecraft_model is None: raise gr.Error("VoiceCraft model not loaded") - if smart_transcript and (word_info is None): + if smart_transcript and (transcribe_state is None): raise gr.Error("Can't use smart transcript: whisper transcript not found") seed_everything(seed) @@ -126,7 +221,6 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, else: sentences = [transcript.replace("\n", " ")] - device = "cuda" if torch.cuda.is_available() else "cpu" info = torchaudio.info(audio_path) audio_dur = info.num_frames / info.sample_rate @@ -141,7 +235,7 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, if smart_transcript: target_transcript = "" - for word in word_info: + for word in transcribe_state["words_info"]: if word["end"] < prompt_end_time: target_transcript += word["word"] elif (word["start"] + word["end"]) / 2 < prompt_end_time: @@ -169,13 +263,13 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, if smart_transcript: target_transcript = "" - for word in word_info: + for word in transcribe_state["words_info"]: if word["start"] < edit_start_time: target_transcript += word["word"] else: break target_transcript += f" {sentence}" - for word in word_info: + for word in transcribe_state["words_info"]: if word["end"] > edit_end_time: target_transcript += word["word"] else: @@ -296,25 +390,25 @@ demo_text = { all_demo_texts = {vv for k, v in demo_text.items() for kk, vv in v.items()} demo_words = [ - '0.0 But 0.12', '0.12 when 0.26', '0.26 I 0.44', '0.44 had 0.6', '0.6 approached 0.94', '0.94 so 1.42', - '1.42 near 1.78', '1.78 to 2.02', '2.02 them, 2.24', '2.52 the 2.58', '2.58 common 2.9', '2.9 object, 3.3', - '3.72 which 3.78', '3.78 the 3.98', '3.98 sense 4.18', '4.18 deceives, 4.88', '5.06 lost 5.26', '5.26 not 5.74', - '5.74 by 6.08', '6.08 distance 6.36', '6.36 any 6.92', '6.92 of 7.12', '7.12 its 7.26', '7.26 marks. 7.54' + '0.029 But 0.149', '0.189 when 0.33', '0.43 I 0.49', '0.53 had 0.65', '0.711 approached 1.152', '1.352 so 1.593', + '1.693 near 1.933', '1.994 to 2.074', '2.134 them, 2.354', '2.535 the 2.655', '2.695 common 3.016', '3.196 object, 3.577', + '3.717 which 3.898', '3.958 the 4.058', '4.098 sense 4.359', '4.419 deceives, 4.92', '5.101 lost 5.481', '5.682 not 5.963', + '6.043 by 6.183', '6.223 distance 6.644', '6.905 any 7.065', '7.125 of 7.185', '7.245 its 7.346', '7.406 marks. 7.727' ] -demo_word_info = [ - {'word': ' But', 'start': 0.0, 'end': 0.12}, {'word': ' when', 'start': 0.12, 'end': 0.26}, - {'word': ' I', 'start': 0.26, 'end': 0.44}, {'word': ' had', 'start': 0.44, 'end': 0.6}, - {'word': ' approached', 'start': 0.6, 'end': 0.94}, {'word': ' so', 'start': 0.94, 'end': 1.42}, - {'word': ' near', 'start': 1.42, 'end': 1.78}, {'word': ' to', 'start': 1.78, 'end': 2.02}, - {'word': ' them,', 'start': 2.02, 'end': 2.24}, {'word': ' the', 'start': 2.52, 'end': 2.58}, - {'word': ' common', 'start': 2.58, 'end': 2.9}, {'word': ' object,', 'start': 2.9, 'end': 3.3}, - {'word': ' which', 'start': 3.72, 'end': 3.78}, {'word': ' the', 'start': 3.78, 'end': 3.98}, - {'word': ' sense', 'start': 3.98, 'end': 4.18}, {'word': ' deceives,', 'start': 4.18, 'end': 4.88}, - {'word': ' lost', 'start': 5.06, 'end': 5.26}, {'word': ' not', 'start': 5.26, 'end': 5.74}, - {'word': ' by', 'start': 5.74, 'end': 6.08}, {'word': ' distance', 'start': 6.08, 'end': 6.36}, - {'word': ' any', 'start': 6.36, 'end': 6.92}, {'word': ' of', 'start': 6.92, 'end': 7.12}, - {'word': ' its', 'start': 7.12, 'end': 7.26}, {'word': ' marks.', 'start': 7.26, 'end': 7.54} +demo_words_info = [ + {'word': 'But', 'start': 0.029, 'end': 0.149, 'score': 0.834}, {'word': 'when', 'start': 0.189, 'end': 0.33, 'score': 0.879}, + {'word': 'I', 'start': 0.43, 'end': 0.49, 'score': 0.984}, {'word': 'had', 'start': 0.53, 'end': 0.65, 'score': 0.998}, + {'word': 'approached', 'start': 0.711, 'end': 1.152, 'score': 0.822}, {'word': 'so', 'start': 1.352, 'end': 1.593, 'score': 0.822}, + {'word': 'near', 'start': 1.693, 'end': 1.933, 'score': 0.752}, {'word': 'to', 'start': 1.994, 'end': 2.074, 'score': 0.924}, + {'word': 'them,', 'start': 2.134, 'end': 2.354, 'score': 0.914}, {'word': 'the', 'start': 2.535, 'end': 2.655, 'score': 0.818}, + {'word': 'common', 'start': 2.695, 'end': 3.016, 'score': 0.971}, {'word': 'object,', 'start': 3.196, 'end': 3.577, 'score': 0.823}, + {'word': 'which', 'start': 3.717, 'end': 3.898, 'score': 0.701}, {'word': 'the', 'start': 3.958, 'end': 4.058, 'score': 0.798}, + {'word': 'sense', 'start': 4.098, 'end': 4.359, 'score': 0.797}, {'word': 'deceives,', 'start': 4.419, 'end': 4.92, 'score': 0.802}, + {'word': 'lost', 'start': 5.101, 'end': 5.481, 'score': 0.71}, {'word': 'not', 'start': 5.682, 'end': 5.963, 'score': 0.781}, + {'word': 'by', 'start': 6.043, 'end': 6.183, 'score': 0.834}, {'word': 'distance', 'start': 6.223, 'end': 6.644, 'score': 0.899}, + {'word': 'any', 'start': 6.905, 'end': 7.065, 'score': 0.893}, {'word': 'of', 'start': 7.125, 'end': 7.185, 'score': 0.772}, + {'word': 'its', 'start': 7.245, 'end': 7.346, 'score': 0.778}, {'word': 'marks.', 'start': 7.406, 'end': 7.727, 'score': 0.955} ] @@ -342,21 +436,24 @@ with gr.Blocks() as app: with gr.Accordion("Select models", open=False) as models_selector: with gr.Row(): voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"]) + whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisper", "whisperX"]) whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", - choices=[None, "tiny.en", "base.en", "small.en", "medium.en", "large"]) + choices=[None, "base.en", "small.en", "medium.en", "large"]) + align_model_choice = gr.Radio(label="Forced alignment model", value="whisperX", choices=[None, "whisperX"]) with gr.Row(): with gr.Column(scale=2): input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath") with gr.Group(): - original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, interactive=False, - info="Use whisper model to get the transcript. Fix it if necessary.") + original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, + info="Use whisper model to get the transcript. Fix and align it if necessary.") with gr.Accordion("Word start time", open=False): transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word") with gr.Accordion("Word end time", open=False): transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word") transcribe_btn = gr.Button(value="Transcribe") + align_btn = gr.Button(value="Align") with gr.Column(scale=3): with gr.Group(): @@ -375,15 +472,15 @@ with gr.Blocks() as app: with gr.Group() as tts_mode_controls: prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True) - prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.01, value=3.01) + prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.001, value=3.016) with gr.Group(visible=False) as edit_mode_controls: with gr.Row(): edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True) edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True) with gr.Row(): - edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.01, value=0.35) - edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.01, value=3.75) + edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.001, value=0.46) + edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.001, value=3.808) run_btn = gr.Button(value="Run") @@ -418,7 +515,7 @@ with gr.Blocks() as app: audio_tensors = gr.State() - word_info = gr.State(value=demo_word_info) + transcribe_state = gr.State(value={"words_info": demo_words_info}) mode.change(fn=update_demo, @@ -432,7 +529,7 @@ with gr.Blocks() as app: outputs=[transcript, edit_from_word, edit_to_word]) load_models_btn.click(fn=load_models, - inputs=[whisper_model_choice, voicecraft_model_choice], + inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, voicecraft_model_choice], outputs=[models_selector]) input_audio.upload(fn=update_input_audio, @@ -441,7 +538,11 @@ with gr.Blocks() as app: transcribe_btn.click(fn=transcribe, inputs=[seed, input_audio], outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, - prompt_to_word, edit_from_word, edit_to_word, word_info]) + prompt_to_word, edit_from_word, edit_to_word, transcribe_state]) + align_btn.click(fn=align, + inputs=[seed, original_transcript, input_audio], + outputs=[transcript_with_start_time, transcript_with_end_time, + prompt_to_word, edit_from_word, edit_to_word, transcribe_state]) mode.change(fn=change_mode, inputs=[mode], @@ -454,7 +555,7 @@ with gr.Blocks() as app: top_k, top_p, temperature, stop_repetition, sample_batch_size, kvcache, silence_tokens, - input_audio, word_info, transcript, smart_transcript, + input_audio, transcribe_state, transcript, smart_transcript, mode, prompt_end_time, edit_start_time, edit_end_time, split_text, sentence_selector, audio_tensors ], @@ -470,7 +571,7 @@ with gr.Blocks() as app: top_k, top_p, temperature, stop_repetition, sample_batch_size, kvcache, silence_tokens, - input_audio, word_info, transcript, smart_transcript, + input_audio, transcribe_state, transcript, smart_transcript, gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time, split_text, sentence_selector, audio_tensors ], diff --git a/gradio_requirements.txt b/gradio_requirements.txt index 949acc7..967b3d7 100644 --- a/gradio_requirements.txt +++ b/gradio_requirements.txt @@ -1,3 +1,5 @@ gradio==3.50.2 nltk>=3.8.1 -openai-whisper>=20231117 \ No newline at end of file +openai-whisper>=20231117 +aeneas>=1.7.3.0 +whisperx>=3.1.1 \ No newline at end of file From 97b1f519478f39702e910d3fde86c8a88bac4d8e Mon Sep 17 00:00:00 2001 From: Puyuan Peng <47729801+jasonppy@users.noreply.github.com> Date: Thu, 4 Apr 2024 20:26:28 -0500 Subject: [PATCH 06/24] install whisperx deps --- README.md | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/README.md b/README.md index 2a5e247..5f587db 100644 --- a/README.md +++ b/README.md @@ -86,6 +86,10 @@ conda install -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi= # to run ipynb conda install -n voicecraft ipykernel --no-deps --force-reinstall + +# below is only needed if you want to run gradio_app.py +sudo apt-get install espeak # NOTE: only required if you want to use gradio_app, which is used by whisperx for forced alignment +sudo apt-get install libespeak-dev # NOTE: only required if you want to use gradio_app, which is used by whisperx for forced alignment ``` If you have encountered version issues when running things, checkout [environment.yml](./environment.yml) for exact matching. From 0d19fa5d0334eb527de642d15b2ae21fe6ba4bfc Mon Sep 17 00:00:00 2001 From: Puyuan Peng <47729801+jasonppy@users.noreply.github.com> Date: Thu, 4 Apr 2024 20:31:07 -0500 Subject: [PATCH 07/24] fix whisperx loading issue, update generation instruction --- gradio_app.py | 41 ++++++++++++++++++++--------------------- 1 file changed, 20 insertions(+), 21 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 4321a11..15f77e1 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -1,3 +1,6 @@ +import os +# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" +# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # for local use import gradio as gr import torch import torchaudio @@ -6,7 +9,6 @@ from data.tokenizer import ( TextTokenizer, ) from models import voicecraft -import os import io import numpy as np import random @@ -64,7 +66,7 @@ class WhisperModel: class WhisperxModel: def __init__(self, model_name, align_model: WhisperxAlignModel): from whisperx import load_model - self.model = load_model(model_name, device, asr_options={"suppress_numerals": True}) + self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}) self.align_model = align_model def transcribe(self, audio_path): @@ -75,9 +77,6 @@ class WhisperxModel: def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, voicecraft_model_name): global transcribe_model, align_model, voicecraft_model - os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" - os.environ["CUDA_VISIBLE_DEVICES"] = "0" - if alignment_model_name is not None: align_model = WhisperxAlignModel() @@ -443,7 +442,7 @@ with gr.Blocks() as app: with gr.Row(): with gr.Column(scale=2): - input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath") + input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True) with gr.Group(): original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, info="Use whisper model to get the transcript. Fix and align it if necessary.") @@ -496,22 +495,22 @@ with gr.Blocks() as app: rerun_btn = gr.Button(value="Rerun") with gr.Row(): - with gr.Accordion("VoiceCraft config", open=False): - seed = gr.Number(label="seed", value=-1, precision=0) - left_margin = gr.Number(label="left_margin", value=0.08) - right_margin = gr.Number(label="right_margin", value=0.08) - codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000) - codec_sr = gr.Number(label="codec_sr", value=50) - top_k = gr.Number(label="top_k", value=0) - top_p = gr.Number(label="top_p", value=0.8) - temperature = gr.Number(label="temperature", value=1) - stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3], value=3, - info="if there are long silence in the generated audio, reduce the stop_repetition to 3, 2 or even 1, -1 = disabled") - sample_batch_size = gr.Number(label="sample_batch_size", value=4, precision=0, - info="generate this many samples and choose the shortest one") + with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False): + stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=3, + info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled") + sample_batch_size = gr.Number(label="speech rate", value=4, precision=0, + info="The higher the number, the faster the output will be. Under the hood, the model will generate this many samples and choose the shortest one") + seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)") kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1, info="set to 0 to use less VRAM, but with slower inference") - silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]") + left_margin = gr.Number(label="left_margin", value=0.08, info="margin to the left of the editing segment") + right_margin = gr.Number(label="right_margin", value=0.08, info="margin to the right of the editing segment") + top_p = gr.Number(label="top_p", value=0.8, info="0.8 is a good value, 0.9 is also good") + temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change") + top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling") + codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change') + codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change') + silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change") audio_tensors = gr.State() @@ -592,4 +591,4 @@ with gr.Blocks() as app: if __name__ == "__main__": - app.launch() \ No newline at end of file + app.launch() From 94e9f9bd4233b6510f4ff45c2cd291a9476957ce Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Fri, 5 Apr 2024 04:40:57 +0300 Subject: [PATCH 08/24] README update, gradio_app.ipynb update, debug print removed --- README.md | 5 +++ gradio_app.ipynb | 88 +++++++++--------------------------------------- gradio_app.py | 4 --- 3 files changed, 21 insertions(+), 76 deletions(-) diff --git a/README.md b/README.md index 2a5e247..41f1654 100644 --- a/README.md +++ b/README.md @@ -96,6 +96,11 @@ Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) an ## Gradio After environment setup install additional dependencies: ```bash +apt-get install -y espeak espeak-data libespeak1 libespeak-dev +apt-get install -y festival* +apt-get install -y build-essential +apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools +apt-get install -y libxml2-dev libxslt-dev zlib1g-dev pip install -r gradio_requirements.txt ``` diff --git a/gradio_app.ipynb b/gradio_app.ipynb index 0d3f946..7b13660 100644 --- a/gradio_app.ipynb +++ b/gradio_app.ipynb @@ -8,84 +8,28 @@ "### Only do the below if you are using docker" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "270aa2cc", - "metadata": {}, - "outputs": [], - "source": [ - "# install OS deps\n", - "!sudo apt-get update && sudo apt-get install -y \\\n", - " git-core \\\n", - " ffmpeg \\\n", - " espeak-ng" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8ba5f452", - "metadata": {}, - "outputs": [], - "source": [ - "# Update and setup Conda voicecraft environment\n", - "!conda update -y -n base -c conda-forge conda\n", - "!conda create -y -n voicecraft python=3.9.16 && \\\n", - " conda init bash" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4ef2935c", - "metadata": {}, - "outputs": [], - "source": [ - "# install conda and pip stuff in the activated conda above context\n", - "!echo -e \"Grab a cup a coffee and a slice of pizza...\\n\\n\"\n", - "\n", - "# make sure $HOME and $USER are setup so this will source the conda environment\n", - "!source ~/.bashrc && \\\n", - " conda activate voicecraft && \\\n", - " conda install -y -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi=5.5.1068 && \\\n", - " pip install torch==2.0.1 && \\\n", - " pip install tensorboard==2.16.2 && \\\n", - " pip install phonemizer==3.2.1 && \\\n", - " pip install torchaudio==2.0.2 && \\\n", - " pip install datasets==2.16.0 && \\\n", - " pip install torchmetrics==0.11.1\n", - "\n", - "# do this one last otherwise you'll get an error about torch compiler missing due to xformer mismatch\n", - "!source ~/.bashrc && \\\n", - " conda activate voicecraft && \\\n", - " pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2fca57eb", - "metadata": {}, - "outputs": [], - "source": [ - "# okay setup the conda environment such that jupyter notebook can find the kernel\n", - "!source ~/.bashrc && \\\n", - " conda activate voicecraft && \\\n", - " conda install -y -n voicecraft ipykernel --update-deps --force-reinstall\n", - "\n", - "# installs the Jupyter kernel into /home/myusername/.local/share/jupyter/kernels/voicecraft\n", - "!source ~/.bashrc && \\\n", - " conda activate voicecraft && \\\n", - " python3 -m ipykernel install --user --name=voicecraft" - ] - }, { "cell_type": "code", "execution_count": null, "id": "961faa43", "metadata": {}, "outputs": [], + "source": [ + "!source ~/.bashrc && \\\n", + " apt-get update && \\\n", + " apt-get install -y espeak espeak-data libespeak1 libespeak-dev && \\\n", + " apt-get install -y festival* && \\\n", + " apt-get install -y build-essential && \\\n", + " apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools && \\\n", + " apt-get install -y libxml2-dev libxslt-dev zlib1g-dev" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "598d75cf", + "metadata": {}, + "outputs": [], "source": [ "!source ~/.bashrc && \\\n", " conda activate voicecraft && \\\n", diff --git a/gradio_app.py b/gradio_app.py index 4321a11..5e349fe 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -75,9 +75,6 @@ class WhisperxModel: def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, voicecraft_model_name): global transcribe_model, align_model, voicecraft_model - os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" - os.environ["CUDA_VISIBLE_DEVICES"] = "0" - if alignment_model_name is not None: align_model = WhisperxAlignModel() @@ -178,7 +175,6 @@ def align(seed, transcript, audio_path): } for fragment in fragments["fragments"]] segments = align_model.align(segments, audio_path) state = get_transcribe_state(segments) - print(state) return [ state["transcript_with_start_time"], state["transcript_with_end_time"], From 6f71fa65fb8d6efaf54cde474009e9d78bebfe94 Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Fri, 5 Apr 2024 07:00:07 +0300 Subject: [PATCH 09/24] smart transcript fix --- gradio_app.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 310e6f8..d14433f 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -235,10 +235,10 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, target_transcript = "" for word in transcribe_state["words_info"]: if word["end"] < prompt_end_time: - target_transcript += word["word"] + target_transcript += word["word"] + (" " if word["word"][-1] != " " else "") elif (word["start"] + word["end"]) / 2 < prompt_end_time: # include part of the word it it's big, but adjust prompt_end_time - target_transcript += word["word"] + target_transcript += word["word"] + (" " if word["word"][-1] != " " else "") prompt_end_time = word["end"] break else: @@ -263,13 +263,13 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, target_transcript = "" for word in transcribe_state["words_info"]: if word["start"] < edit_start_time: - target_transcript += word["word"] + target_transcript += word["word"] + (" " if word["word"][-1] != " " else "") else: break target_transcript += f" {sentence}" for word in transcribe_state["words_info"]: if word["end"] > edit_end_time: - target_transcript += word["word"] + target_transcript += word["word"] + (" " if word["word"][-1] != " " else "") else: target_transcript = sentence From 21b69ad676235c1ee6f0004cc17349896ef5940e Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Fri, 5 Apr 2024 07:42:11 +0300 Subject: [PATCH 10/24] configurable tmp path --- README.md | 1 + gradio_app.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 0626bbd..1f7ca11 100644 --- a/README.md +++ b/README.md @@ -111,6 +111,7 @@ pip install -r gradio_requirements.txt Run gradio server from terminal or [`gradio_app.ipynb`](./gradio_app.ipynb): ```bash python gradio_app.py +TMP_PATH=/tmp python gradio_app.py # if you want to change tmp folder path ``` It is ready to use on [default url](http://127.0.0.1:7860). diff --git a/gradio_app.py b/gradio_app.py index d14433f..32b3e72 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -15,7 +15,7 @@ import random import uuid -TMP_PATH = "./demo/temp" +TMP_PATH = os.getenv("TMP_PATH", "./demo/temp") device = "cuda" if torch.cuda.is_available() else "cpu" whisper_model, align_model, voicecraft_model = None, None, None From 1141775763e7e2399bc57ed2613a926b37aafa53 Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 17:38:22 +0800 Subject: [PATCH 11/24] Update README.md --- README.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/README.md b/README.md index 1f7ca11..c0dbf31 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,8 @@ +# VoiceCraft Gradio Colab +Made for those who lacked a dedicated GPU and those who wanted [the friendly GUI by @zuev-stepan](https://github.com/zuev-stepan/VoiceCraft-gradio). Potato programmer brain here so all code credits to @jasonppy, @zuev-stepan and others who contributed in their code. + +COLAB LINK : HOLD ON I AM UPDATING + # VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild [Demo](https://jasonppy.github.io/VoiceCraft_web) [Paper](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) From b9ffda940503cf07c1d5f370eef1f3611f03a5d5 Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 17:40:48 +0800 Subject: [PATCH 12/24] Adding share=True --- gradio_app.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gradio_app.py b/gradio_app.py index 32b3e72..4b816a2 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -590,4 +590,4 @@ with gr.Blocks() as app: if __name__ == "__main__": - app.launch() + app.launch(share=True) From 5c92b2864f5492399961ed99a36eab3a891d0feb Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 17:49:00 +0800 Subject: [PATCH 13/24] Update gradio_app.py --- gradio_app.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/gradio_app.py b/gradio_app.py index 4b816a2..11203fe 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -14,6 +14,8 @@ import numpy as np import random import uuid +os.chdir("/content/VoiceCraft-gradio-colab") +os.environ['USER'] = 'aaa' TMP_PATH = os.getenv("TMP_PATH", "./demo/temp") device = "cuda" if torch.cuda.is_available() else "cpu" From fcdd1d30af11da333d8cf57e7b8cda78b159578f Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 17:53:38 +0800 Subject: [PATCH 14/24] Update gradio_app.py --- gradio_app.py | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 11203fe..9183e66 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -1,6 +1,8 @@ import os -# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" -# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # for local use + os.chdir("/content/VoiceCraft-gradio-colab") + os.environ['USER'] = 'aaa' + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + os.environ["CUDA_VISIBLE_DEVICES"] = "0" # for local use import gradio as gr import torch import torchaudio @@ -14,9 +16,6 @@ import numpy as np import random import uuid -os.chdir("/content/VoiceCraft-gradio-colab") -os.environ['USER'] = 'aaa' - TMP_PATH = os.getenv("TMP_PATH", "./demo/temp") device = "cuda" if torch.cuda.is_available() else "cpu" whisper_model, align_model, voicecraft_model = None, None, None From 0f5451bf4ef2a33766a45d6436767e95b68c62ad Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 17:54:24 +0800 Subject: [PATCH 15/24] Update gradio_app.py --- gradio_app.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 9183e66..d0b442a 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -1,6 +1,4 @@ import os - os.chdir("/content/VoiceCraft-gradio-colab") - os.environ['USER'] = 'aaa' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" # for local use import gradio as gr @@ -16,6 +14,9 @@ import numpy as np import random import uuid +os.chdir("/content/VoiceCraft-gradio-colab") +os.environ['USER'] = 'aaa' + TMP_PATH = os.getenv("TMP_PATH", "./demo/temp") device = "cuda" if torch.cuda.is_available() else "cpu" whisper_model, align_model, voicecraft_model = None, None, None From 38e8fa0776fa7ce277813947d5870cdff03178a7 Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 17:54:59 +0800 Subject: [PATCH 16/24] Update gradio_app.py --- gradio_app.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index d0b442a..72df9e1 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -1,6 +1,4 @@ import os - os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" - os.environ["CUDA_VISIBLE_DEVICES"] = "0" # for local use import gradio as gr import torch import torchaudio @@ -14,6 +12,8 @@ import numpy as np import random import uuid +os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" +os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.chdir("/content/VoiceCraft-gradio-colab") os.environ['USER'] = 'aaa' From 47937fb0dcb4ab04caeb572899fcc3a3924cc460 Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 19:15:10 +0800 Subject: [PATCH 17/24] April 5 Colab --- voicecraft.ipynb | 122 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 122 insertions(+) create mode 100644 voicecraft.ipynb diff --git a/voicecraft.ipynb b/voicecraft.ipynb new file mode 100644 index 0000000..f8b9c85 --- /dev/null +++ b/voicecraft.ipynb @@ -0,0 +1,122 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyPEhMt0mIcJv2BbaCwogF07", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Y87ixxsUVIhM" + }, + "outputs": [], + "source": [ + "!git clone https://github.com/Sewlell/VoiceCraft-gradio-colab" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install tensorboard\n", + "!pip install phonemizer\n", + "!pip install datasets\n", + "!pip install torchmetrics\n", + "\n", + "!apt-get install -y espeak espeak-data libespeak1 libespeak-dev\n", + "!apt-get install -y festival*\n", + "!apt-get install -y build-essential\n", + "!apt-get install -y flac libasound2-dev libsndfile1-dev vorbis-tools\n", + "!apt-get install -y libxml2-dev libxslt-dev zlib1g-dev\n", + "\n", + "!pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft\n", + "\n", + "!pip install -r \"/content/VoiceCraft-gradio-colab/gradio_requirements.txt\"" + ], + "metadata": { + "id": "-w3USR91XdxY" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# Let it restarted, it won't let your entire installation be gone." + ], + "metadata": { + "id": "jNuzjrtmv2n1" + } + }, + { + "cell_type": "markdown", + "source": [ + "# Note before launching the `gradio_app.py`\n", + "\n", + "***You will get JSON warning if you move anything beside `sample_batch_size`, `stop_repetition` and `seed`.*** Which for most advanced setting, `kvache` and `temperature` unable to set in different value.\n", + "\n", + "You will get fp16 compatibility issue if you set `whisper backend` to `whisperX`, for whatever reason, setting `forced alignment model` to `whisperX` doesn't do anything.\n", + "\n", + "You will download a .file File when you download the Output Audio for some reason. You will need to **convert the file from .snd to .wav/.mp3 manually**. Or if you enable showing file type in the name in Windows or wherever you are, change the file name to \"xxx.wav\" or \"xxx.mp3\". (know the solution? pull request my repository)\n", + "\n", + "Frequency of VRAM spikes no longer exist as well in April 5 Update.\n", + "\n", + "# **To those who want to voice cloning**\n", + "![Screenshot (438).png]()\n", + "\n", + "Don't make your input audio too long like in the screenshot, 20s-30s is fine. Or else it will raise up JSON issue. This one is due to how VoiceCraft worked so probably unfixable. It will add those text you want to get audio from at the end of the input audio transcript. It was way too much word for application or code to handle as it added up with original transcript. So please keep it short." + ], + "metadata": { + "id": "qQ-And_w2vJV" + } + }, + { + "cell_type": "markdown", + "source": [ + "My tip on voice cloning is just \"get a good dataset\" that contain plausible amount of variety of tones. I guess that's it, you could always try experimenting with other voice that are hard to be clone.\n", + "\n", + "The inference speed is much stable. With sample text, T4 (Free Tier Colab GPU) can do 6-10s on 6s-8s `prompt end time`.\n", + "\n", + "I haven't test the Edit mode yet as those are not my focus, but you can try it." + ], + "metadata": { + "id": "nnu2cY4t8P6X" + } + }, + { + "cell_type": "code", + "source": [ + "!python \"/content/VoiceCraft-gradio-colab/gradio_app.py\"" + ], + "metadata": { + "id": "NDt4r4DiXAwG" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file From 8b21333bef69a42f0db7ea0f735aa9243012256d Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Fri, 5 Apr 2024 19:21:47 +0800 Subject: [PATCH 18/24] Release access for the Colab --- README.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index c0dbf31..5d3a3f5 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,8 @@ # VoiceCraft Gradio Colab -Made for those who lacked a dedicated GPU and those who wanted [the friendly GUI by @zuev-stepan](https://github.com/zuev-stepan/VoiceCraft-gradio). Potato programmer brain here so all code credits to @jasonppy, @zuev-stepan and others who contributed in their code. -COLAB LINK : HOLD ON I AM UPDATING +[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Sewlell/VoiceCraft-gradio-colab/blob/master/voicecraft.ipynb) + +Made for those who lacked a dedicated GPU and those who wanted [the friendly GUI by @zuev-stepan](https://github.com/zuev-stepan/VoiceCraft-gradio). Potato programmer brain here so all code credits to @jasonppy, @zuev-stepan and others who contributed in their code. # VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild [Demo](https://jasonppy.github.io/VoiceCraft_web) [Paper](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) From 9ce26becea9f198ce9e74aab24d66f9e6e496555 Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Sun, 7 Apr 2024 00:21:28 +0300 Subject: [PATCH 19/24] gradio: added giga330M_TTSEnhanced model, changed default top_p to 0.9 --- gradio_app.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 32b3e72..564af54 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -77,6 +77,9 @@ class WhisperxModel: def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, voicecraft_model_name): global transcribe_model, align_model, voicecraft_model + if voicecraft_model_name == "giga330M_TTSEnhanced": + voicecraft_model_name = "gigaHalfLibri330M_TTSEnhanced_max16s" + if alignment_model_name is not None: align_model = WhisperxAlignModel() @@ -433,7 +436,8 @@ with gr.Blocks() as app: with gr.Column(scale=5): with gr.Accordion("Select models", open=False) as models_selector: with gr.Row(): - voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", choices=["giga330M", "giga830M"]) + voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", + choices=["giga330M", "giga830M", "giga330M_TTSEnhanced"]) whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisper", "whisperX"]) whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", choices=[None, "base.en", "small.en", "medium.en", "large"]) @@ -498,13 +502,15 @@ with gr.Blocks() as app: stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=3, info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled") sample_batch_size = gr.Number(label="speech rate", value=4, precision=0, - info="The higher the number, the faster the output will be. Under the hood, the model will generate this many samples and choose the shortest one") + info="The higher the number, the faster the output will be. " + "Under the hood, the model will generate this many samples and choose the shortest one. " + "For giga330M_TTSEnhanced, 1 or 2 should be fine since the model is trained to do TTS.") seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)") kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1, info="set to 0 to use less VRAM, but with slower inference") left_margin = gr.Number(label="left_margin", value=0.08, info="margin to the left of the editing segment") right_margin = gr.Number(label="right_margin", value=0.08, info="margin to the right of the editing segment") - top_p = gr.Number(label="top_p", value=0.8, info="0.8 is a good value, 0.9 is also good") + top_p = gr.Number(label="top_p", value=0.9, info="0.9 is a good value, 0.8 is also good") temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change") top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling") codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change') From 9148e6020e265b81f8f946d4e1f86e3310fdb7ce Mon Sep 17 00:00:00 2001 From: pgosar Date: Sat, 6 Apr 2024 16:42:50 -0500 Subject: [PATCH 20/24] remove trailing whitespace --- gradio_app.py | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/gradio_app.py b/gradio_app.py index 564af54..80d96ec 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -90,7 +90,7 @@ def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, if align_model is None: raise gr.Error("Align model required for whisperx backend") transcribe_model = WhisperxModel(whisper_model_name, align_model) - + voicecraft_name = f"{voicecraft_model_name}.pth" ckpt_fn = f"./pretrained_models/{voicecraft_name}" encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th" @@ -132,7 +132,7 @@ def transcribe(seed, audio_path): if transcribe_model is None: raise gr.Error("Transcription model not loaded") seed_everything(seed) - + segments = transcribe_model.transcribe(audio_path) state = get_transcribe_state(segments) @@ -234,7 +234,7 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, if mode != "Edit": from inference_tts_scale import inference_one_sample - if smart_transcript: + if smart_transcript: target_transcript = "" for word in transcribe_state["words_info"]: if word["end"] < prompt_end_time: @@ -281,7 +281,7 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, morphed_span = (max(edit_start_time - left_margin, 1 / codec_sr), min(edit_end_time + right_margin, audio_dur)) mask_interval = [[round(morphed_span[0]*codec_sr), round(morphed_span[1]*codec_sr)]] mask_interval = torch.LongTensor(mask_interval) - + _, gen_audio = inference_one_sample(voicecraft_model["model"], voicecraft_model["ckpt"]["config"], voicecraft_model["ckpt"]["phn2num"], @@ -300,12 +300,12 @@ def run(seed, left_margin, right_margin, codec_audio_sr, codec_sr, top_k, top_p, output_audio = get_output_audio(previous_audio_tensors, codec_audio_sr) sentence_audio = get_output_audio(audio_tensors, codec_audio_sr) return output_audio, inference_transcript, sentence_audio, previous_audio_tensors - - + + def update_input_audio(audio_path): if audio_path is None: return 0, 0, 0 - + info = torchaudio.info(audio_path) max_time = round(info.num_frames / info.sample_rate, 2) return [ @@ -314,7 +314,7 @@ def update_input_audio(audio_path): gr.Slider(maximum=max_time, value=max_time), ] - + def change_mode(mode): tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor return [ @@ -416,7 +416,7 @@ demo_words_info = [ def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word): if transcript not in all_demo_texts: return transcript, edit_from_word, edit_to_word - + replace_half = edit_word_mode == "Replace half" change_edit_from_word = edit_from_word == demo_words[2] or edit_from_word == demo_words[3] change_edit_to_word = edit_to_word == demo_words[11] or edit_to_word == demo_words[12] @@ -456,7 +456,7 @@ with gr.Blocks() as app: transcribe_btn = gr.Button(value="Transcribe") align_btn = gr.Button(value="Align") - + with gr.Column(scale=3): with gr.Group(): transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"]) @@ -471,7 +471,7 @@ with gr.Blocks() as app: info="Split text into parts and run TTS for each part.", visible=False) edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half", info="What to do with first and last word", visible=False) - + with gr.Group() as tts_mode_controls: prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True) prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.001, value=3.016) @@ -517,11 +517,11 @@ with gr.Blocks() as app: codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change') silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change") - + audio_tensors = gr.State() transcribe_state = gr.State(value={"words_info": demo_words_info}) - + mode.change(fn=update_demo, inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], outputs=[transcript, edit_from_word, edit_to_word]) @@ -531,11 +531,11 @@ with gr.Blocks() as app: smart_transcript.change(fn=update_demo, inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], outputs=[transcript, edit_from_word, edit_to_word]) - + load_models_btn.click(fn=load_models, inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, voicecraft_model_choice], outputs=[models_selector]) - + input_audio.upload(fn=update_input_audio, inputs=[input_audio], outputs=[prompt_end_time, edit_start_time, edit_end_time]) @@ -564,7 +564,7 @@ with gr.Blocks() as app: split_text, sentence_selector, audio_tensors ], outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors]) - + sentence_selector.change(fn=load_sentence, inputs=[sentence_selector, codec_audio_sr, audio_tensors], outputs=[sentence_audio]) @@ -580,7 +580,7 @@ with gr.Blocks() as app: split_text, sentence_selector, audio_tensors ], outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors]) - + prompt_to_word.change(fn=update_bound_word, inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")], outputs=[prompt_end_time]) From 623550f8081c6851d9ff59e0f3986affb0752bfa Mon Sep 17 00:00:00 2001 From: Rumah <93970226+Sewlell@users.noreply.github.com> Date: Thu, 11 Apr 2024 11:43:11 +0800 Subject: [PATCH 21/24] April 11 Update --- voicecraft.ipynb | 31 ++++++++++++++++++------------- 1 file changed, 18 insertions(+), 13 deletions(-) diff --git a/voicecraft.ipynb b/voicecraft.ipynb index f8b9c85..78c816a 100644 --- a/voicecraft.ipynb +++ b/voicecraft.ipynb @@ -5,7 +5,7 @@ "colab": { "provenance": [], "gpuType": "T4", - "authorship_tag": "ABX9TyPEhMt0mIcJv2BbaCwogF07", + "authorship_tag": "ABX9TyPsqFhtOeQ18CXHnRkWAQSk", "include_colab_link": true }, "kernelspec": { @@ -66,7 +66,7 @@ { "cell_type": "markdown", "source": [ - "# Let it restarted, it won't let your entire installation be gone." + "# Let it restarted, it won't let your entire installation be aborted." ], "metadata": { "id": "jNuzjrtmv2n1" @@ -79,27 +79,32 @@ "\n", "***You will get JSON warning if you move anything beside `sample_batch_size`, `stop_repetition` and `seed`.*** Which for most advanced setting, `kvache` and `temperature` unable to set in different value.\n", "\n", - "You will get fp16 compatibility issue if you set `whisper backend` to `whisperX`, for whatever reason, setting `forced alignment model` to `whisperX` doesn't do anything.\n", - "\n", - "You will download a .file File when you download the Output Audio for some reason. You will need to **convert the file from .snd to .wav/.mp3 manually**. Or if you enable showing file type in the name in Windows or wherever you are, change the file name to \"xxx.wav\" or \"xxx.mp3\". (know the solution? pull request my repository)\n", + "You will download a .file File when you download the output audio for some reason. You will need to **convert the file from .snd to .wav/.mp3 manually**. Or if you enable showing file type in the name in Windows or wherever you are, change the file name to \"xxx.wav\" or \"xxx.mp3\". (know the solution? pull request my repository)\n", "\n", "Frequency of VRAM spikes no longer exist as well in April 5 Update.\n", - "\n", - "# **To those who want to voice cloning**\n", - "![Screenshot (438).png]()\n", - "\n", - "Don't make your input audio too long like in the screenshot, 20s-30s is fine. Or else it will raise up JSON issue. This one is due to how VoiceCraft worked so probably unfixable. It will add those text you want to get audio from at the end of the input audio transcript. It was way too much word for application or code to handle as it added up with original transcript. So please keep it short." + "* Nevermind, I have observed some weird usage on Colab's GPU Memory Monitor. It can spike up to 13.5GB VRAM even in WhisperX mode. (April 11)" ], "metadata": { - "id": "qQ-And_w2vJV" + "id": "AnqGEwZ4NxtJ" } }, { "cell_type": "markdown", "source": [ - "My tip on voice cloning is just \"get a good dataset\" that contain plausible amount of variety of tones. I guess that's it, you could always try experimenting with other voice that are hard to be clone.\n", + "Don't make your `prompt end time` too long, 6-9s is fine. Or else it will **either raise up JSON issue or cut off your generated audio**. This one is due to how VoiceCraft worked (so probably unfixable). It will add those text you want to get audio from at the end of the input audio transcript. It was way too much word for application or code to handle as it added up with original transcript. So please keep it short.\n", "\n", - "The inference speed is much stable. With sample text, T4 (Free Tier Colab GPU) can do 6-10s on 6s-8s `prompt end time`.\n", + "Your total audio length (`prompt end time` + add-up audio) must not exceed 16 or 17s." + ], + "metadata": { + "id": "dE0W76cMN3Si" + } + }, + { + "cell_type": "markdown", + "source": [ + "For voice cloning, I suggest you to probably have a monotone input to feed the voice cloning. Of course you can always try input that have tons of tone variety, but I find that as per April 11 Update, it's much more easy to replicate in monotone rather than audio that have laugh, scream, crying inside.\n", + "\n", + "The inference speed is much stable. With sample text, T4 (Free Tier Colab GPU) can do 6-15s on 6s-8s of `prompt end time`.\n", "\n", "I haven't test the Edit mode yet as those are not my focus, but you can try it." ], From 6f0aa2db577aa1b77ee1a87d50ea447a8999932f Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Thu, 11 Apr 2024 16:28:52 +0500 Subject: [PATCH 22/24] essential gradio app args added, colab notebook fix --- README.md | 16 +- gradio_app.py | 313 +++++++++--------- ...aft.ipynb => voicecraft-gradio-colab.ipynb | 106 +++--- 3 files changed, 222 insertions(+), 213 deletions(-) rename voicecraft.ipynb => voicecraft-gradio-colab.ipynb (84%) diff --git a/README.md b/README.md index 3bad691..a9b06d7 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,3 @@ -# VoiceCraft Gradio Colab - -[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Sewlell/VoiceCraft-gradio-colab/blob/master/voicecraft.ipynb) - -Made for those who lacked a dedicated GPU and those who wanted [the friendly GUI by @zuev-stepan](https://github.com/zuev-stepan/VoiceCraft-gradio). Potato programmer brain here so all code credits to @jasonppy, @zuev-stepan and others who contributed in their code. - # VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild [Demo](https://jasonppy.github.io/VoiceCraft_web) [Paper](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) @@ -105,10 +99,6 @@ conda install -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi= # to run ipynb conda install -n voicecraft ipykernel --no-deps --force-reinstall - -# below is only needed if you want to run gradio_app.py -sudo apt-get install espeak # NOTE: only required if you want to use gradio_app, which is used by whisperx for forced alignment -sudo apt-get install libespeak-dev # NOTE: only required if you want to use gradio_app, which is used by whisperx for forced alignment ``` If you have encountered version issues when running things, checkout [environment.yml](./environment.yml) for exact matching. @@ -117,6 +107,11 @@ If you have encountered version issues when running things, checkout [environmen Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) and [`inference_tts.ipynb`](./inference_tts.ipynb) ## Gradio +### Run in colab + +[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zuev-stepan/VoiceCraft-gradio/blob/feature/colab-notebook/voicecraft-gradio-colab.ipynb) + +### Run locally After environment setup install additional dependencies: ```bash apt-get install -y espeak espeak-data libespeak1 libespeak-dev @@ -130,7 +125,6 @@ pip install -r gradio_requirements.txt Run gradio server from terminal or [`gradio_app.ipynb`](./gradio_app.ipynb): ```bash python gradio_app.py -TMP_PATH=/tmp python gradio_app.py # if you want to change tmp folder path ``` It is ready to use on [default url](http://127.0.0.1:7860). diff --git a/gradio_app.py b/gradio_app.py index 162b4b3..a632f11 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -12,12 +12,10 @@ import numpy as np import random import uuid -os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" -os.environ["CUDA_VISIBLE_DEVICES"] = "0" -os.chdir("/content/VoiceCraft-gradio-colab") -os.environ['USER'] = 'aaa' +DEMO_PATH = os.getenv("DEMO_PATH", ".demo") TMP_PATH = os.getenv("TMP_PATH", "./demo/temp") +MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models") device = "cuda" if torch.cuda.is_available() else "cpu" whisper_model, align_model, voicecraft_model = None, None, None @@ -94,14 +92,14 @@ def load_models(whisper_backend_name, whisper_model_name, alignment_model_name, transcribe_model = WhisperxModel(whisper_model_name, align_model) voicecraft_name = f"{voicecraft_model_name}.pth" - ckpt_fn = f"./pretrained_models/{voicecraft_name}" - encodec_fn = "./pretrained_models/encodec_4cb2048_giga.th" + ckpt_fn = f"{MODELS_PATH}/{voicecraft_name}" + encodec_fn = f"{MODELS_PATH}/encodec_4cb2048_giga.th" if not os.path.exists(ckpt_fn): os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{voicecraft_name}\?download\=true") - os.system(f"mv {voicecraft_name}\?download\=true ./pretrained_models/{voicecraft_name}") + os.system(f"mv {voicecraft_name}\?download\=true {MODELS_PATH}/{voicecraft_name}") if not os.path.exists(encodec_fn): os.system(f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/encodec_4cb2048_giga.th") - os.system(f"mv encodec_4cb2048_giga.th ./pretrained_models/encodec_4cb2048_giga.th") + os.system(f"mv encodec_4cb2048_giga.th {MODELS_PATH}/encodec_4cb2048_giga.th") ckpt = torch.load(ckpt_fn, map_location="cpu") model = voicecraft.VoiceCraft(ckpt["config"]) @@ -431,146 +429,131 @@ def update_demo(mode, smart_transcript, edit_word_mode, transcript, edit_from_wo ] -with gr.Blocks() as app: - with gr.Row(): - with gr.Column(scale=2): - load_models_btn = gr.Button(value="Load models") - with gr.Column(scale=5): - with gr.Accordion("Select models", open=False) as models_selector: - with gr.Row(): - voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", - choices=["giga330M", "giga830M", "giga330M_TTSEnhanced"]) - whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisper", "whisperX"]) - whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", - choices=[None, "base.en", "small.en", "medium.en", "large"]) - align_model_choice = gr.Radio(label="Forced alignment model", value="whisperX", choices=[None, "whisperX"]) - - with gr.Row(): - with gr.Column(scale=2): - input_audio = gr.Audio(value="./demo/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True) - with gr.Group(): - original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, - info="Use whisper model to get the transcript. Fix and align it if necessary.") - with gr.Accordion("Word start time", open=False): - transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word") - with gr.Accordion("Word end time", open=False): - transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word") - - transcribe_btn = gr.Button(value="Transcribe") - align_btn = gr.Button(value="Align") - - with gr.Column(scale=3): - with gr.Group(): - transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"]) - with gr.Row(): - smart_transcript = gr.Checkbox(label="Smart transcript", value=True) - with gr.Accordion(label="?", open=False): - info = gr.Markdown(value=smart_transcript_info) - - with gr.Row(): - mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS") - split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline", - info="Split text into parts and run TTS for each part.", visible=False) - edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half", - info="What to do with first and last word", visible=False) - - with gr.Group() as tts_mode_controls: - prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True) - prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.001, value=3.016) - - with gr.Group(visible=False) as edit_mode_controls: +def get_app(): + with gr.Blocks() as app: + with gr.Row(): + with gr.Column(scale=2): + load_models_btn = gr.Button(value="Load models") + with gr.Column(scale=5): + with gr.Accordion("Select models", open=False) as models_selector: with gr.Row(): - edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True) - edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True) + voicecraft_model_choice = gr.Radio(label="VoiceCraft model", value="giga830M", + choices=["giga330M", "giga830M", "giga330M_TTSEnhanced"]) + whisper_backend_choice = gr.Radio(label="Whisper backend", value="whisperX", choices=["whisper", "whisperX"]) + whisper_model_choice = gr.Radio(label="Whisper model", value="base.en", + choices=[None, "base.en", "small.en", "medium.en", "large"]) + align_model_choice = gr.Radio(label="Forced alignment model", value="whisperX", choices=[None, "whisperX"]) + + with gr.Row(): + with gr.Column(scale=2): + input_audio = gr.Audio(value=f"{DEMO_PATH}/84_121550_000074_000000.wav", label="Input Audio", type="filepath", interactive=True) + with gr.Group(): + original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, + info="Use whisper model to get the transcript. Fix and align it if necessary.") + with gr.Accordion("Word start time", open=False): + transcript_with_start_time = gr.Textbox(label="Start time", lines=5, interactive=False, info="Start time before each word") + with gr.Accordion("Word end time", open=False): + transcript_with_end_time = gr.Textbox(label="End time", lines=5, interactive=False, info="End time after each word") + + transcribe_btn = gr.Button(value="Transcribe") + align_btn = gr.Button(value="Align") + + with gr.Column(scale=3): + with gr.Group(): + transcript = gr.Textbox(label="Text", lines=7, value=demo_text["TTS"]["smart"]) with gr.Row(): - edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.001, value=0.46) - edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.001, value=3.808) + smart_transcript = gr.Checkbox(label="Smart transcript", value=True) + with gr.Accordion(label="?", open=False): + info = gr.Markdown(value=smart_transcript_info) - run_btn = gr.Button(value="Run") + with gr.Row(): + mode = gr.Radio(label="Mode", choices=["TTS", "Edit", "Long TTS"], value="TTS") + split_text = gr.Radio(label="Split text", choices=["Newline", "Sentence"], value="Newline", + info="Split text into parts and run TTS for each part.", visible=False) + edit_word_mode = gr.Radio(label="Edit word mode", choices=["Replace half", "Replace all"], value="Replace half", + info="What to do with first and last word", visible=False) - with gr.Column(scale=2): - output_audio = gr.Audio(label="Output Audio") - with gr.Accordion("Inference transcript", open=False): - inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False, - info="Inference was performed on this transcript.") - with gr.Group(visible=False) as long_tts_sentence_editor: - sentence_selector = gr.Dropdown(label="Sentence", value=None, - info="Select sentence you want to regenerate") - sentence_audio = gr.Audio(label="Sentence Audio", scale=2) - rerun_btn = gr.Button(value="Rerun") + with gr.Group() as tts_mode_controls: + prompt_to_word = gr.Dropdown(label="Last word in prompt", choices=demo_words, value=demo_words[10], interactive=True) + prompt_end_time = gr.Slider(label="Prompt end time", minimum=0, maximum=7.93, step=0.001, value=3.016) - with gr.Row(): - with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False): - stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=3, - info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled") - sample_batch_size = gr.Number(label="speech rate", value=4, precision=0, - info="The higher the number, the faster the output will be. " - "Under the hood, the model will generate this many samples and choose the shortest one. " - "For giga330M_TTSEnhanced, 1 or 2 should be fine since the model is trained to do TTS.") - seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)") - kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1, - info="set to 0 to use less VRAM, but with slower inference") - left_margin = gr.Number(label="left_margin", value=0.08, info="margin to the left of the editing segment") - right_margin = gr.Number(label="right_margin", value=0.08, info="margin to the right of the editing segment") - top_p = gr.Number(label="top_p", value=0.9, info="0.9 is a good value, 0.8 is also good") - temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change") - top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling") - codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change') - codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change') - silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change") + with gr.Group(visible=False) as edit_mode_controls: + with gr.Row(): + edit_from_word = gr.Dropdown(label="First word to edit", choices=demo_words, value=demo_words[2], interactive=True) + edit_to_word = gr.Dropdown(label="Last word to edit", choices=demo_words, value=demo_words[12], interactive=True) + with gr.Row(): + edit_start_time = gr.Slider(label="Edit from time", minimum=0, maximum=7.93, step=0.001, value=0.46) + edit_end_time = gr.Slider(label="Edit to time", minimum=0, maximum=7.93, step=0.001, value=3.808) + + run_btn = gr.Button(value="Run") + + with gr.Column(scale=2): + output_audio = gr.Audio(label="Output Audio") + with gr.Accordion("Inference transcript", open=False): + inference_transcript = gr.Textbox(label="Inference transcript", lines=5, interactive=False, + info="Inference was performed on this transcript.") + with gr.Group(visible=False) as long_tts_sentence_editor: + sentence_selector = gr.Dropdown(label="Sentence", value=None, + info="Select sentence you want to regenerate") + sentence_audio = gr.Audio(label="Sentence Audio", scale=2) + rerun_btn = gr.Button(value="Rerun") + + with gr.Row(): + with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False): + stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=3, + info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled") + sample_batch_size = gr.Number(label="speech rate", value=4, precision=0, + info="The higher the number, the faster the output will be. " + "Under the hood, the model will generate this many samples and choose the shortest one. " + "For giga330M_TTSEnhanced, 1 or 2 should be fine since the model is trained to do TTS.") + seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)") + kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1, + info="set to 0 to use less VRAM, but with slower inference") + left_margin = gr.Number(label="left_margin", value=0.08, info="margin to the left of the editing segment") + right_margin = gr.Number(label="right_margin", value=0.08, info="margin to the right of the editing segment") + top_p = gr.Number(label="top_p", value=0.9, info="0.9 is a good value, 0.8 is also good") + temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not recommend to change") + top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling") + codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, Do not change') + codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, Do not change') + silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change") - audio_tensors = gr.State() - transcribe_state = gr.State(value={"words_info": demo_words_info}) + audio_tensors = gr.State() + transcribe_state = gr.State(value={"words_info": demo_words_info}) - mode.change(fn=update_demo, - inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], - outputs=[transcript, edit_from_word, edit_to_word]) - edit_word_mode.change(fn=update_demo, - inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], - outputs=[transcript, edit_from_word, edit_to_word]) - smart_transcript.change(fn=update_demo, + mode.change(fn=update_demo, + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], + outputs=[transcript, edit_from_word, edit_to_word]) + edit_word_mode.change(fn=update_demo, inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], outputs=[transcript, edit_from_word, edit_to_word]) + smart_transcript.change(fn=update_demo, + inputs=[mode, smart_transcript, edit_word_mode, transcript, edit_from_word, edit_to_word], + outputs=[transcript, edit_from_word, edit_to_word]) - load_models_btn.click(fn=load_models, - inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, voicecraft_model_choice], - outputs=[models_selector]) + load_models_btn.click(fn=load_models, + inputs=[whisper_backend_choice, whisper_model_choice, align_model_choice, voicecraft_model_choice], + outputs=[models_selector]) - input_audio.upload(fn=update_input_audio, - inputs=[input_audio], - outputs=[prompt_end_time, edit_start_time, edit_end_time]) - transcribe_btn.click(fn=transcribe, - inputs=[seed, input_audio], - outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, - prompt_to_word, edit_from_word, edit_to_word, transcribe_state]) - align_btn.click(fn=align, - inputs=[seed, original_transcript, input_audio], - outputs=[transcript_with_start_time, transcript_with_end_time, - prompt_to_word, edit_from_word, edit_to_word, transcribe_state]) + input_audio.upload(fn=update_input_audio, + inputs=[input_audio], + outputs=[prompt_end_time, edit_start_time, edit_end_time]) + transcribe_btn.click(fn=transcribe, + inputs=[seed, input_audio], + outputs=[original_transcript, transcript_with_start_time, transcript_with_end_time, + prompt_to_word, edit_from_word, edit_to_word, transcribe_state]) + align_btn.click(fn=align, + inputs=[seed, original_transcript, input_audio], + outputs=[transcript_with_start_time, transcript_with_end_time, + prompt_to_word, edit_from_word, edit_to_word, transcribe_state]) - mode.change(fn=change_mode, - inputs=[mode], - outputs=[tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor]) + mode.change(fn=change_mode, + inputs=[mode], + outputs=[tts_mode_controls, edit_mode_controls, edit_word_mode, split_text, long_tts_sentence_editor]) - run_btn.click(fn=run, - inputs=[ - seed, left_margin, right_margin, - codec_audio_sr, codec_sr, - top_k, top_p, temperature, - stop_repetition, sample_batch_size, - kvcache, silence_tokens, - input_audio, transcribe_state, transcript, smart_transcript, - mode, prompt_end_time, edit_start_time, edit_end_time, - split_text, sentence_selector, audio_tensors - ], - outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors]) - - sentence_selector.change(fn=load_sentence, - inputs=[sentence_selector, codec_audio_sr, audio_tensors], - outputs=[sentence_audio]) - rerun_btn.click(fn=run, + run_btn.click(fn=run, inputs=[ seed, left_margin, right_margin, codec_audio_sr, codec_sr, @@ -578,24 +561,58 @@ with gr.Blocks() as app: stop_repetition, sample_batch_size, kvcache, silence_tokens, input_audio, transcribe_state, transcript, smart_transcript, - gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time, + mode, prompt_end_time, edit_start_time, edit_end_time, split_text, sentence_selector, audio_tensors ], - outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors]) + outputs=[output_audio, inference_transcript, sentence_selector, audio_tensors]) - prompt_to_word.change(fn=update_bound_word, - inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")], - outputs=[prompt_end_time]) - edit_from_word.change(fn=update_bound_word, - inputs=[gr.State(True), edit_from_word, edit_word_mode], - outputs=[edit_start_time]) - edit_to_word.change(fn=update_bound_word, - inputs=[gr.State(False), edit_to_word, edit_word_mode], - outputs=[edit_end_time]) - edit_word_mode.change(fn=update_bound_words, - inputs=[edit_from_word, edit_to_word, edit_word_mode], - outputs=[edit_start_time, edit_end_time]) + sentence_selector.change(fn=load_sentence, + inputs=[sentence_selector, codec_audio_sr, audio_tensors], + outputs=[sentence_audio]) + rerun_btn.click(fn=run, + inputs=[ + seed, left_margin, right_margin, + codec_audio_sr, codec_sr, + top_k, top_p, temperature, + stop_repetition, sample_batch_size, + kvcache, silence_tokens, + input_audio, transcribe_state, transcript, smart_transcript, + gr.State(value="Rerun"), prompt_end_time, edit_start_time, edit_end_time, + split_text, sentence_selector, audio_tensors + ], + outputs=[output_audio, inference_transcript, sentence_audio, audio_tensors]) + + prompt_to_word.change(fn=update_bound_word, + inputs=[gr.State(False), prompt_to_word, gr.State("Replace all")], + outputs=[prompt_end_time]) + edit_from_word.change(fn=update_bound_word, + inputs=[gr.State(True), edit_from_word, edit_word_mode], + outputs=[edit_start_time]) + edit_to_word.change(fn=update_bound_word, + inputs=[gr.State(False), edit_to_word, edit_word_mode], + outputs=[edit_end_time]) + edit_word_mode.change(fn=update_bound_words, + inputs=[edit_from_word, edit_to_word, edit_word_mode], + outputs=[edit_start_time, edit_end_time]) + return app if __name__ == "__main__": - app.launch(share=True) + import argparse + + parser = argparse.ArgumentParser(description="VoiceCraft gradio app.") + + parser.add_argument("--demo-path", default=".demo", help="Path to demo directory") + parser.add_argument("--tmp-path", default=".demo/temp", help="Path to tmp directory") + parser.add_argument("--models-path", default=".pretrained_models", help="Path to voicecraft models directory") + parser.add_argument("--port", default=7860, type=int, help="App port") + parser.add_argument("--share", action="store_true", help="Launch with public url") + + os.environ["USER"] = os.getenv("USER", "user") + args = parser.parse_args() + DEMO_PATH = args.demo_path + TMP_PATH = args.tmp_path + MODELS_PATH = args.models_path + + app = get_app() + app.launch(share=args.share, server_port=args.port) diff --git a/voicecraft.ipynb b/voicecraft-gradio-colab.ipynb similarity index 84% rename from voicecraft.ipynb rename to voicecraft-gradio-colab.ipynb index 78c816a..a13fb2e 100644 --- a/voicecraft.ipynb +++ b/voicecraft-gradio-colab.ipynb @@ -1,28 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "gpuType": "T4", - "authorship_tag": "ABX9TyPsqFhtOeQ18CXHnRkWAQSk", - "include_colab_link": true - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU" - }, "cells": [ { "cell_type": "markdown", "metadata": { - "id": "view-in-github", - "colab_type": "text" + "colab_type": "text", + "id": "view-in-github" }, "source": [ "\"Open" @@ -36,11 +18,16 @@ }, "outputs": [], "source": [ - "!git clone https://github.com/Sewlell/VoiceCraft-gradio-colab" + "!git clone https://github.com/zuev-stepan/VoiceCraft-gradio" ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-w3USR91XdxY" + }, + "outputs": [], "source": [ "!pip install tensorboard\n", "!pip install phonemizer\n", @@ -55,25 +42,23 @@ "\n", "!pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft\n", "\n", - "!pip install -r \"/content/VoiceCraft-gradio-colab/gradio_requirements.txt\"" - ], - "metadata": { - "id": "-w3USR91XdxY" - }, - "execution_count": null, - "outputs": [] + "!pip install -r \"/content/VoiceCraft-gradio/gradio_requirements.txt\"" + ] }, { "cell_type": "markdown", - "source": [ - "# Let it restarted, it won't let your entire installation be aborted." - ], "metadata": { "id": "jNuzjrtmv2n1" - } + }, + "source": [ + "# Let it restarted, it won't let your entire installation be aborted." + ] }, { "cell_type": "markdown", + "metadata": { + "id": "AnqGEwZ4NxtJ" + }, "source": [ "# Note before launching the `gradio_app.py`\n", "\n", @@ -83,45 +68,58 @@ "\n", "Frequency of VRAM spikes no longer exist as well in April 5 Update.\n", "* Nevermind, I have observed some weird usage on Colab's GPU Memory Monitor. It can spike up to 13.5GB VRAM even in WhisperX mode. (April 11)" - ], - "metadata": { - "id": "AnqGEwZ4NxtJ" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "dE0W76cMN3Si" + }, "source": [ "Don't make your `prompt end time` too long, 6-9s is fine. Or else it will **either raise up JSON issue or cut off your generated audio**. This one is due to how VoiceCraft worked (so probably unfixable). It will add those text you want to get audio from at the end of the input audio transcript. It was way too much word for application or code to handle as it added up with original transcript. So please keep it short.\n", "\n", "Your total audio length (`prompt end time` + add-up audio) must not exceed 16 or 17s." - ], - "metadata": { - "id": "dE0W76cMN3Si" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "nnu2cY4t8P6X" + }, "source": [ "For voice cloning, I suggest you to probably have a monotone input to feed the voice cloning. Of course you can always try input that have tons of tone variety, but I find that as per April 11 Update, it's much more easy to replicate in monotone rather than audio that have laugh, scream, crying inside.\n", "\n", - "The inference speed is much stable. With sample text, T4 (Free Tier Colab GPU) can do 6-15s on 6s-8s of `prompt end time`.\n", - "\n", - "I haven't test the Edit mode yet as those are not my focus, but you can try it." - ], - "metadata": { - "id": "nnu2cY4t8P6X" - } + "The inference speed is much stable. With sample text, T4 (Free Tier Colab GPU) can do 6-15s on 6s-8s of `prompt end time`." + ] }, { "cell_type": "code", - "source": [ - "!python \"/content/VoiceCraft-gradio-colab/gradio_app.py\"" - ], + "execution_count": null, "metadata": { "id": "NDt4r4DiXAwG" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "!python /content/VoiceCraft-gradio/gradio_app.py --demo-path=/content/VoiceCraft-gradio/demo --tmp-path=/content/VoiceCraft-gradio/demo/temp --models-path=/content/VoiceCraft-gradio/pretrained_models --share" + ] } - ] -} \ No newline at end of file + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "authorship_tag": "ABX9TyPsqFhtOeQ18CXHnRkWAQSk", + "gpuType": "T4", + "include_colab_link": true, + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} From b818145ad90f848fe508d1a907755000d861a3a7 Mon Sep 17 00:00:00 2001 From: Stepan Zuev Date: Thu, 11 Apr 2024 17:22:41 +0500 Subject: [PATCH 23/24] queue added --- gradio_app.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gradio_app.py b/gradio_app.py index a632f11..0f82600 100644 --- a/gradio_app.py +++ b/gradio_app.py @@ -615,4 +615,4 @@ if __name__ == "__main__": MODELS_PATH = args.models_path app = get_app() - app.launch(share=args.share, server_port=args.port) + app.queue().launch(share=args.share, server_port=args.port) From ad6c2cd836ab99e1c6c1b6dc508f9ebf151980af Mon Sep 17 00:00:00 2001 From: jason-on-salt-a40 Date: Thu, 11 Apr 2024 07:17:28 -0700 Subject: [PATCH 24/24] a little massage --- README.md | 26 +++++++++++++++----------- demo/pam.wav | Bin 0 -> 770082 bytes gradio_app.py | 20 ++++++++++---------- voicecraft-gradio-colab.ipynb | 2 +- 4 files changed, 26 insertions(+), 22 deletions(-) create mode 100644 demo/pam.wav diff --git a/README.md b/README.md index a9b06d7..629461e 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,5 @@ # VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild -[Demo](https://jasonppy.github.io/VoiceCraft_web) [Paper](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) - +[![Paper](https://img.shields.io/badge/arXiv-2301.12503-brightgreen.svg?style=flat-square)](https://jasonppy.github.io/assets/pdfs/VoiceCraft.pdf) [![githubio](https://img.shields.io/badge/GitHub.io-Audio_Samples-blue?logo=Github&style=flat-square)](https://jasonppy.github.io/VoiceCraft_web/) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/pyp1/VoiceCraft_gradio) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOjpglQyMTO2C3Y94LD9FY0Ocn-RJRg6?usp=sharing) ### TL;DR VoiceCraft is a token infilling neural codec language model, that achieves state-of-the-art performance on both **speech editing** and **zero-shot text-to-speech (TTS)** on in-the-wild data including audiobooks, internet videos, and podcasts. @@ -8,20 +7,22 @@ VoiceCraft is a token infilling neural codec language model, that achieves state To clone or edit an unseen voice, VoiceCraft needs only a few seconds of reference. ## How to run inference -There are three ways: +There are three ways (besides running Gradio in Colab): -1. with Google Colab. see [quickstart colab](#quickstart-colab) +1. More flexible inference beyond Gradio UI in Google Colab. see [quickstart colab](#quickstart-colab) 2. with docker. see [quickstart docker](#quickstart-docker) -3. without docker. see [environment setup](#environment-setup) +3. without docker. see [environment setup](#environment-setup). You can also run gradio locally if you choose this option When you are inside the docker image or you have installed all dependencies, Checkout [`inference_tts.ipynb`](./inference_tts.ipynb). If you want to do model development such as training/finetuning, I recommend following [envrionment setup](#environment-setup) and [training](#training). ## News -:star: 03/28/2024: Model weights for giga330M and giga830M are up on HuggingFace🤗 [here](https://huggingface.co/pyp1/VoiceCraft/tree/main)! +:star: 04/11/2024: VoiceCraft Gradio is now available on HuggingFace Spaces [here](https://huggingface.co/spaces/pyp1/VoiceCraft_gradio)! Major thanks to [@zuev-stepan](https://github.com/zuev-stepan), [@Sewlell](https://github.com/Sewlell), [@pgsoar](https://github.com/pgosar) [@Ph0rk0z](https://github.com/Ph0rk0z). -:star: 04/05/2024: I finetuned giga330M with the TTS objective on gigaspeech and 1/5 of librilight, the model outperforms giga830M on TTS. Weights are [here](https://huggingface.co/pyp1/VoiceCraft/tree/main). Make sure maximal prompt + generation length <= 16 seconds (due to our limited compute, we had to drop utterances longer than 16s in training data) +:star: 04/05/2024: I finetuned giga330M with the TTS objective on gigaspeech and 1/5 of librilight. Weights are [here](https://huggingface.co/pyp1/VoiceCraft/tree/main). Make sure maximal prompt + generation length <= 16 seconds (due to our limited compute, we had to drop utterances longer than 16s in training data). Even stronger models forthcomming, stay tuned! + +:star: 03/28/2024: Model weights for giga330M and giga830M are up on HuggingFace🤗 [here](https://huggingface.co/pyp1/VoiceCraft/tree/main)! ## TODO - [x] Codebase upload @@ -30,9 +31,12 @@ If you want to do model development such as training/finetuning, I recommend fol - [x] Training guidance - [x] RealEdit dataset and training manifest - [x] Model weights (giga330M.pth, giga830M.pth, and gigaHalfLibri330M_TTSEnhanced_max16s.pth) -- [x] Write colab notebooks for better hands-on experience -- [ ] HuggingFace Spaces demo -- [ ] Better guidance on training/finetuning +- [x] Better guidance on training/finetuning +- [x] Colab notebooks +- [x] HuggingFace Spaces demo +- [ ] Command line +- [ ] Improve efficiency + ## QuickStart Colab @@ -109,7 +113,7 @@ Checkout [`inference_speech_editing.ipynb`](./inference_speech_editing.ipynb) an ## Gradio ### Run in colab -[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zuev-stepan/VoiceCraft-gradio/blob/feature/colab-notebook/voicecraft-gradio-colab.ipynb) +[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1IOjpglQyMTO2C3Y94LD9FY0Ocn-RJRg6?usp=sharing) ### Run locally After environment setup install additional dependencies: diff --git a/demo/pam.wav b/demo/pam.wav new file mode 100644 index 0000000000000000000000000000000000000000..2e39c45ec4f26f5ffaca0b277b38549a5bcd52f4 GIT binary patch literal 770082 zcmZ7951bv-{r~YJf)%P)LOSt>F4o(xSEmp{f2}@A;fF-~PV)csw6x{+yXPbNcst>WipUy85wLt2*0awFA_&$ zdSm*YWEuPh#Dja6d5Qb`4$I(oG43nY$@9TEgmO~w8lk)pd_gEN-{vwcZwAj0%0GfP z2>**8#BoLEqH~J*H;Z^OC%BVPrUf$yzRfxa2yH8byHX_^QaRt zu+eNmD6w285=T7sUs_owr2~v_U^ym@He=YA)R>pch%1i<&k)Mvf!dO&t;ttROI%)M zTCNOc6N(R}at!$>@T5!Hn3q1C=6FK!i_O_gOC^|3D3=@GhrEJ&g?V{2*otMcL+}~P zX=KP31bA>5(CZiMhdgIIsmX5?eiAzeW@ zA2*nJiTy!JSxW4G){|G#8=TPS9QN-0XFc5BLF}i0&T_aDf+GoKdT;?D{Fs1ij@NbPGtwx7nT8)_++obi z4~%DDnZpU;jxqlG%p;v;{N>Ce4g6)y!(C_+(j)$Cla`4Ke}hS{W*+Vn(j@DH>sf~M zLF4Xc9{#7n_Xy#3G`_?c`lyu8CU@>K8=p}Zc%d|1Z3#QD&#xGPvDj|6f1cIIWZ@uWjs-(Ukmd7kyMHsE}n ztYKd63*z;7dYy@>%lye3<1D)BAU( zWkce~w~Qy0EKN#R7!UZ3Sq?`%$f$3WSAw~O64Mi}!_!zM75YdSvD6GpRt1hw z`ms*peq;Z;Im=|uXcMx$Dg1?u~<{%;)f@V^c&B1C$HadTNOR|Z!R{ulp8;=={W<@DEbiE*=8hh)Bq z^Zr`4lRJVN3E^f2;X0O|#~{|jjS4mtL5-%BP-4ApWgimvw~T377{vbhB=#+ZppNx& z9{ZA0gGDTpSwU=fQ&}&upZkVs(bz^~oGnb&m#IJdDEKoW{3fiIIL_+FcJLb;w-NKQ zj`+xz4`UhpUcrHc!uVA3ac{yjG}g-OL@3`6&LD&f^6gpgY#PaLUysROAB|hhf^`>VD&lGS&r&&S>zfslN!_igeB;HSd z&3d8TWN5!mZFp?34WW!O`Tf<|%)?z^;{BFCi{)^q2d5Ik|1p?IC?^=##`^!_r?6Zm z7 z=Hs;ZJmEF+P~!MCHW&-PEYOst@-U;IUbH`G~9fIo(0ca=Pm*uNdeI*H}7l65j>sVNhR0Vd%^`%coMn4 zEA7VpmgVq23CCA-FI2kWjjU$%L|BpuShC!SjT2eQ-IU3<(x+99b7E zB9u6enzWSX?iki-`VmS@?@HE5?C`F;JNtcN=?*pE;)3GO1k%nl|JN}P}N z<2IJbf#O7Q3@Ni-26dXDgmO{v4?>CUE3`wmf7NBi63XGh zo`kZy$=kX5HpKqRPi9(TKe!9)WqadyV;%B#z8BMo%RO;394C9Wx(}g@GHx{S;ah@n zgrYID{J_Nh$9~0=_RMz(Wiyj~R`wD17qMTUfAQ*LLcZkBeFw4}ZlfTMQx=eiaz_xy z%@;E-9h8B@_R+vHS;jIc1QkLl2C;p_ekG2dDhCh`V;W6t2eF>Samb^rmv@4H5lWvX z(~l5-kKlMhxD$g|k3)O#V_7c~jQa)g;Ab0m4f9B%E15>hGq=o*gm6~`GYFAR52g{q z9UY7zME2Q>(h`>Y(^w|0!EuDb`b;yS93HT3wvQG<pLD%gM!ZVhEE&jhy;%K5>WgfcleiBJXxvA>x=+MYG9Ae7iIFJfBayr)h|tf#tW zO6;#A$2bHpXVgM?BI9wwBRgLs{HRr)o=aoko+BX8G@Od}sRe2-~Kf`bX+4+;(? zg!_IF*6003=%?ayN%tM%!P75@+bJj#BL7@vTjph;@f)%Z?nBN;;&Zs?nU=2L0YZ5+ z_>@q-4&EV@H-eN;tj%*#Q+ zK7?{q5c}o+%**iLy`|h|pfB?>Dku=jc0mtuq%KIg21^|86h;#t^MYlBk_Lktos-xu zuV7kk4yF@I9Pcb*S{?}&5=wWlf>0h0o+Okw&WP8CINn^vI*I+pOH4~V&I3$KJl+DP z<(l9;LfP;CIEr~08Vo0thF}<>91@&BC`SZC2xUxg38BRP>=vfwq9E?4Kl2jvH6Hh8 zER$)$*@P1FeJay(b#N)6v<2r7N=(l{rln6%M=0wlSBb}u=R1gXG9Va5D2E00gz~!} zmiOh%%Yxv3LYW_2Nhmi29fT6&-OIGx^M5?Uyu1v57mOv8?*^L_%E(|ip$rbLiSvt?mP!!IugttW6g){NasF1O<=WsHLYW^tNGS1m@%kU@L)=eH-%8@j zo55Rz^4H*1Lg@)&`fp%fVtt>*w8VOR5YsXsi1nlo^Rk@$m)M@#n3f{tCJA*#ib1?D ziPyRKym&g>$fO`HA2HgVmy`&lEtpLxV**boaU2?tQzi`()02`8@log(8rW851@(lY zIw-A6O-$b`=4DPWo={3b2cg7xDbrH>Kl+h}GM(k(NSDOp7MYgVuHt!?StfzNrZA{a515*3gZ2Op1H}^U774z>7u2sJiR$nX>WFtUdw$Mvd@Y? z@65j+on1@rZFHsnU76&FE+_88YR2EfzL8#H;&bETjAkdv6ce8-$NQzUo#V-|U74Qs zT~12J1s65D5-N|H+MUf#3d~FEgQj*c%i)?xJN&hz2lee;ncAmaPFi0#{y_2p**%8t zGp2E_Qb)eQuVx=`3)m+n?beb>FC>rfUbQ>(&UYVmGWeVBj88c(>P~9OB&W4FX@9^p zY<8fNmVRc^BKC`pex}&3+ez;lbMC-LolIHLok`v$-{E^nA1arSFK8dh{;_6`sa)RT zWa{=NA#P?c+avwH@u#pKxCb~-RA!lUOV-O*LEmnd!o5SD!G9AB>gF>@(#kq^qIzPtPl~WQqs1 zI4KM^jSk(l9zbC4!1wY zLED?A^gZe+DnIVdO!{lLlR|3RFY0nKbq~q|#k0-4d7K9(K5Nn!$v3=rmFaz=*~zNS zx-(-R>2@;dT~ofJ+hsVPGD<%n9Z0@5iyK;;jQF)FpVQ*R4GET#|0rF?wrIQ8l=o(T z$oru-`XH3IXE|!*nY4GA^ltJMy|!byxW4kkB&g^#5&}e#})!}LGsaNVX4A$s3q|LA$tlqZu9$nITEXmsgMIDagd-<@grgml5pG`(B4I4M7E zX1&Atqx>)PLf-?O%zmLIQ!3JKQ2!bI7uG!1ojG;uN1gO;YwDNNUQl_B{6_K^<&K!2 z=hF6M`c1}NO1WdrVW#vf`GD-VHPWHX|dNyEBz(9212LOz*+u z5lW;%l7S}uhQ1wB2U71bfPO$GE;9=&El!HZ1uc{Zdafa#v3$GkOxw@s2hjH-)AQSI zC-a6FHBf{L+GxkJ@IBM8g7t7S$S2I1-;!CduEohAv}IZQCD%Q4 zq^9lY7ANio(uMY&x-*44X-8Q3ikW|Vx0A)2nB;w~->9cQlUlDSzCk{s=Sfq1n0cg+ zn1udL$`#{ZARpvG<5ttJW6ZbcPZ8U7b#AwlDVLh%N6-$@OWTkh>YCIJrr$=}bhF~p z7AHL?o8(@O55GrOrqo4#!#`~*A5h-11;<7Q`7VXWyE4Ur)C<{w^Fka4R%qK&&v{DE z4C7DXSV*=t{`d6jXuFT=8YXd$(mu>2eQ95)JWm>s{)Fw=<8NqR7(Y0m(ZCN_V8;Q>WD}N`S z(Kd?mMe9+f_+#2IR*f|N3i4h4NPeTZ7iEUh;lWLWX#JO|qYssNl(m!}?8>-KuHSMw zZ5O3iO#AcX2jaM~jk+i9$Y2cHAU%#eMEPD*d7W}a`SIX6Lah5ucV_%5${DMkGCd2Z z+gN>NOJ*Y1XKA2}<=l60D%ocoqe+AE4(HA?$I)NPx>HO-x+H#nl>q^|+7KpOY$jgW?WFQ6 zlm3T%Lj3-3ava;DIM?`($ZL$)mHnfvl7( z?^FIruizd5$*CL{?lO~X!#uKQka`aJi1GW-ha>wgP{OjyXjifa$3y9SQyfFRgFnZN zC*P$^8B4?Srv0rhCyReed&cT_Oz~stH6|`KlP0t{X{&PHNN%GaMr{J;he11Yy_X*c z!wKPU=lICecNpnI^1EO-A^f|X7fN-E_pq*HMw~&uqtsy9-=qE`_JgHM*dONYPW!$(-`~XV`zH5LXAr*^ zRQnm_fR1yiXDGdHDod#6a6?ERhS64~;{((8r4}d0%`%k@Tbv{lIZyZljC-B5qE^pw zP+V!s&(n{fcD1Pxim#elH_PP*L9yA@(6$|Q32RO;W5%>NncCm9Eh7%n{f&Q%JVE`V z%x^YhkEh6Aq|X|6IrH$h zn%WNJ8~h36D`wq9{lfCK=8#*uouso#C-$M;%7j-;^*XM{Shb_6ox%R#IWK8@%J@#^ z;eNvLQ9hb<3g;??vMDlFkyV>>y+H5BoIle2Ozk}OFFP?V!lb>;tUiqIQCQNPsqf%A zj+!_6O@S0oW&d#0ElK}r3VrC$(Lk9?@h#%PO%M9gC!+Oo$`kF>At{q5k~~0rl4Yhw zI;65W^&Y(|nlthIlb=&&Xur|;Q^zF-Q!CU4<6cX4}?pD3M1y+++; z+;^atdm`x}jwDx7SJB$ebxGbZBev;wvTmp;kk{g7at=tYVq28HF})vXqMpIO7CcIbWLOZ|soRPZLu3!DQA99!aZyZC#awpH|haMaz*`}89yQSW4GVq$yf znN2%~|8+H!f8JeMl706le%~g(N5Sb@EeDaenD>lnx{v1wh@Z>Oxs&^6_#V?Xnd>Cn zQ1Tl77aUUNoP=A?rI^GK2F* z@&59!a*Gr}ZWQ?HSB5+AK~)GM?#T2=Yi@Uv=DIY~WlP^tWYx+O*+)sZ4zm)PoWg+7blt%{iKV{6?oAknQ z9n5^fu~EN9>Zq9UUMSa55(Pmy9=|obY{iDcr zQ4-2lYWAy^h@yfa~>%6;XE<^1n!?P`8kt3 zMINJcph@nna=%Qyew%Va=?3ElQGZd}zB%JQpe~^OE7}`YjbMBx+Zy*Sd4foA2FtY(~yJLn(Jmc+yN?+Rew>l=;Whd${-67pCq>`+$3bdH9)} z1Ki(CS=S_8n;tfWmDEd|d$Do%upRu3Y$wVCw4cv;q4>B-zvev9S|-it9Y$M6fwnJ` zb~e4wvkv}a_JjDjQ~aDcxsdvV){EJXJZ)-cP_I$mocu-Xf7+iT9fS;;fTZQjK9d77MmiSvVUZ>xGmz3J)}A^6!)F+RSr^W>*?O`^KchOzXO4C;Batw63FE zFl#&R_k=!6>M!AX1$R361rS6+(% z2HFpjSD8n;O>@S*N!m~$KO`Av(zP5L#j~lWXuHJ}PhcKyIr#>Eu!-N#^IJ2I?7M&U zj5|K#cqq^8%D6vp9w={ZYP$9!UZ;waDOdPggWnM%S-^hKzCGoOk*QgE51%WbHje#Z zd4cg0dREc@A%0IeUe9_L(~b~7N7&~!?yE8RX|w7Nlrsu*DPLsYJ?!8*^i#?fljy%? zK6OCq_cn1nQGB2D%NwS|wOKr41j)a*_$K9y^i<7RQ( zUy2{VG8C>d@pE{$3HgiUzNU=sDW!0SNqZ?*B=qT-n<;M;`f|>weL)|Al=?0HmnM0L z`0&>ow+VRzKaP3nPkPW!-y^N0OX?RIuf7ZMdR?Y1N>VZD(c}Ya{V7YdcbncP=nqk# z%rXN>CyJjnXR_}Ij_q{CC&_P=dyGGiw4v`jo`+%OQ)UfiCT*S6XJlh!jgxm|8em zdp@d+n}s?d^-q`rc_qaknE3mz^fw$A?t3QtZD&3E+R?Z_vK*^6qF$q(v9-j{DU0`! zUbs;~fe`6b<4$2-xCfWozLXJ4*PG&U(u4A9(^lntQBPVWrJt7e7fop|?o}}CAv5W5 zu5U=TG=(|TMR@ucDgKK6qpojvrtoL-0kt1dPceHM<1qBxZQ49#ixHfw)UF^N{8eVv zuH*xHt}*Rbw>W8I+#|_()JL>a#*#ALkob9e+pENb--SAlNr1V|FMwxp0NvZ8jyGQG1^bv^92bPcLd@y~6Sw4n&v~FhF z`cQUg{gx>)=9WWlGb0FP-B{yK;v8iL`71YZzG!`ee8H?OTQa3Xn|c0+m&k7{Z>Egl z7@JAbO}@ZSHSu$c_#Cx;B>flG?PFT|cRPvCqiU3)=$$H=OUMs+UHee)jecXEd7U() zeG}>{THhkQNIFgNDasG)9OsFS9Zeh0-=$1F5I4zqJ|~fM8s&^yLVDniGx0vGy+VCO z?RDb^b1#H-vrON)lrw5WP5jAxSIc zh$7c%sa;}9KO-N|cA2St%yJCcmGeaFVB@H}(teGpO(GurHYWQm!Y$Ob;nXuE9UK$w zvnd<+k4@|0oEQ31zEV8RB=qm%PcZE@wnKq)miRrX_#7a<@1vHI4wUXSu9Wm%Xg-KK#_cq?A=wvsb|MhuVqB= zFY-Z#unwN_sW{3{R?*gFaibYSotN|*$_&MSn>F9&`5UHE|7FdNrspI2OQffo{P%v2 zzEAWU5ajRCJgYhTyt4c`?G*9*P4no>rMQIiLFref)=oa4hrE^a9#i}y@esdlD({(j^jk8EYnha9rvAe5S(*54=s)1z;yh#p&*kN9@>KrG zI+S1Je2`KmGHJBw7)AetbsL-BRn!9{j6tPiU$gEA)??K!#w~2-`M=JUz6)+G$Cme* zMr~*E1#x-&+`N^xEGd1t6#rr>f8~5p{@VCD`Zu&Q2A9&d!8U|g!v;2nI`{!?=7Sqez|FXh4zf{!N%W8-b+38 z75V)k&vcxg?Nm&>ze*-iuBgp0ZePj}$u+cp_^NT+vs`vH$+N6S{=5Fq$X}!d@*e&# zO__KfS>ZgS^o;Re5(lfe7K#6id9?Nz{|NIatu#DH=C=oU-1J^bz93<&ApUsLi8A9J z@hg~zd(I?7IVboFOocL*4$4yM`x*7Q;+`{=KNC+rH#M$J;y+4@{NN5W#cy%0$lr(jTjI#YCVNN!>*VDD)`M0UDZz(pJ@;;OoYMiT- z4=|eoq?3kuLcgX@ozcnn`ZuT#=813X~7hvB6YA)P7=$ z+HJCTD}KZJ_qaC74IC52KAZ=#-#qDePf4fQk7=20Qqm~d zZ=x5n?C#)MLZtM=;udmzIgI5Jeg~V?Rn=G0B<|Ya0z&z@iQl70Ij0QIL{pRpQ;sO@ zWIS~|b3gk-dX*{DH%LOiBmM@~BY)5A$DQ_m;zO$ZE(YsKt1M$$`jKY&71M~%1rz#s zsr`!bhd)jLVhCe zk8WcflDAE92<;j1y&T!Q563pLH;}GA*2g_68R?u z6Tfee|385m@!&TmFOaCMBdwBWD4*Pwaobe0|Cf>dCjTg&Gn03cUPe6RzoR~z{h>si zl=z;4;^v$m+{VO}TY}dKWui${)@n2F1vfWl?=nap<@}J&FrKz7v7c~fRh^X2BE5*^ zRQxgR9_dxpOng6RiMk;9dnD91XrHf8ALK_S{{FOlHv5Gi&2q%+MoOKR{CC=)vkvin zAMx`5w-M(fo#c#jOnN2xArBe%F>#RI zQq6e!5sCK=`FnBZupc?LYKm+p3p-c zd29#wtVviWZg-B2Oh-KFR-Yz(d5B(ZoY>2;~Z=Yck^Z1haQvFDG7& zc8Bt4$_=i*nn~WT^7{v-i@}+MGN&_BY+=7hXOn*@*Rws+cbJF&i^)Id*pxa5w~~Fp zuQKjl=H+dZJVF|gUuU);f8ge_UT)|35`X8r1Iv)~upRsr!EXrRZsZ&h$1TYU;vxUN z_k5<2%rxn{q#p@oA?f+dOSg%~ao^*(NVx_{@*lQA{QpICtMxdA)$=LEz`9Lb?gIvY}JrHjR)PQ>=VgH>;wKq;vgMK*&x0T z$A7^(#4*@`ankGQ{^RChAMn2dpLyavSUAT9drWaS`(?t25M_q|4;* zZ?0cTJ;R(P6Fzs!->=ffc}pMG!ygg6L5S=fC6_SHxSVrC{QY_UzWVW`4Ye(sGwx^X zOH}8Pzn}1N=4B1>Wgz>Kr&%WFcA7XI4(&WIzaF-cc~!G5+e&;d!g%%}e_%agKjbua zlIrzlm`#kPdjRjlzdPne-m^iFjWW^Vv7CovaHsXv*GO<%uit zeIov^%*!~|!wq2H@;1{*rcrK)?=j2&U&ScWBL}fBB=lht{~ttgTlyu$@5`jmQ%*9? z_&YeB^fk%OY>)I3)}y>hb0%3x8st)wvd@es9^879s;we_kLj&U%LEhO)0#ZRevrL0 z@wL*@jaCJdv%Xuz5LrG_i{{R@A6zg|9Tbki1)j( zKF0nfeTMxaK9|V<|ILn7K7U1gZ%DWg%K!h#D%!sEB@Xh>Id5PZ@xIdS!8G#c9h8gu z&BRfL@C%5K_`QDjcc$f+!5f6K5p5HG8S#<6V&ea&Nv~%f`THr4U|L?J&PfB);;82m z%0K?jKfmvb?*WPTk)a<;E+QWh?<-52GJZw;9e?s?*26u=vE-)4Oxi{M!u=q)k5IM> zHX@XeuB4m&$W6gKLh;6ZkGSGFhFrmMWOJtFP}aeJ-?&|vm(|3P*suSGxUw|ZhBz{n zdD($!4hfQfcgM`Im_iD zgaRhOO2R|i5{N7GJ-rI#`GAaoD zirbEPDbhDdDd6n0KVPMOU^2&(wWL*U?ldK)<$dOn{g0}x6`y(O7tAG;4Ok}|n(SSy zlbNou4(UgfBeHk%j$zrxCVx&htLnVWF!}X#7HN?97w^yYjyw3i#7F)ttSHd8tlFa)4RPIytD*BupcY2lCH#LjRk+J4$&pk$CbCrV-nRpGJPkEy3P| z$nR&iAU^!jEJyylTGLuK$YlR(@H685nt3GDCCT0q^%nbhESOF?z_$_)@jV*;kIW;# z4s5|RiW_iUlLk||m-}qQ-{reS#6vQJHifi~agV&iG~#o!^bzLae;Bk9iux?|U55o* zvOgI}dSzRtk=|#LJ2)2N_1iCHd*uCXFXtx>jpl1Yy7p&0?NZv= zhlKX#)-B~-+Zf9JBt9?fW?B}oP9E(v4TKWz|I*7yKlE9P3Zs9dx-}> z*yR6Ttc`uk`bN{kw&IMZtxGn>JCHD@`)sD=4&upt_8~EUdzhAM8#A7~mN*`a{adWp zeqa;hy{7+tZ(?b*^-ELOUL5msDbw<0a2cUgSSRs)ZzGtNnD674+IzM(B@MD)r#YQa zdRZ^AJ;v{UoIsk8-&eITFCiWI_|KCDNomjWDbvy~SW8-DI>(UnI!!FkZ?R7~m-xc7 zo6I`4k$%LNmxEUcCH9X)Nuyj)&BXWd<=5@S>_g&pC$`f?OKE4gk$uTgCU3W)-}jDv zBR)q-8B2=WE9l#p-Ou|=iHG=HE`J`vGf@wX(Ix)A)_u%&Nd7{5K^zCW$;1&|i{v8G zCGq@goQou+9ext$jd=a{=P{4`{kth`PgZk0nay?*%H7{Ze5CV@JDzQ2FXJ0HFJ$i^ zJ&*0T2!^v>2AKGM@%%lulSrd1=rk$Qi2tW6KOc>;Wkm2L@#Ul7uY~Z7Wix*uL~@mh z{eS-dZHk{mR~GAoGV$;%VfV`D(5VYcOpueI1=hzI-UI^ z|Nm!0IU>L=l8GYuwLSI_H(w8a9@*; zQ#NLqJQ=Jcl-R$=>)-^I$${(>`E&mg=PG&^r_je`9wn65g9_y+j&qRVESJS>i~PL@ zvAsRSItlG6j%SmbDJSIbU%s0-a*pwApZPtZP){Yf*0@=0i~Ko7k+i^1A|A4LJ+EM2 zp`H70u^jn(l&7;!d~i~yy%)ERdAY*)P1p|EIp{n_22(knT-<5a5=sNho`=|KK| zP{+RHDz=fHppNb3E#~35u1WqL;@O>C53ztavXE&>X{!?Jd+aCUdBt>k;z|$O%5Lmi zo@SZE{S9TAjAj|~`^^!|ODKo5y~=w!iMOZm<4LdV+mwmd?Rfpq^L-h|mN<@6-pGCI zTLv_l*nhZ2@{9b~kbNVLd-MN0|2Er5EBlm65YKyn_KC9_jT>$GzkqpZ3;y0|-|;z> zc{z`Hd7f$M3N9yvsP9vYz##GL-QBjQn}f zSL{dT2D%rLLF`LneY=bGvU{+AeM-YpGmLE{K6jbgY0uYACzM#O*E5a$xzrbpymt@1 z>`PWMEf*NibzQP&6eX7ZIe4E?#&w#1FfD&K`E#fJ*&g~VKJyXjm3ro75!3K}s`h`$ zQ_>(Y{S8dZE5w!VMpImB*N-2vf4GB;XG|z=WHsYAWFGl=d=UGR{n(F$_M6??3?<%L z_A70ylf79cmohEa1p9T`xU!9X$+95Ur*XuS8-t^WFSi8S5z2cUOWN693XNtY>m;_< zNi3I6mdRwM5yv6^JLDhoex#Ls$vDyuPhTl{IjB#NE7=#~=YRQq?-D$CB7T z#OwI2#F29vO&o`R$-Jm8OKiunU4?p;x0iQ_1AjnMCV#%r&T=^<*u9gsiA$K5#{$nX zVf>Ksgz!H!@%}phf0P_2`)*EbU(3ilDY6e)#k7oXG^GPLj|1p?*dOxe#iz4g%A-w~ zPcLR13^yZqfjIDca(>9~Q?6sV+!ma}I{04)ClMn5Kj>RCEgutK)(77ZN|ANaLwe+C zmPr!CeleEUy)2hlZ+h8A=Ce#f{fwVq=KJg0$#VjHLL8YLY|pXfN#>D%pW~!XyKbyv zxlCYQbgv^TSSE45p8S?Ch=ct3<|oXt>krQpPRFpQpS{eE1&|5BYt%`V@Jd^~m0pzAx*C1S?oBJ2Nk9hzoxp z`$66>{)TzvpWh5%8|3}YK-MEZ|I4rEi`gIId#B_0I-NsY=Ak^z@-_C`vso^Eg4v{B?q^;e zH~I7DGf1~gVmbWo><{h&(jo7WCTXXxNbHaL5=TP$yW^Nf{#+=Q&m8uP_&xpnzAyH_ z9gWr>4=o2Kr9v{a##P7wq z%Q=R;KpZ6Wk&->jd6c*b(^6zwJ|V8q_e%Vpj~mCld_Wxd?O2EWIYnQ#LB9MP)``ZH z(07<6`wo1Sv`=DM3apn;1I8TLyBI^c={pgUeU>tX_S(rj@^St}Ov~m$D7XCc_u);9 z|NiT|L%jU|V!lSY^G(_-jAQjzU2e9moN^_`|Z&zlL5g<;>z{RONo6-k!gwfSJFDtvm<$qI1cki zF^}vS?A49``#J6u;>)*Lhy3#q*F=AVdX`IQ-}!yc=`2J1Ua!A|X&KX$$v-~`_06Bm za-rNrW75nkjrMt#W0~j~0Q~ofhrIuLjWo*pLA-A2S|#(?k6grhaSuWpVnJgrqWC7dD?}A$iC1st&>+AopKg9Pl<L#!8W1CA*pgC5c(ml03ajW$m+EuRrj zjtN=`;kPjP_aMeL+VlQ9*hWHs<|h*m@%^E?2h0?yBk)btjH_^5iPxVM#6!G))o1vb zCiX3H9P}*9<;vhhjwPjP#&5*_C5*rQeN4kW!#?C%wvz(KmU%3bi&-WwGc5Hn#QTZ#e2xPW zWB$r|_@9z4@Ia%DHCHl^ z{Jt%Wi(p;<`;fg&e%jo^RrKJid=0|9q!R-peeG zA#Lna=CEJsVp?XgKRKz<6bKQ^CI3A0G}3|iy~sTNa`HpMI43@r^JU^Ae~uOV#WBQ1 zJg@w7{Z@_(Px(sxeN_Hj@OaiEzwa2#ynNVc-)ju{lwbcsz0-H;GXsb#JFsuW?+JS9 zdnO+D0^&$4@AaftcB`7$E@rVz%AMvOwvi*4mjV_q~Sf?rrQYIACP_p=h~+|=Nq#-2&N-B}>&g_jAiog% z|_AyT~sT{$|QwaGq#;*rd}a7ZfNLsoZEvmy(}oW0@oiP0w8R zhw>B?%Pl@vE^+RXuHu~Gd1fOuem^5+ej_aDPfT%KGrwPF->Mt%pAcXA1WT)YAC%vp z?A?{o|1`{8OMWB2-}wvq22Weh>`W*>4Hgh0zUQU<2lj{3HYVPem-sD|xM$5Q-f1N1 zp{8Mb-gAuB7x-O05^waZS4uZGXQmc;Un&;!?mVeG#PssMB}pIW{878wl*qP~s$Ua-@812%>C}*h!9}}W@2QqWlT#Q8|eB!lCEKrr~GgKiYZEl+-@%%Eb3V^mI`_v1%{gvx0f2n?bw-O-j5^ zOL{BKncD8;1M<(6`*H3l(I-gnC8qrX-s^$d&c^LTJftsjzDWLu^FaG`M*kyFvTNN= z`27RgmPc|A$3%SpemaYEApU-* zd@T8g9{L2y>*;N5kF;w1bmrk6Vp~~GnZs|ua`X%%-?8vAGx0{=+mDf#n3Q)YN&B;$ zH{$oQC-HtFnRAhua9xX&bfy{K#QUI8SVldEQ{6;D|155SNx8O4v5|a1nQMR~BTW1} zx<1Y#wC!hR_d_w%aXZ$^DeE&)h@5&SXZzU;wNP6Jr1pJQE$(qJYx{`c`+o~&5 z+mPeJ)dl(uBgzMw^l;LH@+cGED^%W|c~od0;^&x>>*D_iFg=cT26r{>59t%^2enz$ zc{JT^$~W;YDy*7fmT$m&`H(%!d5vw?HfJhlwKy4clbJuC_qD>cnfU)>)3ckMAI?kWu@96QXb&haGJa#;jfC=R z%%lB&ll`xi^CD9!Ceq%4OziGXd{vN$urv5(OQ-t{5 zzrtNzPKwu>l(^z%nD}0R(m?VbMcRs_T(2ej&G=6^m#;YoBv(_0(7TRg{BL-#8;0Ft zdMFQRINKz3ymwKaC+%oYS~81nXmPUgF*EoH-gk`>%Vc?r$=?TDB5zUJk949&Tb6W( zfU!)9B6U|v$C}#kW+(2&CbMoS<8*}Qg7No}zAxp5{BzRZ5+9{z_Jd@BiT`gVVSf_8 zZ;~t`U*ONAzROLfay#t>E~u|iK5z?7LODoztVs@L9-e+r+*YJXHs@F}lyX3x-U+Nj z(rx?@wnJeQ??*&JxyV?qB{Kdj*SwXqT!zEj z^x=|y_HY#c_kwGi#P=Z=cn6x)$O~~hl6L4f;8Gi4{A-je;^)Kq?SvG+!@lG=laN2+ zxaZ6~)R=w8HaU|0q3s5fOlKZ({NS%=|H3`5ly;>4$T6lyeI+b{E z>f2EJuF<=qB)|Wr&+tg!rXC{xF3@pLBJp=C@&0WLSK z6Ysy{=PtFq$#3*LYHIW)vTk$Zza(97Z<&-dN%7~#4=3#?(g#R14D4?mCdlShr)nS6l1&?INFJ=~wG z=6be6c_8_Y`Ug$>j`Yij{};2Ycbme0)tpHwD{+&8a6OFwmwZIuZpL-g-Cct35+WID zYF|-~=)J@EdeSG`l7GnGOZjfI>xFwNm_>-vF(!V#KZ$o7%apmM?JC}VjdedUb(?kb z|H(LZAI=}~|GBhH;l0Et($7iVwPrTsXX#+9EUoR-Pb3}GXXtT(@mQ1oqv|C4 zF2Q;}XMcn?1b>D}E@pcaDHEwpG6k*&8S}I>`&*O`Hf}6^ zFXI29p1MhkljLgB4BuGIwEvm*j!MF~3GGwNKGXTX*Oy4MtE(YIk0bwf(;Q8sX+$U}_a zozW8Cf8RmBCUdSZtA5Y84ZZuBp6i;OING?R`;d<)|J1ni*f-*Rir<1dhxq=#c-@T8 zFa2N1HzY3`J!6q{kcq!H>!of;`>Uq)6Y2{_Y(e_bzPo87owAr^Qahh~L{et|D6FRZ z5#Re;M_I`Fi_9EC88g|$|3gut9%VKqztR4VDeg(V#-uT(cNF=A9?~X-D~;cT^TewC zDF=*MU^)n;c&=&KgK-=j{gagYHfKD2om9Bblr^*^nSPCFr@xc>JxuK!&KvFs%1I7p ze~9n%FT6rNpz@}153ycOGqs_#8>9n_>&J3=ihaRvYU1}XlV6d?C_f#%Pl#Af4fJiY zW>+(*j{HLU$7XX2bqVDsx-vETed#&Fte{M!<3f|3((Pp34yKL%SCZwlAN0_Eq>ZwX zp5x7!6I-0jW0}Nq^xUgS@-X|ra*iW&9x|0XXwRs%nRPpIToivxKZDvMbGn zJfPpWXZVa#pHrqEvwxI+OTC4!m=fhA$>XN||p3OJ`v#aKi=eSSByvNOP^ZCEJ_7Z!u1gT-KR zer_^YI#`U^nQ(G4Kv_H#o`0sfXma`t=JyDr_M|L6cL+wvykaUpJ(Wa$LzMR zx|MMqCO9YQJ;k(NMma^e#8gQSN&iURAUVkR{h-3t!~s*^GL=8jrl7PvV-^fhKBaea z7d9n6XxY>B97cMemwF_1`V1M^#!THnS%yEC zJ9R7ZL(jI|xsDF<3zd^i^(5Ll^vySgpK)Hu-fc>wq!$A9NmjjN&daD*C|_=R468;xzH55u^QCWBQ)(rjP~FNDe!zL7NS%@NeI}Wv+#rAEV4!p6 z|8CRMC>KbcFb&GG)Mt|)sP1m+jKih2t!aOLEJ%&AEP6&DcUc$z&raExGJ{+L$Z&^A zySw@SfbN;!U#_lYoPqGR=x+9f)yw$3LcB>GlA#yOx?4#%tUt!24-o|c zqa7CiUZYIEAjzm{X;8nh;Xc!QCiMx;jT|4@A7~rU!FWZU9x<=|lJ*Zz|JF3BR z6c(AOK);RJN6B0G|4StABVXifQ>an~kv(bx`6N@B@!tzKWeg+ zaTvUx467)E=wSacbdQ<+Mt6`?|6rC)GCs$W8_d*y(@rBjbu3ryroJG##_aVF`GwBa zCS|#JJLAuZgvY!1-r@g!A2|6r@(I0PHA9~zK4_)CmUL57{3`7p{QsAWpCY~G7URE9 zS)&X|;oGM6B=cyePnB@7nYxPnL-ShWhI~Sk{z7^WFlFxNNXoT<>~#(I^N`Xn$z8uO zRoXr|@h;Okk90%wol&y~`GX4eMqazev_H&v0v$J)$%W%Q_DkLSIO&OuwqAzzBtJ0F zXXaee9c1b&rkA!>N^^`qr{M3s_1~umv}w}#A5-0ovVkzoa@3zT=>X@9W=FISA!fd3 z*@Eqn+`#!^=DFf089&P7^jE0uOg)i{jbA@xFLPeDBeUtRWX_0bp4=TIdpq$!>6h#W)3m9w z>`t?svLPvLpJZP&wHGN*NQ;yYG-)Gb`czZ8jQqfxSDMMQsb@&ZODWgr7vS$NYkz?H z0q5D{n4!7ntmCr!PM^L_(&NGir!@=$-Ty(x5@v<=Rod1{+fCK|2tV^AcM4fGM_e3W?yb|`&N5%I^+p-?b%_wt7&o{M)sb}!t z%PQVOeM0?G6FNB_rnjMdea5meQzEaV{|lzRax6&u&0V=3jw!XTnx!i!57-#B ze4h3nK3;ErnskAG57N;>`-PCm%e z=*Nrf9Xd-0k$!~w2>;$+@6^qmL>WT$Zj*eUeWFU=BIQ-4L4JupH#)I9^#?uonZ~oE zCtB_>lc!S8P^JvZ%=?HA>*l?zj5TTRr0sX6|M%TNp8mG!`7G&+Y-j2hrZ=U0VAh3Z zVim{7TThw^+CUjT!!$3Te?ajO${Plbq@1AdlITW43}0))8N>_gw=jWwOwxWed5$9I zAd{`8e<#WX`Zh7y52=4B-)ORbQm-)cefC0gfl1ju!A)*^6yZ zo<}~Qc&n*TP=8SRp()dENrQZp^lQeymv1?fd_gfYE#GDyhg@UUFB<338S;uTl7!{t zHQuDnk?_2!{Fdu)%>SwByp!u>v}|S4(imfA`m1j83qw~MzmK)?vGE|UtuV!R5Fhw^ zYo@oQ9YpwqS#?o&km*ZJ>1^s0dUrF$rKAV^ce@+wY1h!tK4pmf5^opl&rpw1yToLF zAfMp>A5-3*bVSA&TvEPs&hg!X{wFQ}UrPNy<>k@sEJOBF_R<4@kUd9j`{>{ zj^(Caq)kMqM>`Ut`jfHT((A^9?DCXpqpVBiY}2tl?Fan%&1!-19%kQRGTK1d_$xE? zRCkc{OcRdac*q!gNyq8z4{zOUk_Q;iU{1}n(e{dulat#xKa>t4KhScP+3O<4qga2g z$!H^`oi;_%yGc*@^C#I~I6m5`TT=Kb{SzvWoAzs1hip6JMqC z^JvW;&Ig4T%>?a^OwKhuJJWBV{u9y}$u`6fwg04_MY_hc&<05#`6SH`8GpVZ8>0-! zwUh%iUN+5UcaY&1%+Tf3D^$MOm8+3Qk{nO{!Rl*GcJFwQ`FEP>bI2#8PjYUkl}IN{ z(XL5vuW9sgT=bo0hTqF^;ooccIKMcDbVrqaN%`ld@-+1bwQm@I{;qfs+aqj6`z5Dz znx%wt9qk*6d$S$FKvX3}QGKFZZ^GFum-zoxX-fH#znC7%o>UGo^?k@ARGuQ;(7cX( z#`I;R3;M>*F4QGSNJsJCtu23%^Milivf=jbAg_JT>_r|)-?vTnMe-HO z^nW-%)Gw$0qxmlK1zw+uj4Pz|Xp_t*pU|MqljdnAyN@(Q`A*6iiVqrp4!BACFSW0k z^i1L@I~adHUjK`g+lBmqKUY(^fwF{ji7Astl6;f=ME(xz4(i~%u3Yl1E`AH7D`e!2 zbdZ)(q|cZ1*Il{nhmc!L>G^nFeJkL~VQ>1je@#nho-|Bpmw7w|fyZQua z3;BWa`=cI0G`BL@733$vkI5T3o^(U`lrHlEAv#*f9}LYg^{q))WIrGe;m@Z{baUN; zBZkZ&k1!rbVY#VyjWa|fuPA>~yN-H+=?lpREPdAWQHNykdDD44^$G)o%RNon zA}nT~ND|}!FO+_UbVvKwP2mdK45a6q3VAB(d!#yKyge%2ME)Y|>d2d2`QG?Z>I3|F zsKO}Y2KfIGREV$C{>b?ud&u~8K>9q#$7_^dDQBi{nEnZOU258QCy$W5K>0v*C(;8Q zx0uz8ALQssbJiN}@1XZwQ|#>uxgSw((e`o1a~PnFmA7s&P0EE7k2Dp=UXoJhCHpb) zNBcYJd!%T>+;094mNDOK)A%jz9ZEySpVRW+8EtM(S&=P`kL$`ysSgN@aU{9RRBj_4 zDAvr>wPQi*v~e072mIhOWyoEvH@jlXB8 z=WUcCe%6yeYp-{E_WJI-%{8qz4Ac3mK-Zlh&8a(mSYMXmE`q`MWUN z7lzht*&nK>o8(IRL!3(9NaZu8@i*Edq@Sn!qk3gmu6>&GK+6tXH=%WV)3P1&sBL9R ze+7E~W0Hd^qt$^9Gari1UDd zPhFw@OY{4zNA*IJro<18`#BB@{q#R5K5m8|8V|CXenVPzF#bEWeT+$@e1j=GO+LWy zmp2}z{z%1?uO^Wh%{PynwcoOzT&v zPdM))lhEEt3)_f)uU&f&=ZnfCrZh%-hVZDVJjrtS^I=0KAfgYX0D zkfhWrH0P7fs67?^FCiLXJU8`c>KC%_o7$bMNBR|0>tP-<ySgd7S3MloNy} zOp$5v`*;2va_>I0x0t5i63@rxDSRHag7NokB2!y2>kUivBY^_oE4mh5p^zG@~}E-gJq|AQujThK3| z$$q8rC9@&rxaj|c86-_4JBwq=cR7C)IB#jE&5)Ejl=~?m`nc|p`uofjc_sdT4E}#k z+2))B{Jo@EnPZ@3Q_2k{4>0w2j|b`B!<43J=itv@r;Em@j-<^eDEG*|Pdrh%j&w(1 z+*BVVKTx~P6oy!i#u}5}Nc<7Dj3ya>z~3vIoG*q>GaX+T55mPwZn#9hgg)w$)IL6z z3u|Ztkba%>!PI}5`VEv*l%F)kZ5T75aImSroBTq?7)Db12g#lyJ(2!=G*=&^y+F@9 zY3EU0WD0~bG0&7D=*hPIpav1d*8;7D{Li8**l^y6q;s0MZ#WjlDb+hST+a09myT-@q(_bb3 zkex@|F}03%7R?i=Pw4%!8KjSr;WJHnf5v;r?xdU}EMv@!Yzg~8`|YMurQD)^w+Vmc z9OXT9NC@(|OQ`qFrA z^a-9r$7`!ijr7aa#zGBKmyqV@Ez=L6@UUtB9@l8tNc$%f_nFCqX$Rr&J*Y3BJweC$ zra&Ia7$d@)HLiN_~vrR-peYbx>gF!}pvl6Nyskc&-qg8GEYIumZ?m`D~y ziwRMptV!`I)7*yhLwYiKgRnp8fb4bJRwRRCxsD3yheMt+OUG#s(MKOI{{2dAHRS{K zPtd-g_W?8T8tH`5S50~kZ4L(aG(J8kevopDA;u9>Bi|%^#-xim7CL4bz2iY@yKr38 z$uBA2YZBTJsXt@-irpc15+SCKGefh;KZL_bH>B5*9+pizI^0Ze zIUXeWJn4n>jLuw>x+MNyoDzMG)Lt~rZ?hf=eMjyZ>LJQ4d`2!Zr2#&NX2JM-4AV_H z7LpC*6>3M278s@vmD)X~@+|Eidaf~*aoP*C-$c2_)G@S&Xj^IKJj?SeDAOLw#z#!w z(WD#v_YryyW`FSi!&-kf{U!R3FjI`ZB>ge*M7EU)ZKN}%7)MF+fT_`jNb_r^@N@cY zG!{^o;PtC-SK@)%DQu7AR?Z*I%2+P^kUT@Bjq^tTF{UG-+@R88LdtfM(f_0TF47y# z#3Uv5jRs{XS0}{G_3TFS8UB0F> z4k>vh{{3M^afbh1Z}!`+AVX(UZgI#rO?fT(h5D0b^h)X*e4LuCCH+x5jdFofpP42P zr9m0b{bejP;NKU87SadB_t9?1X(l_Ec%ZqLsjQ&=!N9iEcRAYh9zi>R=8xG9>Aj>I zn%j-#%Cz;;zWI2r{}A#^=(l8QPm}$E_+#e(?62hd4Ek*}Nk3%D#7CO0 zPk4V$`Vzy5g@4+K(CzAj0dR-pn{L!FX ziN9x{bOYrKE$y_8&^;&_e8H?AB>&*oBiShX$K;nN%Q)g;Gv`J6H?%xwhQHArr2WIj z-}hLZOTB}C@7uoPc#y_0@j`jEnR%Y*r}Q~UUo_>rSdXw=*vv;2egl{qt)@i$#eYA+`}yQOw3TSv z*%T*<8#8xZf`1^(%+&sM!Cn#_Y^x4AGH6}bR5|o#Q)#2oxGF6>4txp=e`2< z?tbbWrk)&1CG>A+RJNtCE%8NX)l?@ae>mc9 zQ`$g1h2I}P@yhNX^S@ksA2apx0cj%zqlyWq%72_wAmeFQn z=J#CwOnZs!0nSI3M_gm;{e#~A)JQXFInY#TFLLWhH%u<3zs81pOl=k0WB3CmTu-}$ z=7-4>EWOh-hnYv~gJ#(Z?iZulXQpP+?!$jyvHmP&0Y#1}r8OpbjC@4lcV=iW%0Jo? zGr<^8lAo|0@^_vme7|{PSFXG}X@xf0cA0;pIhC>|y@wfpP9SW@`5-%vvVbc6tzp`W@`E&RaJ8=GJImV>Dlp##K+cYNV2ax>TOkO~KV#BRw;8VmO#cfG<^v~_iHLoH6 zFnh!djdlk)mHd@~3ru}~>H*RZ5kFK0ssE^LK{-K@x+t~(W*ItYC#1N@)J|p{>Yp(F zJ*l37$)AJyIs3)>kJ0~O!`DsecFH`eRa5#P^JpKX-9@@J{SKPPFfKyzyC!TyeaFxo zleANI&^X$(97#H&L7GbKV&aW-Gxi7nzA&Neil6_)LES;>MKif2?FAC@RI>X_@e5r+ z{QdjoOKC4KO}iu=q=l5qWNz^zPkVvd zYE$?L?LJO?&J?JVQldOc?Rm-^{Pz|8y?pJovC@btKjYY_&KuA9|HT&0qF$iw43lh0 z`of>TsUJZ4VDbX9;VSYIPcJi*N3k638^}l0-fR5#*Fx(U&jOLBUo}$?&|jkY8{_YJ z=~+U5jRE2!Z3mdCtJoe{Mjc1{iyQ|N?;!s$ypLJWHICH(%6%ae=+CA3g7N=T@%sz@ zyIa}E*f+xFlrz*5lYWFWK;L1exGm)$wNFsKkbcxuk03p9-byq7!to&O%SnGUx1wHR z@@BK{x$Yn><7UOx{NEAQf4~fG(j6pxggiycwW?(AC7uYhang9uB(3BZhCgOn`{`FP zajxmxhxj91%6>2uXcsVWf=SPzEx`KIjkj}y#95Mz`XJYu^0u^#NK)!M{Ck}Kt!Pg% z^j_0;8u^F8vyHzOrTjeg2mb#MwQkA_{63n0Z&;b2Z9=tan*Ssp(Mz19ZF5ulEuTfG znKV%EQ5zzkF#Imk1;r1W@Imq!r2|b$TPL*&+oSv?Q$3b^g+GTlbqV7TgsX`=s;#tR z7{1%|Hi#G2j+hDRhm_xAN`E7sXkKP!-ebOmYi0QVfutGb3KhnUGVldcp-f5kNmD1z z;{VUqc%zH!D$2{A_4Cn~+YJ zUS!&PDch)=U^4PM_jk%C(o3RWu^;$*D%0(W8$5r@+mbG5IoR|a*&U>`$n+LSPt>oW zK108WAk`;GdkpMOx?p{$sS!UZ(2vS=t10|sjP{eb9d4R8Q718Z+<2~XCFcRZPUdCD z`Fr`>mXJP3A2LTj#`AZWbEO$Pl==aGKC}2c&JBe}O>GJ33IE*ye-C+iv+*Dm+7|KW zY1>X257I}UBE{3_|Bx-{%B3%`FJ#kZVrR-1`pHwNQqH7(U(>Q9>52xQk(76ONV3mZ z&d1p)eXA76N9j4#RNqPY$HXjCZcr~!qfF#>BZU7BRFg52OmXcZL)+8Nphn7Vr2Z)5Q51_N{G7O9IHmq$ z_HtAHGy6l@AWhIaK)f({ze#SV%|q>MQzC71yAh&|IxpqdiNAc_@Um-u$At05QudG1 zuH(6I67fWlyp{%SkyI#?;@5vE_w6J(h_)5Y^UT!Cq$eumrPN7F87!KqKd>JD97#Bq z>j?QBbq{|3W#+xLlVkkv7vF>LNWDQ1=_!K+Q~xLFi1c;SSV2Dny|XQM8tH}_ZFBA? zgsA?|grAX@C{s?Qe{0GohBq^Qe=qIld=XA3pP>IG6Tffe-}4P0O#Y#V^c2s((uJfk zir1Mz+H|RX-3%Yb=McWdG0^`p;(^Akrky;N*{SI{s+)H}Q5Fs}#Se7{DXXlaF-AQ? z*xA&!r2M1uYg1lC+%QPHA_LSVDUq&H9iiPqZGYqMGxq0i(k{{!jVUwrZrX25(#A-~ zTvNW2bVYcK^OE`GwH#s6kCIRD|9>jHO#6pyXWD60_BR=Mp8E^yQ2voAtt4HM@+`81 zH#i3B%V>w;@8K!$K)S&Dm+2$AgLEjasBC4Lhf$7EK9T*SzTUL9Fit`Lw#M6`@OR1s z%D*((7Q_=hv_n$7mi$JO@+niN(=TIyeo_2;m|^ONv@A1&*K~*6MTBViuqnTf^FWn( z3CEZkWj1#{Nx!STL1t2Ch082y+||E-eb}!;tww$ zVMpSF+S`qOlSjg790SeWx^nfKyLbmLY4KN+>_R(<9ikn$@3>zL;FX=g_gh_IPQ{IF4Ani1@gISMo4f_+m4$!>CRIa66Li;ghm@%eIztf~$lwq{)Ynrc8{-tF6eQV7L z@)OAd(iQE;mX4)g`S<1s;>RfXqpoJrlc2{+L@FCWX}>8`1`AxdvKo6 zSYDDtIX;@dHEnO}4&wi(m;5j5QRF&Dk{{C!Af3~dYZ6}xJCS#2evbVkeAf(aKOUq) zI!f~(*(f*_Q`>tI1 z3hEbXoP)G}h;o2_#s$)3nPiuka5(Kark)``(MmfYdPkr1?_jcF(iWvlj6a7{dWCr; zubbvkqzB3e5D)nCKaDMDlQ8vX$_3KZCiy6741fN&a8p;1(!(Y_o$V0x8=S~KN<5I( zOtzGHq%V@cXl~2#;n%tKLHaL*&zS5D$_GO4NG>C9rA(cd>~%BscjAeZHdHd=AmRJu zJF;Jx;$D;!`1eowZ~C4?JZ>f)nA(p19ewl%QrX8$Y|C{Cvh`!R(xap!%KvGK^TvWC z4^jS*9!ES-yPa~5%5m%mjlWVKkW%NQ*+(8@@GMhl>*jeA+O>Q5EPOxJZ&6-Qm`&M7 z_6Fx5A2ge}9SpKUne<$A!N)t9*V}kYcL|Z{vLA|L}Rt{0=wIegr-LLBE^-PTRGt zN8uLIQP!Du(okwYHuVwGOBkcc)H0K8K{hOmi@w? z+wJe7K7$uw=9=qCXVkxAQpQX<)hRUJXZ$&+R?3QazWH@j@deTYg&R%y1?`HQzyBdFAlK(D`|9)O=cg_#~f5_Q>q!ZG=a~^2_Z`xF> zXRI&HA921YmrdY%DoObcMwpt7`Mqq1Z~*6lGI5mfCo{Ao_Y2|Usmc&_6Z)Ue z+y~gNoMMvON4Y*HJ-RtBly@@8MU*qN-$i^;n=}dIX7TUml5g{Qxx)DG2B+7sf7#!J zQQAvnk5HzO>_)vnEivKGoR3u44l~zp>!^nazh*h=S8{IxD<3l*1;(lH=ivPR$P&^}7=z1tt`DVgKgUPkuD*=GC!j1 zrO56vfpnFmLb_vuvMp`IHNjk_6gfFmMXgj6(Jn4&5Z{q(%(RaP6(mzP$S>lPtFHLbd@k4e$ z>5KH;(cP2{ly+wfkNP`IqsiwGCd?GuNXU4e014NzQohfmJ5wf*JxY3_bP@fp{J{*- zXNx~4lC`icY70m!q*t3FX(!FIqmu}c9BslNae%*HwU06`$*)kwR2m!8ibA(k;g| zP+8YOoyPCmB{kv;e?LyTC;0)t9&9Wh<9AO<(=$x-FyfEmF{aEp$<(l^zd}4wxykr@ zC;WG%!YbMyDN}~vzi*W7PCg*K#5$B8BHkz_X6OUt8xFbO`2Q)-+$T7i{6l$v9@=VG*N3DcNpJ6*Bt2@n)2<1+eq4=VyUO_s8m*MBiObWy0?`U!?CMZt(5PTe2S{EgVm1JEeMuNe?A{2zBZK{JkmZQKLbU zcd>}O>7jQl(Z$^58iv}~7JiLVqkX?*a7pSiD8N z;LjU1w;}&gY&Xfld=}v_lkgq4_;o=06ZAc}i}p;8zTFi5n>HVH@P%K7X=x=r~5)Hh7sWtum!z5GXXBq74) z(PbPT=@A?UVT$xbx`O!04JJ&po$SswNS7J?mc96U1pK-0(8B)V59Rlml(tGrls5_Y8@~@$`#S9q0&QY$ z8OMiThlP(2cZv5^(nHxF!Y@b{l;?096loKrakELePc30nK8rN)Ip}|ABxT$#P1<_N zX#1qOJ@Y6Gn99A>aU@Tf@)KkHCMMhLZg_~6^y&=Bf0?lNBHrx}zb;N$j~eNoBVF`= z?CD{qR%9O8uP8T24=~|4&JhV?Y{{NB{`|+xIP49Mi{b^8T{(^W`)HhJvd1_#ly4`U zQ2V3NZ{A2ajN>4gFzHFe3pMU}OWy)BF^BOm>c65Kp!lds_hWm6EjdrwhG{hKH0|G@ zFGPAV=Y`}#(h<$?m@;WA$rdKeWgqbC$M690L&CX9%C@;n2@&pNJ+d81L-_xDWb>GZ z-{&fBMcTms?=@V?anOD-@k9APO;BAy_9pv8?Y(2UbXPu$K>L#WJlmnREop^Rd53Tb zc`uK!9g%o{woAhCq#gV{1uHk+R z;`?LL$2k{KoDn`{%3M22WtmCOVmeQZDm34782s`ndL!bclGv zzc2IW`kKU3{QatFf$dOynEjzLk84g0?PQ9tvK-ZwCLG6SZr>Dio%oXdXXgsxn3 z5ywH;gmgfYc0;C~G^ML(_Ygk7dSngC7DCndd+eL@`5cN1Om+v`$~|lkzn`6ck>jHH zb`us5KN(^Fa;&M*221i4lkG-cgO}u(Er}Cm`oD$DOE;fK_8pFk@aM??e`C9`kf2EZ zNx5o@?`Iw}_wDv0tx%lHas<^?_A0!u<>}2AI(4^j?_&JV)>UE~} zevXHPak`{0nLvD`cw=-uA@si$xr^8yp<~p%N+`5Bl3r$f9Fv~NJVIYoWqg2U8|jFl z-58f(`dCwZdMt>y=gp_P^54qx`xQ;v1_?VEzyI3UgnLF9Q z#gq%AyPMELoKb#-4bz4lOcW8`2EGOZiMR{#^pDUnm-cC7Nift-$rx(JH6>YSSKB<$ISQpDcd6L zHvavizn?5)KN1Ex9q)wlF}5{ zTd4ibOl9=Z@bOmRR<1`7K5LRcavt)MDQ?bj5T0Yda_*X3I*;^4@qFXYr=%;%6U>yi zD(Q@5WHgs<&FAEwY$w+l{kE^9FLs(HA;MWvnf*ZTLeJla{!8M4>`L-aXw#*{ma-Q^R7;Nhv7GvmyC7r`yg0`;-0Hk4&@A9P7BAPj_W|gcq2X z!1s`HCfiCo$B>`1PWspu$;~Fclh0%3Jze{-UQT9PNjaXJ#k6dQo+gyp(G%g+3|DxG9KvVTTT5n`sj{Rq=? zTl6L&QtG(OTt~-oRCt=W%VDEtk`T#nBg%Jzuv@fpgm+!x9Oltve3V;9h~fh#e0@!j z>{RNn(0@s2>C7d|*e}9dwnO$V)}wHX@&4PNqxF7IV+u(RG5k|K`GkJv->X%kyZ@WNQ=N&i;_@!e^w%gin(`vM1}2J{G+~D9cP(L7pJJb~G1W zBA!TYFn+xmh+i)DW9jv5j~dqilKp}6MK~i$XanWZMP@ajJRH46C>}r3FTdCI5TX3e z1j?%<-!U`ocpSfm!`EjDC9ps7 zb~d)>JWR%N#PMo4i)r!l-CV;sAIES!%(S~JnTNiMm2hZu5FwI_Ov>0G_aGqx@ykuH zPkD>{lBsA%mPzcV()pcyM~N$aKgK%DoY&JFTV{9W{C-Y)5b;HJsY#z; z9@)z#d9pJ|xY_u9BY!?TJ%;TuGtQmEdC9v*bIFCo2if%|)L0H5$7ENt95eO#5T=pt zAHACp;dS;YTQADZwD14f$#ZnXahXYPU>@NfldNL7)J?jY^>S^rB_VjJTP~e9%D4+( zHa>1lzrehdP5#}D;(foF8LynoJkq%)+{1olE#*sE9c7{w7jZsFH|;b#6Uw&HTtWnv z<+dh78cb;Ld5Pas&FpUz)*}=m#sK+P;G#7g4?m512&J^h{GCwV#pjUjWM;-i-K>*x z^ix8K?M~R2&&gVr$tuoKynlP1WthpoquD?FzHK;wY2o~Gm$SX39cKO-t_|Sr)TvC% z_oL%Sxle|hO>*Zb-%~RE#b_%+xr6ORZHsun8lMXZ6T}&52l10zqQ?m30TWm*-ah#6 z+^J0F-baY=z#>x~A?@%u$3(jCXfAw~I3fL{35%JRk4Kcpfb`QQ%wb;6XFn330|=LL z9PxbFzB2@*y(YPhdVuWdXe}Yqag*G`dU$`PyvglD2=5=mUpa;x8x_|u?!?bbO5DVs zTMIifjdT;^_bL7NU($nFE}NS04Eqtk@8tRP2+QPSk@pit(p1tz&1(xokfn=ElTdyW zEhCgcwvpIxhb!0cej|AOm}FY+kA6%jU7U}cAAOEcic!io;`uUf5x@6<>rJ{%C;!)l zSU!B5nwD6GaCWqmP(B&WCKONi0&$m?f1|Op>^YiC881mVFX|@5OnU!`Z87ux{5x5P zFvN0ETP5c&GFKDIH=}ig@=|mGp?Ew~re)XY#x)^e<~pg$@q{*2^0ZWX_L%g;EQh~` zbY@(12Fqk&bP@ZN(>ad(G5R^7TpF$CT%;N;WVzI$rG&C>#B9g@MR8DE-WP32h;Yjq za|EG07ahntQ6DBZv0OgA$i#L%-LI4Tv)Ih!*PP#An-xZFdETBM)5$mppEK!+EJt`p zbT`|}H0LFLey6fb?u)J?l*Li}o-r&~!?g}BjNat@rO4Pb$3BZ_My-5a`k5Dh4t11i z(b!Rx7jkKIBcYra^|7t^U&`?$P@l!eO+~gBzg{?f4g1A?(F#I2I0}R^C-VMd3+Bc5 zGr+OM$7!`id09xeB7G6|Ha>0&FSA}ojMwLx=Q#K0a|q9{UJ~{#>qpF+gwh^W2<5yr zCVrn9wi)I7J3Pj62}%*MTvc33zCl==Y zU*2Y^-MTHhfl$0ZUb}{V9(xc+s4nF7;WC!VDCZ=vMc1-S{@0{|?GgH!mm!WTvlp2v zpOf=hCo3bbM<+5b#pp~zxh;B_P`(%a525@hT0tl$M85yOF)!~RZqPlk+}?x;TStFo z8`+9^VceHfn;=iKPQDzq6Uwg9EJ9huIZBaei(3 z7TY}*y-FzCvJL$GA~W}8JU#ASLwkmMq6LIfBCb*vQjRvVFR5{E(zeiSx5%z>zfLI6M?WHzUzqf5E`rm$1mJB$Ta* z57Jf>Hn2?md>1e+Z}C}~jC{V%yp%~Z@$z*08oOt@`Dp$-0AYJV`6kO{zi4kl@p|v& zD>inb<{ zInn4s&L3VLCpnhPT4UBSEmiVNh8LQRgmPE3icof8zjEQfIhT3y_N_bNjhRC2*uOs!Zmj7 z`4l12E$Fl4?a|u^k@sop*JelYdcyy&D<9))od4&@ugAULeT!pCDOy1&GwleUYe$1+ z(h=Q7D05jSUOum7T3(8NODG$oS;P}F_r?4=!Q;<42J!Rw7N3(7qKq_?#zHe|k&Vqu z%u6eA5-*Qle}`EoAsS^HIgS0wb_E+gypg>`aPjEq7{TPC+a2s;^U#>q1L9SgyQ9Dnsbx$*O)5_&I&5Wgt3)P&SR$a!eVHe7V|G*~oHf=v>h; z^8d?X|J!7pw6LvsxoNV!cs@0lme$DA_sxYi278)Nd^sg3|LbG>e^usK;`v^Cg7zKW z9v-~L?!^Q`Y3K9e+f6bpOIRnKUuCA{kZ3-k_)_mlxXE6N%$i47ur~K z@glo7w~SD(hloz945z0@Z#|Y)-=mA1$ zL@yJH-*4WFY4P+*$(tPQXNuy8NeIQ;krv`Df$gP_bxsK8kDewJKmJ0t6OV5@)6yG#nNV(uo+6Z= zMXwRc5e*T_gVBA2;_c_TOv{;3N+{LH_v7*Q{XD^X zc|5v{P;QNU{mabD_ak3kVO~6a5~jtMU%<5Z{9>l15G@~}Y@jXj_HzUCvNhXDooVTf z3WSnGLxeIIwG&E}`Xau)f42w zk9*gMT~|yH%8ICmPzsUH`}uf!9YtD*r?aQeD4&yBlo86>$oG>H7xD46hnzwF=jT7n z=j6?3J)z9z*m7`m9--V4-AgDpN1pF(%!}{O)}%kLQ=NTs{^hgyQYO5~k&-$dB_D$Cs^HE`B`U-z_W?UE9b=^b(;oqhAxs zMw9ZqOKwX-%-p};o_U1rB27#D-Xv_pv}|sCKQs3S*0FziA$pNeJRZMgS~f(l6Uu0G z8=>eK9O;WZy}Z3%N18})R3yJ7iCS4Mm8gwS{4W_{Tdaz_y!myF@3)W7NFk~{LAk&v zpOcm~#>@X&mdVr6TZFQJ?Zn%i9;U_T+nE+Gm;U)pStcFP5<)pJYOrsah`e6x$9nPo zdi(;*#N+MZB%hbTXc?glL`}{)NBTC=ve5YWx|QvuJqm0iDcgx}-^+U05X~VjQi!%7 z6i;8TkHc&)9)C}d)7e(8j68jOf4-k-J}W1%oh*x%63S`O1%y(IRujr2(F26y^UpIa zFGfE99p>e^$d~*4T9%9NX9d&p^~n3ZZ!#}q(J-M5MBRi^jQqU!U|y1FKSJ^J2v3lf zXkBPJ2&GP*iMPkASSI@|G9^MeHR>Uhg;7E%z0p~OQjQKGlr5s!gyPG6e%`-+H`B5tI+sw6hz=$cKd+0JmNZ&SC|g9E63QOY z$%Jxr)IunAr8z25flwOcfebJ$o)6kq{=Hs#eIr-%KhM`ewv}4s`}6sgESDrI6G}Dm z;CDY>TA7)xcqNfPu zndlWl$)X1c<=W_ZLU}s!{dnm6`vvRe+31Ia;@9^NGA;8WZ!b?~UVdU`p5yr$^D-ED z`rgF6JQjVMP_BrIgmOf59-$l_dAfT(Op?wr8hJkK#rAS~^zZwrv%UEE(#vC&WfJ(D zq)bbVGArvwOjyHu^fNCVk+(124tYD!&U#r9`R57?t*oyilqt%pjIy0F zGLJaOe$h0`WL1LZjYpUI67B8duw(jT=G z{;TE8i=SVUY1xbTOF256P<;I|wvkoQ6rnsF`Tl%)!e^xv9YH9CXoAm)pZ9vEWijjJ zoalT)sYIV9l!ei2d`A3yQ>LXYN=YZ_VO~6a8%#@xyqzj7w6^d~LfLVVnPgg)MJkh$ zv2WRx_=va5(<4?6JbgS}wqqL^V7;V=nj!WjUau#Zmf4HU(S&kvG>=f~99#T4|GR5= zRt7%aeuQbcH}dt*GcPNmS%i|&W=nCztS1!JHSxahQl{mh=v6}bX*5YFKaR!;<+5lQ zq1+gKj8K+yENPN1;`!qFTx1*BJDN)5Jl$GYCgsStZy&Mx*m#0{qQ-t?72C`T31xM(oKXCHKh3mwIy5;)sYRQzPJH}u6w~78b2QU3MO6R*R0(Byv~I-uOCN6+*;WdCUi>(IUcP^g-DDQ~k)EiHP?*$}AJ#&g-?eAKtDkVH-I=8YGmZk=hRN z^EiiTxh+~tDC?s)2<6+6UmyAYODq>ZUq7Efyrn1Fnr);IwXi^5u-N4CFmH8e&#u&yBV-o`o5n=-|WHH1sB24DZ5+ja?I7Vbg7O_Rd zSw!v_vfPnH_5c9_L>MK65h6Acbc6_lMxD${EHz?;sH0}xxJGT)sBw);tI-{m#ryl$ zd7d_#&*k&^@>HEVRdwo|Q>R|Kr^B{nYDMDx>tI{z>yapdIv4K`8EH~6IZ>9kC%%5h zcE!uPmOQeId~&{tMESJYNtCKNjwtI{SDKBNdz5)uNglb}oI{jT%pUScU|v=k?OX0J z*AvChZ@*@k$%Y+|{D(WJt5#Lwp%+Y+Dma*m9#ALQhfX0{<- z{>Jr)i z$*p|N>`TqXYW|LzWMRj zm=~`Hudfnml2LwXWm+2LqufDdr(cMdXM{YGu}lWr67MfdI3Bss_;F=g2VU=0rX^?F zGS!y&aqVMX4wxN8S#P?D5?3TX4y()s(gVEQqhslPlrOKbt}JLze7{>rlTF6^?>zF! ze$vIuv4m-(CUfR^dLQ89S2y!A#B!N7t)$5w=B3s6c<=S;=_;cvX-n#qOMJh5tS@EbOB3rz95WnC#4ggr%Q?!ll+D_)H0DebrQZ~tlK)jHmuw(i`b;2A zD$L8O@#M2a@#p#{m=?cJZ(>?@v5p)tCz2-T7~R9l1Lk3(tT(>DK?#kS6z;NurD!zn{LEc~RdJKfk@dPmv~V%H8CVe>I;XNxf^!y<8LIkwvU0et+)UZDoDwVqLk)oJ*AX#*cR`+mhDyWG~Z_jV0aWmqFwG^i1aE zY4VAeyO(M4_VE6=n7nde_3ZWT`zzC@#rxYHwkO_i zy`GO@dos;3DKRZe&03;tG#3)Z>&g3lE9;8)pG{+FtUgGTb;j3Q!ZyUO|Gu3)3Auosbi(&GMuk$q1GH9BJGGO))WtW*C%3d>rvPsUotTj1hkkDqV z0V*sP-;Qs$Mw&tHA+w=XbCtbXpKCb%xRo_^;<_r^M zhdDqLZ@&?aRWjrC)41Ou?-F=E^%dDknrt>xq>0*4nn@SW=lxw{ig-Epkw>-~?1@d&m`_U$*#mhaof;vH8TQW+NJ!Xn{s6pms zhw<^Fm;K9!&Fw__n7N-QH<)gssLzP^*D%KM!^>4+nXESliL#7!rO%vAloO3FKbLuF zF}}ZHwjoQ5?=Oxq&Y^ic$%x|P&BaWMk2hP$E4{|+ucs}wi?{zNtRtJqCmIXnQnQ*U z2U#X+GZ{4%mdOI6I+A=eDYvD2qY_b~SD`^VC~ zbwy>u5X;23e*xPPjXmPWU0Xr9(aZYc^~_Z9-)_=G$1XX~Mg?mJPwyM2Z(@bJV4zi?{PIc@MRf`9lTr%F4q$O+N9wgG|eMGei_$-`n*fwj(}H zct7%d&8#Ce>QY+A{G|Oetcyc094w5E)W(iSx%?_gYdEU)B za)nt-l#iHui1HzG0a04be4=>!j<9XnYZkCfN@fmGmKz^;E@EDK&4olc$21egw>!x8 zrD8Jri&Wc^Zld`8csKbZP@hsEuhh*F@`|t5!?bKLJBi}$>f`-c?diGhLZVz`eEDwH zk&^NK2KFn>W61zfMz$r9{D<;Bkda3`pPxrfqjshk2=)j40J@iTAr2^Wx>GvQ23ruMC(PX;Rsic=@_nEgq z?jgnZcNx=iv)M=#e~;+b!(&L38Kz8>MP@EhY8;cyVp=@^G-=}V%ULFEW+73U4|5#z z;^UkjhetmipV!zZtIYsWJl)H?hqB0&nMoe;ax7+A{J6Z_DvO+A{J!lb=H(VMM3hgM zdx+xgTVYyOnqHz@Wv(HLx64|l#n<yC)ng5-|F4AR>`596CdtHw+Et6&&QJysa zNt7ce3Q@o1C;F{IvELJkEHBI;qVfHUe`Q_SVZKTf|9;yym=-VRH<^~Nm!H`ftmwKV#%h_aOR z<$QAqQT#l-m1()mTu2l@-&Qd#mzn{hTx-@6Wxd%*l)H?-@AmQ1pBo-v`JrxSUal~U ziL#et5I_E1Op71C*VlaV$}FR?OV*hxQMMYdr@*{4k0rCl)Ae)_QM`XFWLlcc9`Z}S z@pkNMqpu(yroy~FK;N_~bj`(r=dcJ+ncOvV`Qgb>{mYBIj@%r`h4zX?NHQp}XPW~M4 z?OfYNy`yF9f6GXdvdOtmmGX+jpQp601lAYtM?T+8nlza@d8OjoQrk=urI}+o)IQQg z=b+@q=Y75Xq>IBZ0;`K70G?^w%CQL6;%BGJf>r6jUGUNT0US9m?{Wqr{OB4B|+4%Bk&v(sje;ac& z9cWvrnsuZ}-FUyv+9?Bk-p_wezlddWp3xW~3rsUny#Jrew48005@qgTd_QNBF1}s| z)8hU9M5Yhr`7b72bS;-IQzFVdZr^>QekTQX|)5hajUd_TKMlYTQu z6rUerTB0ct#oLXo75|lKC-HR8=P`_u4c=b{#yHo}Vg|R_b(Q&mvZ)efpUH``$LuA_ z-0`H9C|#zFDCd~-h;p&<^TzL6*OGoH{~pinq>JC@-paK2`RU&`zK1k<&^$tvFPhI0 zKT$qyd^>)eH;{g)!;fn<%f;(!Hq$af9ZSFQ zcJuRog!YrN@%x`mZRx&wH&OPOtwh;ueEH1wbe%YcCn|1*na(q?*y(qX!Ya=E#Q zC~J(52RirUDzly_x0@S?a<#dPD4y=yT}PVSW^N|Rz+tXuUVM9A9?y4pdWF2=*EK()Gi~ja|&kjPYb4QT+T~&9wBJtBDegr(eOmc=}CD%UYvz zTsD}G6UEQ7VW#C#Ge(rh%~y%y&;7pK=O#Q9Qki zY4Lu&jA>~#zWg-iWsccT*<^zmAWCkU$R{=C#g`9qj1o3x1E>%+|N{MCS_3O)X`ngPzN1Dka{bmDEM$A^CberN_S;00;jVS$XNtGzk^bsXD z(?qEmPxtmcj=GY}csriXym&JBr%S3%f22G?63)_hB_G%eR_bA>Db>_v#n+wL%dDu^s z_2xdJjGONeWsmt8QU1;NIN|pLn@E?B8Na{y5c8sE23c*+Axf*sh_c-HcrZcP#rv1X zy`;$jmLSj}xTJ0aI${e83`e3Q63DrKgw4BR$5)N$;H3 zrlrGVL|JLhC5rFQ&#UF6iKm~>v|L~=BTAn+k0@=%%XxTx?V?U(*m%3=^a1hyplhu7 zdA4LMy{G9X%39;|Bh1S&Wwp7MD7TumL|J35C(7VqZe(7fxrr#(nM;V$ zW6mPVDsv7|&NQbJWw~h~$|5s|C=(o;_;L3!EyKpgnIY!I&ttEj9?~S37NYDhn}{-M zYD76;0%efB%u8;3d6{Lh*eoQ00o^?IV@rcRU-+mq9Ya<0jUhdPIO@#PmXE#0O<6u(dN=fNS; z>0!W{juv%+IS+n3rYdM4~J;tB7*8=_bl$=0>6n8GkOHVE#~# zF)t4qe;?=1_Zvx<4d!8@JYt54;_3cAzn?U@$oPDPd0Baw4(7#==X|E6$DBnJKmMK6 zn=~7*-#T?Gx)w;Q@pka*Z*2u*8hpOWI#N5#2=kJg3Q^*U#JAJb#{CdlO+QiAnm(eG zObb!gnP#HoZ1+%p|KQ`}lCgB(5U2}TZkmYlG|OcH(^58zi89j+lSd}ZF{F$4w?#}# z$@q5tdNIX%hw|mV{W+{Bb@GW{7Y3P@Xf_dL$aucZ%uB!NB}$9&cBxWdGGYQzax>7D z-gVT8GOs=H`CX(*AYB%j6Nz$wWin)Zd)}^FNSFPlN|a$UL6qHQ2T?r#G}GeysWC0P zjHmm2AL-I+dWkY0l)TJAKy-hIr=&E{O9w3@|4S!zxv$|&x;t4Nn~jpy@u&)3XyQJYA&sZnpzs9&a4=h1jQSK7z} zAD<$hMTxh^I+jV*l!#Jak@z?}MVc&ZPv#P3nl#yJb`zz3m|e_EkLe}K1~WmFgJurf zmgT06C_cZKX<1-eiBd6rL|JK;5oMOy!+vDYH(oD+`2zJ7P##N0 zh*C2?Kft`S8nv19GA~1B2T}GKU*FG%U8IZW^ZiVbCYwwTQ7UGbc&G{HWsC8ARmvoO z{cB>m^qWDVY%t#M2HMhd$OKV_O+QhZO%qY#ilj=E5^1vDY$8f-e7>7`@%@c5eW)Sk zWzY-|rEI3ym*mFJhpBC(WAj+DlPHbjX4xQusjQ%G;m-?RZ>lR%+lt>O_O^Lsn3B~5a(l_*~RElf*he7~*CON}x})dZepBwLXL(xqZ@mdTE` zo?crIw@-6h8bj9-WxZKKl#228 z-Nd|XF?)&P=Uhj7y65)u&ab;Q^2ltKi|0F?Y4Q8zS4{#>bV@n3qe9ujk{CFE6oNbWVt$Cp}C{bw%R!=;{3|6R+1Hrp3n_ z|6az>IO*_ux`KTn>fct@zp?E9zTTxBA)@@O&O%tnzmJ9Z8uB5(DQWz>Blh=U;p=Pz z+5RNlUMER$rQMY$cM){LDg>4{<=1wBQ8D{sGoktw=H0tzA8DxF& z?bWD1Ik!Dg9ZMvyWGoZ!w?59SW*ah{#M351;XOp@NE+|=*N&yJW-<9?wi#__f7EwZ zN1^e2>*wVT^2xBdjVRm9T}1Ko&HH^{d%BO@MU=0bnMCQKJQ6rInM;~@|J+R-NR?$$ z-j?|IT47#hjVE5Ow=*xh*tX1Po3hai6J?9>=k*HnQfHsyoJV<3dBjkrioB<@(DJ;lAfqoyhGujHDfcrDAbyp7q2~vah3ew% zK}JqbhL74Fq<%f+MD}@(7yWr>VR&Izkh~|UJ=Gax|9RUB7tQ!mkdfcBJ!Houqc5dA zIPJz{_ol8OExVKH|L6*`Z(|bf<9M-iV0)qG@$Er&eamblqW%raiEv$KVdyxH7vb-d zp3Ay|jGmR$rYJ9be94aE7!jVLFQB@T`o_rJN&F#gg33Qr$LM(`S$FLAAR{kIvKbsF z`fr~s#8K9hXQ*=wy_#~NPQA(Ki<0s@+6A@uPZoL}X8S1JpH#m)8Ki$E+s4RalZ9|J z^@H*->mzPYdhYBDQh95VEvFx$c5IT}Lwh2>gT9U0TK0>uGpUZTKh$nWs#i0QmJcP_ z%cw5|j!jDA^ndjHHL3lQ{h;!(q;@3p2=(?t{&Dt;>Wk@j*z)CM?SbtGNzGQ-4hI&oM5bd|49TF&QMhD9IjSJ^2LX zLv1vvYK+lXa~sQ$f0z10d=2X(e`hjvEBirwAjyU&gS1?iNo?gyx4ANGz^OR&{8|NYVZs;nseyA(RlIxS+H+Kc;r_V{ahkc;$ zjO~RrcWe)`|Mnziv^~Pt$cNfbs0Z{O!*;OeIZ5qXq+{ffWbnbxAo22~+)ViqUXWCu zLp`GL?@+yOG6amyravQlWl}nc{(vfNCE?Z75n8_3S?HO;c!iO&rO?2}_OLpT^fy-w6NAKG6S#q*`IW@P8LRdy00)$c-E)Dr1H^ub}$A#P5&G%jsW; zj8T&RHp%FR62D^ZBqFRdHLms0J*o6RPI*xM0Cj=-)k%B<>mj^>@f&*{N@}BB^x3X( z4d=V$14;N@XOP;=$-@3u(atzPAChV{sl97^kTPYGz%@L z>M9KWxGPBO-ek>KSCG=$Wbl7D|4==e?PB<~><`nN+cL-0JJ~*Bq#vR9&d(|Qd*W}P z-yty8%hcUT{O`^n>t5JZs4@n~p4rLBUfLJ+n8X>JSIB=sJ!5DU$A_M4lKef}gG?_- z;?W);k-i6jY;K=v@^1ICxQDwsngyP z7dW=Pfb-%TNq&HKM$1={a6bExXBe*$zr%5%|HGV@7(SBv#pnr1|BpyV_~t~Rb_DH@ z=I-r)xGU+M&vgaaqNJH~SO)1& z65dKX%W94R<>zqTBD*K4J)3b0Q?!NjjMER0eTd^m<&4fk`IgQgEq5p3KDLdi4<}hm zXDB?wdKlb2S;+rDJ0bgU;=cz|W&g7FR_@EN=v&F=&D(=ik6}4_BgcpA@nq@=#z*82 zB>OL7{6u9|l0U_N(p$T=kIUdnlkzV{{5 zYr29|UZ3RDwY1z!y&#rY7vVo>GYq_*_QmLXli~B}_ZU4kseG39MaHp8K1uoEKj`0)^n8_eMfjk(mog&0iuGi*c{>rI-#o_o zE7XZ(H&Ra29!{!nrj8MhXFXII`(%o?mG!r6FHBD|USTvQ`Q02Ry07Xgta*^}7}-6^ zy7yA=$T)|@&!gIj^nX+t8zdi1M!r88q-8RR`zaHKj$`~p-wTtBc9zgZJ!16lx(eC5 z*$-MTO$OW9Cx)qe>EGO0h>_z&&^-=Hze`3=+8$)jiAnXj^gHC=qkPEvlj5_Fp|Mb2 z#QB8m%A}%aDujmL%RpJz**5uFStbIqs&e zAld0j>9-sYM!uZXIc5pJ=_q91rJSgp!*QZ|aS}d9xn(BzI_P~)Qd>_xgg>)B27g7p zp_}Wk)VcSSmM?L>A{$9Y9%cWiT$U8?Sb5KyUrt@3{Iz88myL3MEw#@GiU z?>Z&_X;NN6c~QS1sePGxLG`I5Zl;_FFJ^tz-qBeoZKfQEUt^!>eF61~`lpj6k8TeV zr&%A(FXDP5gURmedGCUOrAhWU$AA&GDLp%r@{{y`)OaS4uz>bLbw1@o&^e0u+hjj& zERpd{a_%Lhb^+_7pJyqlX`9F%N@|ZVkBmMbO|-rAkC7kw7di^z-Ruv8oX^rdcYC3q zYopY@HkrJai1JI4yi8e;aSj%?)9#2zQ-3HgrH-Y)l+?GeKg9Dn4pd)9*-?2i zX_?QsfhF^j5w3~i-yiS4jqRfHpgEg}d{I)Tjiu+3;%qg=ibR6L-Zx- zrEO)3a!B?5q_&xMhL>Y%gyk4npJacbo#CI8WH0UvQXft7=dgeDg(Ord12V3SQh9EY zcT#?Yzfa2ZC@3t7tuD@PuZnBKpVlo=a_NsN;rb;%BhJzN9J#0 zeOx%0WJhfe5`IQLl-E#q=s!0J|3NykcPH^a%7{I4d5%FZlFF+%K7>V+g_bXI zT}GtNrPtIxK|Q1Ro3%^0zvY@N70wxnE9ox?+qegTKPL_F>?-@uO8TBpJtKP#8>A5^7pd6C$5%S7S92aVl{ULrg$#zfjev*BEFB$wV%7^MRNh9BFBE?M7x$SMUZ3n)NxLF!qKwFACfOs@FM3Ym zJVRWOWIrJt@#XYelpkSVX!${saa_`KUy?0h9^u*SU-}sHkl)MrhWJR5e};NQ_8qp5 zo>SQ`hIp4DrN^jS#0vRQ-^y`f@ZXZi`C1rdIf~zs=Mi($%qW0;|g8$u5Hb_0l zqe;($)DQgmu!s9rshVsC=P9Z`p&uYTmek%y`Qg`x{(C2b4DzfY{g)^Heszj-N49<> zsd27L&jIQf`3~w`&SF{?GoE4HyOY{0$dA02WhkxV`h&q=CH+5U|EO|qOYLmaMMR}H zsb0l$RQ@rE7gL|ImNrET*AJ;JN?M*I4gNiVcpdGF{+p9$KQg~0qP{K3n(6<@pG!GV8A)0`MSCOvG<^~JY)HKS_S-OY*iTL>>yo!DxRmNY$f1w?a-8E6j-$z-5W0S`9^?9s=_;K>1`e0`v{;HGv zbISSeNxYMJgyRyw?)Th6AHm?qlkCgv6P00(NfvYOhMg;t;TO~XsQ#Yw1ld!`^mBQh zMxEy#=|3eIelPhkaAp#&<9tB(OL+dly6$A;>CPb4bCYli<;0R_^PUh*G1)NK6=aJ3 zETzb~j$F?gdggd*68=ITM*dGMlV388co}tt+V7J7-*TR!#uzPuaX}j2k671Me4i`- zCfi5+CzhdnQR1KTlwU|Yqi0hx^;Oy*)sH3Fe^RgT?dFW-65mOhyovTfGWdJ?Gb)`)`4-BHz9V_>g8H+P z@~23bqmz6ib&kqnjvv*BlG+cbZ)DuBNp)tD-`PRG<2mN^&O-hc`kE|E{JmA=y9^S3 znpBoiE=0;N+2hnd;sdlVDkrgj;<}`N8^?ZAwNqP#*{-`ZY>FOv>M+y-``7_;YUjB6Wii#^%C*5fOfu(Heq@(Bhr2JmCi|kp6_Y=OXl>WPz^~LTRv(Hjq_~)E8j#u(}GV&ej0r_q-O+@5e zlAfn&TX{0+e;MOHs#hkpW9b73zhj?>w2A1MS+Wz8${Oa;^6O;qeC`X-!E=Dr|4%Z_ z=SWgI$oY=SACi_M=^q$AJ{f#2>!UiCdPn_k`Zsz$mxSlgHqyg5FKyI6;`=x@a5Gkz z`VD;^r8|=<>qzD0NnA^Ql&?tgRn!k^Z%8uoN<5BjBm5`zfc%^EA5{L1^2@A5pFxU0 zf5r=`FFBdEhJT+wdoA^b+E5a&BoF*^`s`UONB(uTC)X!|??w~`C`w$HNiR%F>^SD1itC{9GT1u}^YPZnt=shdRen&q;<*ghivhQ&I zBRozy;LkUuN!k_D9keqJ-jLK+)Bb2ZBbh#d-&90za82MOIV_NdJCACMG zN6)i(-b3m6NzQbEWjV@kNaFGI0clRcNgbi^bIO729h49Lyxjj3$B7<}U8=l;my#Lc zIHmtZ$-tYqA3*K8B)*YjM}E&_AwI>3GWrVc|4`u^ zmw_zl=3TIacPFjyqutSWbu!$;^#GCjkm>~OjoO~X$A|n;>IwdNPyR;Ai)t-t`618g zn0h2BbB&bROE^yKT$YTSygf+COjA$N|9$Eawb3MhlpeW z0V+!-3#G@o?qLsoSVp)8NcIHfMTvL5(zhzfKR{a}ygI3ThV3AGdlLU`GRV#&s4tX1 zNj)MCbQJQ>(+(K?e$qofkd{9u1IuW4)GJBpQu_O$X!{a;yl8nH*9T0Wl++e>1?fLI z89s{sff~=x;(z}g-$t3_|0dOcqFsiPHHF6-%(wjRQOC=MtDAy(l3)~`il7X zP)9j#nYx$bMHr=@$xrC#a)5g<#1Bv&WZWl9=}$>GmGc{;uTE;Mv>E(*F!IK(Ao*qH zN+R~?nt?j&Nl$Z9X1g-@Z^_65jIW5#uz%#dt0=6by;0&^l^(`^S;81EJ71cNuHg8v zt|O_vih9D-*~#cimZMruvO4vPmYqrYKI$2jvy%Ac3BD&n86Ki6sGQ$fh@Yg4DCJ4d zmpDH#_^{!Aa1c{llM?5VRECr4%jg#fZ==oSc2lM;P`ZcXMEPe)PXCnZ7n9P*SdRKs zk}TJaY*gFq`ry#$k!y5BREck*Rg+8S5q$J_a>FkQC_s{OTr1XKk8>D zfwq+1*CtJG<~{B0m!=mctuNUg#M^i9@2Lmu;TkBRE16nAKagM3|55##p)RYayfX<;OoW1c&XoO} za{;xNQ%?BvOm={DRNhEEVUY7&st+dpH*oz#P+KEAA@TklzD;|h*2;0B%r#%)tCH+> z95<@}H<`MdawASAIoCnSbPbnzhV?V#uTRRyuw8`6alt>2jz8l(Lv=Cbg@4byh4L4E zPehIT8L7W8899#g90QE!(z-b5;T})=UY3mTj40XDodrKn>UVYq$*4=opXB^P_!MIh zYV)ZNCoR*Hd~Qx%%%m-mJtrApY?FS*Mj1FVDedBXL503AQ#U46&I_qM zFUdYV!8lJH-9tGLKT7=|oSpdJoz-SiC#ZBK`57F89Ge8juELLr@b^#t+>xKa@gN4H zcc%!0N%cs|g-F{=jr#xzpJ%z8NWYQelE&YcWo!rj`#5ng`$qO`>KWmW9fk6#ok3~? ziGNSO&UhxZZAt!Fjt3)*T~hsP;@_Jo{hVq*O383z!nNy~?rM|@inUP9Xe)=3-!b$i9^X+O+Uv)$UjM)AskG~jLXva{O4xsA39eH4^Rh)N05%j@BMt8bg{qpj#sdM zG=7irr%WThG7100x`@{@k1%AuO+-Ay{ER%P%$O|bZ!V>pO%^I|Aszm^0fUS^l5a}F zz3d0s!?Y{(*{EdSAr1Y*jCZJAlvG;T9{XU7q%*$vJzQ=auwMq6f z@*zHygc-Cq;v(kZfA1VOFc1ItM*X@O?jlX9{9TXiU>fnL!`Sm{7-P9C?JUG^kx$-d zj+qD%*`FvE!q1b&-^G4`d?OI$o3I#HpA4bT*AD3 zzM~ND=Xm7TiT|!aynu4ZM$!@flXZ}Pl5NBP?!NdfHGWSmpGUtym?j_mya;PK*AN%7 z4#Jb>N2E(enc(AD<9B(EWjk^k%h7lbyn}lK`2AMn@6NkPM;v57$mw%Zo<`JjNZqiYCKJ|h8Y08V@H|<+!ujckb{1y3-ub(Ic#tDh< zVLJ%B$tU)^192_s@`|MKxuM!Zy#IcM<#Jq7{9DD}WWO!sk@p&V@8ZAflCw^MzLu-M ztz>=qO-FJO5&pY<*+J?9;TMz<`Bym>glBaoH<1qSZ}|wz5!82)Kb83PxO_I}6B>U{ zt1_VRJ5w!ePkfyJ@Ob*SBD>k1>}MX?w`oWC=Vj$U`=RlC^#sR+@E5ivy7tRYSYIw> z8X04p_}?q|@0P^Rus*^+Cy{Hb`1gm3-`eeKYy7^5|6W7J`+aG&%Wl?3u4e6D_9GA%j34Ss&pyhBni^ ze}%DGBG=l&0oF%GA1!=@h`5sF$i|sRm9a(i3@>3TWkQYZh(90teZBuZN&F`H;qMo` zzQVm6r_3_XCJ(a7j)MO?C;mBg{76R-|Ng$;$Hp4z2sbDGJ*c2_UzXAK$UjXVL3t_t z1L5l|lV2zP{o!(8IpQzbE_Cl$n4+ABj0e*A_o9BnG~%*}LU@#U*-3j#De?Es;rj9P z@0|Rc?MdVJRmj&&|2UCtA^ezpQYT#&Oe8tKr6T*sk_ywvZldl`{M&g~bDzRkQV2wZ znMr&<^9ZfxOYB45$vomoN&Z>J3dEC>@O$zg-pah#c%OZg{i1Q-==shf4UK<4(SNr{ zWsy;i3HnZmn|cARRevDSn-gFCZO_-_c$|S>XN8|Gus9JH5Z4o}|s}BEKx1NbEka_-(3w zwsYo0q4-TBe%C1OVjlkcm-*MI8-zb{ymFB3N{1uPf zOJo}HdiEpFNkSiaWrVUy3)6Bo>&O=KbD}ITUm?mL%@FIzG4082(#4-wrzx*oN*-Cn zGP%a=W0}0HqtNKD_cJd~k`I19`~5)pAj_b8eDU$=Z}&~@#q(HrC(Gmu%*!Ke57~8$ zJ7~OjXkl9Buw0(YG~y!a3*pPGD@QRcimd9cWkvpJ&R6hdjY3vsIl^}4(fGZQZ!s_HD5LoK zctv~q9r2&BOy;mI;#-n%Kl8Gld@`G9X=WRUw23r+&udRx`dv!T7nm1sj|bR>>@iP_ z^Z5~;*HLKn!^=n$tM|t9#_8mfF7_!)nU3dWffy4*z?|@Jgm-#YAG)J-^S4%gGP_T)Xl6Ykq!Q zz;@Bt-&yQSyuClfa>O}o2Vpbw@-<_h1NiSv`S*nyzf0uTBOhnze?bm#+|tclpl?DyohOO zV!8Z!Jb6B8GBb%~)`QPy>lv>Q-zGH_z<%URW8;?BPkcG~5avxJYAd;z?Z`)sukZ7IUAF6Gek1h{|2-7{_YnMk-|yRW z4J@vMYsrh^9`Gx=k76F-17-_RtREG>#T;ozUDIT5;-5SDdzHq&XLU2n<#}vF0`C%_ z@2p7U{H~ElKHQ$zb=RNMvIjf(ofGPaZAfGOY~~Tp>PXge9w9zLUikGOi>!~v?-X19 zY%}Tb_rZUg!sR^ z;m?2Jm*hn}m+iuTZzs$nU7jFK?0T#|BJr`rulxBl+lRlW^yiT5Zt|n}Hzx*H{OvvE zA1N0a&qY6AUve3F<=>f>FDKa@YzO}LhW`D8#{K&xER)mQliv`<%H6nb9Hd`JHHpm~ ze7Ciuv7SETk;eV$3z(L1!#EJ+26F;Y{+)dxewOv+q={sbX%yGew{Q$!>?nk%$uA#Z zndqKEP9#k}Z+gbKj>7MEUNynr|H1Dc?ieqA12`^VKM2Ddm+T{5Za3!PVbq?v>Oe4-n{CXW<#Jp&k^7!-1)l5Ubl_KFPwjoE5E6`iXLJdm+A-bp2fe3 zbPmfl818v=@8jS5r&5alBImI9-|_imrtua2xYzw96Ciln;Kr{Ug(&cN}QEm-Oe{OGp>{_wM5nYzzK({*C+p z=aVK^jTajCL(QxU|2?kaUFgqA%eNK$bDYL~zaPgOwj%@Pbk>32XExfcg*Fnk0sQ_V zK6@e*?jj<5hUM_@MK#8u4wlJlC_CagXjm5p)T>Z!Q5sg3{bIp&8SHf)4@kwM_^jQ)j_dnA3efD0qhsOKV5_v^qkZ^q}*!ht?Ks&)d zKZ~66(rB-ruv=I?sM?U!XHyZb=3t28X`$9aD^2waU{~oU~{&lhqd8|G0`xw7| zd%K_6!973xJo*dyWi$H{tH;K1?qL67*R6OS<%OPw3TH4atJnq_@11_fyc}n2eXs9E zdwyq}?-Rhc_cQX#Oty)PYr2GEn3o^3OnzW&zy5iSk4M=$)`Nd8UA(LLE9>kv*AwNU z#ILi(y$Sax`m9(Q_b+Ag$w*rv{tNYha2|OOS2K^s^L;kXd4wCyhger?%*(?}!|#9n zcdGooX*`N;qS0TslV7ePO=dAI$1{!mi%Dbrel_W6+(&jZFO2Vn5!OZg2lBwjdB5L_ zujF{d&Wpx-=yS%?y;?tg0`Xe%pz*%-&n$=E$2UIj;W}Hqr>j$ci2ulX@aL`gF!OSm z=_bOjv*EZ7`VywtulVuYOdjcF8R9I~L--ZPhxqrT!GB+-xM%u4%j~=={_UzkwpZqU zOZ>iMCC4HEV}{8irM85+39^xGA-kTw3jaHta3|Ap3G1Wr{&xfG%f&1c8)q8-&cbGv z$-%M2jw9U7ex$1-xqv9vukugP{?KR65~j(EsB1F(y?s1`d4zM#F7n9-nU^b=mMO|0 zZzfHql!lGtiH#$T_a7O{WEIQhTJtDrh;N@Lgrg^l-%AQBiL#L8;`PKcPVxCzA8B&` zc(RGI$Q;%YAD1p;x%fDf(T4IH)|EEXN|bfu$*~>jJ>e&rm+Q@Gq@!{DU(jBh)BgRU zpl4!v??keLGQr8%iEK$ z6XnmQb&TWUJbaWg!{29wZA{BB`Q(*Mqw!wpjm)F*-uW8x2=``%>2dlG{JeNA`JsCP z$v;7VgO6X?y^OcevsIB7S zl|!ui?!^Co#6OR0j04Yb%(8@a5KmA1z9eVtkj8!d+n7e2+fgX`iu%i3>Pt9p3c3a% zqwS^fIoT0R%O>)|$LHcZCEQo|?``TqbM3}^_Ao|$(eE_oBL5WSMSL&w z@b~kL>#Co}HZC>V-^Ud{|3)Yud|c5xi^2l7EvGOqX0=N^{tjU37MauC(W)z^J| zT*GpCHfdt*7OrGkYHh9E$}6i_E|Gdc_MB5|@z=#b*f@wx`bo|AS?IU-6$z%b(3X1zkIf z>!`>}DxGmJ3iir?pM zAWg0{yE%S&en;ZtoW=q~ode?a-9x%8Z%^zwBhKqcze`i53}}3gS7O^zCqH6|d??0F zjh`c=Bes(ce@+V%ER*9{E=RFUj-5!xNs|wcC;F^gDyGy{+z&L$-NAbD0PDzKSx?S3 z8(D@pBPp(Z3&}U%OtD=#j(jr2F~L7C_UF3B=lPNKgfXk|B-3K+`RAto{><+K@(*#& zLf_#k_;a{FclmkjhGbB=DxjckZ<2#xRItYV*XFZqS@xR8@y z{J*!8F5~2pg%ioO?ere0<7oXMga&hmYOt8^zei_}BP6bbxIjGEPY2`J>!M zdB8bQ@ay5N><5ka7FN%3l=TtxE=9Z_zJ+P&XFIZmW0QSMORs5+Q_QcSJU6gC_~#gn z?M_i9`3w1^+4y!hvu(MLba~@MA%2GKN!LUn+{(5Q7cq};Df9CGh`JZ}$j1AR;|~_W zmT`|-oVo^!!6Mz=#G#9n#ke+DoGNYFx=ht2b?aj-vMh#OD_9(L3spu@VUsv6B~%%z zr2g7YTW!;S_1~##rK;`!^F6IugvAl^E~IdpZlJ?mIsML+-J==ui+2nH^|Su z*qP?9FQl{nC;-R;TMMFHbie!7_3x-wWe;&UKP6 zSey5vxxD<6-$`@6>&~3ZJQ}~?Gx=@P!&(O8bIjj(EzN$h{yD}mg!`Jgg`><(IZyH^ z@&n;K<%n~Or8RDCMfo5<_a^4QBYb3(wYY7GL;hr1+W|irVV?vhSqIsG-@$K5d zTKoSx_#V0!XnsG?g}j$$z42_LNtida&I`GfW#smiIZs`Y_`Ae`aK2^OpX?9gd$^zQ z8##yH$xP$-Aby17?%Ma3JBM{h7!um?Y?g!T8 z4|S|t!uCRIf7Y9PCWC|_lvS>8F55AfdMX#+#5yC)Tf^}P_W_?tv;O#h5HDKuim)Ac z@d(>#IE8hQlbY^Z$#uY3z}FClJTAF zOi4uQD=}p)6<$l@ zNi&yaC5)r55QqGfWn|rzX310ZztFb2B!q?dI@$@s{LF7LmtzaO5A`%AEQI}2t?idj z2t%g$Ueq_qeN9jBUz+28xURw-PS`R*TA*{Qa{KUKHZXx$g*aF;fnO;~aa%gNzQkMkL_#f*i>_tDKGU2MZkYrlUN zujNhR$`Q|-%tzm#ywKWDvJm$L-u~!orUUN3^XW zp5MrF!jYSr>a-7p`20GoH?%F2Z_n&U_-H*(_B?(ki--gMLY7DCx~NTAR&HBqmhvC| zWR^oXUnk>QObN%M{X*iA^H>gHxz={VwuB=I>mYZ|$$9!{Y3=6=^O_01hku#xk#Fmd0 zlV#;fmXS%;Nkaam^gHq_-@)^F?yGb2=SSqn2&eO1f$-%bUdyXZ5xvz|E3?L}jhESh6} z$A9QrRSEk)TJziI2@kF9gX366=ofPTAuRayi4WoV4SqK3C>!%R+&B1*g!C6@Q_e`A zG$rDZPm>-%2xoTjwqQlCWfrrhE7=7xNoAb|e?J zFZ}AH89H_#e*dN&_>b0cjo%Z7%vhQ8Px3w7B%jGEqy;+WB(3phnB`?vmXU7b>E}e- zI=LtLFB`2ip+0r7jD&hOcf`ik5O1?yg!9B&^>WE<`Y43IW;m_(el+pO6;0~nWghP( zl+*8cEnnk1`1MFP!hUtX0iU5Yp3mhw>Et)kL%v9{=`@yw-;r?8TCa8I5C-jiRlbvB zOl$xDi-aYfHYOSiWlh49xA?sr!)J(>QhyNkm-yoePn^k*A-_O)A2lV^OL>_vWY?z9 zo}XnosS&q)ov_i`pT3mkCG=-wEGsKmZ&}1^Y2$Zt`dkzCbFa&L_ybHnx9*wq-}pA+ zHT;gmiB`VS_VeRm71A!P{O5Cx!#DCf_-hFl?g7#unghu7yq0ZEXvgko;*huaTt1v_ zPU17fH;~83_YG=$C?am@B~Dq3?_}+!u>JKUVTo(He~z6?taXx@_Y(Tg7kMqy2}iDE z8K`aM?epE0wy$J}IHgU$g`aIge;?*wo-~T;u>6_dOQ=8bXNezugduP6om2>0w&OQ) z5}%=UK5fKz66U`RzK3W1rL}z>+Haj@<-ypoSyoo?ds)!b$FlHi5S~mQF}v~_ zt@OP#$F3P@?vM4$Sq@>lJG9$YIW<^Uw9dOep7>-T;mCo6EzN$(&mugu_CvqJvQnF! z3;SnV`*|)W3<>j}6)YzazmX2U6OH-Eu4G(-{}%DUokQI4C-WYy{a?fUMhbk7bPcX2 zMQb}JzjX#Uu!>R5gzLB`tLSAhkuoD;Rbn+>{04J zoa&V77HJZlBb&Q`*RqiJ2;)e75B3|PwY~8N!b7+owsjwxU+`Nb?W`xlyvJQmoYJg6 zt$D&%i35H`(;fUCc^^eT<+m}da(|F`rPQ<&|KS-6W^LihAw`o`Y%atrI4;iny z0-`M`f8^J`kFWgiyy+R1lV&>I3c`S=Omb`T8t#YuMlzO#e}M1dp5Z&G(+{F`-p^)y zCi7WdQhqDbnl9x#_yvR`2lHB(b4cs_ji0hSd^?{bzJ~HdINluJ#Cy0a_zgT`i@5L1 zFJ^RWL@+XYnp`VYr4_WRO@&W!C!a*2+vnS|( z;AS@+!hiWrQ_4EY|BxP08xR0ui<}6{0R5;a8taNpR%0v z@j5q`|46Af2-_23yFBxx8?F9y7s8bd=9+}pXdO@gCa>kFxw+PPRlg-pIeVpPZcoH@ z@(b>}e2%bR!!IUW#LM^|et+J}VZ27`ctof-w-L64zvgy~zmnw<<{@!|@R0Az+?6<2 z;Whlyrjtf!J6OScw6^<0y*!>cq{eR%+NZmL&tzRb7dK+s2t#&j8l-;98!Q9AIq@LB zR^w-UHg8TYq`NgPf0|`v=7=U=1;+4ZCat?TpKSyo;( zzD#^b+UPgn$}EeFHYKg=)&4_xvg_Pjx*_8&LVx5*qqqfpFK6=_o;o4%a?*>i-QqsO zYx!=|a?*ovolrQA<=$kSCA3@mVz2)Aw=55T7VqKc%ca#H_3~a;H`zPnGu*1ASsob4 z#f+_zRaswz?S%MwK1VA*Z{)WK`%}Ywv-N#5J+1A{3&<<9_KUB^@1@g(>%p?c#EsVe zzf1TYp+5@sA$y7Rp*8=$me*))SG`SqGL7HM6tCqkO<&_Pd4;@`xxALpUOlg+)d%@m-WV zTGs;|ypnnar9ocdwY*P0$(6hoPy3THpUE18Avf?FwD!NP&3n0Ij@g6Pa?o7U+#U_b zGs5*Aq27h#o~`#WaZBi@m#{7f_djx9=e7Km_~2jXd$`I-E@rG2zbT)~kD8ck=Fe`R zet7wUXBo!UWD!D>`vlGYyK3r?;P>Tu7oGwBOG~`*YF*rL$){JI*``& zrJXDXzb@Y+%(vXI(mvP4FPi+^{r$P`(5ILWL(fE!uzxe$=gQMIbKm1X>g%z60QVZp zBCZ;D3hxnLZ$iHp_P@J3NEg($^7eHN>m-Mdg6tOBKirm0 z5Ah%M)yNk_+>2K-?#U|tLBf}3jr$kNL-+g>KZ|9M9c|p_$y=mH7{@)q#P8p9D!)N% ze_&-c?FAt}e?^{3aU|#GkJvRrpW#2;vnGCE#O_PD`Y6vw9(8_!iH;xT`O@UiPA2{* z%OTvKE!m&(7=D@w_u2By?Ik+h#4nQHaPOMRquh@b_0vqUCE>tdLAsFd)2MU5Pqu|6 z*~|FOE~fqD1>2;eeJ~Q=U_9H_l6}QQ7nA?8(8SzhS4!8K_zd17=`a~(CSl$ib5Aab zt~QO!xGy*26OCt^UL0*k^b9=l>#!aO`5Nw1=Q7q!uBS}o1rz2St?i-%$R}im1*h5NQ6{R`hC-0##KL>i?$Cl~F^ z`lIxaDgU_3NqEjebRFL#`IZUK&-Q1MKd9Yhio@KmTAneb=LiqQ7fhCRx!jKYhhIou zqP5>?lJ`izNckh#$z;DE-x2!%EG5qnkr$GjY0?u|PdL?SWWy{6*H0YC{%XSZm0O+V z;FnRJ^0uiHrns*fzldd!eZ|DYA?2ke@x+gG9}}MU8=jjpyfM#Az~Bz1xYL-E=vSm4 zp*@9mk)F@`qcmZ9c^-iHHBJ0P7vm-O7Qfzv`$xO4cQMZLo0TT}Gx?0lU(CR2-A|XK<@foJI zfA$-s6XnN^rw^2HeL^-sya@BQxRc+bbeXCBfVz!n$b{!AWk(So>Q|fEoh*m+9Fy!y zIidVRGgacbEtv48?O2|3fjZB3lEy>aCm8M+(t_IespqKg%ySyh_>xIZBu_Cg%aj`A zKdMg~_ZsVl$~&g?H@?RZ&u^4uZBzRV;Ujy>BpXpq@P|EWeMC7R{fTK*=>Jha!xXFZTc|v1;*|V> zKgfjpDf_)hFXAgqx|sEZ+pnpceir^ylo#T6SXcR%sqalWAUvu4_GSuRrF!u0X%4v9XY{lL*4q<*#u&wGrIVttSu zX5w>s4}Y==@B4ZP5B@GQ?fNk%Ri1?=g&K7P;kbYH3(}6~2fA}hp5(c=82o|he2C|q zpoj0JGctu=b~$lZnT)OE~5yQly?y_ztojkutinJ+-nd?Y4LVA(> z)5O0fJt*97%9N30yq8c;?g-L>_;JF4zsI;wD04Ju8`4MrCB=9*m=?{FZ(f+2uyh5D?w-Kfmw48*>?aY>Fo{uY&)w z={a`HNf?(()Flb${U(QZQI?Fk*PG<0yhrf^ll+PINdIW!A=U$aFB7lIdxY)sm@!!@ zm(hQtw#>Mtq!)wanGB4W(|!>$4{TkDGI{gpYI!t^g<%MvbZE_X$71dug@yxQS9AySbla%%}J%>@B zFpF_c%CDR1D9dADq3PuLaFQg14>v`eIC_Y7hq-?>!>jM>q|G(GK{|2t<)-o+^&jE6 zHf8FLthm99lLlFFo$32L{Q_!lQ16iM8({xH`H8OF#NORbdM`8?@ks4d(=(It7Om}s z2dV$ak0oxs(pBFkpHSF``U-cVNhvoeEH?G4nP;HyJma^ZK1;K|F4Ol){{o(ChIc71 zx#&*w?gPBXMa;aSkbIG1VhU`7N!x}dJBvDn z={K5$aZuXUGYNH7V#aWB+f(1Lj53s-4@~!3`#MSf)17O3w%bYP@g~`ud_>`oY3 zC`U{@Z617Q%*jAzvI|KUqSqLYP@lngC9`Q~NK;dNvD?Xlm(3(|Ch0lHIObTn4;dff zUn0Md9Km`bU1~<|U|x+nc_zu(rbd4uA>T6QBoaSFe!w3_zkmj1C;jwKGLJOKD-WA@ zZ=*aB(-tMG(=Wj9Mtab*`&e%LV(K%NQ6BOfHWbkJu>=k3P-g7v`sznlK|SPwkLI!N0b6RsyHZ$kN@lR7Si zr%mTCc#l`c&G;px6NMWnccf3!meFxG@nd4d%>OO%;+$Wb{wIhZjnho+O2#L-gLaL9 zn0kT<;+E-mn%fV(u=59C|1nCP4opAT4w5( zQvWcxhjGkVq`HiL0c}UoZt!7hE*cwil00J?jC0a|z3H9Jc!bhjjLXRAE5&JB0oA&R zcAy;~oR1P6%KQj*@=|;^<%be!mFkn`RPtAzr(co26HRnKzem**KE@9qe-PhnDwLxFJ7^JyCruWj7*%#ARyHRXqymzz)S z7;`d08OnlXrtlT&5GwRbk{wMxA>>EnMfyc_(05Dycr)~M$_+hVHND5t@1r!=Os&z) zb8G3-x+zDb7g9$tv;*4#(r;$mH0ER)ZBhK~CRt3m!tHBHw^5D=_ao4`9#Y?AG#Bn; zmi?A_FZ^Yc9n#xPfa(=aKta2CE~?&`YNeDZ6=?mU&T51nno|}67`#@e~1Y~ z+Q_K@Vb>uU$ z>Bg-jK4Fe8X`iW(H&R}W{snypnEpQcHw;iu#qVOu%o!ydFH9a}tU}lxEiWK_=s4eW zo=$&@iJeWDZ?&GcN1vd6VRDHn-cP<_`uEI(^lOqHXv*wYkRpAgOi-3Gcfb@GlVrgX zQ|Y5UVlXmg`gqAMr+&k0j6`i!=2u7})44143=`WmZNPt|eN}d0Ig%vn8s{i0Igow`5o2(!ga2?HE6v8ljr6Q0 z=8-9Cq*Xc&H*M$B@1bz68IP&2D2|ht2gjtrz|C$#}(f|J42;m{HLg2C^dDgPWn*)i1I`Bwn-UlBst$?)A$@=e|TX9eHNls zDK|8>GkyDyImwPN1e^*Z82=x@)V zua$Jfyhpz)lXsh*6G#{0Ysr5!ZX3<{&l5i0Tw?BCG3I1|HYyY6nPLa=qrezP{=Vvwlp_jD&D9i=cxNAf0h0nJ*nw`c+APs_n7`Gd5_Lc!$vpPq~gQbxpWz2f$Bd^ z-)5{Y(odV-Hs(J_|BvNRdDoPmB_B~?Kaj));|C}QH143jp{iEK5j~vQ?3a2aZS5O7m~!3I1VJmS>!9`UTy}K(+;s@ zu}Kc0og#asD;KVNn4C7|Bs#r`wh>b zOY~5d(y@i97P_4z^j#7$#!B*6@(&qhD#?*1+#jcWBXtdhRjA)6?`WnDB0Z?kE+tdn zi{u}px#%F)3GUOTdJE-<`1{8FjW&yHFXBb*7L%@|T+z9CcW&xD`d7sCd9vb8^9uc~ zRQ5830ooPP-qGA}2je2%UuX(UDgn8t?m4e(b}|ItDI$b0nX^4NXmbmEl<=_jOdvgufz<)L#vB;Jnpgm7NL&<6BN z@Y|dAElC$bf7>^Wc8daKDCxLKuB05{tIVwstw(vFK4z*L&?lih$MhXD<|I4XjI$0> zd~GzBQFfC2$oTi^dxbifn@2oIE+Jmj?=qdMQI05|Z2E6ve8BVHG1Ut75`87pc%FV1 zjxkzl8!{fCt>1ij2kisx^mX#sZKle&FVShNC;Y2jx#~9wA1fX*5&f$yc)`rPtJ}%= z=S_V#(v9lRsjry)8vO$16OTOqfSExWB=g449OFI_YOAzogzIG+)JdtlXU3-!586Iu zk`Ku*6#vJB{ZPr9e2%c+!F`!Lfv&ZX=t$NRh2NV=%1QBElyKnIB;Vyk;zQ|fQ}~$rg^t7MPf%K7<}<&PDcXZXr<&p_^uq|(0Y>kU zUJRWumJ9Qa$H-4vMB9|?Tod+J#`N(L=E?Cb^aEHiYO2puzL@`zNzZ4@LYeXxPk$iM zZ1Mxc17;>=DYKfUFCKF;bbzVX$RGISv}-uhAoXWVG>!Gd0A(pLeXdlQ^GK~J9B;0U z^Et|Q7`F}KA-j$~5S}`dqc8B7*v*9f)IBldJPI?+z;wzP(blHaLEV$rsecI9|M|oA*hNOq^okA5i{C520U&+kx>Hjq}Wd#4nZW zjk|#FF)_>3e?~bXnrR%z6Qxk0KBMxsDg1%=XfR)u%I{6|pDrgg%2uLZ^B$GQj6aF| zg|5Mo!d0{*G}=fXYWtd=6DdEmf5CJf$T*Jj{HA01kEuP3yPI{DKa*aRNT(D(Lz!Tl z{E>;}Ce;5oDMRt!Hnq)2H)6(EiM~ZXU}{U^LF4PDhjNqbIuo5qy+X3C3CC@#KcgOF zXaVCAo+o~J5Dp-!Q%{=|SHj^Ctb4#F=^JQSuRQ zUTxgg^r6Up&fEm`mq;I~)SDcARuvPsn2sAs2O`oWt^J@ckq%TwSbq#1K>49#z`Q?5 zyF;|h^jt{$#N@7~cr$em;r#3deWSRUv^V&p%`oLDj{K5nThp-`=|c7t^9Z=zn zn0g`U8D{8O#vAkzzZA|lVLzU`gnW`MSvT}jkEQ2GQ@DtHLHQCB`h|>glju$2N4mO+ z|Ci(LNN*j@xnB@ACdeZR<4U~F7|(_0v(-(s3gw98e`&v{e%D0nlFta|jn?4Zrf)6s z5%ryDCkW>|`cf@>LhG$ zS8nG$vZ|>w2av)ajDKsC^KZygmJvVKxCPX2`2Wn!)qcQOhk{`=E_#Bn#CYwV&Lc9n0kMf^Q&rXbMDDG>L-KoQvq%V^Cw@Ej`eT^#2QKa~D z)4n?628M`760JK5uT!q5FE!b2#4mTzPb0s!OV@Wzn$~k8 zakp7^*O-%Y7Mh;j$Va5Nkq(*Jm1{4OKe*@`bN5}{PKq~~#;KGO{J*<$*_GrE!v4iD z5AlbLv2OG=2bzveX!l5NqQ5~n-?@;I@5l&G2G*yZqOqolG-e<@(uDi9#y_XulP#$q zh^CvcpCkJh=|W>M^FO)Q)UP7n5WmU(0VIy}pz%Z#btpe~tiXSCu4&w>q#4N^6HoAa z_~*z643lP=qP!$*Po!*LNI0J;`|K!}&~e=Vv*bUPEi*GxwmDMUdqDgR$_3?NQ)C^)FE`;jvBY(e|D^S16ESv3HfEw@ zc#m+sdbr-9{4C+Z|K5c2n96tXIkLf#TzzlK8}21DLA{dVx~4(f&pk%`;Ng6^sGac< z?n09djB#E*b@?naRUC5?Jw&~Or>~He-gIC!*vrK+fWV& z=jDu04`h<~WQgx1E|agQ@6LL`(?>|Qk7;MWhtzjBg}>0gkd;ihZ*X)L=|=T?M&}?% zYd>G}{zw^dNQrGuDNx4JI=^jg${XQ)UC%f#rN5c#CxnmEyCyq#lzjrDt^3dwt|vTH z{%qPQ7pYUHr2N;eTzwwvD|fT*=N96YcEpoi~XQR1tH}eGae%TBhPy0kaa|o#{8O?>~W<@`w-lBs( zK_(-Uu0uLde1P!?{t5aJ)YoCX(9j$J?oCtw0iPr3H1SgU9VB;?PQ)LXls-YqACOXUVQaOQs1^okN{M(cZI+APLI{9e`P6W4F3 zXPB5v`D6Hmri1v8sWna3$vPvNO?jX;X~MXgZB4sDVVViY!NYTlGWswn{lTOK#!S>% z7YX~p!}XlW7bq8$=zFDSHS!A;`kCB=tSiF&Bt4ySLHvU0bc{Ff8=CrB!~@UxB<@f2 zPx3b70X*B_;+`ziEnu{4@#W6RLX~oD$BL$nP;Zo9pJOW1@3MrBOHWBjgjpeWz-)Zy8`tB*_}4{wjHh z=qi)ntMiX@T>4kqA!;X59_YK=^qxyOpko(Pxs~;Tf1EZVKWBYVq#a6qPt&;p^$dlp z$wRoO$tN`4BE7OL<06LlG;NfHlwYEMf$yj8p?ED}qlY#j)qTz6XKDX%)Ln@#Wqsf& z3yDUkV<>FZog3Vb?Me*qVWOY$J^T$U54V6cBKw6I*p_@l*#Fj-P%aqQ&1A2$9HJeK zu3eV;{nT$1nPW?MK7&7(w4rc?$$mvWL+kzve_-B^;^q7f^^K^Ts2yYCQ)mn5*}*iH zl84YW5K^IiOB^wVBPE}tx{oRRFY&@{N1O=P&kZt{kkT1u=v&=RCQoW24U>pt>K9xO zVW5Y$Abkg$u%EuPKm7nI)Msg2Ihu_YyCXxs(M$e^~rv)Jg4Q6ESa=u-#K0qR&I$YSb5a(kGRTjbqL! z8QVU=L{%19>m zXI_Io<~1_0y>X{e4)EI$2MWJ86Z8ktf2UdU80RZs+8w6nbF^bb2hbi6&bOI7lztlX zuQ%>i`fI#-xoPVd;~Ek^o1*<7d6nOy{V>WE57O48?`m`UBCbC{p~tkYbAFlpMCJFi zJ$Tkfre>M`-N&4y?WXV}$^p^(CfqkZ?x!4(++}LF&|jf`rAe;hbHwL0{hWSHZln)E zdJ6Rk*`20HpCgs3@&6=kh)!nALirjK&ig66M7rR%AU}}N_N1RWDMQzo%J->*i0?NY z^xsl^miCOW-(sBgm7Xt~$wib0!uj*PbJ*TM;TqyaX<=8+G0wT-6*rzJ&FX z%_&z@k1&lh2^*zvm}DM(p8TBrK(>NBKztry$cLt5BgRFvjstJNxPa_!>ZcrQ!u?nM zL9}}`22FM&VZ$vkg_|fBWR#CM#%J-rru_-)ATf1G!aTF~1M(HUtgF;7Hf@(sFVM?e zOR_^qkG#wJpv<@=l~bwjn0~uydzkXTtfi)~4gCRPuA!H3-a?H&PO_6t?Ref}YBv)< zN;=_nPBFsuh~s;*eTXt+i}W!Ekb(Wp#Jbc26v-#apAmZZ?ACSO)p5!m^?#e%+Qf_A zbxo;3TSJ)NhIw4LF4cXLFp*wv!uEVIBR<5GfrRI(BwLR<$(EYhjpR4#KQ-f@qs_w& zn9600yNI?h$=>`P(du2f^1sP<44lIH3i&L9HyX!hQl_twgnm>eSVsx-&w4lIjNYwH z_G8kA*8RlqR^IXZ4XDe=B9qSOb~3!N3D?cF+SlG)w%_gN^gFVW{!)$}%~kIv|It`! z!hIRiTj-xrpJ~`==XfG^CLJ=%)IUx5aPy4+GVKDawGx&p-A)E~LRWM5+aP=DF< zAH=wWzHgb118I+F&@YL5o%REN58-3tGt?{eonfY5Mtw&g^AGW>nQ(uQ;@_x4XdFhE zNKY|^m^P1b>YLO&^#N`#)(8FMwG`%=w*6>Nn4D$WcH}+keh+`t31uwRKbYEK-A+ez)KCjE%^hj73Ba)I$0 zzHB-#WgdyPlT3XV>N}z*XiIQ2Sr3Hs4JJA%Ukn~#+72Y2QSCMzn=p=}Fh)O%_&xeF zWb2c^s6A>Xrqj+)oMFQLgYqv&oy1=;;XZVgOX)*V{IMxKLik8dHtEK!C){(SSDJs> z@x+USxvkWPnker&(xa(wh%Ye3xugf_v3v)2CSf9Oqi@E*$)<-qmT8MkxUMQ9eUkl~ z@f_j2!wKrO41d)O&7+*rU~H2bZAoIrBB}kQD_7c`@e+;wO>e2&Np^_o=^z~_{F?kg z^m*gAA7TEe0NhrgKeMM~bu#O|y={LQ9+h;l{!660Q>E+gz8uh1t*>1^^7GY8GA8<>w^ve#6; z&vI~k@_R(lJzok_Zw zH^9%POi>%=x9Hr5epya3@&42wMAJ>>X~rg`Yc)0NMe#+}1JTE3kTxs5TN%F(aUmS9 z94b)1k$#VSKzMFaBAN7n>Dkd-Z7<3UZO53(9Ojis86&0gJoyZ_TT}BmbCwV%G$IDcnJRz*8@Cf2TfUvYU2<_%zeEV9ZI|#>O2>{0QgE$Mjh;NZZM6%70X* zNDHE;OxXT*8?2@)r^9M*3Emo=4ff#zg}rVx1*BkM%_RO!jABqXAP}L4S-k z#y<(|wmyyWkQ(tI>7?Ayd88R8PRTwbY#B50sjM5qb8YHt69%G7Oz8>wD!5hXC*b!q z{YNrhAnacY`J5h4JwwsPFz*>Knpy|FWGZU!>QX>hI|P&_9QK zg=f5#jxU<%v)$abr~AL>?|*^078)u21qz!HH$s2q$X}_@cSvC+%fNkU#B4(up>&f8 zA>GjoZ8GMhG)bPqe{3qB&`+Sg%)~Xu9r#t}nhU$~`#9Cs zAzmcMnZAqZA29wU<3B@wBRY-r!ktWBp-x+o@}`utke3o~VH*EO{v)~6aC1xUwTSHq z1L&FOWy@-zDwnIf3=Zk_U{tiSk53|1bG7EjDBRQ>RQY z$+k$2x;lyYY}2<5>xpDn+6SsbjHSrvV`Xq-<9^2aBDu;G@1vhb*gsskntVomJELpk z#h*=@G3B~*?nwFxOkQM431c2A)Fp{dC4Z6bOgSSNHzm>{F>?qRoNnT`>7U>~+jK1D zig*X|6VZ_-ncd~2bh}CZ&3mZtkjm1ghglE2a@AOF(Oq^uNR9nG;&&$=q(2~ysC1BS z6v$8Umo?4jKjLRd2iz{?A1a&B-q1r|E7^voG)BEedaVifTPr?EKBN8(<1VLtBHSOW z_7lc$RCXsF2-lA`zCr(o!k)$tQx38(^#{@8qq%V0r1#VGPl#w!QvVh4AslCOvxpb| zFXXSBL|8~GCT9L9?ev2()NY1Xqy8e?PrvkK$`Rv_H{HU2B+kTNBOIigcjs!S(=IXn zdXt^o&3QP~SH@S#?xT)llHW^PY)bnO56Yj=HWBi*_B{PA3jZ?hCCUXU`77=e#$$Na zOWGN`W$LS@Zz1gkZS)f|z#L6)d(!xT4VPK1Q{nKbq?emm+C3U87Q#Efkc zp2OL?@AQL&i^j&3Cu#?paoV#Kenh_@n-dmB?l(h2^oNMLjGso?Asp8qJfho4+aeQx zi@J)+!KU#u;zXS^Njr5Tw>SSW@fp)cJCx22Qz8GwZEvzy=}X|Kb5f%YO0|>y5}1Ce z`GoS7l=o8H+0<#j;*KH=`MGH)PAQXzQerM6Zco!-?3I`~yCfT$aDR4p0%0Qhz>M!m zexkI$agXvnTHE25QGOUa&-kY)Uxf3jJN9NAM(;T$J%jZ??=B`B2aVc^4{j0bfyRd> zZX>N|O!8iSZwgycu4wFGCaFsj?lNQvbx4P_H$f7zlPF?aZixX@ZUFm z>r-Dbexm6)m3|oM?xyq{zeE1ai?4CsMT2}odN}c6(PgIAPdh{>?L{hoBL5L{j))%Zu~H&DKneiYfGCc24y#_%-e zd8mBR_;1s%p?I>%K4y7@=WbQrBA?K=Fa0QbzhZ{?FA;s3jIU{QZ+-E%kPbAMe@OC@ z(K!gxM!T1(ViR>~3Ss}e`y6S2zm9OAXG=@8KI@BW&G-exg+50;LGJ=nUYq)g_zRRV zs`IFqXp~L=H<_0srT>unzsWz8$xDeIGI53a0slVfK)f$)2kC((^p_Jo^sjLAH_}Ib zO1g=0yRts0e~x(2w+i`*A@WrE>Dy(zWWsh}=!g8*SWnrFbRfHnaze5p{Tzn&H&wM|j%2B&0)0i8OAf$mG~O+6wyYbxzhj8=8zmk`jJvkrJuA&^@pRmu-`8GW*7Ik zA?=i%)VHE6F&vq2K9Q%bNa>NTT(TAEgWH|Dg|OdvfI1^>`RIxj`(NfC$fdc zzeaf=UTm^w=+{v5jGORf@*N!~j^#4eMXJkL4}{}56X($9W7c9*Vmy!u<|cub*60z>Bq!uQ+R_sMD+(I8X*0$wP`&M z={53F-Xbli{gQqjJ*=t_b_X!+egDis+N+KbY4^g|d?ZeW^IcA}KF6$;q@KM5h~nDEW%~*%{f0>))RC zgu*vX?{@T?NY*5NRK7@^L$uTkk)PsEGGV`H;WgF|?j@5QLD~_IQEmv&5zmNIs`Obh zvDa8GNr)2-%2Ya5HJ<)e!hP)AvxJZOdbDr24wLOnIis?napa?r zVpF?}@|FWl_B-+mVLS`>C95Z_E27Bw<+K4=hjK)@LOG+4^^n>zrl*_w3C9>Ox)+Z4 zbNDU7`FuldlqWi8nSuSg^K%+{_ULv}q^}e|(v^$9+T|pFR^aj6PyH6k1`%~p!hLx> zZCi?4n)p@n4cU37&VTWLV?B^uOZrgRm->u``Y6Qz;CD!vlS+JHcP_hy@`k^`OdZng zq)eNZ^fBY^Bdw^P+O#_V5uPvSKBOE`eVqD;_K5xj#V%7~TVHCcn97x;5&1K(d4_Oy z9p#2Fj;CF;VL9Fud%B(UZD49E7!Tl?!%N2eTYN@dU}#$ciHvJODovB?)y3u+r zRl@zo5&x0)g!EFvMn)ebeS4eA=9H)WnS4Y2J`=8M3(p;{GIoexhw?-(^-)Uunlfn? z_b6Aumg_!X+6oaKPVT}28{cN^2Fq} z^dE?KG=)t_KQiXe5+7~CbC|Qs2^WLYi4Xnrj6a-op}Lm|=g%}qixjUienpi%$P0F4yM>ayFh(ClfBRKaNjW%>Zc4{NIgdB8q={G{W<*Si3c(LjGTUrsoX}t zjY;0i)G@{%K>883^XnPy7a4N_@mtew5RNA%g)2QocC;z1L3nn^@^2gMkCT_5vsN7((7wE^3dh!GPn^ON!JJ^Kt z=E67~zAyZ%i+y@sJa^6b!zoi#E+$SNn9fDCS2*%dw&k^SEH-T?k>99qW*pmvxr3=Uh!>F` z7$!YZJJb}8quru@gbBy*+O%zf;?t}j;ydX_5$<0xv^nE4YIDpW+f&lBwdssVFRE*s zaQ&*=hjhtu#x>Na=Mt?+`60B!!9A&isIOuA=o@9~GPC41j!&R}k@0_}ejwV2dX8S^ z3^H}3sj~eiBLk*zM>of1$>U`vK7;m-fmx>UL;4?t>vL+il1{YkO1>Z|nfP$}A9OZN z97Oq|yod4ck}hzF@($rSE~N?D zBy_J{={eT;PWm#m(N?7YD5Ga7NZ%5pZB=o9q&!eRnf?pq4@_GZ=|P;BA;uG#ywwbx zO@5(wKT{{qC0jy21@{5lM~LWirDrDTL;qaU&U{d+q+7!E@$q(J9Q)=o>a5hyCta9a zk9d*nWNNB|C`YEqI3f++OR~Cg-y2=Q!a=Z8)Tx3xKW|(WMUUHvWWfO_~big z+Q68T{!NT~k$gjT5MiUhm?eEXcjxMdk{<}yqrdk6_cO)ZB_=t6^r5kZDY3mLo^2AT zGVV(Dfte&;Ne?g+^tm#4x*0!=@dOd`4Dq)R4x+bd7Z@(kA0ulw=lHUmTWzR04Tv7U&8KzH`gz}Pbe5`keZYN>;uJ%!vlZ19F?hN{2`7&W+XamMe z^zUpYk0k%lcaLfRKJ5aFZZ_$zwg4)PiGv&lEOWt=;W?0D7}mG77ma}}A#m?{fyG^bw0_6IU=N@~j(Vp(Zi%Qyk| zF2|*jZp(HC!tvE?%Q3EZBCWIu>FGBeCyY4>*UhH$_#ND@*_Q*~An%aQV!k5Hd7SR4 zA<<@Lh}Y6!t|$KSrbGFUWS!Amg)v+P*P@@0>&(mtxKAL?Sz>zjC4I=AqYP1E%#)~S z9M{rGZ87y5eY2@wm_dD$>6e?nGx;20KXIA1Ap_G)d<}IC*{`W5aNCaLYL7F{!nZSi zp?ZLsB(EfjOz|P|7=A00F_#ec7UK<)ZCH2s%=E88y~EVHCftX;^bYk5p1v*jF!?SE zMstOwqul$LJe)R`TXY5O5$|1ZI=)3YB3yr)eV=@TQ(Z%R2ki;&S=JHtr@C^*!x*P9 ze1RG7Bd;*Iz|{9;+`#zG#*uFl50GzgU4)0w-jdfzBL)kUD~5J8Jv&mK2-~-M_LD^0 znfP|nhj4v=yc^-8LVc6$6O*n+KY@t3i})8zd>hNl4fMIFf1P$F)EOD4ZOSWy=4k4j zRF5<9e@2~z?c8u(W!Qg|tV1~>W*nEEvKc>zd_gbyB}0r~Qs2(_wb?F1iFJ_Z4C5c7 zY>{n4IidEV8Qh3`!+6p7b*X=dmyq)^sla5uP^}A4T{W zBtIlO+4wJzFDM;hdKd>}YFDGVrqpTMxg!7JE+w6aDO)N2+SC|RWuo0=^fBU&H1*F= z58$>px<{Xc>m>YTh4Sk@u+GZ?Y-M4)IgeTcqo=-WZ_lhyOBo zs0sI-sy#t@Bfi-r5$y)<)2tsVv`?92P9Z%9nSS~>87P{lgSLPg^Qhc&qz@VOEcYAI zDYPv~&LJKY|6%GoF(zTSV8Zz@{`ce!k{wtc^-klT0D-Y8)erK}h`5Xyj zk!1IocqQeDXeZ-OARNSdu>R=$4BIZ4w$PN%p>APdcjMk7Z;(E2!hGD3=i(#6Ly5FV zcrIM|bM*I^AkQRWPA>gBnx1vYSJbNH8xq=rWV%N+Tsz^TbdRa5MjwVA>Y6nENk0bX zO>6&JVU+XBXiMas@F0Pl|DU^ zUts*1)Gb8&n`~Rk713&hkMO*kapsOPO#dZqTbT*+RE9S&wfD(ulpZwcmndKOJ*XE* zSD}8Re!H1mll~W-jQbMZN!+NfZnDit50a7z{g8W`e1ne(8)5!m`X2G3xX@JjFAeIP zD365-V?5y?UXAiWvLo{kgy%GN9L>A~6Kfc^ko-e*kcmId?+~81LDYUzPYQ;zRxK#;rq{qVxmWFXE_)Yi?sC z$FfeS?`AUQNaEilOt=bhAROndU(%J|hbLap%=Q3 z(hksngo)^P#hpjKA)J@(|H1DO#wm9&?H}>;#EYI8^jpZ7TS&)hrp#+eS2xwSNW0u& z;`8}E()Elxk8qK!NqD3P;_~-A#Ry^P2vjuKNL#qbl<~eh2}_5aP(jIL3%AMs_yFII_r2 zW+t)BjocU!XW1+}vRSre5hHTBEz7dA$Z`t|FhGC-0uBdQhZ>TV~B<=%)j5#U)hH-|*?WVet_CoV4 zlbt}_k>*fu4f5x?dA?7-1pJs}`rQV4Dk2xJpedQ>3 zEcKR!oHMGAo5@M)htWS7{dTu>J<9xo>W5A7dd>&clT2F1eh~F9UdHj!ewP{j(nONR z^(OtEddT^vsj&+ER=G4+ne-s*5x=)meK*HLcAhDoVQeBl!ld&#C&~HFy3Fru$zRTT zr1`z(XvQ{%+GscI=rvuh;=O4!s?-zlJ6QaOy8O*JW0CRK@&pmlPt}i5FO)+DYOsZxK*SGYG5QT&SYL8>s%p!^!f5%MeD5D~@e+!n4SWTU3~iV6OHm35q3 z%jK*`+ROfs6@4vvFULco|0I8e_Cf0CF+-G>CuuJfRqBQE49*WJqb%~*j<-zSKanK< zpOx-ca(_em^h8Vk3d$k9mhEIVeI)D1lVPLJG$sF(Db;C5bZs-mLraq6x0~k0T)#-~ zam$IQzRKjEppHm?#{N-yFV`@#8{JVvq#2y2WPH9WWy;HJ)*+{i#P`b6-?LAYx~L!G zcYuqlX(y!1*_XVYeaK75lUq!FhD^+x&qCY@U6 z|H{C9Cfh^*%Q2h}O3dYwe~9BC`_Ph>xZjmNK)um^nW`@<>ZL4yOA5U9=Z6+EcndW2(2%ZYZrXiT0Ed*Pi6`i==*cPamHtbN;%f z<$d(0%rW{uc3Y~nt$e9&en~x1=CzGvUu9eH!w=?5>=(t;Ci^JIK>iVv?%;gnduD1J z-^+H$|J|fHtd|(y|HOLn{!4GAZBY7-`!W&LMJ63K&hx}LZDq1QQBRpcoss@jZ^{3_ z@lagIm_z*TQ0Ye64aI$?{|4q|fEyM)iUD1V~KY1fwNL`;p#Ur-N}`l%nXmzp%e z@ezOb9{&$P-af(aj8TSdT5=-d{ruETn;?EaC4UF?2R~$NR#6uDJ5B1M?~rZnGv6U1 ze%~;EgmQAONkf#EKFY}L)DzX~XjjDdKl<15T#WdC|0v8o3U^Xoo_GE_AU)N~-%0Tt z`bUm03u!;$SxCx^QK@oom;85qE$I=qlT%Hh*8uXUiT|%YzmWQ)=%kKlmP|TrocD6D zn7SdK;rw|t|0CO>d^qD7@qMB6^*X|7J?vqb-+ z^4TUG$9fqx#glA@n7{Moq-7fAWtrhW#Nv5{@qae!ka16!bRNe?_AK>Bv4rau*$-L9 z)Ze#kV|!#bkdNZKCjF?7zDAKHDPwrCZCs%wEMERZ3Z+(h>qfUzZP4jT( z1(ZK*s<+bqh~H@_wJ}d4+CQJk_DJtA`9HFZ^ka^V{JnkVr$jVoazBt)n_@oWP+n`& z5wtt<1C&Q;9`_lPyWLxfDDmto@pm)%$&^R>nkmg;y&Pro)vQN)ntCB$I^L2VWm#fg zzkxKekJFFHd4`j;#KiMSY2`$c=9^6EWh|qdOu;r%J>KXwnB<>kpWtTGl7EzX$;aI- zM6`axPvh=&v8WZ&RC z5%2ewXHFz3o@P8CU1wsREc99&Rjy%48(1&vddz$J7;pGrrWoqucjP&rt4)4C^+NHi ziTC@;?bI91g(fZHyirUy=|T2~>|Ud1D4CjnbPUA%Iq`Rc>6&r=e{6inF()SZh{>;{ zJ>*(5_4?@^FCvX(qqM_NwmGlN9r|KQ$1lunZlP!{=L zv5f3;lm9Er^4IQNL^;Q;A|k!q?Pou7vs+)|nHxuqx5W3n^52fPzV}?!7)4ogFiP`H zI*GnTsn^6fZyv#TM={FyK>7z4&jH7BT%mrFeZ|D{O8KSqGp1e_zL9Z^=37kpm8?hp z9nK5sX4gTKF3tt{8>m0Bn@v2Y6+fk3NYkl53a9seB|XPFWIr+KXDrLNP0q8Vq|Njp z;`?DS{)&4Tw@5db_?^xoF;3B(V=~6FB-zYdoHB24{v4QoM;pqG zuEBZB;o~jwT%1oE=l)M#vu<8NTH^Y?oAX3|r%6|{PG~pDKj!?r^TjM9J;DBDqx%9; zx?SGO`#MALj3Mp zybql(q#WY^>qsl8V+-SF1@wRDNPk~T&O9iY=6Km?iW=>J>?!wCqU2fpm{)XSL;<~TS=Q=^+8gHRpbZun!n|zr4AfA8nx3Vlp zoAhOlEAhVH(S5wXhl^ZJM1G1}LPU10$#=4h>`$h77}pbu$7vtr%mv< z6mD>dI>|DlI=1ThGL|J?pUkGb%yOfPc@2OI>*lC&o6C<{^CS(a`$kBHW9X?~wFpLJEDjJV}QiSyW5=ko}j?_M(A(wYljG0yY5`yf%S zevwOA7CpP_8TK7UpOLiuf&I#DE{<2G?IhYS>*bjX{`>jydNqGN=Oag(cL$j)1uVHET%AX{?i(Zch)_2x5Fb(97q>SmxT?g`GY$x#?-9?^kbhB6|?QW2K>2{NhJ&FC~l#`Y2M4}`Y+n3p1hS^pM z(h|=h($s?DBm~n|J3B~WjrIh(&X2(jN(?eo``gV z$%zv0t7X@+9pdj7;{P3+dOvGtjq48U-6&Ct#b&6Nv4P*ZMYIF*w>a7*SKIua^~jkk zUnu>Me0kh`jwt837#C`DIn^ENNlEk`ft*`6w-aSAb(GjXwwufLGT+@qln32oM0v`6 zohW1OV?^n34cbA5IF@X1V?-IKn<`Q6bT<*D%atfAIp-oVPS^I>>y9}8cwcyRFTa_F z748(GtaU!WPrVQKEctS^TgQGS*D(?OTqZ3Qx1etGQ`GyjEX%d-M56RlUSeFtJQe3N z+QYa()c2xZyC22)xsGL7>DE$KI&1&8=pGRjDD>xmNMqs;zfqx&RLVmbQ#QS#&` zCO?vKDlauLep_?-7Rn5`7*~r}mJW_B+iRx3PP;&Jv@CZg5oNWzg(!EqwM1FuVmy@@ z8#2N%q^;NNB`uL(CM~(!Oq7i-##f2`%R0A-C|`9yB+8M@8OV<{sgq^-a})Xb9M+4< zYMW=-R(83s6Xnxxm?#&&NSyx~@}=yeJvv#I^PH|Fx!%noN{q{l^OlZYGoL7P+&Jr` z(?vTb*2_t*lPHlN+wW&P>2OoyzxIEwv7GdXi~65cx8IoRA<8)GrQq+5WNnYxLX_QZ z9(9mGcMVbEeiHNPZt~=_ZVgdNZYfdv+#vgxH8r!AC>`WU9CsGwrJFp_Gl4|=p3OR0 z?$p*2^JW}x0eP~}MSDh!?N_i~+TBi$C5K#Gf5)<33i4&2i}O8^by9IB6D8_BgS1rH zPLk$glTWJw%inT^~_mz8&nb_CBkZaextb8&SsG_lOer*%^J* z6MBsyKVqH4`$LzImT13z($eilIIiT3F-g>4*1INAqMozr^fx}{8brCztt3jcQ8$N}H?Jtc|07lk|zibr$`whjKEPean$~V8 zPPc<7&p6(bZ@o8v7g46Wf;N)q=jvkG5z)?Vy>|aNjVLj0&Lu4;xZOQA_r!Icvk!^= z46t6JKL%-Q+2B?XrM%U|_M<&)gT!%UFKKDG4Mf@Gb`W1^2HQx~BWWzlm>K4H(s1oH zd;Js74}QKJ3sAuZRqlZX=APbV!iU7Qm~Z~fD? zCmOS|$;I-Fx_yVDgD6$jw{V_SL_1HCme_tD2RkIW!T+Il#ARh>LDB5O!6g; zvw^h4`;dJ1s`VYL8d0uwmk{MbcRo?#_yg=;w%5!_b$gzR_AHYxYbYZ--FBk%yD_4y zV&4+SJC(FVJKaKBVm!tAIIpNzv{&SJv5m}eC8AvE^xa2UuHJg)5MA<_fCGJbn zes{5*#PJVNMmD($QHsUpV9mbsJ6h+u$E5oyQFghQ7dNpiSGhZh67zQ4Z*ul4$!+Yh zF|fMV##V(W(Jl)~%Wld^r)#g-{1D?m`gN3i8FBOKT>m)7T}YJaZY|}c%y~<*$He|e zSeDQ9nvFz>aTo0v$2*e!$_4IjqTJxFB+8Jh66I^|5K*?fsQ-HE_(FSFmLbWCMUSK zA4dPJV4o7>{**e`I3`R!oo5rISDXAOmXV%hz1-tsoUCM7rn?>NTjF0wug&o*h!XuB z_wy2ErO{*7QbxMmcJig$4c6@Wql;z9C?~O>_+H-~b>7QEMw>}iT3_RoxiE$eePG%o=BIoEHf!1pLcfL@B#Z5RrHFwItr>Z}|%OQg^>5 z$~{hFU8)>YQq7DIrC4lEqr4pB_OVXZ)lG>gk-wU>?4pdsy!27>q(Po^^qPWaMTz~i z_b~q>)@RgB+Spe1u&u12jI^;I*-W0q{I-Fz@^$xdqQw3)ww2?^lW2#Pz4jj1*+hxu zXoq9TljGb7QLc8Q>{A-lSvpBejF0U#dtRAUx7Twsh;ogK`Fa!OWXOG<_416HNt6qE zTjF!0G>iV1IR0$Lu>6j)GRXeqGPaZ3UF1JY8HxM#b${0vXDHv%$-S|-0h;i1Jqe& zk}vJss3!z7P6kQaz?M&QsaFj#QYcY z+cT_}-?*O=WsNJdFX>`iSyne&iSkRMzd>kON)-S6we?z;*Sqd6izx9t zb|Gnrerd9ejP#g2tdmLS^WxO}JWN?BaSVy;_aVy5ggcWcrNw3q`MOCILGoq5#Q!^% zzr4@>PN<-)Xe>+IPcNmssBh&nq~#|rCr^&An|OZEH6r;|)5&_#SeMPLlez3i5^4Da zWkm1A$dPVE&F;xiSZQ2kNd`MwvqGdW>3wow;klY zP|mVkL^(N(Ia4kqEpgr5PFmvqEIv0#GD)7??}ms{yh!xRQu3ur8^|=$(&moswfo^E zL>Z!PGLQ9gpF4vn<*jBmX}Qy_C%#Y|Kh87GtDp`N*YECLdp=r56wSS|nL5aN@}x;x zhH7RHX*rj5vdV2GO75bbiL&x(@+F?v7uN0m80`}C%R$OYv|EfHy+)FG>_bM}I-;E7 z_Oh*9%(AR@-9%YYGyeUX)-$x8qho*jC?g$|lb^9pPId#VlN((|o64!ImkQg+n2YmV z%d#9t8F|F%*wW29xsJ5Flrbj_((2^Ndbn0FyVo2d zEsI!|>27Duo|QZ6HgBe_>=Q8$9810=wv}74js; z`8fG*pBKGRQh9(}t3hmN?Gb zx_yoi?O9e?>||Tfy-A`yqn%e!Mh0sp?vEMAkj>;vL0Wp)hs1eT>s-4y(|wV3veCtM z0~|x*-?6Nh|1kLi?zc$aU|Hh2n%v4fjEeH`l#6!$9?OXDH?_W#@j3DiP-p3>n=y_p z{ydTEyJ7l{*beffaB<%pVIT5p%E;$QOUz3p+Cm1|PKK$YOp+&Gp{(5IVm>*kZuj9K zwvkRZNI6W^Yd*^o*YyzF$w}l%lkFs~-$b4qQ#X5w@_@^zo6P7n1!=j4^-{R#$BcbT z$u(-sONi%-xISZi#`F1H_9M;3Ca#x@du@KchjsFV8(^Q3_n0oyGL7|eg8Mj8ZgJ6m z=k)U4CZgS!l9s1kjOS*Z`e23YWWBU=EV+Svx!6thbC0z_jGvWkBMsV4%9NL=_X^fY zmGhVA_ng=6axCklpZ!X-XWXY6)J39w%aoOI@+4m0_SJ13AMLT%(Q&_ijC}dH)49o* zi*b}#FHzs+z4jUGAmwDA>nF-~7vtyql$XRgV(RZYo@1Z#N!Cd`&v&xDoX9#k(&cO~ z8D(W%kJ&|8IhJw~<6sMUve9i|ot)uT^w@m1hxHQAM_X7g!)}swvewNeUygUBt@Jzk zd&~yP$r$S;#>*J%WgY8e4eLa8mszA`fV7ldH+jKE-A?YFdj7Si&BJD(^!*q2;RT4uQz|6i!vdlA`U#tmZrX|LIMKghO{T$M5s`}qO;lVh0M zCGNLT@0_wSxz$uCD?8mL_A7g9Ci=HRo}5TI>2Y!28e>`ZYFiAEmZPYH{Ft;H?>Z?X zLv9OE+E_0Q=l9XpJs^>Hpk`uxoJF3*>+Z`)OFR3L)uiPoZh$D0tdp;imT@;qyGZnV zPQFZc4-n-r&Pnu4BcE__{?TtEHSV{_Tw>p%HkPPg%;(eUc7KR+7qDM>(nWjBU|E{% zSE}q&;=I1hI*DQ ztBDfht<13`1?rwKLK)fac9JJiZXWq^x{LXSXyWgrrv5JASLBO-PjBjbch{09QQsesM!tmOA$7QwWQ=ukD(fZ2_w{TqYbh%+-sAPu&8(AKT|94;dby9Goo%GxJS6Tf zyKDBjT#Un2Y%lk_#R-eTQaU+DY<2olV=>?+f8zW`xf~!<`xho&NtdW=DGV=Cozwf>062Z@%cCB zvkqz9^L{}2MJ~o^gSyK7hRUzj3@hl$DC> zpqxZIudZ`X!YOW;a&jg6l^a|KQKFru*BOt9d43b?B*ysw=@#}ifE_iXIaPMDEF-Lw zODQjRxj~{txlh-5wn2=ac+NSWGNQ3570SrqQ8Z`Et{$_2Z6xX+*RPhi*oWww~i>gIi?h2CY}rKVx0_74~cngEoq7SZuD=W4dlXJ(@m6U zw;816r*0EbPO2O4uc_C^CH5sFHM53tqGuO*)(uledV0+|%F8^~%Ych{PS=R^a}ILQ zb@bYNwSXucQbuClUqo64SuaiMB%dWuzUa;(O59gtKev%57577; z%;;;G`uoKnkta7f?Mt3E@%NnRIhN&7cRNv{e{LWxasSodfXN_vvX66@X{5#PPgBqH zb0{mPvrgJLXNm1EAWvfZGf7Ll&U%8hM0;+p+q3-&_8|?{$2PJr%8 zQNQY9>)#kpl^WLycDfjUnp0&#-Ha0DJf}XEyw@~)s4uQ(y?nzRNt9!HO-30xMtS&_ z`w3ABH%63b?if9sC?|2h{UvFM``}}wk@LB*q$AuDYYSI$(`^BUsb7jVW#QeOsX4h+p^)kS+ zoIqNRcf&;4xSsm}g^NpF=qrqKs(nl6mAw8+kIxv1B%RGOup-6D5`}XPu}oB(BGO>_cKd z zv0h@oi`ZT!$&+ZmsNauRCuh3Td+oU=?xV9=mV#|1#TbI6yoTwK?w&KY8WauVZa2IZv5K4cbUWCneWsqai)KmV@ggR$Te&y zC%R~#7)SeST+fL6l^*OTzWRhb@g|r;+7WUfwn-Qg(e2M3XIR7fg zmX(x|Tiu}^o2%meoeeBYlskcPvdEoHlpU0jE*I-hVV#u8mnwCZwwmcC$}o8n|2ilu zG4A7hj%8o6*?o#An~bEHnM@TlDp01iN>TvejnRQ$xSE9 zT-RT-*8}JG+WShE5@k2}661G}w4Ba5S?Y=&<_mm+W%;o?jVM*tNkQGEjkL^Woy7U< zCr@rBPwsRV5M`CSm?$^8tBLY?cLq_$YNo+4<#Xi8Hkb2Whg?`U)5w>-?iQkSQYR^~ z57|JTe8H__okV+lnSA-G+eMUNH=ig6*hYq2A9)h>FKxBwji_fo>tu(!hbW11GD_WK zEqSucZK-iz#Wi(PB`vXjyvJUj#kd%xoUC#)h;o`+OO$y3M01}U+iNzlKe>}U+3hYT zN*w=s((+Rm^*9=q4g z>*d)H_qvQICDu!fzfI)HrEVANB*yt1^5r!u*eMz@S8@wrIO@uj8^`9N`+PLxUND!F@T-A#k+r63;*9 zl9nOL${BU@3{k%7P9#c4%}f&Ie)8lV7uRQu=jg8z^^%xRV;m-qDW|i&)LoeVBkhH`&=_f6dl$B8z?bu$k zc_Eg^Se6)1CDKxM{dM+-ct1paAjeWSnd=(l$@P?dp--|bKXdK8Mio8}Y}rb_%yt#_ zAqQP2`O@QJ9A3k+Jnr;bT4EetNm_1kHKKglolKM%Pvaaqm;Nz`wg z<4DsTAj%G>Yg}>{^_j^&q|+@W%5s;8l5I7!>h`+eG@?v*Y8%P9r%9r`#C@<(8jC0| zpK)7=a)ujZ9}?R&7Bjw(yCK%ei^s#IY%e3MlW2#wUYpN5dYHd3$vRm^St&V<0m-PN zw6mR@=i<7o_Hex;>am$^B+k2&b+X>gV|$7DH|}>^$dg;$`9!(U4H4xW*F}`$-6=#l z)5UVsa~1g#``JiZ?s0KHiuw&xUzx>viT2CMlNBz`Yd&Qp>b-`v#P$a%FMC~uC{@~4 z_SZ~j-LCVMM7iAEN|gItJg+WgSw`7jbZy9a2eTpbU?p&f|Zh$E3 z-Tg#~c_gm;IPMJANz`W{X^Gd2-Q@uLkPR;O zKTKOo8~IXkasKUWD^cImNz2(T+GQ2X673k{r^)_glZ$p=&$7h+``A`uKhaLdktfkF z5qGhz%wnCqc>Ac|3f4)7i+asvS^C|@M7hA7N0jKdc+S6+JX!5dBg!T2DxzHBV*ATk zmSHzSl$!f4QGVf?Qfm=otoujn77;hVCJJGcuO~!y^F7CHU z&l=+Y3epnKb3-+|S05ruciohUa)CR8C_Qc^Q6fJhEel*HQTp5pqQw4BBQ58-j}m40 zMQ&wT;&~`u2kj(Jo^acUa*w;7C?hWJOYvMiM!wwUE+NV?w}>cbx*?*({2$NHSCJN}KB^O5~4_mJMzv@rAaqEW@r$e4&hGiPt$L#*0*4 zjE@(`sc}WQ9I?LC!}iGkKh}^h6&K6HEX(>A8DLprUMqAgBv;FQ%P~X zDveIoOB`nnX-O`&YhzjZ-A|ZDv`bUt<4i6G=5wA}w8%l~FfBlsKj>O}dndy*)7+|xvP%-qQw1Y0cknT#qy~vOU0c}l(>(bOGklHMT>XU&OWKNr$6W zt$%Gjc0Y;Z#{5;LoK)NzqQvqf=OpXMlcrPON{ol-k3HncUKitRlx2zS50aKBzk{@F za&bQUSbm}XEKBS^jvxJ`eMqd2x77!)o&kAX|$X!m9)7&DWMETfn zyiU23b#lLp`8~d$GDyCZ-IYX%?QbG2@w)7M(sH&tizxYvME+9pWrmxiT_n!;B=Y4% z7w12nW!XttiS|55T4u6NqTF8cq~UfDWxLx~pj0Hped~O4-G{xRPaA<`xkp=G9Y3%jqu4XDmyU zKa#XWeF}~*o81*fME&BtV)aqKg#S0@CigRIzpN0) zpZYsH{q4HM-^=^)TEFdih&nyzo+nDI_wSwL{QZZd`22H{GV+vb5akl8?!%XpmNQ%*QM%kRq71lxqAYZW7#p(1#h7YmS*FG-<2GsRGFBzVXQRgX zK-YrAb+w$d#QoJQlz4yiGSU+L(Mek7x|u{d z(#8CCfIgLtu9GM)e%{F$6VlORMu;-$ruQ-~5YKn9++e-zdy#@=+30ejRNXG3>~(vH zGU^hs#b2*Qy<@!g*KDrsCQ7WYkd|F8?mx%TE;8T6{UO?KHu-Xl>mW*-JH-BEpNsVw z>*Xw0CQ9^EAL;*>*e=S&^%nitT#WlH>rK&Q>T|8%O?D;=^p|tu! zhMnew7H{uimZg*RGU&DtWqPkUo+vR7l}O7xw}-NF(9I=ZX1drl9p(ne$vwI)D|*I+eqGRXua0Isb$u+ z+SBt(HQEI$TrBG~g|x9xDcoM7#PVj+Qgx$5iSzB`Tx6xYkSK$04N+qG3es|?s}tp$ zZZ}clz90ATqx1^lE6*;lxWkjTxxZltQ^0bTZ$Hez#2FRBfhbNMj z87{_cg}#!EzLvE$vxO-8-JH68wtp&7E_XK(W!Odj#VpGeF4o`5vfSk!B)-rWSeEVX z8${Xdo+8RK?pH*4-sDG&CyBp5OZuBbIm*QMsPj3Ld!gAZL-+93ef%(%5&NBri9F;k zO=DR+zx99q9HK72ch3M?tW z67yw)w8XqQPFf;=J89YC)(|E3t7jl7xnZKTQ%0(!CF&FB->9(iS=>3PRdD{`ikl=k^d~m)lO17x(uT@+8U~A}#H`CY~c^ zvndKb4^hr=R}kgn?slTY`>1P4%iS(sUw?*W+2U$M`MitrRhA{nf0eX+$Ho0; zgk_2CE+;MRH52X2{WKxF$)s1ZEZuceA<7rnR_3!#wv(2AS0T!AE)gZ#G5TjAd9vB$ zuju3dO<{j?U9{66^=zTsAnyeK_ z{(oEAGI`e0B%R5mi>NcQl8NuN50B9o_fI4_ z_?m4k!>`X=Ios2DMt}!zk z+mft(#vJ@x#w*f#>Wc2yE^W!qpdS&xuh#zAB}p3ZTiP=6G5QhvTswW*ay(IfM0pgS zr{1UxPqZ{Y$oV6GigrdekK-V%rrzj2dRt4CaoN%~K|6BoQn!}piO3!?#V^@ETF;U^ zPv-y0e$m`ayP@)HQ+?dNz%VE-ek~}*3*AzJ8oOc@G`D% z`3>V0`OWML%_STcjhjt{<4Jy%X?}?HGHAN)_t9TST_!)BdZPF{#;t53jf}RD zw&_b-$_toRaPSqTk<+edGA3H?AY$tJi|0B0pB2d7MSo(Dd0B?IZ%N1Bo8}+b9_7C< zQ|}LbfbEfg(4=)N%WqBj@0KKKt~2Qb&I@^k^Fnzq`@@AdZfhxhcUzLtPnm2h^+KtK zc?iX$oIh4D=SjwxlHygYL))pe2M*k5_FuC!Nx9#wc{BZm-G6SXhb>J~`W5@f82u_M zUT^Y$rmkpS&iP~VXC`f;E#><0mi#4@Lps`I_s~aZTrts7oy+x!?6@T@)n9U*VQeAC z!yxsM>KDjI%qPPiWz3>D+vE?^Zt{?6UPir;j$#ZWf43R>8~P7xxVK6>*QDfMW;;y1 zp4M-dzCixrzSQz>oDa$$F;lSHIskAeF?i4nNIphy53}VynShs73w>bZlXVt z|C;kfbu;acM1M%$!Fgix8m@Pgm|G?L0QE+D!{qOwEHcKH4FA9k&ZfW6&9yBh+DT$Q ztTJ~?e!58o?JO0ZJ>-w1(J_nb3(XIi_V>{~$mmNcS7>Jx-)7t+V;_=V;Ev}!P%y5f z{1%g+NWLtf9IDf)4~jSQtcA^6%3-^mPVO_(&ohu@w{d*zdkOu5 z#u_v7KJIha_eRtGX4(af<>ufV`WKDgGcTc&Yg7gN}_}O6?~7ck+ey zZz&T|zKS}d!gVR-x0&J@+63{OKYBg$GP1f!H?qB4$8!jpAK^MecE8ErOTS_2_eg(1 zIh41vf21?G-f)oT1u4&QH?SVn)uza4b5u_?sYJWVKwnGF?-RB>Pego9pXV%N;O$&r zIKVwkDwmk}e-hJEoCESJD362ls1KT4^O82OPxK$g>j!kvACkD1qB(5)+ zoMpORPI-B+Xfp(!{|n~L)WCK+)Mvs>hA=2UpQg%YHRP|7RK@Lw-Y z($KYtGW(MJ0#m+?Wn@RuM;PMyL58nloaE6yKfp2Z}d8{3ZOITDSpvpw>EH3iqXG~eKu zCz{CV3n`ytnv2Lsewb<8#D0)wY-?#!7b(p&#m|{HkRCPp+o_-Qvpv$KCZ|oLI-Pz& zI?FWQu!K6%o-Z-wF4`CA?@XCFM;ctSk{v<2qy1=8bnvW*u2-7U0s0%+lcwV#*HrXd8lEnO2 z`Y`Q;#vLZ#LA#*+hon5JFMjxae z=;s+*vgM{&O8=tt9+RCyKALYa>3Pmo;(I9Xr@v4=d`V0B151)*8_n=Tv@iO%nVf4- zx_)iS+#{ufdzR$WO#gn$qp{Cq&#^z0$&=Do%;eomQpFzf@r_~t4SlL-DUVoCQCfSAzt@pKV>_V z=@UtxG^2I;1H3qGY5taa$bQqL%)6TUc2k9djnrWI`Te6#FX}Hdp^1O+zKhn=A z{imbvOQ?R`bUna&4Buq>ub|(NpKVHuD35#>^+xJ)S1^B~;MrJWUTe;wy^wX9c&^R3 zCM4Zy+VAH&Lv_p~`b7GV;<;OR%_LpBCt8|Y*e|;1BkBLXX`i+&N%aWR_zC@kjO$Gr zkDHjc<9)EoRa}?I&NHP`Cz6ykhak^-;~}(J&?W5 zqx^8k9wfF$yDwpAEVcr>ff^-@xE5Nm;RCGI6rv@ z=Za?El9uwVw2OSobQO$qRDWU`^j8aQ-9Wr9=;xY|VXmVV`eqoNFEjnm)9+~fhpFsc zlBCNG@8CK@JI9rHzb{?J_(1t>rf4u9BEQyTV|_`AArs#-C}z`c$lhskwE-qCGx^6^ zM*paZ_baOhXfI^EPLth#VJ2U_ElK-Nxc*RPJ82&?+0WPpZ9FeZ^Y`=zs?3!V&ll-T zt`S*dO6M|ekiE@RXHg#6cNlkw*LU$bX~A3~+3F=NX^8eggZWUJcbKkSv@M#?ns)9% zQg*|?qPZK9?0XS56Axump;Wn>qdbPMf=(ML>EZH}%*ronrrl0Qa2 zqsewsUS}%IaZ>s(lkcM(3Z5+_o)Z&wkkZj6KZbSkP5K5I&#NtW5s|NS{ynE`DeZ#B zdXsLZ-K1>FXVd;j_nMqOlj5hQOq7i4L?*d@q-&pvayjdy@m-TOD331YJ}KR0vNOp? z{xXwx(oe|lG5P6zyca^=0R4r6xkAb>r`?d=Y?_N{Pn2F~QgfX9Kj-e^evrL=B1zX; zlW(3#k|s_6E4W`_>~PaHOgW@BQ(DgcG0J=={ogaiqx2KXmzd&kmXYqJ9&(?_M(Gz6 zxrz7PvbE$R{_eB*6603Rrrl-4bPdsdDBf(UuU?WQztp7hB|L+X-fc?Xrkydl#iZL= zkKsE^{&~t_@{6W4L3xa_ER}~$_V4r)il?a)roJaWgEWeVP5uS?3-LQY8T}(o+EBVS zn1c3~YOl%YODX2M_Y*PvDO2UTlHzF-?}K#D-orQ2fZ`r?QOro&NlvDTjiwD%JNcX(>LvB+2NQ$u6PYz|E|sIGXin zK41p8XG!^YTvsSQX{vw4{?P1l>xsy|YDNq8kI8%7ZA7%MHF=_6<;~O^so}oO{D~g66doE$y%4o`%FTiIo03*Biu?T0jM zh96|SqxqB>{RQoZM$I%|K|bR99My~29*Ji=8F`bbJk9lh{C@f$>4O{-Irn_Y=yyra zo8hl;Tx4%^H&F&tf4A~lwwI5(@6tag{+w}uD)XWg+|dj}HjEB!Z{bOhVWFz;ic z`4Y;ZV4TY++erT>Oz{uoqw=^}!~1?x`BxLqb>+phJDPLMXu*E4gFcdMe4?eeh3fz@ z{}f-R&hn3D>U*`!6FK62*5)_ZFB;!5iF=E*^BgS|KBJJXyO{Top5PeJdsUME((GHv z`-d2rZnFQPol$1qmiYX*|JEf*8s9es*OcTuW6RX~yqeGTabVa~ zZYLk0|P5Z4Vx zA28j2$M)Fs3A2xDNAg#4Zs@12q;v}N7e-Fq*0SkUyv{=W4q@e~B}vxsnUwTzWIM$7 z4dQiDaVhPBZrW0Yc?~M>ga=(xU>rv3Q(x6YI z>x-s+2mOQZLEhrE{u`cM~f^6cU6lhroD75Th zFRQ~M6nfv~unCC3pe$ukBZ5`|9RvjxKYU;BTsiam{qcNcGRb6e&Xsd=lAI($zDVyy zGmbh@@{gO;PVh%kw;=qK^+D>7kv+kBpiSA8{*#nD6qAixo_S?EwinrgG^5EjCixX6 zjAPkw90N$U4&?*I<|gN}#P_KWkox`g-yjy4x+(P()W=a8bH*y=fy52{&50L2q(6g9 zrkqI0K1cGOupWs2Ca>i~{tNB^VutaQJIR-0J&?}#mT$D2#G{SdgWn(>9~Y;S4~XQA z1oj=$yw;Qjzeno-+P;&#M3`sF-!dKX52pPyrlWhI$$!Lp!@Woz!|PaH$4B*k-@nJQ zkw0R}l~^9q{v+KlkdJ3Nn&+FyI!U&^N#{F?uM!XBOPcijzHl{V2<~#yk8~a_`x9}5 zzs9&7nU3E5=7(p{p9^_3-D4;>Nd5H(tdEqfvC2+cQ%*2>d((V)%t_S;f0v0oqMPj> zUA9R{_XU)D@q47>{E~fz1h#wWuq{fMZMu{VX_9Y}t}mo=l&-UOC{L9$8KTYaCBM|T z?O6v=nL+BW5FX}#(7Dg}&50A#7r#>Xk9Q|9j{H+B55*ZK+laUzJV3r9n@T>zUrK!j zH<8~V^>-g!Kjx(Wa}%#3FOcnL!u>1SrB3$^XH>ZnDXw2LtL3Y5d&8)7TEt3nt#oIEt4{?_Iu! zf7_HdvR()~nY=~5p?{8PUO_zJE;jk6nU3mR0y=CvZ zKHpob+jZe{q!0cD6K|s4LiLXATeT*PmfurKKnwpmHfRf(6eZYY01`qBN3X^^*) z&oGTyjKf`Gid%>a+#9C51np+@*hh=s%j9gklF`PN&V{D@3I7MjwpIBuL-<`x*oXXv zThD~;S#Okk8vifSkMLU)sT0L*V!{RF6XFN8GZ+ee*u;Hitm0Q1bK*XlUkMNLJH&m- zH~2Mb{~^!O_#^p@Ia4|Az@XNCYRri{pJgLonK&Rj(e%O?+x8guAeg}mlvB9f%y57E z7Uvm|+9}~((uVcG_mz4U|rRz*SkWWbWLHYj@Cj{ye8Qv$&u_O&67vDDJisXxY z(l~}vY-CEu_i$h5ck)Bxg|H0qk`qjS#+Z}tmh4~9Jj{5VQ$cpgSS4q<;>Q{HEXzcu zm?54233JDs6eA}7jrB!3A0Cz@T}bB*i}zaW6RCUVo8lzK;TALgQt|`Ej(m?W*SM#d zj`)}fxA8ri>|ZLB!|MF>ZcIly?->r{|B?15VMTt2KHG=%F0M^y2&WjxRiqbwPtuP# z(fEJx9l|SS*zc`mTrM|`^S3fQjvmkNWpxw7T(=|1QcRv<1*! z$24Byd!+qW`DNmd@Daa*|Cx!OU>+3PoA?azLF&(+Pa@9n99xQegR~P>%e%Zd7aOKJz^$MSoGn@s!_)6g3={xW`t;rY6M@&AZVntV-uk5qpB z9?XwyQxnf(K7_B3Cd5s~Dyd#c{ck!m#+>9w)+RGVv4ioH9dTbH55#f5ro6^}P*!HW zh_HbFhx$fJe5dvrLzMTL&JC;w;&~=Nfc20KOkAGt5jbxy@h+2XOu2)u zO-Qz!N#_auJtI!S4&)Web4+CWmhuD>zQT0b$E5aDwmtcYaFFq5lg}uxHv@*!oMpl( z%!iWLN~-s=DJ%!YHpUIeGpX+zjt`R_IQAhDZ!zV@V^!b8bl$(1M_iEKWm5mSoHl{D zLrh$W{D8lj?HB2}=5c+}Eu=@n=ZxEcbw$36iE~G|KZJavkBwy4lCQ`|O|uwt(mvnB zZ}WdBwlW!IONRFe{EqEG0{bb19at{1O_)zuZ}G%fT$6Q{{YNVPQ{+4H@0sFjQI+NpXc~EMOd+UztEGrJQZzPgovO{py}050IWO5!ug*r;d@FIzoEa z)vjcSc$RS=kbm(1V>>|iT=sFuuQI)2%t@GOiv3tm=w2u(wlzAY72Ug9;hacBz8c>n zOgDYD2MOOd+2&(T(s`8hOwI6Fwk;IvwJO;~_Gjt1r6g}8Mic%t#{P*kziayJYos8i z73MAEFyqf8-{n4Hfbt8iO0!Ek;qNewhgpAg*&ZeS#teQz{ep0=iMLTM;qGRAk@lN@ z3-TE5N2a`*^+tBL$$!rJV!*mdZ<g7)S6XoqvhSGv(cm zlx-A?wJQEt(uFw3wC`#;iBFjRbHoYx?@V}w^r5RfK>r4l`mf~sF(0z^jeCncknK%+ zPFI}I`XDSaZawk?<&ma&!I+al&lC$u9~%EPP5N3%d~2+dJx>0?%`{PYj_@0{U-V9) zyuppt{>f14^OoaRq5l~saBfEiueK`gM&?1-*rfBAMT_-8ev#=uO*~M%R%2ZXggZ^T z&!kJ5B-KCVu6!0^CfS!w@kM@*bl-vBm-r(zYV0ej^E4kPrgAv>i*((4a3<@I4(XNn zS5we8NOJlp%Lkkvl$?IAGWadOL%7+*ukbth`$#2p$WIL4cm74TCwPv%B>uvr_Ehz<*14%9QW0ekeXL&G*?pQU1mFM~DwP=bIESxAhqJ*D%j| zCLIq2+UDXeH1Qnr4S_nSLK`lq9XDxWC2|}r#V1K8@{>&G7UGN0H!05kf20$Q4^8$4 zSg-O>@bM~*5$qW%T zB7N}upTrYP^J3x&^#zphu*qLy9K~Nv`#IWCXkKG7(k1!+#_!B>QGCJ##T3KmTGahW z+$Tpk9%5ZSU;8OT=$wbR9oc?Su+EZ>FUm7WKf+Zeop0{m-{MsXl-+rz;IniYm)=~H z+Q0EQmI>E1k+!!CpZCeLBdTXeRL4{t7wk(M5l%O54%;<4SDKvs5P!QF+)13#VBaQ# zQ%$x%`GsY1o+02nX zc*n60$QEP!L^>{v+q9}aY2|?}u5a)?X_CPyCf%htV7q!;OUJABCcW7z*_Ix$ArhX0it zj9-fNM!CJo_G10ujxebn@108dgd>fT`uU{u-GOP6@+1C$c%!5atQ^G<#pjG)jsKOW zsZS6NF>VIOb+QucE;{B!z5@9HzlX_5t9a^ZX?IPWMLwaNW5VUcSL$-%PiB7P2iCS_ zh`6lr*Hb<)e9z#QMz~jw{Tg{x`8-1*Z4$@}iNsyn=bLaW-wX3fv957fvOGC$ekJrq zU1i-d7Z87FIu{dLWW-vE8%?;L`Ovt)WXCWamMI8!jOK<$2?lCzdGIG#UFf$v$&cuHAwpXGN5yBNPd(-GcbxpGHM=ip>T zGkl)wv8)@yl+j9jjC9E2qzP^cZ1ZaSrL1vrYIZ(-FUD9Q9!3-{b{+ zVTRA^dxNr$)ZaBUSa+oIk3kBEQB=IGcQwPa5|K^?)qKIv{+` z_*+;nxV4ENvM-qOVA3v!nd~UONBFvNM>0P=)1{3Om`M=X8`))U#DCY_g!=MqnpvrKO`^&>(s#R@Iz@)q|Tlc(|;=|Omw|3OKt z#UEi(`y-yuc8V@Bmw3D>zsdaa4U>P3^uT|49hnz#0~3~G9PZEL1!B+W*=Ln; zY?BDLl%%Pax?3J zVtLXDH_7COkxmrfG}(7ZGxFTTO-LVx?UglI7Q)f2H~dn>1m(6St#`WbBh_DCv4lI) z#13hL+U^p*W%4hO4~V-NzZJiO`#WiZC*NfF+|Z14!9Q`K8%z;Qq+}A<#CKc!>!|FplB-R?i{t5%wdWB$~J)=|c7? zQyenpq&(RaXE2T?^?l_OhDi7I=ev_XNcBXR$#Ov@YffVwkgf~*ZCP&=w09()Y#eo- zgk@^%vjg10wRMTJ?98$eslz2(f%Qf@@0op;ad>Zv{aH8U#8$E&nEX)2h5b}zUxo-9 z8}|i4JIFtzeD%+fCKM}^4y1Zm*AOK26YiZyJ%!?2lj7W*-s0XF^5T0YP9`6a zZ(ve;;A2Mwpz=H`%>+v3{jqF!d~P9{7S~Xz`A01zNmh_YS^Cb1+iyR|0CaE zy%3zqmmxl~f$>{29dVu7QVdaDgQVUWw)6JoGltLIFWD~TSk?#r4U;cUz9U<&_BnufV}G5-bs*V-6ExOHk%D06a1 z?PRtwq~|z9_Ir|!8_ULenq>h0>C8G3I< zdXL5rn2zv)sm`sAr)(^1%GLQ_gbBv2K>ox3mi0n>z=R|CJyO5F;rrm<=D%cX@*QzH z`35($wi!cI&urh1;f2PZGQ$1sOzYMnLwKf3SkL&tIN}pEw!NtB@0!}33=y8G{fD89 zZ&iv-i4XibCM?hQi2r3d2){B>|AFe6!aP?v964&n7{dSAWZD?qV^0!_$N)d9Qltp)nwK4^8|! zzeAW}vOSoNd`IKAATEdvGd%8jj_padtL@KF>gS)Q{yp)=QSRjTxPQ8c?HxsJa3lGQ@Sy44!udnwKQ{gwEDt&dCBA9mBg9|$UkPiP;rWe%^^}|E zn zz3JaG=A=O$OXs{=!4TcC+O-T3$#W^yra+2^-;K}mFUly~xwYT0P6*qPPNe=k?w}D@ z`4mIsOObc*YngZ}`7gJaY(=(j#0jSOEcFo5a}j!7+Se#)UyJ%)NrxE8;1*MA9%NrJ zVF_X&2eW?o|IRz#&-TJ`@k(q*vX^lilP)=xbjfvWM-rGH;b7*2o+TyOmSdItt8A}m zoN3biIQ==~KhpVR9eY;xVhHy=)0oBY&^g_t_CrBzE4wm8SjG5ji341H9wK~Ugy&as zooqbmm(Q4VzNB1?aUoA7r~ViJJ7R`NT_tXLwqum5ny?>vhwO6Gzl)flbB{^=Bg?0l zAH83g!4<>nW$0YTuwbC)G1E`7HJG3)~gN0Aa~d(`SgdKlz8|xki20 zDmODk=Wf%ROZ|fOY?Gf%oZxmafuZy+FkQ-uc$Ozk;#oO`A=2@4JdJgLTbw+DUzT(t zpJ@j3NI&9rCOeY+L-?xkKV*K{%9PaClC%9+JVO-JO`>P-$ly8SUL;P4Pn-OgOh>v- z)IF!=q}b5}>N@eiul<`L@}>D5hR>6r3_1kbY2t1q7V;C)ihR?tO1cive1?2M@v7-R z#rBT&LnhrPQryOLG_Esk;wI@jO#k=%4&zqgJ}XRJ!VG>r<|JK@bC(b|_zy=b={~mj zN48)22Kj;h&89n>e1Ko0_A=>~iHsxlV|VwHR)j4{J7U*#*oLKdpBX+!r)2ra?lf^0 z^P^3kOE}b&%MugBw^=tK9ukf)*&+NM>Aa5{PyRz~YH?p6-%%_<{vrQV?No;7U1^#Z z5(gAV8}}9R3E|r&pUM0vZZiJiF(=IjOz&4L2Q#>rO6G8{ltk_akq+^c@~5U)i{-$b z!1^JqPTs*iVoJ6t36o5=J?VtMmvqT9CjWBFNowcxsAr`8Gt;}DaSR?a>G>SR6D=p{ zIUU9Ij3ZoV8q-=%I>bWaWu`xqxIyqzOmPr8nqjsx7Dq*bPwl5JPw87A#l z``3(B&q-@uOTHprS{q}C=HF`{F+}?n(^x>cK=&mx_%GW%iocomlgx*V<%ymlTRlhi z0?MYmV}{4e8= zYo&XmQC~XAFEgoMSx%iIo!^??^KAceSM7X;XtFPn@TN)eXb@)^o|n3C)J3HCaYY@o zAuL6@kk0poJs3wm#rS2&FNB{lFFdi4Y>p|&dr9w?NZY&r1@j@RrTY?ekCv2I8-Eh> zLHA%uf1XMGMD*2mws`w7yBkfPpcCUNUrTd`CM_I1iZ%T&J zxWl;XDR*d$nfM0rK=HQmEKAb;H~uZw8}T|byq=qpHh9ulS&V!`ModKK_{Fbh+%d!j z;c}DSdy?J4{AgZf@(0G86n`{1c`IFFCHZU<_h$L>TebfZX?DKyvYvYd*sgev&j$SJ28$vc`Y6G!P0%!wEHb5ecDBm z-)y>bn2sK0Nz(B`dhTkvPe;#kl`e6TbY7!+N8r1hk6eoM$QH(5K^zd4BCRMVo9@gp z`lqvPpJBo`nGW@-kj^|)JW77UQSV6Vhu*t_-=TA#=}{)6&$cezD^2RxkW)8G^={tV zmCvjb-0FOX!C5As!+eO|gyWbG?u(Qcq~o`eI!OZO%_Tl%+%v=u>Hehj{M>ZD$)7-; zALQ6hH!0uaC5)pu%XF@4IZ5rQ;%9u1_I%TMj_Gi>n{o@*52-(0^-jJq`lDV% zJdpYsd(N#%Tz{8%1HdcQTHQG9!aunBG;y z3GQH%uS9+${+V@vJJF>3Jp-|kc)2O&vV6GxOgNADAU(e&9hYU}$t$?;5)aweq<);~ zcrG0m`Xz`9@{3GHT_feMO=Kv2@?7%MP5TV;AH{8^9A$p=h=UYYn>L>-vlt>LHWI$f zwu0(im;16^&LBPVabxcYBC^t2p?wyk2mqsl=n*V`|%rAFRj!?Z@1z z|>EMKzUMF!(H2|o&njPP5D9bW0OxN z4)Cj+uq9;z>G{Vxmn;50)4Psx1y7tLTvq!!L&Q%QcRTANpRZlS5b^gW97($5+oKhq zjq&cdvFcg+aaTTXZ1R=KAH4?D*G^m`-VyVh^PxD8F%lr+lTMtuq;UGH^IGcJ>e zp`6EO`N$L*aYA{p2?vtTD2SJ2lT7&&rbB%Z#a&k;Zo2n6zrzgfrF_X;6OLhdNbUM? zH|q&c8YKML#Aiqss&_#?MmgMkv=aYAzQI%fNwHaN8-^%9ZL$r>f5bIwBMdS8-CE3# z<`t%K7G(`#s>u%`-f+*1R>E!kKe(Z;;;&;J5N|Q*{A2M&mWy;Atz>(tEY1+_bn;v_ zB5erAnY2Gk{gQ^~U3Xw!Iiprz2Ts?++&L^q%Gy5}A}&W<;K@%J_J@3%&xl`QI{c}o zpj=6p_F?5(h8SFG9I=*sdlUY^a*+B}#q(Jv+;?i*GQ_aI+Yd*%kDWZ@nxVwyi3d`C z79S(uklOKKEAmjbFm5I0h2P5r&-W<4WQP6DmteYF#Q(s(U;8cjhvEG>W2^)83={F3 zzpv1?@M>c$G^yR@d@&EXwda-R0Du$fujIPpi6T*e}(p`eUd50K<0f z&Mltx!?ZU@7u-0O4}U%57~Zclj&(*DB^?;H`_umDkWsFoF|AwsfT7%P$_ptENcEgQ zfS93Vn~-8jldkWi_p)c(Qm)}|V|@@-V;PdMT(}KbFAV#?UCQ_HXYd>OBcI{4Z6Is1 zJcPrU4{=qtOQ8)Ux~46W|CF3{tMHo~u4R15a*^tH_hmlId#sNfSi59|^R*)`K5BB} zAmxrGezWDId5-DbM*I-(H6>+IGN#MmT$A>raS!H0ww>`;l23>e`5vx*k9!z5!t<$E zmn~RFgy#$g81!l7c`m1sW|SO5Nvi+S^{#B%m=m`zzsKnf8TF?4 zXxwWp`sGrmax5-6&wP{qUuYj8JtsNc&mHz=`AEkbaUYh8@@vNL!g8U$B@%Ww!|S8$ zGpl{)a>NtM`Rn8)W0gM!uQe~srZ*DCy39PVsfjx-^>#ON$1fs>QYJPdE0jo zBQ&2fx<_9+>_??}r->)EoHQ>oBRmI<7@6{oVJGPDlAh2OtMyGQ$K z9RpUhPeZ)FMtfT4rrp2zJ;LXi583g?b(kh~xh?h~uE=*V{#}-jbR6m*VI1)l6K-Of z++$L|Pxo)qFE5#pkI-iivrJruI3QcfxK~D;g3XwWT+y<;W%8g8TmEXzoECcDfncI+g5zjELN1j0Y6d9iP zy^Z;#B(FsG=pyac{Ho-){9>dMKHsYDk4oQ%of(JQ(_~u_H{?f|a^DvBdEzG~V<;|| z@D+Y9^>VY7nU3-k#u0M~3yh!7dLXQ8++SEo4hts$<`%aaFj{OXyc0iwkcO6j&Ns~;qx4SXQX!Qa6fYu-ywXhw$d2= zg>WU~a9fU<_4$lqQ?^gI?f7rR*Z3c}H5r!&_$-raa~UG_s}2+SjMUC_8GYDg1%4|N zM@)TvE9^W%x#qilP3j-&XA&>C-_-75h>RFZxwugu5OM!9VH(R5+I^CqA650G?lXS4 z39m98zA)}xdm>A3N7#>Lm_`woV2toH-M^0fiWl7GxMt1y(} zesdtxq{H&$L%x?(-#DhpBTSRYe3qR|IuDVq>%{5AO@2|M?u`;mXpK@ejt={i1 z&TUjmh6pDc{}|(N|1jB7W8@pDi%TR7G{yLV2;rk_L@jZs^ zwmtbQo0;_defJP?lvK`t$7kVP#geYCrR!Xt7>oMOi+|tb#8<)!Cfk^}!@WIH$<|_A zmNaflrXjLVkdk>N-M?0BL_1yBSBQI(T4dD zPyL6lGcKwA|0JIg7Z|6ySiW7O4pu$vDL>*4GwHq)cRJ(pKa;Oc{NQOHNTkgr?s%pn zJYv%QqyG0S7wP>^!*<7i`3~+?6F8=-yv_GW|DVcrn8f#pGfdc*aSYq(EAUxTJ(cRM zvq#8_5#Ft2isi_6A*Pc0g}Jww51wffh>^HWOwK-EoQ{V|XH{l@0 z<*R1cK7X9;Q1-5^#k$Kzj3eGmI^jm|H>upG{rm;<>7T@L^h%=@SF&9o5I=ESGad1H zmV@-XnRq7SaNjZM`IPy(#1+H)!nP)^$Y^^@yo=w#Pc!Lyk-vy>q;|VMpK-+7O*-!L zlzB<@g8K%)5uPDZS(9{2s^`;l73TAuoHbHO<#gB%UW`0Px{oD2x48T= zP;6z&?U{~(cDv*gYaDOoaBKroENjBk#1HQB+KLQihxz6dhO%z0K7JYQ_q30KKh4A| z8HfM5iL)6;I{zOg6Ek@7u~P5X{J$AT7&lf)_j7p4pcJ32oy-ua-%v)Gm3RgJ19v&= zDU(e)zntzPb8qrJ(s6{R&J}k-Z3%|*`-x_Q5!w+WE}m-K_ZXL#nJ%00S?1JUVTedQ zD`92gD8x$&j-M)rGL(Z&pgcLU9BbtW8yf%a2*>}p-ndV*F7o1hbMmP5 z`@ea#DsO>26n87%BT_#}IK z68Q-CcgE#06MoKoaBrIU2J<5QK4*U@8D&h|Atn+lN%w8~2A>h1=l5_+G9Plvp``vw z!~50VoydBlE=S?UQ72ye1Vpxb@$8SpZ826!#{-4R0Md2RxF?^H&d<7)nIFa8wKW;a zDkkH+k)-8>jNc;vrs>}@=EU7*@*na&Qau^=W_@K-@(S()(jpnhm+~z>%T2Xa7)qV) zuuQAEhr7@D0da-Vy%-h7)we49uF{kU|hPUxUS`-QEQ&f`9q{~71tm} z@-lHkxXDDehsuKtF}%NaI{O>>JTX9|y(fMGv4Pvhr1J{-F60yZvbB$x7sVRnHL{io z$CKa4eq_@1mi$D151spybX_&|(@OnP;|s(agEvg`u`ws{7~_7=`bs(;*q#{u|AZAt zBiJFBY4h#bC%)?`@;Kv(kEDLQ>hml8yN%wV zBkgNUIF;pL*v>eab(5V;x^L9YVjSsuci5G5!2N~w7uwL0&i90W@)>a@@&)cirXx_l zSEew8f7s}nhIFTy&gElH+y%y;L|o-dM)#PBo^d6U7w38WXs>6+@lFKkKSOy!IJ34X zL+BiGWj5mUM@8{*HoQvqHc5YgH|Ox+v2$;7?|=OX8&%{XH!!2Rbbqz;3s=UV#o;p^-w~d}1R6RfFJEQ}{ z_SrF`)=p39eT(^I26etH%XE3OMwxIZPBHNu;)>#XCi~P_b&pN?N#cS2b!IN_gpoO$ zm&bmmqmfAb@_LJH->AZCR0`eBUH%xkOPwzFx(ZAP} zXAmd2Z<_L3jH4Y)^DOcoj`AYesL8LQ+#o%7I$w-&geA#m49|D1#An3$#{Z3Y!1Zfg zhBBe{kBPKdF{2i!^JF?P5Vhfv%3)ZVI3n%8v!lp&v}c%{p~N4Vd>h6Qb~WzzW7JP$ zZZ7X}k@38MNxBr(_=?VT)SEP_{Ms*T{E-eM~x!9Zx5}k?xbv#*r_G)Wwp{D+TJX z$|ys`GmYD5#QM4%LVnBZwTXN$oZGLgz))z5R<>e@RIlYz$Zw?b;jf{-g6=_+IN5mC zO=8=0|3SS6_ZgnMkLF%x?yAHI#r4Dk!~IKr9x2_28Ct9ZhUeuzWE+xQSXTt)4KlWU z>3)p&gW!V=&EpN;ZwTERB?Z_2#BF2Z)-8_L`0Z&XKc6@tJ>M_F*FH#}s3ayQ2LZD~B>j-}X>yOlbqQko;WzjaqZ@_!RkS%81Z1NP@$|mU82Jthk zivJGzj&O=`#6&v5l;bF0@R#zxaQCww81^5%jeJ8mm*vXpEJs!}{!xAhcVaEIGgn|7 z{y!$2rwHR&28PG62anRnder$<*#433|4GlG%&(*TAl)yOoyKQ5qIM)hbRRbpc4dDe zr-Gec4Hi&Vcc_!%U^3Jk!FOaMk^Whk@%S=zlM0g>6iqA^G#}x zm9)tu|Gx3;H>CXs<3G)NUNH4UGnsdZN?Gzd_!rm~;C{^dAgo5-p&&*QNsFZZX5n$> zf#0)LarcsL$tG3CAH;LP5ht5$1LTCg-?DvfYiRE|d06rgtv$!*z^rG9B(z z)&*g4Q$5RWRX$&0hUf9we>v^L_A}``pudK7N4V1XTN#I9CSkU53yBNTdFi+v^$W6- zO@0yijpiMueINOaG~T_N@`1sa>G4?x*P6LJi(RrWo0Cpm;AAfEL6pv0W0m1`uSZxv z#9x~9TtK(xDCgBspHEBIy*=rW_Iczdnk!AJOxSUflW`lFVi9qMj#(tW&GHdmGUaB( z3wqX`r27xMXHq6no@jK=T-+_>o7B(8@YKB$S)PQAhzHVstV@ig_^Ju(F&*(C=Ev~- z)5-HWF2bDqP2E4upF3Lh$ISO39`GDnN`9$nJivJu^q(*}@siFZW-yz0AivEN7mqo~ zpESMQ7C4!DoC%aA@xSDM;FhXw%(^1pVXA9pj{VC6tRKQ5#vRRkNd1R=hkVB(o-Hp^ zCYpttPIA&AHZouzBB>vNAJ6Yl?q(WHlj1&;T}&RM_>n0OU_PYd{&c=V_xM%zW_bt) zoBSs&C(R2@aXQOEwzY}W&k{Hul41S+lToMp-BbU09rIMjJ*!cE(3oZhSCj8>KR5Y2 z@*DmxQ(iXaB%EXXjeL&=ag#pvqZG^1Hp5ijJ0|5JruhbC5pm(DJ?|r3H&~o?MY;|b zGS*KXH|}J%T@=faUS!lE;;uAvS7(2NowhT*rKsDGrWZfpcPNiAuF3C^A7Y9-n2!E0 zOnE8u$!WD?7$Oqe$_wN(Qn}GIX%cJ6Sug2yO?Eu%i}ZW+) z3S-stjLV%E$AG+*;^(HE&-Ze(X($#bXe-F@Ji+nA3FTL7#I!_uk7CxQzQfclO~EoH z-EZd3rHo6uK5#0Z5l>C=8DBC8^GA9WaW4^D6hAbnADMfOdKjr6RalmEAiW1C9d8W#FFeb3D4%8?1oB$?Z2QuC!sy;n zanxN>e%1KxTTaS#%<#DA&{lOmx;c$lp`32~Eapcs*W}l>oRq;7pW=ID8=7Jp#u1t( zuFrCz*i`YU&kuyxN1c?1j#cst$v-%i0mQ;|FJS+Vc!qK3G97(lBkg-k|6a!B22(PR zq`1ee_`RfhjG>c>EDz-|CemgUzmysFhwl?7If}fO`g~OCrxDH}J+h=3UT0|R!nu3g z%Wn{-j8t4f{1AUuqwN$CzF%98AyT_+czjIUf?{`&(X%k6N$e%v$5lSgbo75|BA+GQ zw_iL+oDl9YePSw2>Q4zHwTD;_4A1LqMxG&FXTr0i)pL*CyL^vqEy^9-?lsDugZhq( z-`SMwlHW-8*OiMgj&y!J{*&b+Tbkve*toU_L-;S4Fky`Qj6uA_zd<_z>3mz)^oozKJQ>R>ZAu$|V?wdyIMIqT0y}F}&aTJ+={~n-s2HR@NdNvZ+b!4tF!-@C%INJh#M`O+lVWT+w8!6ECQ*yM!H0{4&#p`cKM} zP4*+^M>x>r+w(gVJJhHj3iPMd>iRdeH`~`y{^5G2e+Tm+Ty5IZnU3;vCT$0vZL0Dn z>4LkWR$r%%7maYA-N^8HVd=VE^Bm%Wbl+D0KFST+(R7KYC!m6#vt`l9FjtAzVa46G;IUDPjf9PyMbNRJ$AQoF@n$v9GfzjR(P zTaGxut!APzioy!mzc`ZF+Cf#2dPuY|9 zYo@=5xT5@v>AucKzC}GLebS9|{yKb& zJd%S=^E}EA3i4MPPngadEhp`N8_zi{`GE6_(p$nz;FvF?+nSte+()EGO4`-30`bD|ImXk8BT~P^a37zM_Md+3 zF(<`##vMR@qMTuhoA@4W#SV@6W^gb0jqD!NC9ajH86v)Bia+yv#8*uDOO^}&pegyi z^eDfQpKh|xuw2BCSbzArW_Ug2Lt=^H^Pk=ssrq@wJzMlEXt{h^?IMNf@fUH{)<> zd&?8VPA+Q_9TArM;doN<7nJx!n4ea;sq0a z!#GlX>G&-D7ftax^C5fFbl)Jp$f;MQNvx$Lo|Rh}qI<5%4`n`twTxRZ%Du0oVQ-V# zwdws#@kQ!Wr1OhmW~+KHj-DAH?FFWIzU3sHXX*Wo@`Mg?6Zf8JGnA6=r1Q4vQI<(@dc5l=5to-9rAO(>I=&NRx6V{&%K)mHE+STzY>noxk!s`I{+;p%gC}|17^p z{-`N$VmkU~nEbPRkMJMTBRZx>I_?w_CoPUIxhyn%c~_hHj{rR5|eHsW+H z25qjbNoRReaQ;)qt!ftXSxVk#DGQe~A5i~F{${Jvd4}b~-)q{li8J!UO<0>aBHb_I zwGW5;AF-2f5kEPcG$OJuk&<#J*|sJ>fP6vtzHw)c(GQF~yTCLVioeJdH)M zuJUb`E5t~A@)thC)p~F7J2c)gDX#uy=0l&dSb2;g!d<3EJ63eARkEc_x*y2R+J$~9 zIGj8{P@50s=B-NVw-kwC882rH5= z$TzQfhVX}&{8+}3%`|0~xS(^fiPwzrj6d@9e$%GRN%wuzUYzTmSX3LwP|A;34zgNr zu?0>_O+)*CEJuj31j?}FedFh`e(20L;V`DdEm_-|?NvreJBHU+mT9?6_BFlpTRiWN zGC6Acza@X+-#3nP+A@A+GljTGdu=m;p|tg#VoD69uh`=_%CO9#?IZpzmMbcga<}Qs zX*o&vRfo-5+%wSP-Y>R8QJF;8*rey&yZ4DJ!kNSp@kJ9>B|lJ1G#UFI@xi2WnO{wQ zBHU)W#8Jv;jUO<-5EEInv?&=%zN86ElZC`k=GFq&h$`=~e7Mqdf5rbGpKl`TAbr+P zifxR$i5SXc%A|0OOVV|+Vz-u){8W?Phgdwz_sITX@@1$KF?kj9IM@4R?gTS#bLv$r zVq6-VnErai5d~$m!tV?8sc)tDKmG^V?~RMZ4E`z;IxWumvTo}czku=yH>u`G6T%9_ z5B}oXy9`loN*v?><4z*~(4bu*?aNL7Ch`r%ou*F=rFhi1m-(Ii$Lz#42bsE@>3)np zRmeDJD&v+g4dN&rVk?7M=f9LYVc#q9DbwITrM%Jv>JBM3F_Ggcaf?Vd{LSQttVMny z9BMrEoAl?K)DNr4F^1$iCyoYXPU41U!WNWAxUEfREB2pQw3%7B0sBdG*D~on(1UTj z3mIDqP7J2f`S-|+skA}k5$jX ziqxypAdb@RnLLg;(L1H3B!6Y_yvY|a9dn73Ojyax8Baesv{yIBt-QcVa|Ppwu`D9S z(x41WpSo5$ZA7aTS=6&A z$4qK>rv2q)+A=bgx>N>S-<8gmrbmAk3B*#y5l@*%ETzG3q)Yoq`X8_ThwTU5mrZ#u z|Bv2m6TZ&&hIHK{ofp3<~2Y3(}-Mm9!s= zDl_Q5Y5cq7Cl(S*2@TU6Puwt$c*+MWnkgS&;40L=Q;-om>HW)O>@%hRg6S^cf8cJe zUC2@zG52ZP#)0lnZffdwoUT!15?s|kvYUdW>D9P zQ`y8$+nR!*%%Hr=9O_;v);ALVr?Kg5Nme2D4j{LF+a_z#(8@=2r%;d#m@ z+?H&^h}V!GaBH_J#lfxW{7Q#dO5-k5zS`pWiR=2*wK9)3sbuS#@svFYJD900$}KwH zG$&C{BlUBd&?Jrso0_zo$62PdopB3UFARQW;*1ve)Dcr}+{>&x!cxX9P1@uE6ILe8 zaJ!mtIOB4xDQ1w5XkTK|{StnRIHDl7;(l#B`7Pz|P3JGdQD5DY&GhunA!|h9Y5k|-dl*_a#ZvPg2CdsRr zwObgX`D^3;!*ukQr+&mj%9a$wMS9zs89P%Rk@~Ck_$=-1&1A~3M9Q=T+Pso~+;rY& zdlK4U(q$dQpKfA{xXROPkI=g`B^*GSZPc@1$!_K3;<+H%reW>Te~ zu9Xy*g_Kd5vz=K)3}xYn>F>gJfEkoyDQN@C1lqh(vQL&7OPRr6D3@qITDyWF{I^WG z3hM_qm35b8NE7^9Ce=&XkI8#9&NJ!x-VI_X@qSZ2L4G1o-%9(hX7B;|jdXkwiJ?rc z4Je=D8JC>8SLRVBWeR0fn#-9FmSVpOPn%W>{ztOkneYPth5T{je#Ul$-bKby?@HX; zgmKI-Ioq+UMm$k0-LihY2e+zo?fH4c4+Hk2(s;f`8Es(7Cni-&#R7r$kWBuhNpb9b zhVqI0bEd&(d7RkF_-#yFpKSvltZe#A5P$g{bprgICZn86y6-fo&Q;y}3guM3N?Z|1 zqm=ua0eK+)Vl%jgaisgvdUuguXwEbJG0H9cVSi|7;R_N#}>cYs3Ow>UGH;HEsdRN1x*+XHf&-UYED%k3OB_ z0F;}s-6Q|0iC4Eco+S?#nDATTjYaI|WI+Cl-^ir)ZT>0Zhk|{neDG=0CzdjGSCbKc z>Cje^CUv-sr%splhpmcxp~d?J*_LiHmcBCaU6G=ci5(qXe*YOvY5%< zV0%L2Vbi><<-{FnvQ?Q5r+WsZzCPriB(A8QVYWMYdzvZOCy7_=39wz()|VhBQMaHMZTf)N7JP4lg{EMwU6?@Q;yMm%gm+B zO6rH4QHM%S*{cxK9O*cw%RW@5(k2r3E-^v=plRO9auM$^;cm7g^shF>582M(|Bw0w zZl(E^;^X8a^6#4LBJu_K^|iSSkzH%@I~hmuq6r_6SI9pyj(wb@cJE*w`Hpy(DcK$* z#dq#9oNqvPRWomG_NTJC8MguLBTP8V^tuapf7=4LPzCP;% z|9@`(1MOjWUnp4{5UxlquxDOc*hfzsPY`HDbYS2>y?a_Tzioo~{4h#uR5 zr1uXssGBAIf15HY<=4%UcPwyn_f2NpHpCnLW#Wb~zP3643%{BPyYM~I@ky6`oc!u6 zv)mbzoP2P!dHi_VEtovr6hEMT#5`gv^}(;d%pQNGZs1j>`-=bORo7X9UM zw#k>`dpM3aBvP)#{he{SnmEZGBgWIW0P%0kD^r;t{%q4egZdBI7mVAPWg(toO4^Ll z{gXLv`2|is_=IuPnG%ST`2Ucv$k!o$Nava2g)9&L=O$jqI8uLsbY07@#dJ8zyF7B~ zg38)YFK{x2vMH%PDK=-DN47Z2LjQe}&I=YRQ&*tz4CMf?pE{{BefA_LosL;_0ObkU zcg^4g+B-PzI8*RD`EZtbb;cwo>HJUga_UFK<4kh_zQ*{0;5rd*Esk$vCv4x~QC*^ioWJ<1=- z$b87!tx9@tZjZV_;yT8k#P)#f8_b9H!Q>^}g=Rc4lXRV=Jdm=4aEh68A~8Zy+kNIF zCtnL@F2{S@Hkx6Feh)pHvfY{%mNYVw`P5BObM=3IsdZQ=(# zo1}68LlkG4{EPe!ZWjAXgh|XVP2z|CEVgHKR$5Srn~^V=N}E!8=TaY{+`|-iv0QZj zXR_z{KXj)VcO%=8e9WZ&j*YuX4|=tNWlBj|my>QWYyXaN2={~9N-PIqftf?yDhm%a z#Uhpizasg82@}Xq6vvvlH+hTHk7wZyv?ForIp%WeSm}JbMjShsOWBkG$B7b8Cq8iO z)1-G-t5Pn*_JGdww4dN-u%D9$SSO_OA?dto+?nMdJJGlss7qxxVuWmhaU65V@Oj0X zjPM*Cwv7cQJr^%hCrjDmzfk%YVQc-S)Z6&*In%g#0qq&~!}HlLke(Ykeu)LHawJ2zwQ6H*pXj_! zK4Q_n)R*WVVRj-0GJY5HwHcHz%sbySrm^2cP8}-mQ3hoO`%g*73#mVHk8?)SUXJpP z;}$dFaLN>lgUL6f`}bX&e1N}&*dmS)M-1P8eFyPE{LrN9&~Cu~5$V1P{|3L8Xn0W? z_r2U-^`TKen)rxG$BS+s{#VvCemd)b=BuXjH1UMXYon|O{3*2+m|tk~N`w8Z^lmqi z*h-T+S{}KU{UO=|^PQ^~IPshEd$`}QtqS#pWM4I%WfxTE>*HzU4JI#3or!rTna7EZ zESzY@eV$`GYlZZ9KQ7j9Q{hGMNNUNm#l}=?E%57T}|9$=k*~TXIw@k-j zI`=BW{a#(J+|w*uC`(fQ(?s@F;@30jeLmqC${~sowny}TYvMAb1sQ3R_$|{}o;cw0 zG4tv_7dY`}*A{2_aBQdIx8!@wC63a4oAQd(Pk5&-D0kR_{h7=;!ld&oGY+SGVacvp z`;19Wb~@dxP5fjIWm1~7MWtAUe1|`eIG}M~tKwH6hG@)Z9P!Qn$JM>S+cDk$|6d3q zf`f=iUB>-X(XCZN&PkVRQ&l}*Ria8qT^ic5mA0w2xU2d*R8_# zv@u>M`*gt#;5A+Pd3!m;Ep;>v6j_vE{51C3M6 z$UWp2`d>7~mDE#Yw8xUaYnI$de+B#f%ZyyfIUS_&0^MGO2j!-u4JQ5EOs5|$u9r9= zrE7z_C`*1|`q!M|q`8^t{{^2hc)A&NHuV$JE-~qNW9cg7H#7#Wr2b9wWA?-7-<<8B zbzN^Iu&6h|7j6U$H#Zwb5C?%;cJBI%FV zGHwUT1;Sb^gIi4hM;;{~k!?;o!aZb0?j=8w#w$(bG;GIq;jUsCnjDizI?m0u;eVv# zk9I%#jdZEp=a z@n+N}r01*R zQ5MzQ8ev5DHp7+2e?>kb?r*Z?h%e$U?Dw$b z7_)3!(i^SIY5$OMoGy<3jm){;Y&L(2lY)JxEcqW({-@VTEKE9Ix?p?C3r2s@WHZ?= z!lk4UCX5-bxN}GYcEA4?g=+^bDoh5Uqjf_PxUZnUddz;UDG@AOvO zH7rL4mTf^#+dglD_RJzgV`TX;N1u-->V}UO;_8*Qw+qJbh2;zs;ocvwnZJk8nKO zm*@Chlsiy=&_2zi`!C%P`Hf;S@j+a~@1QuCdWilTP4*S?AEAfs$ss0gJ5-I?m9A5c ztW5s~{h#nX#0$w6lrNdBXLJ1n)fh000}~08c=ng_XYx}lZY)F;`Re3WI^n)T1;I0V@VX3?(nUlBGo6IP_0$OfkU75c--)-`%ppoEi&JIY_0 z^juGQFy#TMKN1PEEZuClvTOtL6OA({=ja^&Pbb~cx|IG3+V7d-H>5k#_)_5(;s$>g zZ7#ycq&rf5D>o)QNaM?wQwa~!cs%7gd`7CzBeO_Xr02(~vFy(vj@uF*cJ zZ}Z7a&WmFnc`Bo>GAEFyGGn^Qse`g;Ez{~^`g#COvBA9mT!{;bg*rblyFmL%WOlSC}sPUef<;Z>6<9=?p){ggK-&{8vr7&YxXL z{lZx4sT3S@%A(y(YYVo6CV49DZA|wr^ncJeur`V*(s{P>Fye`@W9`-+7m%+_zQXNK z8lhN^yu;!?Gx|%EW5hejH>7b}3;G-~V;#ynmTYHQzoXv5zf8SEdsc77JxHGx={~)< z3EM*&->abQm(~rYyo~w@_eb&x#VY)sPzNPEO88OGrc1f9N$=y(v$N9tugUfq;+Y=8 z^_p37GvP&e*v#2{*hv~!Ih|Me*4$wyOOH2czfs)B@1pDPru81-M%NXl940&%eI)%E zgey#weX8`GWM=F`J;kzVrhN$ciN!mZZrW}sST0LwlO_Cs_@msAcp~1+{$E~XKLyvK z-9kU-nq|r7i7&FRn;D-a-;mR9tW0H!;!Wdsq51 zwgdNLejmjdq!ZF}+~v8X3p&qbw+DI7Txcf{eo4JR*M%l5$7iJRNScq3pXih`^&ODT zSKM^nu#?>%GW|PKr{NCgH_(2PdX4X&&Usu+|EckN5I6MQ+FL3AML5xT%e3Z_zi^M6 zIfv4IVzUd)`xkH=gVD21PM*tz!)pgKMQabUq>p?=>sw~(s+=E2wgT-R()AsUVO@=5 z{SoO74h|~)?1w6oi615$V5U=sMb9)!_KaD~eplM0g^X-uvfEjXco}5};Uc55AR+lC z^AQKhcjR9qPtZKa#PfQ2?=kthrE%vGRurEj|B;?cY>=V=rpqtLUzA7FpF;Z@GiL+pHT>cHCc4(1Qc2IzmV{s85oQu? zv>Z;GD~ql&fjTRTPc+lWOKFgQGT{JIFi(~>%^c3}OZhW?2jLdtiuB%$bUrftqsK|t z=|h#)PQy-?9Ay?yA^#AaX}w1sK!bdgkzLHx-G-esS1{QMq#xX`Nh5?k$y21~iQGq| z8~nzk4_arN)Q+X&-~2%G8|gSIwbSuQ(haRalYg1@(CIflz_yW(qdXz5ZXD%Iy4iQg z^!v<&M<~Zw%Dz~NEhs03g3ht^YOWC8s^G#8ru4dMq+J1CuT{U0Vxk)Df= z7gCSmPOTl!6pPj)9=K_tS#ayHlcJw+qZ)fV<38q9gtgiDx*>BLp~nx=IG^%&Dt#*y-O68QXc~i7WA7tdO zbj>o&=gD8BaR(Trg!2bnPo>^UN{8kxA1nrZMO<*}3c_&-XGxO(8apK88>Hmz$b|zk!c8pniJn=JV?G+xZOOiE z;@`<1_$N&@CSDhPu{{SXtyhMeOeMc$$qlCe1Hy}Rov^r%{KY4ia=!znU1N$Tn2*NO z{4SQQNV^KR8R13Tm-K>Ljo-uKZK$s}`~tJt8T79Z_BN9!8`9p=6vvUD*!yJTr<12} zUoz8HApcPuL%PA!)`;7;MxVgR6!IKx>Xt0ng?z@G-OaqQlymgIPP{RdK9p>BiYb0M z>?GgEr01m@R}*)n=keUCX)K2&Rs@F;Lx2B*il11y#FTp&H z>t*zECMS=jb*+ioCc3l{wo$sOeHu;EjoVy?8 zK;~^~O3n*Nc-WN7^BL{gq$lEW#y>{-%dzAWCXjcMp8uQfrf^>Z$4Kj$>|p9KrvAv3 zwA-?j{FMf2AUWl~avD>F(@i#ya*ps%;vr$EGD7{6VoOu5NPU(8(gQOlvY$nRbdfId zS>j}q?w`mWBp)%d)QqNWkoYq3MX|DpYmpD|`)`jcmi(o8&JdZJ2b8rW|0}nkL*uoaHmb8zpHkZkT$8aH1(`d!)VCH2y(* zi1a*;#ukvA^Lx^G*A!1tPSCp7xVzalJo^Gk?`=u%t89NlK4BjH59!+4g!>5}@=-&T zw)R12Txdq`Nje~%x68Js9Kn5=cpzLx9FhISxa}!dSoSH}b2#!=+L`I=C%=$UHf8kZ zDG$hgV!Dr}&SSx3Gj9y-7}E9F#(Tsc1$ILFjA6!@COn;bZt(U(PUpEty2jn zJZ+fty=nR>1G02qlk&Y>cZ#dfhLy6sN&DxN?}554`83mc-^@3LoRcd}dnWNiJj$eT zDi(Z${WiM4Wadqv9w2*{d`0UG)3qMyfWGa_wB;!u2;V0i;4kGk4)LzqJ51qbk{2j{ zNI69F*Cy5Hay0Qmwv=*@{#Rv*a-%#}YDc8^Vw7siyDZ zA;#w-j9XKm(fkAD7SDv?ieq0TC2^H>J~MoYJcc`kd5FYaLYr-&IGlC{i`St41xFhs z#Y~fJN_^lSH|-s%=ji^LS+EE7ShlRuA6WojTTHxVX|4Q(^h2lJK7jDStwH!u>}CS( zl@#lmjP_iXahxOtX(OqB7KyWX>ajF9_an`Q=_ZdQ{~7Hd+~b3lw4csKvwd{lWAJ_Q z0waq|AWfwILzC`v4$GL2_L`&%QaZ+$_`cNJN$1TXb*j=Fs>Uqu+KuvvR=0^OG9T$Z zL(P>4KZ;Y0r_M`B-ia&dvr9eBO5;xAj;={;7x|0C7wLJ4j64?iYHuZMNca)&=&9rn zQvWbQ9!u*$vw(UnY5bM;$HW<7W%}oswxOB6IsG_vuWnie?FG_!j`2T~Zy8URkj53s zb|(GN&puY-=WCy4igIH!GL|+9fwCZT)~BD2#iUl(j+;~xC~ z--F=ar<^0@Yx>+x9hL>eRZ7}y>3@RqfbbKeKB)K}(Jm0048#&(i;C24^L z#7}mgWk$YAJkgj>e!{I!`z|-pexvme?HNXA?7tDtAU)8}Z_A`n>~GM1n|y-*sR{cK zPBdtvWWrALvoP&YQ*ho(x<6;!DwGwpDKnChx6)*}=vifH(gzb)5=L~!k$aT(3h^2< zawhv1Ojv!mvSbU=10&?IjNa0u>*fT2s&mllDiZ{D5`|>AvZlx-PB1nOyrO6y&p{^AvjLhD;zl(lym&Pg3p> zC~uMu}`+@>#lfGhGXa2h#hm-8YB>;%n3sOs8y!-pMB;7ZL_cCvU{PM%p9h zrerGp@0w|o$X_(bTUoNdiJzI`WWiYD*oR4DRWo5Co@6sy6MzUnYV9kPp0Tv)imCxoFlGFeMjo2xpBk1XBJP9HpstX+;aRrI`4H| zj(m`Ro6fkiq)CoG@>)Fo6$$T{;;-Z<(s>GZIq4`TnNGc4i{FLYp0J=KpT$v@E08E4qre*hvB8k2`B%_E5qa_xhVp1+ItkjF^Rr7qf*ek{^>WFyy6j*zbRhbw#RomSsq ziuC@(xFzKr`EQKQjmXF+rop~Ra^{I+pCv9}`Y-^LdDXwxi z;YXuwCS=q{EIH6jI)Qc`jf2fRzAw|+M@fUSFQeI>c={;fDD&c9VLym?Ao+rF*n}I% z13AQ$$1@-Ka^xpkUo#`5lPn!?+BXtE^er^0U7W)?6`4WWNO3Ub2O*HJ$d@OcsNNBL z5@Gt4N#%TmyptwnUmWeSG~PEk`?AW7Oi}h3w>s;=(-v0##dgv7^H62pakN92_C=F@ zm2!^sTyppW|6|?}tcR4}Ggc!W2piD`$q~I3w?F%5^gU1f(IhRzZ^G|m8s{*j#lBOP zjWg*uH~Sss5M66cF<)hh@O?9Ze3!nh%o6Ic_{jFre87ynL3#=EB;G(CqlAnp+I0n_L!h?`})ccfiL z=l<%QXy4#hqF;^niDt<$!`%ByJU$@&(6P9*&*1mrCi6XvJT_FxPaJZUlL#-ePg9RE zmGc~uQ@5q{3h_fm9HdFRD{fD-;1Jqp^nKkd(7qY1SNR@BW}4U{-O#w-r1!<7_u8c6 z@8sEn$7)g^|zE z4xv23r28SVy$L76W~McI*h%{!(?>fdtv2ZbcNO~>_){oHNcUYdPNltoE6I0+3wkTX zCR3a=cQxgfQy7<(`uH*5N4igF33)6_DGSp2hM7a%mPLF=`j@bOLO9;UgGe7_ghkSQ zWA0h%6H3aR`1efrDDn;AHR216%_5F{v&^HNmeE_Ae$IDFL7Og-V+!$ejcf5eXe=0U zvrW36y!=$Jlj3|6uOht2DVs8Kx@lcQ`9<@k+FMM~b+ajU3h6#lPg#{k zJJK$pO+Q28GlUmmJCp9`&M3R$wlNuXTRi1JvW-bkS02*_HP1O}+{3G~AA6 zDS0XLI3|+*QKpNwTtPPOgMt@BiqY(@>RlCCjOInA&sxIHIxjyNS=7VMd z`78Y&lTYZQK8vm~ihJJlQ7)t)&!y82JW4*x`KF*QNw$RvoMRFM{E6GGQCSk4Tx6{@KRwM!7>ejw-&>>ty6%ldnU4M%NBz!A?`0wIxi^An#@5Pp0`g2I8&}f;A{hx#>q?2&Zj(GN=;x0AuU*sF| z9jFh;l(+CFnmC#Cg{SUF_@!~H@_q4?AEfay;vTd^NaKLb+noLd`qnj`vMZhYgmPf;uYGy3C{% zsP~vg9hY>zditvDpHaNR@1bw539C}Z;BF{iK)NZg>ef_aXBC zR1+T|-x0PZ9w@gkPIVvY{fMc*8&(-)d}7Qno^wDFZy~?XSc7^EPg^XhTsBT;89LW- zrc)+S%rnhjQ;rcfuluf(idT4(gEo@Q9OclK)Yr7`pIkbKW7?m zkq$`XwB?VIf9R*qil=N;Zf6QzyOx}No%Ee)iZ0R(ZplC;oK3jUx!?Z~!YJ<%PFa)x zk)B%%q@(y(sn6)VXRAJ*b$hX0=`-p2XW{r=w5~8+|Dar>B!1FQdnW1q6M-;F=lvXq z5N33qJK34^Lwty^Ax5;Mqq$yPHh`rtB$ zIxS17(~|SQjJ(hH&__Q{!mTF%4&@GkzO8h|OW2g~!u{41y~GV^oUE>SqzBsMRfRgM z@oM{iYl?-eFV~v(H7rNE&%1pgpOMCgtFCc>gYKcv2%lE$ly9Gi;U*n}40 zMw~>sg};w{MzKxST3e1O+?|uncKklP`a}q8ljcb8&FGp%zQdhw!o4hqA2jJX*5;d(2c+w< z={il{%j7F!Ej-3L=v!#|uj{3}vYh>#xRq-A5dnT+x+zRS2{_#OFi%`M`3_M+-pbUlyGU}xrI(i`zq!XlrT&`tgz=Xgyt#zJKp zQ?zHB;w!yQ;z`DzNxmb$%JlKSr1QuA>nxYvTE-Od8GaX?aWm?6(`D2rgp*hXw-sTR z_X$7zN<$U*JLVycGZ$axe>lZeNJB~ELUhLYd761}XVw1BcI6z>1z}gxADwoRdkL%e z1hap3auVyxtE?|M_x;OK!Yy-+pT+MW-ekfr*e=p_t9U2#QS3whB0tEuDU?m5^F3|@ zJ|ljmR@eJ*G3%i3T;tdeNIt=YC-^-%!ML@FhfE{va(nGa;)L+M+M`V6soEP%QS3mz zBb_G+9Fs^~$K+#sorH$TK2I5d%T3O@lI~A-f9H1*-!;uo9o){-^dGrqDBbm3NrJ%{0Zf-(t9MZ$JMbHLUZe}Vojeo3%`^9^z zbA;7-!v8WK>Ab98qt{h7WQu%slZ~ewAlE!C8)rffAVN-G(JOZta$dd64n_qf8l>*tCMGlv|m!z()E(gbC={_R37d;R7vBF`Q`YGd~K7h z#rBY%#}1G1J4oZ4rsr1mESR`h>t+gnj&WxXFb38@)i$Ypa?ALPbl$=(BpoDYKEifA z6}^L7(tB-EdGhD(tWx9Y?dRCFXHd1J;W4_wx)6nQ-oJ)Co+Zqor#zA z@SH5`JZt<}%tyG(xF0iL4z2CRRA$z8o$MUKR;-Uy4_u%A7u%6lm?ziqKjN8e2kE*) zJcrMyo{iG;QRnl&T*?24r?4F9dQ@aTC+_=fPg?vhr}4iW$N#cF|I2g}2zzB^rs%v^ zt?uu-i&;-nI!$C9d5d|H_J^t8@wv&2p^S00`Z-wFA}!H*@A(h;uGHhMx;^<{(shDC z{+Dg|Ep*;%cL1N!88_s2tRpJZvZ)FEtb^2F^4AYKaWAqi{AGMbdQV^{JyX07W|^$r zW7g$=NuRsOU-@LRd5bAJYDJ<)?)n=#>PmLu&q{dN2=FPp$Q7AaRY?!7_IZJ#E4#Y)=MFe2?Ywta10V9>P7Q^IQ$T9iVFulFExaoAnVwZ9}GT z6KfBWU(!!{$Rz$pI^X3UBEJz{9IT|{CV$DG6SuDkT`Y&c$+&{~2(KA;6`xVE@0EDZ zU?rnZEoCjTzm`D0i+hCcLC^e(|0mmr-svWhd6KPZ+`4>6*gs2P|1R!NYzJ|%>4fVJ z=EGB##O+b*W-1Gbzx;c$Iftoyv&T@^t2W>wrby=(Q$DzNn2-2p6X?5%`-h27FdyL! zpU8oR_s@8yir`JkE26n>UT=jlRVzPxNAWkFK^Ivmgci1(S!er?g99XGDe zRJ6}TVEdBJJNiHHdqUZe^gg0^E!#tQ%DBJs9fbF4^xXpD>#PS)dnAE!A*p=0A-;!5 z97KIf>FfvpO4`Utq=}^d$aK<5K4hLOsnI4lq~p6zyVGVq0)1vFS2J$YUiOvr)#;~8 zQOj8_<*LTh?-ut8+kvMnN#xv)xW}1~uol~gr(KaqIT80BaonJLnHK>SRWL+3gxLrf83U)3yzI7v)ipJD#sKwKjH_MU6n+yB19^4M5v%k8F_2ez%wGTpkzy!*lxI0a_jn8nmo4{1uH%&Z; z@4*k&u4M|x_9|yGMf_FmRHmr1<2T(3Qpd2(Q_{_L;psmAvV-|2Cc zUob_yyhizmDkBfnE@28!S(JFPN#izkj(2~|c4XDs7^ZNI0dq9rlT^>9Fki;iRvN6{ zZ|ct=ACTTB*g4NqFR%K@69+jKHJx@uZ3*K1+Qm!}cCS6nRL(N~9)1UbG9d2e+5q8^ z!}%-+)qc$sfifZPZW9Oi9q61zg>5>aY)ZzyP&{Q(()nfewJQsmBFr<9GAyZoZFg6K;ghvK-aE`yA%| z5C2PxIwPL{WlxqNOlEz!F}2amM_8Bn=-f{_zO_4^*&`Ye+b z2F(lnFQe}<&+@-y^zRXN8Z>({MH;WweUo*Ba|M-SSSH`$Gt&E|()ieJ24R$&ST1X@ zE;{F1uVbDZUYkL9Bqtm)o%wQkZ8N4afo;kb{4dYf?qDhl*oG{t&0;E#vP|mZcXvJi zOPk-4^fzs1`YRYUxe_)eA7oeK_U>_#_CM9J+_rq)xArZjaA%qrC_hO1pY(lqKFj5M z#-B%-LOL(!wqQQOjz;J3D}ziC#xWnA_IDCt7FT2sIhfCO&U*f{+%cf z;2!A88muFIwfcG3KzPJG!g_LK?J1_xT}$;j{r(K*%cR;11J-UW&r}xG9AyzA0_4f&M-GCoGpO_#dfXUvMs8I`^YJ%J=13llo`wPJSPr z->wu)(dp04A*^zE?XSd7>iX#B^S{g;F#9l-eQPDl(8=e+Nh?tuR$V^Xbj~+@!1v^6 z6GpRKeqh{>_@2;aNZM}rKL5*JwOyDZ9lyDytdGbszl1-q9PVwCj_*@{E#Hvy_lRFL z8VgnO&zkr&+k!jSr2G2(0)7*b_DE8{Kic$@4yV_G7)9biC zylLDEJ=7!q|EUS@sx)rTr!;t zc&^=4KF1X4{8Z84nhrAVWvFn!M}}st>k{qHfRyv#f{W)5aZ4{vjT3$`fce;0`nKDCP_KU7<`x zxVQOTg!v}*+ue_tk91t-R^+ohO!(!;gB9N*O%Z3CbUdTJX=QV!a66jd`TYO&Lq5Z^ zFPBs`;9Oe-(_&bby zg0Ld2!hEUE2W6i8MtP9Q&g3(Sg{C>geP3|DG3oug#ZOp{xKr)ROp$-jWc#xnr1MPf z1JV?o{&OTB5V{8|Zg(%-O>^w$Y{yWz( zuOzg1Dzlxen<9H?B6GDFXXWiMOym+*fPcFqIGa9eHe^ z5)LNZh%-$n_$+T3uWR@SyBYr@KBJ(0s05~Robf+qIl^~L=RN`UO&+Z~Ov3AMTJr+F8ViVsd+$gvgK~g^|oIpBB)A;N79>Osu z?bp)&UFYV+T~VV9IC$bKacAO(JU7K=elW)g-6nmTea6Tja)Re~zG42^{T(Z)zRAM7bR;@)Duj3e9#TM$2_`z|`i*BkXPz5wg3Q9GC^I`#TOJ|j@}rDT69 z>3*azrkC@|*x8iCSJHDm{tCi|bluL~&Gyi_&!+Dl_G9cHUmL9WBS~AhpPFnU`H%Px z`2_z~?IEV}uF2KMKsm!?)MZKcBX!OP@5S$<^BjxL70I!Km2ev2K_pO{t z91#9!(tXqE`d9gBei!*>CO%1c!O6yo-=2Jt=X)yojjV?yUuPTuxNn>0KZl&Sv-n*U z-=cgVr~e@ei#*O=yF$`6(<&vOcB@ywZwETKHX?_$EX#7BN;%3XV% zxGPO|4&@E;0pc%ni5JrGT7iRtA3x;-3=V0+>rP3i>V%WNB|U!`ZT zB%L419qEN^dE@9~R5oOaaJR`l>mgD{E0;4xKFc`Dh-BTyy~y|FOD6n??I7KU78`sY zslDyAub1@Lb(rNzN5oqRKdN&|qj&z_`_0C(U71|_0aHomds4eFn|X-r@5EhTa;B2? zn9lW)Jtx~a_Scyr{DiWOxING3qHBinJQG=&Hsm~t{U}dpoMzH}4UYCw$}gC79M$>< z?T&0j`N4z@%?!pGkiI`~yo@xCN@{n?2KkT1RVF?`8o}Ra(tQ^Nc`D@u(OsOyQ6~YH zo^7CDA1h%N;YE7RBcDroMBfhdw=uGZX~ZEXsa-99NxYDaG1aw;JBa`8Y!9CNl?gmk zCDVD%U6xV4B;%PoX;AhgTWHdAn(@n&3pm;)8M)bH7qcGR!k$XLF5yM?brU|v@58bG zl#m%Wmi6VQEJK`Q!aA&vPXBhh9=l((pLG$(6AqN?n^ZpipNXS@uC@jZm~ zjk|z($hRh($i8Vx_9K$6FS;-CJ;dLb)V~OSVLNbVQ3eoc2PO5l+%?RXCs;@7b}Jo! z_`?VvMi!dB+sRwFIVRtka0%r^id9WXSfyy1k}@V?f8*8HhufXsmiqcjc!01W-Tz!E<1f3<5GR>Wej*Ph{*H747a=NfUGfR(`Rcy4 zXuB|JT{Dfb7o>Qnx6*Y>uaja+ldgy6TeE#M&okjL!U)$Ks6^63`cE_Iyk=OH^`K`> zBwk1O;8q{3r1Nd=_oNj($D|VfX8g9)7v%hwxG$P8m9&C;h3yD+wxTi)Pv1?#c}Dvf zDL9@M?Hfh!2$1Xm6Q3F6emd5@p70KZKV7EJJ$_vW_^SYSr4%=?i#j* zG(JR&^pW^wQ&O%Z{AsY_?q_|30TVwUJjgyx_z-t7Ip2}a_1kBAIG!MUzc*nkz7M|_ z_0iaqV?}f`?uDfLiyN2HJ|TR=u%oBE5&wPo zUBnmI7P=mxJfWLs#HHkUe`zgc--`5}g~mB-4`HL)+@9*48R>Yu>r}P_f3&Ht{m$b3 zXFniaP@Zi3mBbm5Hm>qLrbzcUrRO_3=L>!~P~E2-e?@pvtU)=2-^&EPEBU958_W9g z8PW$~OOx)u_kSY&5ogyvAuMQJLcYs&Che#EV#15`{G7jr@56nrwlB-%iCTjxQhz+` zNB9u;H0k&%uuXB>6HWx$zDoKbU7wB*6ArY$z%%}sI>w~?oZ5GA zo&n){qkGV*`_Sf4&V{x>3feE}UuGsSCV{lxp**7Rb`$A~Nay;>ZhRl*m|k--Qxr!U zJ%b`8@sO}hZ3WUvHe_3f$C`Xo$`jn;$z~C0BVS=VD95sW#LpPF4eKIKG+|K>_nEQo zzI-3){tmaxpsUO$-Q^J0sj%K5xRK?EpBt(aUm~B8&R?hNFyU~vFVC2G7wL)4{SxEZ zF2XdE%AMoYeViIMa{SktH22VyGIAt4%&j zDleV;D%H0__>J+GlP}Oa;43#UMRb&JWNVr9T!8y2-oci8P|%l?aH46=p}fhj zO>sZVk=_H@r2I-zffhHy49pTf_tfUG*da7 zawEqWe;DNuQyC*dy1LC$`jgUlp0bP3GR2Q5mk1}CbY7+Z7TRB=dJ(o@IpSl46YiTs z6@MN1i*h;2C-VJ_f0%SZ_$~2;r~h4{YRDQ`6Av19v-$S~;GhMH6&#^6}@WuyO59vP4Foy3VomX?y zSs&Fk?x_kZaYA`S?KGyyjxzoW#2aCXY0!2`lfJFEAJ;xooG@p={F8V|-ct#W^;FLn z#4UTPae(#Cb}43?>=(TpQ#0>}ruaGY;eKYyFOW}&H}zC>@2%(@a%But`3Yfwr;U}= zUkx{~KHTjlOd>v5v@+upB2acE-LE$C7mjTZUNceqOjOUF{gCItK212$_pxd1$i5zK zd()yHApPeU|83TnI)3pawuiiy9Yg%#|4#Ws_%mTg`%>B~w9YfBpA&B;9T3(u(GM}c z8F@2o%Dc!%xJGR$WfS4stdCAV{WQ`E?#kM?naT|VW&vpmeD!18klv5Prjo)La zdOvJ=Jn=_%vWb*$@#~rD8OIjCnXc#jf!~w132XQ8tTAa^_mhgblt=ihjhjtbK)P=w zTbKNkHBEI6e+BT;2rci(7b4B^`gK=lA@ctd9w6 z4Ohxlx&DSU?oj>~WlLT)?!2DrIrn^nAt&iM|Gpb3zi6({xOnK^z;q4J4?w#AEA3bP z$32XbO4`)zYPK2iMV^^3lV!-Vp-R`CLr(lPCSFVa$*ZIb!UZNhFIC=1{Ly!%ao3Xu z@S}RodQ9OiAsyi_W*JgBahow;MiXCj_HSqK8R2q60pz%n@h{#cEXXz|yl_wPdvf=H znZ^|HQr1IQiFQJk@xOf8be@C0iS-eG&H4y`GyZA9iJ*CKw;9j2B(+EW06wEU)a2hG zzl3?>yG`eOR66f{DZeY}{^ql&pYSF5g-BZ~#YMHi6k!t+pJW|`H;h|_G)8=v`EdK0 z&hsh{5`Lukb@~bPfdbsW35$G|{}Hs$LAswh#2((4NZ8Ib?Q?18&{}`EQocm|;aBQ4 zw8LKLJBa%fd4-Jrk)-++A0o_{vmE0}LGK_F_j-@1`!{he@k01K@kch<_!Zf{Tuiu- z%1JSH$Vti%Pd`uGhBfbweiZ}~-CCypJy~Mgm&)XK8lK!ZkVL6oFdW>Z#`3(u` zL#QwDYqpPgkLjGB(lLcRJ=vt^ZC2+ylFnbw=X-ERnXoF`Md$wJj|i&_upNZGNE4*{ zz;y3*Wi(+D+Sy9oKXTf4AU<#07l}8r9~s{qV(f3`?QY7oi67!$SRb9|-`?hbxbN29 zB0O>tVUgR6e}%My+n%&Ty6-Su=gRl&brNWk#8ZYVukk&^ON@JmZOfhmm2`ZU&S%F9 z2_O7BrW{4M;pg)i>3E}apX~)~N78-phqG;@{ZJYYwf`;p_(<208+X&MMNVHLp;T#>qF_fWc<^hlZ^5#aia13FOjk? zo%2Zz@*l2gMo!^80@Cq8qz#wU5BJoE%5RvWb3aMO{#?crX89W7lrg=P{F{^mgab{n z7U=`u-(%|XpY2F`Apg4Yq>H5IK+^dJcM)kJbNEeJp8w@x(|Im^9O);YG3kEh|2^+E z+3t0iz*NT7jwS3;pQqEitYpHb^h=P&!z?x=9`KKva2(|Y?R#nWQ4E;$d~oY6`p<}z zbqRAx4_S@0M0$>_9No)3v#htsIHsa&rIN}=*qZMlou3T%^BL7xH@6P_?{lTMk%cOp+8_%{;Zf>e`V299te#my=ZZ+|3wuQb6=w~6PK1wS8@hp}@=h&rK zlXQZ6pU-ktt&1sAISMcGJ8&blhnOOr&j@ewKhkxuaMTdje}=dR$%JWqM*e9N*QWf! zZ)MW{D;~~#z6<(3)1}5ype7LE#>jGvH?*+K3|ANY4odM|H!AA`oul=g+3n?M@BBpt6c&!(RMr#Pbd zo(Uh4F365Esa}UsgaPS3%*J)>N6^Q%CEX7Yo@70^4cRvQzX-ovX51vgFB3@zDQP3% z$FnZniKf_|{6@N-R&GPNN1)Fmsl5$r@q2Kqla>h759z1uOS+Ej@9wF_UUK*H+j35A z9AQ8@Kh+uE^CxT*l0I_v+Khp7cy3XaP7ZR!SQaxKdz_yN=T*>zwqCZBTM`NX9WEuNSxW_4HC?6v} z$mf`XzJ>G;8}~J~iPj7350J)%?i-?(q5o^-h=~4N4UM%p3pW{ zb|9?qTtzpGV@xwOiOO{39mYg!Pbr(fA4E3&JniKB{Ln zub^GnyT`1>6xF#qoxi)og!`Efw;kz)lK4yKIPTjlLpomR+!y%}>4R`rZ9k^yj3+do z{E!8dKe>|MleKE&yU&Oso2k@>ROV1+>mcn*Yg>|-80-w|F)TJhJCXUNBs zK5(Ryr2dYc!4r3bDOMxC$Y}Q^Ke=`+Q@EW>&N@=EFO_(J2|p&Ukj~qBGf5Am z`^M98TjxB(F)Wjxo6dEj_Xp??Q%?>j&CvIh8KDk{n@d;_Pw1^^Un}|dNoR!bnRNeP z^Je;2XxwA6)k#Oh-xEIgXN;roF8vqNe?i($bq&d+c?pGDi!HgBRH$cuar>G&~) zuXFxm-@)oWkaXOT+Ou%jAms+@);`S?{!SBBc2$PAHsK?d!_PDBY_<#kq$yXYZXlaz z0{fQA3w#fq{^%uq58-9gd5)TWmq(|4N$t(5J@!1x2=NrpXXsrnQcx!(ofpc!L_VX~ z*5n(q44%H0WLuhIBFmBbXa19(>Urn*2htzmCgV=v_mJ*WbSLr|;it8on8FPaHkm-( zkdp_@9ZcoD+OC7#S3ns&rAAuBI!%-=ZjSLvTg01J+lw zO}bB8eMw2rPsF`h5B?;Rj<4NqlR5W?bX_Rxp?xP`Gx7)NzIMlPql6aeEu)OaXpw?E zmOwZpoj-B!vOU?fHq37!-7ghBVmolR)N=9;o^+RVy(_izf%0EzF@=Ar#t$nk|iDAg%SRTW4XlVDHrIB@4Oz%WNVY!+v=I7 zKT-Ck5pUVI$NY?`tW(>MWzsU8`)^KWIl@t<8jE8?=DovuqJ5Qo(WG&i+<|;X*wVNM zSXU<0=y6wnY5b6>19mU@HiI^<=edLSyiq|s5$K~;>U2;2u}GbebRUR2k?$kyUHcMK zr13`5xRUV=zK47|>5p_@Q@Xy?xvp0dUa8Z)*o=Ar_X*`hJmnJQ43o}}#`D>}JXSlk zr+OZyJdyRFcPof{fOLW?=tSiLH0|;={LqL z<1^C!#O*o6F$~|?rA9r72%j<~Q;FNwCNV|!SyOV%Az>wxjbc91d8>>%CY}AzE2Jy@ znI>HaNY8nNHCT@78r!AB`NzZ$o%`9YC;oD$(byK^7a8|EKEr=x;+WoQYy;=WH~43n zkH|ht{2xptk1PLSitv{453*dYFz!OOk8nrr5vFj2sj?|ki9E+DeZ)aVb~dRTpHIAG zE0)RF!AjVE&`EW#rS7-P*oLI%qYM5=I=*lll79%~w^UW@BCOrq8o_`3_`5ts_Rl+H(k97S$9S4R-Sr6`p+I^Eb4#Q21)%-{F6mO;}`1?MbGx8q1`g{E%sb z=250d=N;V5d`39Ws83Y&i&h|wQLbN`$P^jnUpnWf-sO96%dCxhk%rgED}$9-`g zpAjxGo#)gJV;e~4quu=j++U9KYpI``%GqM#B>yI^=#2mU`5t@6%><_CT)#M&|B*B^Uxn*xI=3l$hlG4;uo4=B)p$~25>upcqWn$dr?hL2FopY-N#o79 zz4d(N(8D(m)C0%<31meH7Xl`ELS-)rJ)q%Tyq zC7o}KFEC%8H=$&?ykg=r%tzYag!%jrKhvb^hn@b%p@c)G)?Og2(%Q-FGhpNWT);nHpP^@Y zDr+!BM%@zsHrtgqjOw0r&L=-NX!q|eVm|&KUH1cLM^)ede~2-zF~l`STw@HE7~>jZ zx+0C6yPNbHDP2>VZYiZ($~V2GG~K3@u9PosDPKB-1r`XfK!7ENaDf0p0xTFHxx2)R z1PBmt(ST8dTr^_PsH;Sc81?&l&*$@*ruqH8c|4wv&pBt#ocVX=%-p%NH@a7s^cqu3 zStrErmn26pUG(mx9OcFsf2E<#TuPLO+!#?l*q%xMu$}+ci1bnu*RkZ^$)nb1((9;) zl1rJESxl5UCi_1%W|8LJT#^ZHkY!5z-pPR~*Le)O7NTr(^M?7obDZYlJc{>P_EU}+ zchXOc*zfavbi{s#XA)6m{G6rM+B{Cnr*AIKxU*p$|@50L%M z*YlM9*wps3pOAjn)b@}^{p}0w@3yBeWL*~~9J__6eWEzM_e#Np- zddB4MJ>JK1kW@|S5vC)5PvS30%XAa(2j+i|_YB)DYm4TK>=UF%kC+Z3l2hHeM5(x^ ziAY~D|DW?}FXbrx)>PikJr~NH3sTxoIpXt5`W9&<+?z?tc_s1t3^mT%%-4u0J!kYc zc@obJ(to2JInE@%XS*amU!O!;n%HiswPoV_=JYe|Jg))ggXr0^#CecEci+f#l-8N} z{6;Sg_r0vMJmg*_Lf>^sd|#i;AuTi9 zJR;J6cGnV7yUFD5cPEsC7mOV5#nmu_Hb&lIZ89 zUr-mx?@XQROonTPt}%u8n)sYl;F=;ygQ-m7JQC_=xE@td`aSI;-tUg*mic=qLrh0p zPxAi{;XSN}tYrISgmXgPV7rk$YyYEmKI52t|FPfoUQoKj)V{-ULFs!&_XZgs*Ak-S z&&{4?KGYsE$*oLB?Mjnhhh|eQyI3E&!VR*H66f=Q;p|=EbQaqvbKS8-SzwaCAK`w2 zeQ~9`m5B6Clib2|#QXK}{5d~=PGB1H-?4a(+I)5u&uZv}(WOecLeisQ9&;Hj?eD{5jJ(H{g7WV50am_9}(rdCVhtKvcX+OME?DL18G^x_Q)8=R<^d8W7_Ti z^jt=il_tHaJ^TM&V?5HkM41{9wI@x&b^TBp3p0#msm8SHO#c4b+2rLEH4xk>+F~^6SA(q=oCfWbXoS&g6eL@5ePcNPF_A>!%+`wJj6( zm+9ZN+ut0hkE>6fW8!=--N$}Gjr}3<-a_pO@`&#(YWI*wy2)hU$v;N@FPR$G8cB5y z$e+7KMC70QK1CY&|EtQmkjfmBKL`FW^^hLz-bqBhzy0sB^WVdb&sQnePFco&kr&nGK&zrc$=(jqhw%$EJMEo64 z`UYwFr78Wi-Tpt3*QkeNm#Mu-9*HYGOFblyI*xgEpYcz$BOf>U|F3i<>nHxbaQ=I^ z7qczGv&+nHh|)4*{*H+Bb0#^HytJCQ|4Jt_9r?Jokv1gGhqK!Fy?6Y;#P_%9M_5lJ zpEl`o@~B;A^6zV}rW|n%$nR&aVm}DiO-cGpejWLH=7XMzWR?=8-Lan%neHYM5A`1M za+Hf{KW97S8*Up>*0`BOiGP!Z`8Hz@dL`_O_ThRc2N77Nr;l}H`(8+{hG1^ZXXfpH%#pb=97m_dKcx0`-lAV(R-Lr z?q{2%$@LfM1Bm{&vn~6($@J~*{N5lw=#C@G5_c+5{>;Roj9lb{&5&QNBz2 z@{qfpC?`1o-K_k*ujuz%hq<2N8}2QlG_p5QKDbpMq1+g_im1*bUA&7l%A?tHf-blR-(jx>HA0QJM_2@T{c2J`q4%1Y9eZD zOx%y=-&bv>KGG4BY$cEMaZ`Je`H*ZkwJ(!L`k=|j^9|%>$mGwF*O8Y?P4c(2BcE|? zM8tal$rso*sdJAZg*I~`QDVRSjI?mfGhIaF-xHog9`XFI#JDHv6{bd%g#M68iO~P? znE5Xv;&W&6SEQxQq_dcg?A*}#@q5-q_PBVidpmiFae61mR61M_QR4n@CUs?sn@f~a z+}%WZ)96{4=(nsgS|^!d@_u?U^$_o;B>zNOK5O#xKlbO@l%u9|0(zF6J9hO#%gLj5u}N1@E`My2 zW~NKQ#C>vpeg78QDfhYaiITYZo_ZtuOWNDaYNEvV+efr>-D}U@1=6#pWPyp}8~rw& zLLKq`lg=lNe4OhfjqF;X>xIrOWS*?OkuR8dPMlm%Uam8>tC$aQzQ^Z+=-#v(ml=qqB7^WjFy1yjKzqtP*9_oDZ zD6Mo?5anujB@wktTt88+HOY-E54EdIw3B|Gb`j4l64oKJh$yk1@1mZJH}M{Kem#%v zzmEMNE8J;BiSs%7aR>WOYK-ktaLEGtx)jYWqBOUeR-&wM{X|*o9wAD6ZaSB=oaB}g zrRWaOwhXz|MA_r!QBNkj7^h-A_fb!}m@YBC$LHkflu1m#owPjZsze!du|08LHB7ne za`F9C%>Mx8a*K=kB3?+j%yIGjt&w#W{x;cEiRg2CiBcFg?L;}zokEmVZaY!laC?aI zrh5;4Nj~C^BTBnT=hLsCdw|Se6NUTr%-KZwSCf*?{0kAu=iCKEIm@JHFkSx6Eg{M$ zO?>W5-$owUI%~bRx|KwUep}E!LG**zuQ#;uUIhGkmcC=ozGptJJ^L-J{JDQO<;d?t z2FWAQSclSG?iM0yYg~nh((NW$PkqGrnchS@i0@}=*E0?2DpOj?d`SP({TosKm&yM= zu$?xLHoK1#k$lpzU5U0WG5OyGZ)Dr$T6Y#vj&gCntY+WIHn))|(eHMVmgr~ehV8S! z3q;xNenvz(VZ^+fi2OYgFVDXZe~S7NCpmpKk;(3O zq7>bDq6{&VL}aNoO(7FKJ(5 z{Hlh8Dn2a?7xO#_7@hpWkgx)zC%Q+YcKNetvKHk#Ce~7oHUZz?gKjHGVqjce-bpCKY!DQ66;BpNGlIN>?VzX)gMk#$cJ} zMyou_M6(+tN}ON2Ny|=GBTC6N5Jh8JhCZrmvHtIQDHP2hQP#VZzAEuA`tK-ZGC)1q z?s|#R;dT?H?na2R!8H)2zQvSjQ{w#TsoLk^4Md6ku#2>;ciV`vnEfT!xx0vRuj?Vo zbQk-5ki4Al;y5fKFDJUFe+hY6?N$*b^0$+gP3}3O>~Jyu{E)n8Ow-s#zm)uY*Y}c^ zgVd3|ChwmgWtx1*MSmQlp7?o^Ekny0M?Hz_b?lcjnI=tcjD0DaTpTBztFq3mCdz<| z`>`?dh;bx7k7VBkO>O7>R+Apv&i88gbCbObdM4?AcBc}B&o!ACmp;Y(@~7?}h_c+# zp00J#ZvMGuDP_pt3+g0|{PzOqlb27J>{))xf9I1wAT1v@=`qYJTsI|YHSwH3o`I$l zm@W+_-+nKT?@9CLM=?HL&VH0L-ToruH4=_XW|)XQQl(R^E{Tc?%8zj_E~o_QU2N_r!!qnG3lRDj`(}aWFcwsaW`8A%gH|% ze}Xjfzu##gFZBIPLPY-mP3ay}KIUTmI1f_f?`!;o?UOz3aiVHp@BgYNFighKMraszll9wh$$zzeHMI zb-Ri3y7O@_pZ*->vdw*mh?Mb9^5=<@NXsvnE(cA#*Awqu<)1f>qON?<#Ct%=H1df5 zZz{&GlzNhXKl4%2abXAq> zB^D1GT|4C(w~{FRZVOS47|EoKBfJL=#(>OGMC70I+Q}n1&HW1z=`y#JD1T*=GSiX% zqdSu*DwDr4G0vs5EBW{Pe?eMKa-Sh0e}5#N2gP+a?gw-)DDin?Eor&fO(#kd`$`H$ z(@&I6*F}^A?)*0HWw73Tktlb#4Mf@MqF=v8Ug9{%^M_|BlQ&FyM0@ssf5h)W=k@Pm zx0!fhf^##3srl z>eooinA=N~x|`8v-yg(v?mY5xsk@nYr~&e_(p^B5vt5xW(VwQ0mT9hmD0^7Gtalwm zDY364?|;7U#)wjJg(}NHze|adxEl4Oq3HYRu>Ks+{o{IBr>-P!bPMMuv`W>K-6UoEImMmiexoD6`!N`%>aQcSF@ae~%xw=UfBqdr945%H<~a zFcB%&YssIZ#Q3|O>9W;*i72)0K#FoSRIP z^=zk9+(x3rdDKB#qQCDVE&VReKfSXhk&kwEQcq$zous9<#Z-v0nKFsE37-Wr@qBj%d87rC=(B-7BTP2Q+sVr-v?WitxbM1+yhMLq zNm^pui1A_uWrvzgUSfZ&V*g0u;{0wPFEKtu|E@7+NF0Z>$T)&A*VM+eLlj8MJa-{c zN-oNy->jfqqQAuVj;~QBaXq|`w7lSIMESPcPL%Js`-u|m-cDLpx*noTcX7V zqiFZBtBA7NbrYrRqQ8xjm*%$r`Tf)y@)F1SUedD3JxY|r`^#R+B>K+|((<5-{_`Ap z`IS3Jls8<=|8?^6J@<2>9B})IvfD+wRq_(+_Y!HTyKfOC>a8IytK9WOxyNlK%C^Hi zMqVCp>xpuWyO1a+yGcZ;u+JsVgBr(DTB>F>Q8u^{qU>=KhI!718E!UFiY~^lh-J!U zgKcl6{pusiUN^hV?sex7CB~yoOqU@S_3Pwi#6`VmcRS^h(3V7dQNP4A>2h%% zt|u>1USPc?j(cm>KEwADC645>aBlLFSQG7uTVP&6LZ4 z+eVa{>my2&i}@1r(&g3?CDwb4v>b37iBfT!iL&1{u+Flbyu|XO-5r!kD|O_;!(2jM zR=I1468-pk(h}3pBrRvSvx#zwTSk;9?;$NQUz`UgQYHmAlPGaMo<&;v+{Hxcb>@1n2J}FKl5SqT~|RPqePmQZ$1^+2dkd-A`UNxo)E9o>yXh z21rY+XN5Wv>)%IO%C4Cxqs$}mFFyYjD3hok?d@V78F8^(?K7z{kL+N&>^w}&zm{^T zyC#l@w7V0C(&<(ZC3QVSIon-8l(;^1la}M$ETXi!E}~rGE+)%IOVtR?RG`a?& zOm|a>68)>jagdF!Oq3=!#xa$oY7P)(%COl*S_WO2C^hv7tS*}9#|e3fe%3%*V!0!v z>4 zZLWd+Ba7WhM2T_m1k!Sf>m|wxw}>e7To+NUJj`k2MPsR4<_3ro*Mm;da)sMOlsjE4 z|7`MdwTtPulb5*uTuWM3yLjGmBYEj|lZmpC{UV#)F5;o~k(YMrN~}+bwDdAf%3Dkq zX{nKyIR0@w<2XhCjq$2XUzW&MiZ))(X|wyPr9_$PTA40~FLy1=mS)#W9ogj?h*GMW z0ix`1n~4(lAN@tHby)A}Y?F*oN1}f8v*U*CSzsL39`bUj8z9OW7sqoIdAZr$MwAWi zexlsr;y7PGUZVe0NXvQ`_akxq@1g$Gc{tlw6b_WM4?#?Iud> z*R`Z2_IsSCgGIZ}juEA$&CDapl*7y>FP-iJqFn1%6XgqT15qAv+laEo#dYF-@)Gsp z`Nby6B-*)?w5)gQh!V?<^|*#I8E|nuJBz%;buF%6*HI=*+$j4(HoDk92gpn8xBR@J zPpZ%MSIy*MJHK0qGRHL$Wr{n4C~>@pNK53SpT&LeN~THl=jg}xP$toTo**sXb1xF* zYB!H45qbGbcPbIdU%1Z@WueL68{_+(MBnjz z!X&&`E%AL&d_R=%zE|cOtgj5a5u!Zdo+ZjtF8cXpgx^tpbbYn6%7cM(x~+~q{M(e)E$x$7m$#V#evr7q@QO(|31Foi~75nPwMWMM2YqNI%#>(#r@DtqZ-$-Tu^7C;E z+lLrGYSfjuPwT9*KhW>GiHE9?m$hyiQ6>(X0#RnVB2nTzTS8jm`Zj^IL_Xp;%49ul zONn)s*uKW19m5u)G`liUbnIn(o7qEJDy~kH6PYf{-3p?tbSY7eb3@D{(atQ&rPp0b zl(@f$xR^4D`Q!LTJ8?W?`ef=#^ph#1|Nq4D3rv^D$MR05Od>y@v_!pV|5VCk&^=3( z@3?J5x!J{i)ECLi1MW$p>~X&(3V%x?>HAH*pO{~_nvO9Zj>lrbMZaHZt@c4Rnl_1i{pA4c`3UnzmB}bb^9#R(&dgK z%6|He>~aT)GLC77+Dn=Axc;i0lZ%G!^X>UWIoCyb3wc@UmJua&cM)ZiyPqg=omx*? z;`3_Ew}LXc#>Ke)IC+Wd%gdzYDfb9bZg*>la;1y*uO=_Iy10&?M_$TqHc{reQ9kALuCCtM{Uejt|lqwYqcT;!G$<>dc|lPH(dU2Mlq02lNHpFUUwc*PH|I+vYNUQ|3=yO68pV_X%gpQl*fLrP*+M-(?gWb!^H7jU*wqM z43;f%eTwyr{nNlSsZdw;y0a*g2i*>$e9^_YK1g1^;MNl5YIiYFE_Jbd9V6*>C8BI( z`J%oljihDJHB(2TpTv5^@xOp+vdo=Ml*spxmbedz<9#k=679x%9YvY!WchN?&7n-D zxmA=)jC%uB`U@rxoAE@6ak80dhiV`%(ZAw;wXlWz7<4mDV*bb%C_7XWc_}lGlopr) zqSX9(di3WqWztzR2~lEtv>pAnnQ0RBqP+@jNa~U;wk>gA9sPNTc@GukW6US9-DAuz zvHTKgiF)c2QgE?eYst$#H-Y0Lar{~-m%;**(xx<5%_^c4D3j3zrbd)lKT_Gh*iW(F zH!-j5b}@Z`c_pD-I^7idgmk$QQDXkVqV@fmZT8;X4)W6CVm-H2?Q=)Ww}ZS)q%G+u zEwMf2BF7zFu0)hN>nM?r;~U!*$E8MHS2*XkE=19ipj7UqhUiW$H>SFJgsd$|!ZEoi=2;TThvk-CCmb zy66w>!*>5(BFcfPNf)q=s8C;;UG&4K7yBjpOBeG?uZ#6fSXYVZ>PxcI4G|@#N8C%9 z%wXN5#r04oF`iXOOYHySsVAqqc#e4oc{#`JVIEoSb`fRFCDfB?F8cY+b}f8@|26^MU3z3d_Se^Bgwv- z+r&K6+)+fC;cg+yu)B^ZI#*?Y<0Rc2V>xQrtRPB!E^H+&1?ptB5HX%Ixz-I6WrzDY zQS@0@c9NC>7xO(!Ufw|+nQKyg_C<1{N%ihIk{?i4zU*Ehiod^}{np(dQt!`Ax|sQ- z+3|jRDlAKq7noP#Im@p}3!j%I|DDB;lb83q*Qq00T^~^zT`T)b8pz9C?g^q)+!;iP z@hHZt0nRxov9G0a(vs3~LzEjbF=& za;7_rD1$CON1jAp*1ETd63=;k+(>7%ClbG}nJgiV_?@c!_x%2ha^%0S!S}2BZI1Xo zzx?}K|DHBIk7;t6Ya>dB`(vUo#%3lHk$+!%3VHcQlhBUnx4bgTiO7E!=_$5N;(Bs5 zX*v9P!S5(T{&)7C&z{-b$g~6OZ;5|#9yC)XJKgQnm2bM(&zqPoalRF*Hr~w`w(I{v z@=~LY#C)&Pj_h`EeT#8;2X$p_)l8&4iSwb%G^x0yv?Fmnd4{x1atY^@#QGjZx#%2~ zI1f&yOk%(8VVcxA2W2g3nNA&v``;MgN)IJ^f8YdKWz4pmN7Sv zaw)kuzv4dqIm)H())M7>7vrXn%kexl|9kS8BV6}K{`>a`{+hfLP4-&_OG*E$`zs>S zW86E5$e){@L|RTZX(!W>oM2L(yJr4?C`Y^Z5t09H`Ja$RzWj5^qjZVMe#`PNDf^K7 zF54?NyBN2|kr&@z>3G_dY3>Lj^6wYUq^?}%P9n+@cMDOTbWamyv+E;DTpvmtM~QwB z$9V&FSF!3(}qMpi+*zy^(3};GHHqameOaXMxT?_v>~w`4^dZs?qa)Q zyiX{X==Vt*dBpa_`pu$_RNTASr^xOZ^tW-hQ!b;di*yuCzJ8R|P-orbbm~fczi>Zk ziSJPsla?XsO03`9HhZQK=jYC%jbS}RiRH%m8TkV9Ny#lD%6;x>q71mph*EX>+Z>7e z;h&I3+|Q=|eo+3s-x2NE@8`zvCnr% zx0xtkH|d9%Up{V<2HKKXPSlV7FiIbjgYJIXLHc&)7wsGEqu*056*rqG(T}^BUwSB$ z9qv0s@%2cFl7Ig)ZP-5ht|3aCFPp3OY^Xu=;s9;SkZY$*3Jc7)hqJ$pO-m#6EqvC+ z`#je%U6#0Qv@fgOZIsLVN6cIz(vP|LT=HG&$YysJQ66{uh%%M=5uYp4Pm`9*&L^UFxzTSqW;QXOyy)IRxg2BS_r~Hnm$&EFwfytZ zD(07c>>r8yhAEWEBkob6#C7H?q$T#pEYh;QXj+NVO_{{FeIaQXa(jq!z8m5=%b1Jt za3gJr#$q{{`iF|+JC$-t-Nvdt7pXI^>~`Hmsk0nut(uf5aXo9G9oaycME!^pnI>_) z=x(!fxJ;Do%p-BU&ZMrix{XA+(X~)lu52^U5#@9@jwsuTCe~vfWfJ$7cafIsT#Vaw z@)GTyN?NXUZxUs@yOStYw~;7uKfj5z#CUTBX*tD3yZgw?P8ZYTxWxL$_l2?k7gAqt zc25(f&y6Qaj2i{gQgVarCyCDwvAdU#qW6NzP#?@__dOk-l{oi*zQN4BFfiXJ5l;*OB&kD zHqz2aUYbcu+;4t^dE`2G6;U?0SBMhNwG!r)f{XR(r;gn1UL_(QZ$HI&iTIt{>>bks z)OplhLX>FdQqppli|fc_+L2o+m#BXsX=$vQ6Wi=Np(0VDd^~kTeN3XC3{ocR+~q{+ zbTM8((q`{J)QM7Xl?7bO5yv;7T=uaHiT!;1u-$uK#56hCO(aUEE6|pV4V%;1W{Kx% zCsHm$v@MHBOBZQb5=SvB!A?V5#?l)vQH)dToBun(vHlc9f|$)HtNcI+?Saq z8>uU?|Icf)_c4|d@Pp)>qBntOpl5!6z`QKHPi}pMqVV}t= z^3udSvdMjmC~#bX>(#|NiSEr2 z&w~;@3z8wqWwuL+a;rOoD36)!Zw+`iF=FWa`K@u8$~tt0uN<4|U~*Hluq|d6c{~GEGilUKw&%5+(Ng`ZhbJgG8w?kDN(b z&UeQTTVH+G2;Upfcm4gae7uP9az6ECxtm9nO4ZyrZ1)5|AR?Y?B!5V|@?FX$`gLsY zbjl>=kL~KAU5RnHQTGRw6Vxjvw=&Fm#D zqg4~jjrAGFd~&+`AyJ-kv3+yf>@!}ScH~W_BmD^bTG%(4_Y$G8K9i7^-;$T>-5%PI z7V;AJvp%lJ|6`Kh2Uj=;rJK4)X;bp?dQ*{e8XD{53F;x9?_{4D_EEOpO(e?2ZRUES z?4k`(-<5`{xrn+F>$!%sl&K?+w3(-fa?o)fkjPKT%UNzZQKq@*&v%eVI=}NIdwkX-A#Q-SO|_~Ib{fm%0e6sy^rOsw zh3XZ@t&V!bvppM2GQf@LH9Uv54T$rQ(PibP`nHL^YupHD8P9f|wT*v_9&Ci`6< zQCe9aIj7CU`5ecyi8?amZXn7AmMN>4SB4gt*#84e%P?&~)5%La^U7M%Qer+CrEf?F zWwPD%5v9{bf7LQ2uK#DW+5JQGw;`s<-l|zmT54`5O+w!p-7d(SZK z;9(c{IcJiW_;+%f-K#ehInIcF^Ly$@oF6ZdMmmoEi2VHNVO^zzd8OHDtdY2%_WSef zyAgdqGQ;HkKI+$KOXB#%_;4$2$v51Oi1Liv#5~ejG|{j2l9!Dx%GZ;Z)a|O;_sI>k zCoSYu-K7QElQ)hDs%s=lEWcjleg(Hs zChuyu_e!`oPm$<1P32{#iOvm)el%LO`=$Y+jL~1Dm%8#>lV2~Rzb2GRow~A$d8KjK zG!*Un5&iQQ)P>e5Td#xUrQ5~%8pkz`bD8N#-^P5%ufO_Cbm-?Izpu!SosM6J(=|w< z-IQ_}rd@g6-A0ty-}^|*Yi==7rnnMOmb#mX@_>tWW1Lt)xt#8{5M`aahA7+Jt3-+Q zyot1EtdZ}yXNhvPyNoDTx^sy#-=#!}@i3+jaSTQ0*rE22m%5Alhd7^Ne2nvSH}#~? zbrrdOW1EX{ZRxOm=NH!noujhDoxyaO>S8~~xHN}ydBE)<%CFqLL@BwWh%(tV5Hl>V z0i~kpqa5i6MvOjdA^&}I^>K;kBQ4A){jSV3iR6%C%|t(r{vF3}D$`|s(Tp&UoJYH|fwat_j>LF3p0wQWqW^9$a?W7x@c&e&4bi=< z#CD|2FE6Cho(cU+Ngh z7-N*gdWC>8p)F}~ql_^U%imn2J0k9v7Ew6D4~jl_Am zzsUZ>KBse3;(XssTH<;)kF>=8IhnM4$?4pYr`;EcQgPQ3CEEQeX*tgwMU;!&08y@Y zw-F_-r)QCte%4=BRZW2?(O)ZDSO+AnW*c>74)e-!u9GOyzf;PYmrChAMw#W>r{x=8A7AWGStLzFAr@kHsP9Z9ODILzZ0jFFce zOp_(lmDAn*MA_)JQzyeb+i}XUDG{YinZ*8z^*W9DrR3%krQJ; zT<>etk(j@mdF3lE`ujxk66e<*=8?mXe*<--(?vd^u9VnU68-pK)yC;FhwbxUKY5wY z{Bow7M3m|7IHG8uN_~N&?K*~NL&guA^`s^CzqV1f70np)%Ubf%=+rl4BJD`8i|fLr z(nl$$%)jLWu?1@D6xJgk(S7Ri?k%%(@NZ*E~QL***B87 zCZeo$aXd!IOYHZ>%qz3pOror&jx-ld$}y21%B0Kn5oNoJ!eJsb>|UfvWxvvVjj_$ zBl-DBv-&s0zLLaMs3Qm55K&r-W@4L-6SIkOf!j(H|DG>@Ua*uhiR)%NY3X+Hxq2^o z8FLR4x$QP#N;qC`7;NXxI>Z-^4*yGhIU z-D^bI>3qA=2|Q1b87ASmen#)+i9ZL)w<+#d^vp%Bbt{R|>#iY6Ouvw{9OuS3ZnD;O z5~at*`BLWi%SOs&F7wMw7ximfxSpWDYBmvNr>hZVj5^X%G@FQ02@6Q0xoSFzlDfS_ z+3yC3(pWV6h_d%E<5*vr;)+B$*_}v~4p%11b#5(DVn3cqTF!Tu5+!wOh_c10ugOF1 zGNR0OqpYvQdM~0}2Hd?wxy{A$y2(qIi}R_Gyo`67Xj^(+2T?Y-8c|wYL)Gs48itAJ zajS^Z?aD;ycY{Q^%iT+qxW4QmEpIx$Pfif;Ma1`$5fh%vW{xFFtNT+T(!X{8K$O$m zUlZl8+!CVj+*k7d?{p4%;XT7lVn19?TF!PS z5T)S86J;O!TjF}tNm>Rt7bGp33Q;28OSTAEy(FVX+%v?I}f zrc+OvUG&Q`d5QiR{qjc2Eyj^0L?MA<98FugyL~97mKHZadSZ({&ML@Gu%ekoHf z18x;jQr2Bsie?p2HoFZ(iO(GytG0h4_K}y8ONkQGV|lS&vA%I!YdllT`0*ZPT_oBY zA}!j-Qg6NK1@&-K3>ZG_gH#9cf^H%WkI2fQ$W5TfllDKYv+nidf(H9F#Dh z^tkQBL)FPkfn~`Y7w7L3@}g^*oaA(lOPsH#ke0LExkOpvx{0#VT}+g?f4G&j#C2#r zX^H7)ke2y}iRGV0xx{trLedh`ParMJ-Q`3%-)YbNX>n!xfV37(9OsB7rit#grHgtphHI=-?{@Bj?%VxKMC_RT6BrmZa;(B#5ZOPfLK$Pfr;wM)F4~<=Ugo-1qRe+uK7+h8xLEIlth3CcTuyU6L|N{ly;z@i$|c&LNLt2d zOE$PTj~lCOC%WARqHK22Uo<93^n>k8myK>0QRY!cmK-L^XHYKDe|65v32qTlCcEg5 z>I?dpa-Ed|{YVm)DX|@@qkj!W(?^ulwGbtykI|>3l``pZk&k{>XIau!HG@RaHp{4s ze8T!m?6=s?lPHsA?joYBc5(j4bG{zR<>bR$NM2(8Gf7K~6Wyfc5_ct0`rO4txzt7e z9P+ZIo+)!%5^U8Hy$M~FS-|q@|=t3N}I{c-R@4J#OLpr?+290 zKDU!7Pr4mMiRU~~?`M?B58bOo8FP9^MDL0mY4X2|aE4QaxApOWfbOF6=1zn$NA|lni1Lby{q;C`dBVm1isxnCPQILVt=kB zFY!6=cG7Z_>nF-G*F==)ZzcMi#Q4!yrB5Qx)55S_ze+?|;o^K5BrhA>!$f)3y-bv^ zyU6b(FOiS<6Urps2RlGo-Z;!#}i71b|QKEd?eTyiupQ4?6D3iNf?AQCq%eC%2qD*(| zIc8F3ESA(YQzlJrlyXU2VFAY%x`&V$*YnRoTf8pU7L_#@O^GORJ!m2=4Q@SA4!W6b z_H1$nQT9ov-}lCm6`z%h_UH=Zclm?nKLj!&##9Oqb0^p{Q47mY2_;09PXDOJrXqV%|w zD6yVvNz24xQ(&ECf6>H!N{u#UC*>0B*}%L~VVX2EO&V!WimsnJve`xXaZHza?nI*K z9zifes?NSMwm~!T)Kt*hlFjF zIL@)(w-xPpE^4#S^esf$N4e-+lyltGM5(x~M7h~bBTBnlNtAAP2~pzu7W3annf%1* znk{i3@FUVl-^q0q`TXCd9Qp4Y=p9y>==3)jGRwvF|6%5nSdTA}mOGs8UF4w2ud}|q zxSzl&udpy(>}8HwdY|E*A8x{4-YeKOQda1ry%7u*+#vf3>p zO7!nIKNe9YL$ob}F4pG-rpfo+R-#0^XOfnwF4}7+FR`5o{OyatE3u$@9#r;66 z|3217Vt-Gho~&_~6J>(yAxgA&4QXj`QLm3SrL@3AKJFtnQ(sPVmk{L{7soA*`>Zzl zIu^T2i4xm=;;@ZZds(LRyI7wR(`ATbDbZgJ6z%U6E~G8#B`9Ckq~NAf zE{)Wcr`^3oIm>M)3cr;kDep#PK1u|Gu$e<0X zT|#}tcBZ@wAjwiwyO{Mv`llxUzAgIcDE&}&R{y8f>{Iz3%aP^oVxq)#?^u>2^C^>b zi)m$E*;qC4IpgtR`wYTbXa6eHk=4|b(`iE%(x$}rR+vwsKR!(wrIq~t7}77e#YE)) zZ`DiGlNcvM>Ue6IgG%aikI6Sb7~kgRrnL>XYZ{E)hGU3(_Ily=3} zH~;&KQTDmKk9m>u`vaoC<;$$4Em>bQ1=^DpZah(XS(e23J8mTVoEyJWlz2XW?jOrN zmw9BLJ3y3!EKdgAL&Nsjwvl!b-{gOuYV$=Aq>Ul;P{ zh_OE&q7BLWE%POa_bdL0G?IUIN=uxF^J!b+J|&*>yiS{v zBjq_!=18Ks$Gan-&|6axWL(20o$v-FWXCET}T@c=n z%l>Bm43;CKOwX`vjX8DBO&MdI7xe&3c!Kikf4_O-L` zobJ(NAJe6@z{GfXA7x07V?LA~G3k%U%eaM^(mNI=Qf@TKgoS)2T*w&KZZ0As{U?*G zWSR1;NfX+UStj`)^P~KJQ+hA$qxKfP}_*1`(BGA2SPxDF3mkfAX;; zGlz)MJKVd7D9x0yHn$qp;FZr^meRU!GjD5Ss3=DI; zP+@;d%YCMzGK{@shJM0vz}PR%=n;z&8Tt+7D7|WG%p;>WnDTPg2Zf@kOr>37>xyzKkxsKkt9KR8v6^SWu|c3V~He>n6VcgOQgl6yV+M5d({+vKz)>dY6cE) z+)z1a#@?bHYHp0WGVr{q4KWSLI#U}YkFi@#%Z)4>LpPaPndx$jNw49!iI10s0{a7{ zHD-Y0BlQX@1+HMACPd{v#J9vSFIpK66nbyXKh2*^3hC z{(xzmL|*pMu6)guHnTn$<$RT7g(*+rIHLAbjt}zZwR;#RPU2V~-`$J8o-cuwiQ=z3(xDA0UsWCNuDnt%=k==-y349KUF{h4WAf zH=6;XltxT#2kVEF{*t+th~(c*%I8*z&#ASavE8Wu2ge7UoIjHOzzlqkf1?10xzs5EpJ@K(jX@LEK+6I$;lX8qQR!QY2rhb6&2(@>zztJYHnmMjg<2;mD&M3!9%A;oVKJut=yd-_nG;+M8@C8$+ zpGoov+a zcbmdRd4}yDH}zx4qf&5;mlf1FHq!WZv$tVU zA{~sc()&)+J&xmy!a>##V>Oe0ej&dtP1yt!zb}$5R6fUXLtIZ< z*l#lWlBxZMX&7L%PM%H|_XfqM}d-D#4qKgRPq#^5K+ z==GGNw9C|A=lEdgyY5mVlD}{(IcDswsF28&bRuf zSq~&PvJFW8562CK_pslfdu!?GGsz(P0TuR{j6PyI-(Y{@z>!-s1JgNfXgSvGI(};+ z19MEmG}%7YY1eWn^Jc5{TwHxt4!sy3loXYf$^MLV`Vm8e(15J zfYRxvh5NG%`>h2P&NXS|+>o)OxR=1tY}3s-CJkKEWLJynU<{Qpu4OXt4l~HuCJ?>E=>P(Xg?MVF@@))|#)QTKOQDru0qr8Tz>n$*%ckGxsCXz_FCd2Tj9l@@VGTCjIX+jlW))NDt?k zY@l39N16WjQ4g&X&A>*^JCw_&RAfC+A7|2|Iqy(7iv5Ce$+TR~@k04dGjt#O1*6+c z3&%j3o6UBPpA6103CB?Oa?E6u^G!;VOq_Qq*GfsgVp{gFTvYa&p$AzmO8;oa>hu{5 za=uH-{gMgZpP9#_lzZb*5wB zH)b>En2eoZ;(FJ@J%*HKnHI)MiTjWSu5&WPv6qx%BnLRQ(mdDnl9s~v7iLP=alB9& zH1*GO+@#TDf5X0b_`kKWpMXv6Hbn_e;{v^-=n1L*jFO{R^~%|F>95*RbR|Yumq_m0k!N59Gxs&xm<0Yo{9QR$wzB}dn)ASO~ zL&Wo`fomR1q^^56bUtmm-^Tt!1ASjAT)U)$dk@)LFx|&c4?`SJ>C`bqhw7sIoyRf> z$4W*y_L9ECG=7PGg9>AS^!(KHeqd`Noh(Pnuh9-F_nY*`YzMO6EdC+=@-_0Py_4gQ z`1`)nWcCk|AF&TmdE3HF{Y;K4I@g%mOA8YzGd9ZJX0z)^#!n<1TiHxn4scwgpmRvL zu1R^i8Kn(r=DH|7e_$%KD?@wfFLIlyKf?MTecW`?wNzL?`BC!3Z& z#xo4OXc{JP+>rc?eSsM7x;ek3nK4pYT-?``8Ea*bV=s*yzYJqvql}s4dD=yzuCa23 zNjb*S$uX8O&TXl^%5g#3YmzfLc5*)FobZf6YV=Ks_aY1LWqgupru=stBlKKk(g)Z_ zvddK1*Z-HRJAt=jzW@0DMQ{-udn{#QiBR-f8_B)bx7M^(PEn0griw;wr>dG?DPJU9 z1jil(V~?dA1ee@KJz{Q$NzsHkLP3V%$e=G&Ud!& z$Rf(1q@OWAT7NJN(oPn0{F6zvU8G4_lR2bWX$yv^QRZZ@*G#0nBJCIZOYSc61@g8@ z?qxrbpI`!Iue2INS&r}{-OD7Tp|s92$wJ1_eA5(flfKA5GmQzOPLfS4l)VJgsADCz zGwPp^21x&H7OybsWE|yAGJcbUW1PhE^Mw2(J*$v^uy7+YkFqVTi`h?P-!tKL@}sOr zxZwUx+QENn;`^I9<*qb^p-`VnhqROA_hu4xpftysVj0fs5Zj~4vivXO%{qI^pDEBOWSx?BDi_6N0RE0;4w__pzX<#>Sj-hWt!@WQWdYG;uD z(SFv1$M_w+lo1)EER|@Z462<%yh_e_p3GyKj9aV1{NvDA%JkMKt8gosLC1Pfd`kX6 zeThjIkd|mur%Hn~l;$QTC(R|h*%arnJi_y&A-dmz_&wvuM=E#rxm>7^#C>WK(okxY z0qHzx!Ux0~=B!9LLX$L;y5by;GAZN64wQyAp4o}krgv+On~2BF*uIJ9 zeI2$XalLtm^hB#=!gTfrZnesX)H$+0VMe&iWD|%Nxy003q$}Fbm_gD&CQ=rpO_`GE z%bNyuYv~WfJr*-va?(_)zoaUIDvRV5>C89T;p_+EeTl|yd|&o|od^gHRiW}5HzJIS6f z#g+X|{GP`Bl6)wCCM^-~e`T8zZ?cw2?j&B({-ufKvq8C$MU*{huVH$KTdC3ZkwCjd z#;r)XM2vsWH0hp4P*=B5f82z(SPuSSlU&Vyphg>2nm3y|^@gOcm~b1*p%`z%q2y0= zpTDo3w~Y6T;(gA%hkOtJZIfI}{K8WT z$3$stX)@ZY())Mv0OIwt^dD>oc~Pm#V~uo`oO9IDgA7qzV%*)NrQA}{vpEPS6Mp1{ z$+joX;T|>NUg8V&7t9d#q_}Zr>O|V37^197ypEDAJ?fq1%`)-2TfA=5yqDimkQS1>Z)(eNTtxU=f5|VyxdRq)PA_%xfz+t0Wgf>@ zDSpR#5J)c>q7IPaS4>Bpbd_G#CE2a)FWNU5cLnt=ihWG7CHsS%b1Uh-H&`3C=j#{- zBwG+q$l9hLT_r3u^JrU2yuK6TyV#6lA{J71C1)8)7aR9J`2}HCWf4Pk-Zj||*dE#s z8ULRVC-n;|q-|XuH11UPTlQkT$iHkthj1W&uCfEu(S2{`V8Sk+k-y<5Q9hBLZv0Oe zM>x*3uOdECyT>$!sh82Z(X>f(={#5&Vu<_|lajX5xU0f)4Ro)!UrqX;@q+Ojqa{19 zGM6EW@0joc`4jnptRLAKCcl|!NcUrVi0`W;HPRFLJ;Vp%b=P#C5m(xcA+jGEcN=kq zI_V&t- zE8)My7xHt+GpG+6cN*(K{uk3AZ6!VjQY=UMz;kSnSl(LCjX3cu5l<-ljC`K!235M` zmlMwjT*DLh3zkLm4eC>r?-Jig`{GCJ4|?yQ&O`oJ_5+@BE1ffpdz*D2&^D2R>Eb4` z|7h~RxNldg=O~Nom=D=3(@lqqNC)_xl>S-o-e=4y*^|yQj-dap^;>A8zRpQ#}WnQWnJ>%5;QxSq?GZG_NO* z!rjC)_}Ro49M^~>T*LgR%^E5BJx6FeGylfS4^Li}Fu=Ts{le8AV1C5+AKR}`-yy!& zolhaHku77o?Uf4|M>^T~JJ<&Dq2W^52j2I&Z@MGDBPXwlzlr@ue2y)g&VI{w#1;J3 z>?iUonIHbo%nv=2Ev*YkKV<*M_7U$tTpUDtBaC4h(lNw0a?-v; z-Iv2(N;qV(={{#ZN?t`l9udDP`w90?wu5X<_6LFUWhvh&JB{OgKl35pPfl(m?;emJEi8pOH8dNV#hmaM>f;akiPw>-r4SE+#%?!#-2xvv?dU-vv3F-`=m>MZGV7VO&}! z-I8=b_?-PfPP~^UkRFK7-Dg|(I|=(UAL4N|cg%p8G8Qo3P0pCQKTp%Lsm}GcUrWY)@7vEzo`LJ>_@ViFuL#!GsT4 z9`X6&e9{PqQ_|uk_6gZ$#6O(s3WNpB5C6FdhcGV7vOUD_sHLR2#OvVhRkn?=I`g9Y ze#o^`T-i_S#!N%H3h@H>N9KqBN1u6wA>5%RY(d;2zBiVvOZkF3mERE-ne-&qhwgjn z=kq_pR{V})P09`OPf1_6XN~`W?ZN%cgrk`s#h%QM_+DN35!2x&82>oS!BKaV{!TcA zV^`@K!YdarP0nJv{BPK7&rtTLyu}dVV77zy8PtR5_7AZu|07-3_<6%lVmS?Kvn-PD zQ4W!=Xz~w8e|XYX!Y#}vtVi5yY#06)Ca3Kr?)J*5gh5_mT&n8<;cE61{w|h7GM03K zJFTyjXT&qQ?>l_N|5C+c{(aH{@jZ!J;5Y}TI7PZ%f5|0GgWto1pRf!(=_mQ_tOxOV z?qnnO1F@YN%V)L>3=e5jTS4>O-!V{-C2lj>`J+VyPfqR+n97ix1BV~d~iE5 z56XL0KW6<8RJ1L0`>(i>|K(?dOAh0IX^~zCM-7+U8pE_p`F}?f&mX(jsjGT6P%gy% zfcTaTDx`-)K^c{tvL)%)OniR7IF{d$e&1xYUnJSx6k3P$88^UskyFP?pw2F3><8j= zaQVHYr`&2dk>NPOJja{v`+AoX2Z-P0jPJXIyZX2`O}y-B{7m8**;2$m+$~I(mG~d| zbEGT$VAdMt;SzM+S-LP1)J`!(xA(O?|0{TAE7@qOj|UABYxK87csNqq05 zeAo3w((?C}>73(9bzBLj5PrCECj5|b8L3bfgUX}oNY#}Wo3I-3jBGiRZclp2*2a&a ztRdOoWJ@z2Jo!PAolX8B>q8(tCI6IhxR*>kPxXt~KEj5TKQctO-;WFVU!J86BTo}v zS-Yx_Sl`Jr!?mESE}pY_Op7nrdOWnZSrH~P#ugi)wBC7$QR@6_gVi6_MK!o1Bm zlFf);__K*aIO4nXBL5@&+hlu?{s`2a633m&w#xYOrXW4VvmObmV^MJIl>8;Oi`edp z`9~*X3j3M3OR5u`BVB95)%WcN99*M{EuqNw8OuxV} zv$PaLxD_gwk(N@uKNQ=M@qGYyW}m&M_6+mLR~eVZ{EzT-U#a_k*$s@t-C;asSR837 zvHXOWnNNuO(vu9)ZI|6c{L5J;jPSeEE2l9;Y!A5=SXN$TzodFz&~3^zl*(}lXRyiW53zaz9OEr#$9n7~jR z<+1b;L&WAPfU|R>T=nK|D{7YkUf}B&SaWw#{ZHsFTzHBrEWhbfp<(LWm$P~fr;0VjM%n{#^8~c`2D( zUTg6~eY`)$w5cW>Lj1^urrV!@=0QH&`1e>2?lqJ1zhq-LuED><@6a_(@qagg^AE{C zXMP0QFyf;ZnNMi5NZ^<&{@;d19pw(QOl-%x?HPxz2}#U1-F{`p5)TsJkG+WhW$FTR zGx32iX1Js_dui8U@+)3vT;^AHW*TBY7hx;@mvxLkXV^*1FR>qkSkAl0M@i#w)L)eo_L4yQ05@|Nl5pTn7sZa;U^38(y~ z66>YelkHlAj&&0A`_faa9}v$p*|N{P!gQ(npHZ5W>2fvGqY`_pM zT9aku*vj1urMJ@J*dQ||n-v#WUulkUiO1KuOqY~>mA~*m!ua7*x1SM?OHMiuo2q=q z?+(ZFh;I4YjOEeom*^_iD=(Syn>}CSca=@Kj_C+TvmE00Si)Y6qwH%id)S39G7h&= zWfA)<=d!$vsicHmX7HQDUXyx^U0M=NB9x>RC-P952<_n zOPN;|F+aNXW6akZ^P6mHy7lZ-)(1DOvM0;SXk|C1%ZZGO%AmyGm3A_du*v6BOm&=# z{eZ;dgIkf`W#7J1_*tJT9nBE&erT-!y6O2G%Se@;VKe4Oey553)x>^My6q{hIqSN! zJArkJjzw~KWgJ8KX604pl@}{Z7|H?sE~hRig;{JL-EusU|7BC=mD!cs8Oqp7%m?=} zE@v(=tZcw^Sx?)*o&1mZJWSbl>NKXsd_C?F!hxxkNemIM4|MyRTzZNfPX_s2 z?qVF_>%*mPzn?EoCJt~hzss)dgPg_xvgHC()k9$i;sf!zTepAv$5{u;XYNUCA0BbVs1?H0v zD~B?a52uu3xsBIjy8W)l{1x-h>nwwKU%2c$W_7kRf$50lJ1ouiQMQqnk-7VirW7(B?rDgnV=117t#QXZ)_%*EtaDgN*-WyD6ox-Z1aY443EL<@q;tN_mZWC#J(+ zV7l$gmsnP+^4*Q!5tb9$PtxsAxR-dAGufW}zOp9kkc%rXGhL2lSp>E#WuNSmnCA|D zll3YGFiooUgmqX3F~4`~m6^;hi`WOL>haj$R#=(sAhsXkb&7Z%*1g`8vn^?v@B@~E zTfn%)_-^t);(1Wnx8plgy4OvD&c)$>Yr-Ckqx(G-)w$ARVn3q6F(10e&1!$*d40G2 zwk-3=-fUB1K0lfNrP{x4e_VlMkvz+9qOvG~xRN)RhHknZ%5U<`%KPl6sEvrQc3-Jm zo+dD#FugRNdBs0$k_FUfIFRLKQ|3eWygXqV!U}{R@%mAI3FRNLU-9mJpZi&tOk_D( z%>UAuY(D3Ixu~)sLj>A-;-*b8Tk*fFRB5o!@(%OMoy;e(JXGz~ZvTZ-nMa;v9%-`u z66 zf73O0Idy@lF_a@Jy~K&!X!7~wKY7Q*`|^qI+3Vi@9;W-;&Cj_%jQG4`aT@oT(ENo7 zzZ-GV`n73X$@6q5HaG4(wktjCk1U>23Nr~S+$Y9!e^vtHlB~#mKx9W4KbPN;4Vm5% zo(F}$#U!UPKZ$sh|gcec6ayqvMu{A8&#@$xLaPv zF&*Kdik@kJ-`2Q&xF?5vz_@i7N8nza=vg!It5qg2L~)==eoVT^S52`E(-HfF@Z9qi z-7^yRg2``Xdl=*$9a+e`a#DYq=fRPa&Jyck&oNNKOUAw4M>~-JH|#IP=W~;Reka-X zrgk;YIidN9DR}Qmrtxl!G(TWE+`}fB!}6$KUdb4uIcUOxY!CimlkeK^qBkJ= zlZx&|$k$A|dcXCHM;lk|-1KPT1?>w>_C4YSf#0Ni{c>f(h1lLN(^BcVkMYkEugLaf zdAMUtx-RQS{xREwqbx`uJtZTZq&eUCIV1G9iLH(MD$5`|X*~NRIolR@dZoJFlE1{Z zkRHf;ZdfwIw7<;zk0^dhdLo=pSft)xN`6Q@!XIbaSM)n+K4;>4XX$IiAEvH7P?~l; znpJ3c3#D{dqiwJiTZ;0nnPHjuIG3Qmr5*LWiRk9RFmY-;KsjyQ?Og_QCyMP@QjID|4Q zp|`RwL+NEd&~3-X>#m=Y-aqWjf;YLw2 z@%nLWm&NBnV|hC1mQg3OuQnO)5R3aa`-s-Bd4B=fA5C&Q|$G3d*a*=b`dbNDE|BOxT^cK)O2V0)LIEbBvJgbITmhbA+X+ z(=oJxnM7PkZy-Gp_9YF_Se5!2^Hw*#kI>#h=PDC!WIklfEBRT(ExPwRjw79r@4|M` zq|Ounl$k@{3DVPV+_JbIHX zZr&5d&;iEHpnitGhWZG}(X1CKZ8S-o(J@Bq@0jG@Oh^0i3h~m$l7?A)0{xO;(k3Qc z!}5srTY3oLLcXo(o{v&bIV4Anl*0BSe5-(c>}NUx?Ph78$?*%xeACEj=b|{qxG`)C zofj+bGeq%{X;Y_5>o+FblXOG({@f~T4`JBklrQPrP@&D%L7R6lWg+=TLc#tbwp-$R z48GCtB>c&^Wysg)_6zv~wh#BUDWzO(B1~F|{D`ftGMhd=>crh)=5dS@Po9!^JBIbv=1lTGVn33NA=ZO@f(d`^qhAx+Q@5}!q(i1TkNO`8WlakH z7yly@mSs7(o7fIKb+&}}Op9$w{dLnrn@;BNuBOEIrQ>%*)5&ZX`MIV&O1?qwTPFKE z@rQhVy1e z-FE40Z}NWXM`XvF4Q?B7GU-7xc5uK+o&A>h9Cz{{=?3=)lig36Ayr)of4T`rkhc)q zbB;Eir1zTSW7Z=#o9=y_Gy1uYNnDZdqeh)Gpz8j$#LsKS+GS9bfqw z>5AsrXX2kSz4x#`XpER<&i3K%H1T-V{VvQb!izZJCkk&=6k{YK~4{iPw=k+NiKlhc=o%uCJUbEr2l<|?!3 zA^J6dd(zCla==OKpTz%#{Ea$wgiPDjOeZf%ZGDryLb@Wo%7g<+PsI0M(-zZF`^b3G zRpRwL^@S=ut5QE;&dR3!8`2a03e$TZ@rwHMrbW3BS2yLg-4V*@ew0TfH?R+g{U9t+ zn*}w}Qo72FDyF{A_h34{xiIJU~f(@f8s z)B~8k=A)&fmVMO8nwO52`~fV7=C9Z;CQcbBHApwZEzGne-F(7b$&aN&BslQcSmS2JwV!W#ilA3pncC(hS0n z`U27g6Srgkk)B{;y|H*x_6Mz-NH?V4Fa>p>bg$1;_Y-3Kr1x6Noe-xo^aayH{wuA< z5bpP+B?9LeCGv&N$r|jF#D1&-b%ppNO?>VyOd#*bZ7h$*2D7c=bE`= z9(6LdW?uc}sFT*G90%YpW&Nnt2h61m(Y)DYH;|rq_IfjPBjpzj%Aic*yh6raYqDdR zAL$9i8+fI1Nu?QBI5T*+-2lb#C{06{XqSVyn=+hBYw77 z^Iw!p^sN49>4-(6PNs40CE+Q;ip8_Z&)EGz^YQ3_lNtA$$8VxMV&NR~>dXNrIcX@9 zjxh@d_#Nq2NLM6Fvp?8irs=(%bVPbn<#>h&Jx15|#Q&ObBXAs)>;u#KocKcReE#$DLmUqz_B-1{ddl>*&9se(FDx8u+!LfH zim#aXd_aCP^(=Z<9WYxl#Jnv{eGF|2_#aZ95V$@g>4cF|z6;?;agkAs* z&7?a%)@oaQwvHq@y$zn)e?ca58wWnMb*lC6|~PGf8(0 z9&Ym8h)=}x8NKT$6Upmx7iCl?-e~4rLOW6RFfGcDxK+u&D9-IKrT-?MV9shBC$VG& zQ;^mLM;Gv^Vdd8dV8R~yH9lMd= zWwP%x9bpFRgS(%yhxTla-^iCD9uVu1#=h(idcSPypRvD4zis@VDDQ~h&xrk>rq7W+ zXntmT)?mL7HZjxABER8)x6DbTvAozGE%n~RF$CRoxsS9#r)|bCEG=M&{1(%kOFf7B zMP|v-#5d;kn&Mx?JN#3WKh*z2{U*oKZo=bDlV3FIq~~Chzs9~GaLu^%Okdd#X6H)k zU9>wUryefd%MgC1$sb@Gv0tg!Zfdq>K24W>?gX{r(Y+Xk!S1&YShKjB)`d`O-%9$b($P!^5>|FQH+d~(pO1W7`B-eUnKxIE(WX%(>GPlv|m2yE)>T0Vi)= zYMSS<-{__M%Ea*|Uxs{u_??XS++?yg^)wcqV$uuQHvG@bxNX>9IKn2$pvli6{P47Y zB;0SZv#GBU7LX5Qp7ED4AKcOdrA1?jSG1lXoxz2jQn4ZNiP)cTlX_3m$tL#4m^{gT zpmm-pe!y}FhnjdFD_+kEd$J!$=Mt}o{nfYDVjmEeHR&+FBU#C~$H^;5k7J+YJ0>`` z1NSPw!yifhLNVVo)*N**>0)#9YoksMdD%=nY}84ybbo2do|H!<=b1I<3^+M}bQO25 zIbe`+B;*MR2bnhISYp46i`F21Q5?Yf(Vk0wL}PpQ3yZ#EdcQ_~!}Rq`?2k4h4@*Lr zCBBap+u`wfSpPa#NZ zLp;NO%yy7pW5PJ5%g>EJi+SJ{vM(rBC*0`0-uRJz?iZ4#&l>kcKgV&({F%m`-N$`$ z^2lC<0q*;iVXgilPA8xp^JwqhqUy0WR!caetX_LmZxg=h% zcRA}q?BB9Dk#d6MR1=>AjMxAD8Kf7I@g_cJk}Spi2(W{Q&-7oGDW zJKXqN`bazW<$t6p!V!d3mNN1Be$4OTHKrqDKc%re1$Ds+L%W$`cgi$kzv5xPKCTlGp05)Z=v-lH zq?KfhOYdbSoJPDMrS6jW{!7wNydr~Xzp^U(4maK;gk9Xx!{$}?U1lOTOFpl^H%bn2|r@{Fkb(N z?<0rXSr-0Xqjw0Td={=r+Web%L3|!EtU*3Nc0+}>bB6ABzc?pKbY3)pc!k@Db;&UC zDKl7~tjuo+%bD^S&YbDh{aF7B`-5T%@q+XK6ZRo|LVQWmZ~P|xuCyLQxGgJ_7$V=o z_#S?To6A0l-XW4+_6L5Baj!6rusLBta=39PkMO)EVLr-)ukgEUR@s7~khbFf&lG>5 ze!#+QXgAAN#y!dJ@VB#FgzfuEuExGeeEw}?{+EHuh72Xf?-TrwVg~UADx=bj9*+Ac z-e)?prpaF=f1&(V^Sb=stW?uI^`dm|-`z_b$x%#``25|j>_76`Ot^_~!%-KO;&X_T zSw<4_6!P1Kjh;n8_c_&D3BNpT@;|d*NXC%PNGTiQ`CsxCjbDRtp)Dg}U(-5=^93ZA zn4Gu~ze|PXz1DFp+d=oa(0vxzGZ&|`Z%9@o{gF?tkghpu94jTg#e^#fKkC6GwEv|! z%lOYn=<|v5y8Ss%!c^LU(xL7Ye?R#EZf(*J8F^LwA4w0y_D#HwTU<=K%8jO%V}*1+ zGSjvmaHYK%B5Y)0f3og(gc%{2d>nCs^!p~?jB&X4NqdR!9eCnLs`$yKk2q~H*8tPk-$kn)}R&j{bSqy>s(q!dU;iT$+aL+md)kC^Ok;sLGO zP4iaL9YxE;c0o94l=d>`sB=ty2*(5@N0DC;>$jY=mEvTR6CQE%O??sJlHZxeGlUz{ zIX@LY)hzlE=T(^TRTEz7=UGVd)ysq%ZrbEhxQF;gPJLSZ!7-BlQ?YOIn8~Gja zgX~(ujd*=_i1R~f{FP%LvY(n_72*Ne-ll%zh?B;{rhX;k(6fo++UytN_c1+rQwq{t z+)1W$6Zsu&(pcO@CO?DyNBtU8JjQYe#Gj;JG4VaM{LNvW`{4Y2ZMKhM!1z_oenCc?!u1)ai@W~0Lc0T(n&zp>MMJcA3sT)(Tq4(D#rR1xG4LR{C#f2unoN*N6P3$K++ql2% zM=nj-Ph`=t{Ezl^ra@XteZ)BOfHW^Ku^;Tl^~{I#3KKRb{o#f<9wFzxp173=AN&?3 z97LW*a*XlEG94}IfKtW~8RcKwuWUbt3Uk5D$p;gkP6&ghz;H z#QsK-Wk@%K9+T5{6;GN=SW@{azazWZ)M(pCIMq1vM`;n|SSB%!d@|vLKf~nPGLG_{ zK;8=s)bZjbv9IuT6DE)FdesPh>kpU0P0RLKNB%eV2gRt#RwsPO4>W#dj@uYK)c8{v$JAp@ybd^YJlAqVGk+;@m4q|-@P)R*FV1;(-O;^q-P2_}AL!%g5f3{5sYybhGl=6AF|FfFcuNB^a_(d&3y3O zN0jOF%@H%XkB<1>ihqOrhz|K#y645;B%aV-L^#n)8cOp-Gj%%Yj(G=}CHyZv)B%$0 zV$xp{k0|ywVH$CS;#;5%9X(r-&X`6WFVj~w zP10S$@+RK5jn6s7>l3k^l?{;oD7?u|V;uE6Oy>{83z82^>k0BN(w~~J8sR~FpRCx7 z^+?0S>p-zTHoqZhg0|97X?eOyIVMRMOS&UIU*}&Nc9PELceE)JlK+$CkmM#icf`I; z`5{BhIiLCuJ3MUKN3tB^`=9aoiLf&JUt-%UkI;7Jc!l(Tgb&TbNN>dQKJjSUZSpO% zcpCLR62>KdFFAhSrF}!clk66gPwA)oGPe05;Y8<8lvC*2fHKr$Vn6fg)r1?1R-~PR z+E-1Jq4ZM6OY;WO9exet&LIvFRyAc`ikHz(RCT>A+}Ou+#q)Pna-`Hk&M3*)-=;e&K&jeTV#L=0kjbyK^ANbW9`dCHX7yB|DhFwbD{mo{F)A z3;sjahi-p&HDHrZa}1Jo$jlF|l{_`XBu9O?(8`@=^ZexGpwqRLw?~k9zG|bqa>oI6wZgy|-Tpbotw~OD>%-ezE zJ{E0en#7?@T-MB6p5NhaVZCxMWe|1tSvsVh=ffyCl4U(OS+(TE$N6wHTD}*xhEy9mnr{9i37>%l@>!xRM-%| z9~r10#LqC{9oCPs4?53#dUHuzmePMosTL){p!F){FRDhx;Azfu6CH2e`Kw zNB&jgX%k5LL-GOIq`A~KF|8%!6BMTy^@U#Al_A1zl_MA;_BRy!rA^sqNzOCHOYASg ze@yco!jIaBY2QX%Al{eh{RiQ~;-1lx+mE!yskfLzuHyL|v@@1Nlk}Gkb-%>#8|6xS z<$KIU&fn+>pSAUY2xz$O^zMXyP&`1FCsos>_#}@ zZ#U($$>;JvX(K`Rn&3%4344r|dQT?((V)&R5ibq+4NNhW^`iNZ@#HUYH&phfydn35 z9kE>+uTM9xA%2j%3T=}d{*nID)J>@$kZof+|6m;m$C!LomXrRpAq@`#lLC@GrZCNvJOX@|uda2p_hEXT!r)&eg zL!<-h@0r+7NOBeV4`pBSW9bi%{4HhtZi5reOiTCZBw3#J74}Zig z&gDgQY3V$Icl@*eV5aA?_#a2g38@17x(#B&Ure;SJLY)bEJzH`l&PI1o}ZeFM(( z;TE#bNPcaa|0UfqaZTb09qPvtd832aZ)!57pKgNif5vY`oFG1jkS$BPp)+FK=A=J{ z`c1l;+RoH(50DSgy$<+7zpJ63oJs39#vjl65wAaF%Morl$i#fyx`A+`y~qsG=9hfD z8Qhq0)HX6p#*I3u5l+c=Gjs0X{13x-nGSV|w4P;u5U<5y%OdiEG-+!~%zv@}+i)c5j&8s2T(@y( z-DT1psmqZ3#H9N(F3TJL+Y!z+s7n@`q1vdEshgXWx>DMdH;LzgG2MM1`-E(1;~pcQ z%KoGo;`hFTj*XbKy_rUvKoZ&#lD};xI^qSrV@&f6!VTRclGsmZu{7ll`G3g&vK{}U z_a@`tCS1rkKa%#QX6gjOg%3Ouh#3fzB@~+f$yg%GY?H0P{-O58fl@|&AVcSx#Z$QMhegzdGC0jV z&hIjKl1aZg;G~EAAj&h+rcENn(I#hGLWU~&v&aupn9ePvFB;nr1`JIzgX9UxmNmVf zQGT$5d?C#p%(y*>8`;ow`_uX&`CnEr@%iicyl(iM_(9enK2WEQm+2haq(j)Hy^@)} zF4N)HH~9+Gi1Gr}iKZ65n6UH4g>{%#yE>FEEYcgVbLeDK)8grGB1q~G{NG_Nx8K15C%O#;t&mcB{; zlph*@73qZ9dnToAAVY*xCVkn=U?}w&X2~UlANf9}MtPU~UXDRXeni|NzMq+s2c?)q zIYrN^lw-8^Hnp!1PD~nSrfxCdq<)kc`q6-s&VHuNax#^=Kqe)o{a@+>_@_;A7~4ZU ze{`3SN73!q`s?f$+<(lHbqE*Yd$#dDLbek10v1vC%M!|l^mtR7Nc#!#K56}V!j9rv zlTTwi2&-2fCOr`Q;mi&s{gB^o{IA((gnygG#Ff-JE=ckZ@;SW1iu7~S`)a=vf2)c2 z$#UB6;`U&hGKTQVo~HL^>H)N=^JLM6gcH4+n07MiWYV4{JB9ebINAu}USU1(w815w zpE&AT>0D~U6vByOI=)%R6S=GK3qg^~}We zIbT3+jEV0%x9?;f2$Tg$b~N!mPJFK<+(e#)JCc1uew`_((@6O)Y@ zp#LlK3~eZxN?DK&c}Nkr5G(~lr& zO?;H*GemlWiT#_!=Kxzb5pQspnBLIOwaUM3J;gzr!u5wDvhE3rR_?S^C$ z4ZUk*Q?a3b%R@C4h3dzfp^;I#b$DmR`b-n+S$!*3a-JCww;XYT^b00Fr=I_l z{e=6*NGVJwoN|;&cNlRJzF?ALi7&){F0xCAJ9w5UeU%|%J&=;$Bz!_Vz~5)w(ri=4 zQbrI~CavT(lX9#mk*8C*eU0Cd_(1WM%Ki)ypL@=}OZ*_dSJ3?~;(WFv<7hX^GHe_1 zd69TsCB8q9tUwqL22A!f!ioG~6Ha70k~2+y1Jlv^g^Ax?@Ak94c^}tD@O8F}@HeAx zI!oE7ckkqG|7PyngctcmIZ+>ptyCm$hOhIm3wnUZX>iTNk? zKUIEfX*SEo{-1gNpnL}99EJ!pO)OX4?wPr;>x=W<>ksV z43R%&y5A3r=`!yTo}1!+)aGngj;ox-P`LJ5`Xxi;)FBeXSL`}cevde8MZQ3MPBNoh ziQm0)1VhC8_u($)N4kM=b@HfG-;D|5*q#u#68i^<-(Aj^Cf!l&YSJ;31%wUzO0nKg zRv}%XcWfjljiu1CaBmPl@_@;IOFSW5Z{l_N?)RpaV?N{;8@G^smY)unV*Yl^5f{i` zBF+%s*NNX_jPEDq@9{hQ`xV0K73Oc6*l%{&fc-)D`KziQ$MPFc%d`HQNk{ny`-1Qw z^CR{P>%K%-krPJ}udn2{6ApO7EBP->`7QO2_QhkuFR5mu_~FkF7)A@;M@{SNd; z3+NXc|1tjTVZIwn`B{;4hT7y3wlQv$eTTkbE`k3`PcekwZlqK@kMj`Z*N!J(@l(@z_FsVh#~SC>x6rfb;5IQA>lcrZ^%nH zwz3&R#C{iilYK|n-^6|Z<8!>-?+9>@Uwz>CVWTo8ZXWRme=plbc-3%|gZGgzm$a4} zi3h~?pTCLuWfjs4=~l*dSO(#T#(kM_+2#MIDhIr%#&%c-Z3@W=tGNEk9JVWWO*XIa zKl~uuhC8ux>;n1}CLE6rmvTq?Azj*d?!A;QV+ePK3B@q|DDwY$q_r$>^2dkS59S>- zVLI~(=RV?2GsPE2oaD55#T`^Riv2{OE)ZYzmE!YN;a1ioH=5XAe)zc0l|Eny_cPW5 zJ)0%n=d#vgT=uSf`$}700(0WIpjL zyR$#YpC_H*XeUV8Z(@In;cnI=Tm-m^DWGd;1bifoValC^cB3bpeo zc^x;4Z6d5_y5CW1Kg{!L*oyT@{Ju){y^z4ZO7}ax@pw9eeL~KDi@Tw66hnl=O+tE0 z>uJ;bE6xp&5;k!g^qJXg8)1FIjr8XxoXI$n6;1p;X#5Ur{LWkK2R1$*68m=z-(mj| zpD*#-kzO+1#N&LiE$ND|Q>BL?V*OCRmh&gLn~nc2%fnIMiEkOFIt2yCTJa~CZu|O7 z@&m&9#1Fd9RXWl@h8{7C$)i&2T*`^x(q@z!q?8>AlzVYUR;u@&<8iqAeVLi8ORDFR z%XcfZ&+i!bFZLT=d0#%`f4F;0{9cH^nCU3rQQnZ@c2mrn{Ex7s>Av^<{4nt`%(L7h zrLZsijAEjR?cm-=$QOv$QQCKNjtxIDTne6W!i^m%B@OZeY8RS(KjHQj)r=$E$GAH2 zB5RYsiBO%Qtp3j7H2rJ_KM0Yg5A)9WRGr10f*nda+POh(@xX!fB?{|{#Y>FPH zBTY?CeiDD8(J@l|#q7JhYTOCLi^RY7Bh=5FcRo(OfIpD%AV0-q`x0KE4JY}gCR>4V zxIeKj_*GaAv44tq-W9&gdSzL{FQdkP)aN9&>%%;zBY)Qv6A2$;yQ$cMaU`poSTDx& zrt(;<<8dHgNX!=#**~GpQz{rDe4X@#A2j(%>^nSVUffG&(m1ZiqxLcN0Mb27n7}&Z zhbG&B_&|P%DSkNOq|B4bm%H?r(vt}ja>6F=&Aw9jBIN+tNv8LF@&anNo5mAdXG476 zJ-eU(5z{^0iS;5-$BH|cb;Dm_^6xM&;`f=l--p?PeT4rPX^8lp;%@!=Iq`+;$0McQ zS=6J*$n%o#Xu?{=C*t+Ta4PG9f5^DUSP%5ANr}(XyFJ-g_zl=k1g<$rwtHoLh6o%h zN@^1$+s^np%ORU&y7k2uSg%}8+#{^RcBMKWaC6xQgttxVNmn$QCicfryNYy2>uuBF zenjbWu0ta}H(s7waDL%mG-3Y{&N;bOOWQ)+PL&yyH{@HB9*Ffou^IUret8qVM>tVj zV#39YqxV+h9%EVLkC^)WekbX@COMOGf^?lqb^e*2z&Nt6n0Q_j-!m(AB;O)@xv~aB z_)iI!e2M>2%r>##j+F7zj~T*!-}sH0AMtrs{~YT;{-N<)+Y*=3Hj%?fGg*i5!T;E} zpEE88n0$Z2jqF$x-%s_2Ge1)DerYm8_{DuCeZyVc%j64$^GSbn_wOn82l*Q8Gt%=- zY(F$^B7Y#h2M{=BNR4~@rI*Mr@Wf&1Le__Hk#XyfIPnJ=*CFiiZT1iC3#s>^zMRA# zVbbY@1MX_myqVuoYnl2Y(jSe#nBryf4Vo{S`knlajJS}TxRqw8T*eT78`JH#k!z^B zKjBU=ewUH*`vy6ALEH*Vhwi;eaf@kOM?A^dCVnTveVh5w{r=MdtOK$9gwy#S?nTl^ z-k4JI%duZ_dZnt@T7w)Hk)Leb&-%F@KpB~3{CUie*dJ`pZxX&_^0WJ##P3eJscc*B zF`l-s;{hHlKcQh_FZU*5)vY)BVB>mBvW8(c7_bcW@c+1rPMEWEA&h$P;{GdTRNy@QR z@^6~@Im{2wb|n0uuN3QXzbE^N^k@_I8KHkAY-ci#eG;!T*M~=(^xk3ObKmj)O{#Ti zogWh?aQ`&<--stT&Ob{X+I9$cu|LSE$Hbj&n&*;_Q6o&!y2ymNgaQ6a(_$WR%p=JU zDr+%>Z&DsXXX~Y$@>}8j?e_Q%_MAMt@? zOXKDfPI$sBv7HijCSKwGNWMVWjPM}dr_0WxTqCDG6i0rM;(^M1hVY}N_Yb5${42)2 z&irWov2r;>#On|F8mt$^{*~Ps!d*@rA@*}${ND)u1(4Pk82^(I?h7;RVB>$vIKs`Q zmJ@IA#DOF?8NFjBF&`Dnusr-Pi5F2EA-b;D&yHUQX7bNUr;=QZ~{C!D1la;BnOnEl> zgXZI={`3TGA24pj#9Nsj{yw4Jp^|X9NuMEKQSE8!$Ji%@a|ua3s65XV3nxyUq&du_XDmCiAdqVe-nfA7Pe>*;@>N<4GCRR*?Gwl--u)*D{W zx93b3v7L7rz2hz6PBZ)zbtqQyPKYeyJrEhaj5tDIn_EAmUXY9EN3k7oC|jBKf5R_Z z)tx6-pJRJa6C17flVbQhQ{PHIs+)~}HxX9#xX;13uNglN9p&6YbWSGmCh{3w`)KR% zJH$0j*o5+sU$efbKRVG$OUWNJi?Y{~A{=O{50XEqFEnK$U*!}NsApPRkfOWZXgKed zO(`Go``g=5U!Z$VzjKf0g5&+n0*Fy)iv1G?+jEy-Wm zm*vYjY&+5r`v+*C#SAhI)q$)x;>#q_y!YZQO<~Kny@MTNPC#L6~ht! zmw5=s?$%dGWur0khQaoKDJSX(2_G}*O!^T%W9mN>D~Lz;T55wr>h~J27xXMtigira zF5!jz9_g(a_c-;e-2Y!(_y_AFdB67iSM@Q(fy^_yW^WCW%86$9GU^M2Wu|-|`Gv@D zrH}ek%1rx6YYxjq*UqoU%L?LEMz~Lm^dZ(41$DhtCuZ*;m0e7voLeW8qB+tO`|vxY zENs)`UN6If@#9Iji#!pvwIG{~n+sV_SucAH!x10N)@D25*C+LtsaxRhk%U*$EjyY- zD&Z35C;tDr^Y;4xflpVl-H5kmOG%L~HQoL2QwQ7sckk~dsO`npUr7-rGh!gfGXv&) zmMt8&#P?5su3F!~cE~fP+<-Df+TGNLv&|?eV~O*P->-|Wq918jQyo0PJr*2bn(e4Z z5PvY<>dv>0WEgyT;Xu|=-pjh9{;EmGkq-z*GEVxltr>>+fbn)C!>1XJbbtw0(=R#y z!j}hV-wOw3`Tc?LE9NWyJnj_6%ikG>w2ZuyWZHMU)*Nr2ee3ym_a4tS{6_Ng^Rxr& zA-83JBt@|naf!5ssWu_LQSNENKEyAY-Lird)l3uD?h%jt_Fv2o_46j2&9(~vb5_zc z#>-YFT+48IgkzQ*%QhhWw<*`6Oi)cX?X?JTpVl*RGs+E3R+CD#wc+BG_X?PHT@${> z{E^;e!r#WIC$T&`it*^$!}uoahBR-mMZ*!?QRcdAXQq*DP4~XVJ#4G2%-%;T{(SI8 zmLnD0Dl?d$+(I|H=WZWhzA`u4pA_*%qh~=9|B(Hg6zP8B&jr$U^dr0?%k^Klo$Zp7 zSvRDIvVV}uW<5jwmQb8%;#rh4hAuEQ>3{03$1Wv4FqBMr8gYd52GbBX;_pNF`!L}t z)=6$2Yo)`+Y3mbbn0O7_DcW|V4JWLfpx08)h=-Y)xBqkM92&ufwtsR6UxPTHW{Mcd;C~*rZKa z4)hGSeU7_5{Rnqvx)%k%zY;cLJD_tbsdhGj`mdGG6RLF>j>xpqywZf3Oo#YemXB~u z_7m0_-T5N*Uy#sic|8!{+6z*iY5e?X>SoS^Fm$hp4>2A5y;}dCy;wn9VQ6`FIVq~8 zCJeJY)bmVyagh5agT#?xM`L~Pd-4mq2ibap6zTUSaNgAN?cIrOMj#%f-p_kZIvx7-RF(iLteUWx!Iyo-OzpKA6&UwAkDU> zB37mBnRGDgBh-5mUT>N=F})ma!VwIY|1!m!CxUqUf8}w^56vMav9CyATU&WO<8O!$ zboVbOS%1{j(c<-YxRtz>l4G4bI$-vq43Iu$^uG-xy=+R(nWfs_q<8f=cK1T_NmE|H zcm&E`%F4u>DQgVfXgt0~zd*d8B*tX;izeO1d}X;QFJ?Uaxj}p%^Fw&EiF4?eStk9O z^+mYZq>_Gwm)TBPz&6V`c_6PHHyqb=zc*fK!tL}Uj+yX7`jK8TVS@>KZ-aO!P&?}L zS_)I_&Ui%XHK`BCh=&^G0@G0bQXgX~%3RXhjn0WB9A+9~OTt0M>ziUvmWQyFDYl>= ze&5d97b>T-T-0A9KICGfHc=$aF=1c&p?5eWoI;*Se(x|%A8fx<4u=i~sn0Zi{gPHO zUVdeYb$fhgKn!hR;;uc~j_Ofon&K43Bb{aXD0>;X$_!mY9APADZXo`UK5zVarGGEy z_mifs<~WFOk%^yXxhPLC)uF5pLcb|DWjMmm*e>{eUT+uH-*@ZksTJfO{CwGub0y~j zl3tzdMT%m7(;PuLB2ey<-fH4el-YksM>8D7LQ@eJQoqxrcQIbxW5P+y57mjr@9Wmg zL-edzs;ppH5{FDpT!}wl3A33Wy5rQIY!?cSRT8%}iQ}_`2eV5_<+CP|N;=y3|J&}a z-*z0ZHZJcXmA{y-{iG`f+jkMegM%z%FvO>_X}z{RowySz%0o;%o_;yQRK%5deKmC% zae{k`^7Tg8 zoBTmso;^Y;9FHXZDO-awLCLXA68pB4l#RqaOrlJr*u~V0lSsc*yP0xtekc2yG>6~G z>r6SoaCrR{=1#Qj5Z8mu59vTtFQ6aoGr7ZwldPnUlBjv0X8ok0P83}$wATwPGitdz zm||_#8*Ltt4>d6(=^W$Vf4Apy2a|VxT=VzR*C&sWsFPZYNKs#9{Qc)<&0hOGNZg`F z`_IJ2?xvtFVOh3X8 zOq$|%lH;vfbAq-|D36z!4uRoPQby8jXu>NQ4u22BpFb4)QJ#ngnQ#cx!Q-PQM#P`n zG)FN%RPV^B=PG$?MyyqeIpR#Z<0Qw-D9l^Z_Qs#@rf;!L@bgK(-y3gWyAbxtjw1gg zUr&Y^gWMm$fJtev{a+;YIPrw|XOm`9jwp7{_9sR6{{cTkxnuMKGdV(xAYEZbhzF^t zizMA(hHs+ok;)Vdmq-jr$#0~(&}bRr@2A8!(v1|eJxEb+lzofsK)ld|jo40^LoCU2 ztIQqb3A*>uP9Q%KFEZY4V0w(<@b*{hztD{sCR+8nl$&glZ9|HRI!hAuf|Qh@`1khJ z$&5!l)g)5!_eGk;#0@5wnEs1+Zh?_YO?3gk$7nLenG-?Ei;e$Z@pK9EMe$J+Bg;eB z;{Qw6u2O7l!dJ(+KF3gY4*4acoO8-2$xF%glfQ?Y{)c!%+@NQ+Aw~H*6W>NZD#}#+ zytui%7sTUc>MH6X_b%6#Q&Qxb=*w~?Ybz@#@3UucdoVSxF`TG^d!ue{xK_ctFUzoZ}!I74t%=CySnQ$t< zL-TP{Q0_8%o*6oyxIsL})Qpqrv!?$>;ty3ebOqC6^lVd<%uk46DLEEOb(D#0kLVtg zbliAw)@1(aee}rht?HGsp zC5~f=*P5>0d3+x4w_%t(kiVK#kXP{c>HRyc`upS~B6%szG|ClzzEiAAIiPau(G9@o6jQ+QqG}Kj6 zeZu(tBtLJjBEwN0YU&L3gln_bv&4#2JinKF zi5sNZ3+&aZ4YuA){xR_;Hqxl5-{LJKvPc=*RHYCSAySz?b9aJN3Q{ zLs$RpK|kU;Cf!Rup}QY@EHNb0i65jbi5t|nnfM3t8(#l}Sv}s%p)7XJ4k1NxhS9l> zlvia}lOkSc{Qh)73`qYM%+zhf1^hcHfA7rCb1J44fA6R~kNKkhfQiJ7ly5TeHT0ue z&vfmQyr0++zutU`ZAUzxx(4Cv*`G+!tWRFbPR8q-`Y7^M%IqXkL}EY+%3302FM(@i zsi})3yu(D&7UOh1U2rUtL<~wp+(}K{CV_F1-kI_Hgo7X8M zwBr~PKH6*le|P@~Wsg7^%g9~Ek4JH3kMF9PX2KM!dqJjZGfKDgW&R#~dWhu+zm-V5 z$q@CA^qpzaDU3(WdP%i!wlOKvkJv7R#hE|<`vrLbe=nu}3i%_yG+`R$g*3~=-6?0J z{Y*HR@u&|oULIiq!)3lnbC@3Wo+dC4DR(susZ_g|f_Rm*v+?6dJ;3i#9%#ZFm=9{L z1FC~edMm#}d4_4uW&Ws^n(!HZhx+ZNnag+3N4*|-g;W>u^oSkV-%-%%`zm7@NArcSC zDC?*)r@Y0>-H#(7vK&+gnEFjjhvsc29?$RL=SjsPmL)7-YSu;kyvYAQ=n&`3;^#lj z2bdr9j844XDQ5Cp#I;P)yDzBEGXB0ySWSK+eVlwo{cyH+&)Oo|jTC-9TD*sDgb!us zl469qKhT3vuN4ad?j`qF!U7Rc%iBp?tLodrk2Cnf#{? zkn#Ov{mZt1QY$d?-F%xpJOgnh@%O5z7ydl$Epzeq2d z`jx%*d%C!9FSHILMOc^}Pm1yk)4!B>L8LyC$?MI?=ZP=$5f?I*4c$&WK<`vbV7N@( zV#=GCFT7n#zhCY5dxn{v;fkQT_pC zR#Vne5GT^S+jQ4)Covp;T#AZep>C1(9_1nbH-E)gi(#r8yW`~_*^i)S%@Qs!-hNwn z1O4)M;z(-V$&&vep5$GFt?vEd3HssRtA=%YyjRlWodJ_}q>NDQZR&%2?Y9T zbUc+574?SnpKr=bdqMm=!oFq17rdSG;j0*jz%Uv9oGCBkcc?Ei=}dlua*;_#(2r(r zwgV~Z4Nd$7+k*OL6ZT~L#Gea(lRSa9yHoSrLc*AdUm}0uan&8C=1jEbIn^c;ypKzn z5Pz*)9_cT{BZ^HaXOz@s5~(|+{HPf^kK+u=rDp2l3BHe-X#dA&zlL98;zj%pet##N zO>Cg}gh|Jq(P=bm}mTXn77A~zR!BgM@`s*e2``2lLXxZ!E9nj zewytv$oBw)yc?U{PYTcfIK9_?KkMymlrwulnypOSp799#nUZ*t;!`GG!gzRm1jP!{ zXU!Dj#Gm62bF7qxVKQ}Lwv-g{JX3vyI7NMmDOtYM1E$=DeuVXn-xu|EHNr7$x8(0a z!(HSNy8koBz1D>K-ptRp|A#z9_ndUCiS}N<-#;uiqZ|>}H`Rv38REL8JMWl9zwBVD zJ(*7C8a+#wnmSF&{jwa71*v#_8FpcM#GSMCNKtNSij9~a{{BJt+=X@1ws<@I@ek|| z@b5@;Y-^8ii^vaj?KsV*TmD79$wQ{QPx2-DB@uJ-$pN$WU~n@n8Pq#u616uFj=FfCh;RA#d6vT~IfrCSadZ*}cMzMg)hD~!J%U2{B; zbXm5N6!q=d4@u=WCj6QC!0$_yTTt$Zzo0x(zLI_vJDNzhRNEMTo>J`1c*O0DpVu|7 zB2M7-PJD^^BD|Qf9zpB!j7gKMFT$wl&aam+9^HM$x6zIIOw)dAaVq(g-#-o)3~+2j ze$PMcHOPInLE?~n6@ULGU*DzqjE8?mn65e@pLRwq}wdz1PGs)dkzW5(MP^Zg=S z!*IFKggML)X;Y(PVrx139OBjEt*(87v&KV^4aifZkBqn4Z(&a1{qzSY2gFNF{RjGy z4$j^|DjS-hV=naWfRxm8lFp+aC3Tp1c~`F?-cYY&(!ZGwQL!q-c#BwyimCjbVy)Ol z;F?zIhm3D;eFObS+Lz$Zf&6)*w<{OVX1)j$Y(HW}Ke~EqkZz>urfvHyaQ?c0;YgPc zns?HTxOA`;&L!XF^@C=JRQ56PdrXJ$ewK^+Cxfl7o!TcDhqxgzgK#hX==wiNKjPm_ zx|;P6j&D+bp828SSS;RNl0QdF2QsY?ldT`oEu$umGhd_^OuUVL)GJN;7{d|RM_T8y z9kPgi@$WHtH=uo17f8{4*Fk;;`6a)RhJ9Ct>6STT<|tCxJ?kTtGx)7MMmPMp6uvV+ z8+ybsF)iU{`jHe1=>8uj^-GW!Sf-pzw^Z}YSLue=FY)Ga-gjo$smu@YTKW-|F+KDy zwuA>655MmeHm6_y!8q~t`8o4OSiv~Naps3GpMLoy-EtA@hWbM04{x6!%%U6JbI!aT z;eOUf@_oXv>lnvIVS4!*^A^wFX@l*tDv}rC+n3fI0x=q@cCa&vq zO#3YMah882%aH5GOy0l3K`cYYnFjuzvbT@Xoo{`Z<)HmW^FrqFe!68Vek(8Ydnp-* z`XZK(a0UG`oo?~%yncZ7pj>>r-opG57Ba0o#CYk;He(#pEEDF@FLy8=>2QX_>&fs( zhD&9--}&+Csxi)U;rFk1WICD3?jx0kxWNn4xxO5zIXc;j&zZ)JLf+l+r7lRnIJ=-wMVhv|^kqK-#+ zi0Kh8Fo}Iae0{xL>3Sv0MYw=#B2Y8Pbr_wL8DP!?`nZ1gBzT>0rknX(^|DJ7g zhQp6%UAxGa4f20926^U}-AgJQ7W$|47)| zl$;AlwWf*x%kSlHCOpjg$fWW1#_G>9U%A1A5ynfI9ZlZIOrvkt+V9tvlP~b&Z1>)E zMIOrf<7ORF$>-^54Sp|2oA7Ij}w zJyWa9<#H469^^UnV0Yf-@4eNOg`{sAFR$=p<|Dr{^`DqdzGdPa%unbSzn+OdqaT6t zmUx8;2h)%GR+A24dGd1;mNFjk7E`ZaI=RWjis4Y36s=E?B3wgW$cA*w{dCLZe&$=m zk<6NBW{=x-o!2utj?yc}c_)T(OHEDrNO(B=D=BKOd!?9`tx1adAB;oTmO29s*B4Un zZUWb>;?EHR*CrCTGBv-EhJLBJHzVgQn+>LM&zEJ6dao+GG4qMsyH_kKc3f5F@J<#n?xNYK0Z-L ziP|ES_@GIjX1H9Oy_*zm+aUXr=K85?NArd;;v2_i{=VNW^drq2Z-ozz2l49*kEeLm zIPU~&mO-X7lCOdecrTn&t(kz ziShHnuHKqt*+@%F_x~eKpdVp_YzIV~8`Vpmh&HyB!XlS0oF+UE+-GM(II>W1-%-!wtfBK^#S|D_-4$EIeuq(@CjEJ^qx z(;@xQg#V!*@i(S^j^80ZVZ8nfH!&T$c={^iQD12EzfB|^W5PxBBW-QMw)D$|=%FT$S-q-&X8a$KcP(v9wU z3fq*lU7imM$OrNBr>_ri+$4^67&PmVB5a=RLW=rqm-GO}o%9M`p*7%GE}7O7~|zHZ zif-|CuxHaP<$%fO+u=_7<@?#MNae)AmY-LLvl%9DVmN$1PS?{dM`x#zB7D@uODJQ6 zt4)37AlD^0+jw00?*p+Y@m!NgB`|$!m{i`D?Mo{2vv0DF@|&z7g}0lMhM1qsGTJBF z=OWYSM|h6>6OXqcx@80ABl9!A-hPU4;^zt8Udcb1PWl-qejfJpSlg~_ci-bU`egyr zir?>CxQgpn)Lb*R@^isO43qK9`~7~vk<0_>RpZva|1k5G`?Aq_oHt`J{j!|-$db(W z8;)y9bPWMsfHof<;D4~=CFUW^_?6X36jPDO~7$*OljgiXX*<4cDH2VXos7&Np zx@C&;5if7QAF>g#BtuLiMK+66mawk!Fx?WeM@eP+m|4j*GLjXm?0Wz&&)u0$HqS00 zl_e&vL-`@74pd#Zh0(cL%kLv^%Xs-4!({>8a$t58Df~W8_ul78ObdSxDV#~aOk;ZS z^;yL*`9pRrsce<`{jC*jpL{EOYM#Zx6#e4$eo0)&HvC>*VmcY7TRi?wp<8^vTEsl$ z4yKhyvab$sUl8YH50T0g%aD!e7T-_j(=D$WGzZfyUjJ;&aPc_Vif*Jn6LzFurudC` zJv5#1=;LdPDbmK2CBpaVm)FrP zr_wDm=@u`ahGFuw>Dqx`i)myz!^PvNq8t9*q5g+JOUslI@>KHty60#c@H_G6ic8rB z$?M&H5A$iJk(rs_S9^lx$Y|#C^X08%xGbAzE+60?72cEGMJj&Z?_YFF|Df52RCYG) zJ@9QQvjy3^ND)rT4j@H+sY!2VJi_V5kFTDF4>4T!$`+G~$7e~m{DXCpZRnP#>4qQY z!e8l^k?a~$nVs!RD$~czAgL_PZX%UyvdzbdrE%T?GJgND`_Ano#zXI7w(nzdP8HC$ z(X$(AFPl#a)g`SXN#W0Py7RJ=877AtkI!@j{pjkKyd1Uh*J4>g%UjQcpR)c)ThWg; z_7s1cWh)skU&(eQ6}7P_DO*G;yAGI7lZwaBINjp)(t3mK^WpT0LGGu}J(L|pio~%& z!tTbud-v~I>hp;gq)%qVi{6L!^D4Co**cO`UT?blVXtLc+1L2_T3DNY;X17KDC;a< zkNuu*c`O?xm1w%{d7k}8u4TCRc}m5;C0;L$(=9K~Gmp?M7mb-KNaYL0+lLEx(l39? ze7fJ#FMfR4dOQUABf}(@w?C)r>N#KD7}LnpnV0`@^vkmBO{B6Q^ZKNZb(g~#F0(T~ zFIX{;;};fW=M8Y536Ic^?!5C$43n>C?UmPj2fX_eV>jCr8@%g3MULCPJEFiy_TzDz1- zWapB~+T-SPbR!)!-U?eX9Nw;_uH9Sbk;+cl8Km(42aw)Nw=hj>F)6~wOnu3CknaA? zxr|4Bkx8f0FP|`ezbYKgZ{Y1Oggxk&4UE?-?YXjsu^p0_M#841YoE@KYg24D(kqz` z-E)$B+zcb+x1^OOlDFdLzaC$+DJ!{X!1(#g4Ekl$%=hO%(GQ(tv|de$Hr5nxPiD7~ zipS3fm_|Ha^Kq>^zhQpub2*NM?R^|SAKs6C`8)FxKOg!7-AHS)e1w6eo6aw)^4rdv*>TZ&a?gjf)-cOt{( z38t0x#>^s8DVbKTqgzIpMxLTu0^M>B-7=I-8=$Vm=zhlQgKCx4^K(gMF~5}s{7#-> znDjABUZz_{vYK^~l5tW~kH|{8B`^>1-`}x{^23e;<|3w%y_rTP=@y^w@>QIVBCrhc zdTTkqmt60JhG}G1hRKbYm-FUhb`HIGo^9VG(@MiU#pjzCFa9^e@5J|aFORJlCLhj@ zCY3qaQsymnc0co!x!Fq$mou1NmJFC@7%z*mO&KSiU!P_=Dfq2?i|NGk=MlQ4TxEjB zVKM!(B=ha?{948|GMc^2bdvTn_pnU4Ae%)ho_`I$ldm#NzMQ?lFqvdN@=1ov;_OYN zvNHQ6sd)YO6T0QE+4o81<;?4&7wMO)vx``!`22i*)}k(wZJ16LX1=_a_>Jt#aPfTq zH{FtmZK;?>=8c(UtH?jRhkkj2agwqtNTnjy${d3~@a!(<`T$!F@iZA%+_LB@$&pT!^Pui zif+lr)o?rAa$B}Hsd(In0pb(BJy$YLzMc)U4RSjDGBZo0GQ~JKlWqyDo6MePmXgX# z1IFv2LHgzFY?OJ(cj=eYvx-#eY#OPYl>L}gJl^KeE!-n${gH0T=YQRO1)s04&tI5E zp3fGL%4W<*o}gRq&2A=@jj~88<7}(c*(`>M@5hnYlMTj9KdCIw&L$NdJK*O#-F?X4 zGhB2|FW<->AVt^S@-Sr}S2J8zWM1y`>6gu!MsB2A&Zk>`LAM;2ZBHskX5*BV974Z* z+a&IFN%uWi!!&Z zAGH7ReJUx^*`_T6mBVWoj>L6ZtB(}zyG8dgKG#3#5{8Se85BEyJ@5k4NMrmxKtEn~ z?Jt-6QUBA9|C{(d+H08=Y}a%APOi+hCl#-kM(CCuv(=>H=VM=@TmF@KxvXT~^4&4h zW0~>@)5$$qpzf4{7!=?CzQuTS@5_CIe#vpw#l6Sp!;F)sGB1Z0SO@w2SgU)Uzs)%H zJ)UEnT+4XzdTVkO<%dVVq27oQ$w; zQV|yt7$&})_tPz&pGVUzo?j=?Ew^TGB9+C=QGDgZ_IDS>*@C}ogBt=5}60O@7e?>BQ_BQnb$mcjOv& ziRu0ivv2=?Oe5c7-m*L0;&Dif>0OC%i%AdDkMQp7Vtyljf9Q1#7ae1yVf*C-y2Z=c z`*$B~?{RhSXKpyiJLL@fI@8MKroD%CB*S$ql6Pia|Eg}4^O#2d%y@L~hbz?Fzq`mH!zR8`JIr@tw3EPk1|fCGhAMv8#QGj9*3TG z*L!;mw(oiR^XK;2!y@+o1^h-%GU02?PjY^zfk7@K`K=#!E@Pa0+|-w{Ty)2)z;Kx} zVD6$@rkk`5%aMak;JmK2F{yZd-_P_iZ6IIw(LIWJSwF+Ye|P2}^&C9kZe*McGE81v zWfH?A*OUIdFde{l3g_0+eYdrcvPRmB;b_n0{hXdOJ;rc^*(O~^zZBUgNa5?1HXOHa z88{v$9TO*57x8$#l5W)ZldtgOdRGsx9OpQN-;TBF8<`G?V}tm61L4PX%X6mWI~)mn znCbxD6M?@s66P|Ue8R*#+0W4g-hYGI4v}=a@$((8KRlkpv_Z-Xk$gj1d$3hsFv#~s zbm#8@%0b@qLEt+o@pcB{vmA5e`zFj{JgSA+S)@qsH-T@dB>jqc%c!Zp%<|yhQ8jC^ z48-p;3}L5ioVbwN$IWt5d6E2;+1X4|d75#kW|Ds>_AzPKiMHL``1A4hf9!?tFr9oj z`w=PXe;a+fB=Kj)-@nl_gVv5LOZK53{vK}k9(~DhVV{?DxAFJI(g^)BmTkiN!P}LK zpO^?z@r{*)hnbIjo@K)0%G)n*c&AeQeWmWc^Q#7}PF_JOPY$&F{IGtIazLt0HI4E^ znq#`}DHHL4^a&F`MOmRZ&iMZmom|HE=NP@tc)KU%G5j83hwRm)DEKB*YTi|p@Ez6> zX&ci$$3148=MdxF`+VuY=|-fyBurp8^1;T zib<>Jhriz!4q>^{P`Ar*@_Q3+U|rzv9X2KFFV~p#0k%PY#`Nf(Z(Kk(%I(;GRD&iF|Kjyo{V3~;@CVb? zvu_`4pFcKydnDn_ruYEm1^>T>;cA9sWVxxYr5sUYqgN3Jn7ZABhnODT{#$be-6$5A zW^?*c44BC97I705JMU*bk#=G`5N^t-3)QZsf4}AJOEfdv3`tt0%hpiX~|IWeN zQ|j*P=ko*|E2TP^dIIIC#@h=hKSn<$&o%v*&~5>>Tj@u`H4 z9pYzA_rB$H%1eHf-9g$KBc(mLUlHf1UO`+Uu5GHL=*RGFrmomV6uX&lG3$!-Yg50M z@d(6zYe!P4S&n>)^+Vb<`w+jAD~z|pA3sF7A}q~_kAP-Z6ON`I)y2l!OPhL-xPZ4K zI&=>80%~GLipxxW2K{JuG+lcXd;?MHJBXF!AG-I$@^Pa3E@>tEA=0y^-ihr-`7V=A zr>up3Dfc(c!4vKOXNf11zo-|PFn5Ce0pz2^>rA+eemN-Hh&+_d2V4IBhQB}U?@8BZ z630j%F?FIJUAxIo3~;`Hi?UIUC9;_1pyvER(xeI0T{83q)BiczAVK&g(<2>d3gSlM zg=XZ;i6G$;rbE1td_`Jp{CvpoH-v}SHWafdCrqu#C^!8-jxb=#eS7?G3d-(6BSlcT+#09y5K6lkPlqJLZdKOB4UW`a;jL+vnM9u$`#y$=KFf z*texRCcBsv-tMmF!|2k9AX8VGA@(In^hAuT*ko80$)@Af|qc)Gk-{b1uKf0FnLi=v!3hrNgcf94##hWuJ7mVIx{P<813(_2F zMk~gnd^YwHYR^q}kb&ujKbgTbcU$!M0tI_E~u3`|8Wt zPQ>Zt6Vk>eZbv_=k7mnAG0gE*rYkRiC0;coj`etpEsUH9?KQkp`@}W(~D2jdPAhUcHa$Ftx(Oy_pZ%d-6T<_P<#iNu0<`&Z=}!~@#4$~Gc> zfVf514$>U96X|!xuPftDY$wX2%+#4|KdRGBL7YfQ97sVvN^^lp{7(Ek$2h?J;O#rr ze@(ip=c&KRIwC%o1@Z?~&kPX@|0$lvcvQ(m@MR&wjWi`csn$SeNozPQ-95TCYX=x z)H73b!~gG6{ZE#QaCEje<%ViL>yJtHe<_YI-Sd* z&tc+cd*&nm%`j9uk{<~7(+_{|vDuX6BWyozxN6m3JdE|j)Sbq!o4fDHo@L%hhmc<= zb`$E1rG4sUmNXa(_sn%I@Fl;xn_m|=(=0mNuLKl(4@JOYysn-S^>sW&vKpXDNqo47u|NB3Rg8^>wmdYty5CR*hy**=7q z$tTn^CtB&fY%e0^FZEK>oI<{0_*~Q6KtKHa(%ZugvzVv6+ITyG^;*ma;r(MReIwl3 zmlW;08Ik*#pJTjm9wg2F#065ni8m7G=>BiIVhV}8m1-B_0$p6Zd%V5B(QM56BE5os zwD0`QT@{MAP(L8uZyM@L>E3%dk99$PBI}QmW2OZ5E77+S?e`LjRe6M1m6a?5e*GFR zV7)O)T_N#uqi>!io@XlR0_ppz8RZxv&F4+{FSZTUDaQYga`+0v;q5=CO?$ke7V5udPmrRTKG7=Q%yvUANH=W~2T-vuTe zK^~!EACdZb=8N>l>`GGj|3gnF5Axjv>#TEiS(+V7ib#C7b|e2#>|x>$8IJJ5EdM_K zmf`UBqPqEgYgKyg7z2bR6?UB+sN=P5z)}T8X0! zhyT9@Z%4!LM}*f-wCyIQCz%%-j)zjOG~r~*N%C>i2?L~UjM5dSY8BXiSg&ozd7s&&XXr;m8A`p2Dc`|%qyC_&P9UGq-Jf81 ziQ*j7Ph3d(&TJb}SwCBk6!GiiAHtg1(*yQ>P|5nDyT5uG{its;-mYxgfbB$li86xU zzp5`|I{5v9a3$m96Ip&P@6WCE4ZDP289#5Vwq`rg|A-kTmGIw8C(Bu1)Gre+2*i&R z#D=7YnXjzJddeu1lq0`YR@Uh;ql!DpP!;7sUTR zq~8zM{}_?UbBykNO7Rg>Z_?v`<>6fBi*U0^SFt?!_aW)OSYJ8C)L&wK;rox@uk`b+ zIGeJCpPvNkUTH2gaS`KDbDU~D&itS@&%~cUrF-Z``%Tz2pAJ<|W(!s{x*PgtXaz%Bw zN!0r-)>-Qw*;X03fb$3>;zdSpH;MW~;-03NPyE53t2PViN6k4{YbE(4mzwVT_I%%` z`<`uNKb|w;5VjZb-f^=V!#Y6?L@P0HkTCT zbW`8P^hjSa-kwo+Ui&z)f_e$th%T=E{m<(ehWf2+KbjMb>HzWU_u<*AgUsE@6sJuD z@$W(FBl$gMY(jm6=eILcONl##&$F$lRR_ZVpVY{i#25U2bK8d3cEs2tv8I_rexWK&aX!OQoo6DkBz`>f=dJOz3>TIm?YEuJ z&-=gjL%jZ;!+OYZtQU&C$QN|iZ>t%O`VmtdHW4JAVVZ-;Z`sk*o0E@-oHw^tkix$o z^7~qmdQs{nCjOCr1hz%$3(e?7)W1l3WzxwYhk%MNdJx0H;6xHz6jT_tr*>Qb!*XERtM?- zF4LiFw<({WMz&x4xIc9X@rJMl!!Y@Cj$2r`#{Aas6Mz6vR!p1U z3jZcQk^XMtb3N{fF^_vq-!0@H!k10|W5gpSziCQhQ$l2YWZ}5kk#3aKYf>+x98qmR zzG3KkZHJ6vE8Vw%2P#tgj@0tiwK4~VeC7#g#v{`sM@q~k~H1+1I*^gFt?<@KH(JQxK9c1?Bo8PJy z&gUJ%`C-{%Ccbt)_00V6_^Zqau_{Bi8~^`XqyNo*j49$us*jqm3G0XWDfS_h$C~cF zxyu-j(L^1K^l!6rOY#BLKgnN&ht23COo!&DCjOrJqT+Wl{H!UjVL7PwFkL&YCs4NX zL6$3izxEx(6NVo$^-swsOszDkRm^m18t2C4jVu+^Q1?K07}|6lIF`k;EH ziEn4U5w0^+^#uRZjF@V&Z~Bb4Wj{c%F8P3=w-PTXuQwZ< zH9yGg?MxXMj^}5YcnI^t!grdNhUN!ZJZKhdNxY(Xkom*kXAOTLKamb(9WZjXX|`g& zhwgn#oWVYV{*6q$g<&XWW{DKBkLl2VkXgD7`GMvU;tBq|u(*%uF}&K0koS`AF!glG z2Yx>+ZO;0kJ}#qzIaPWb3!2n9P>0JwM3oO^p8^xbQvJQz&m4 zIoo*q9Mv0HU-rCSyYl&bEhqCk#jw6^lz=WBMN4-D! zfo0^4RBvIu@%X{SBSwErxya+a*21@Oe8l9=Cah2XAij5^<;R`jYuRrxMSe^18}e5^ zWxW0K_*e23em^4&(2Yo0$YgCQ_5~?EYQm8dd}~O4JdwSP6vZ1DkLIf;{+M}T_{$Tm zV#C#(&#z{;XL{5Z61#}kF&(@e!}<`$q3>c-lgiXtrkX}R!S7#(*O3pXi603Q%nRuZ zSa zTp|9+^nHizKzgI8X7YOsQD2GIi{;;l7YyBI>P;CZ>znFoeut4&rZ}EFM@qz{OgDk< z);XkdB0Lmnf|NEPqhEr?E5VLL#7!cE>P^od{J|pm7(wVTEkBgx2V5u$}3o36#JUgW1a|% zm*Jh}w`OcWJqx{~EB(}C;&JBRr_g9InfcocV?p~blOFr*kx(4+T0_!WyS4_XoK`>)WGmB|tR73N%>3m%(|;xV0Tyh?^$Y6%GB54O^$omU8uyPp#wj2JPVZ9UUf|1G; zT!V;zFQscS>AS>C5__U|SzGIJy^7&rrY6WA)E~?8d7$4n8eK_zz}sC&2dw71SkB2V zHZwQ|N;;fr&`*p>IE{5iAJfW;*O+>@3I1O(d2=@Lh^c!_dLzG=n<)=Dgl;r1ny~47 zo)b{l{)6pB!#2ny*VVG<2s3LR&TG;49NUkIWwh=i#cZyMq#=&bY`nTv zag3AlW2U&1ctw0QWrl^voAPA#M@+rd#08AU(4d*(_#)-A%m?+T8G4*NK>dB=|A$;{ z=u7`2tGe%lY!k|J zjX%dP*mjvQkMhOvXUyVHt`0JTeO89Q!v2Z$DH9%~+!0?i!(V4S(%RW(J+7B~p(JKy zc$rBzF&xdKru-%2;paCCsk7v%t<1=)*-ueXj#Au3T%g>|=vjH|2c&Wu+l-a3<$fE6 z&Nid#P!GfZpFuI3`C#NO;sH+`%ymB==QrZ_d+X)Y2Pj{~@(}u%KhiPdEq}h!e3R`# zc-Bl^N4%rpd{h?h#CFL7Gr0@#EWY3Nm_Mp}%@F6y;`gn>Ud$ImXKSA#mcC}LnQ^re)F2X6|+zW3iHBjYR5mY0fh7YWmTCtLg4Pa;>221z%s^ ze@pgb8UCKBpC*1W8Q4}l&oM=2yu$eXjp1)IJ(~BK`U3JDX_S0MapXj+A^s$=K2omD zK8KgsMwzjrS=7h&VJYKe_-_-f^b7I@Q{c>p{8v7{ba;+?V(~Y-dS+ZOSdX|Tw z+gW!^a^540)-=t*HjiZi%{R@+lkCq}v@ZF9DW;LppG~wvLEgZRKjk*$E5g&{tN8mT zZ(ta7ERpaFQ~rhN(NBy^Ahu{~Z$?kI9SAnR+qvLD(z1iRH_sEE9=3O~O~Q zdr9R_rg#h6fnkpE(tOwWd+hOe)!0IL`l~=Q?!Ggk7I}gSbRG zpY;&xZ1Hw5yZ>8z<#^kkN;;q4qngg|;n(x=PsB6Ao%|Nfk*p_FmrCLpn1t6e4btB9 zqq>6iMEtSwaxSc2q8>td zvKgW7mUNFPA7eQDyjt(xiQgyduA46(Z@;UEOIRkl_0YQ_s5W4IQOwM?Cq+2Il<(;U zsppvP{ma+#d!*?moI^k2Ri5T&Anj^OwoxK=ozx#U z&G}4+G;I8SRk`F*0)Pu{}sTg5;gp&)J~%ra&FL=b(WEa_BJoXm9a{H`ec7RAw~c|GNX zILCPT#SQ3({ztn+VqC%v*&I^YhBA?Z*#_BSuobzFB7VOiHuTHijlZYh*Rl1xC>In* znYc$UNWHo7_^$RQ|50aY{a*Wjd&4-(Li&seYtk=)o7vu$#m^Xz0LgPtX5{(a>9IbH=+Epwcc3s-cX8c zw;XEX)x-hv)2(k3LUlDHpWC{M5MiFl_tK4crs>*w{42|oms%STN;P0UJjlIG9BWkP zU80Vq$Pc$(CY0w*m%r(!wy^32$k(!p@$%Q}6Vx2Dq*~F0O~}tEw=!W1x{)ZaB`+RHdJ@WX&vF7`i^&;cV^QpKn`4{26 zG4pRilvBnVe%$xx#ffnxzQcSF$m^1RVDxTA<3d8D?Tp$6ZoEkdufN!}TXiGpBjn4* zBm9>@9+yweH-{5S^@N#2D5ud+mSufpFVnPD@fH4G+#){(qzhWt6Cz(`B6&{26(-%t zaAb{xt{&?G^hbA`UyT3a$Ny=Rk#gyPxs_1b^Zf37tvASXh(X%qFp*HwzO5Yy(R|zX zaE8q`-Fx8lYlc0^yd^(wJYJ^IPbOOT63WBGnf!3Rxsgx`;#w|b9BJDh@$2rc-1ry6 z2Mn&%r$Te27Pf3ETN7V{Z{O}i#u zf4DoJymPR5k0f0=$a`x4%Uu4$>q*Be2AgjrQ-P~_S2P{LaD*dGI+|`dzNKRv@_8-h zo#F3c`TRWe_nX4qjDviS@#|I({k}xHocW_`7w1&E;q{UIK4(~*aikzVWL5Hre9$_0 zKIczRo4QEbjG6ri5k71Dx-xUUEs1hW^v&YNE`&&wdD7KC{2B8VzaH9;|1y<4DZd;r z+YWL*j4fKL63V*9?~8QLSvIA=tliQ(402oR0Ol7; z7$$!G;opVah+#743G-vdk!b^FBSJa4)vkZqne~=Wnb6O=OE6vg?%U7}|DJDHlWw`2 z`N>?CC4S!if7f#g!(@;7#=oENXS(Ih)=PwPck3ZS@p9*3{>!zkl2E3#e*6U6jk8&n ztT$jh-%X)gUSXIl!GAfRl?Y|mR>3%p`GiQV51z2HH?UvIg7lYf8gFOM^Ii8|-QO54 zzc*=xG1_g#maT0G(X_F*9HFQGbjBAyKZq<}rnY8Iw{No0hP&Ew_x4Y_^xA>6l8?3y zBZS|N?b`MD4E<#v(|uQY6}qKu@1?u1J)7l<$HN41Axp5X(w0xnzWh(RR~l=i1=&t` z{hjVQ&&#RyI2ImY8u5Hy4NzXNeJil;vUzJgLRrg%jaXNtp_U)VFQhz1I>mT--F-*l zN#-x#ZTWF%b-Lwz;#&sin>L?z->KZ1ZGzfxXndSdK4H9EN+;8eJYoXJ;>MYTNc)=R zn`D~yC=-rlIJ)E1igb(iA*6*FChME79rmRdM_yq(`Kw8bF&=#S?)xjAZg(=C_I z2gHvTzJK%$aJ~xdJMwGe$Aj+pzvy6h&pGkGyZ?SZ{gJORfi!A-nNUtNex8*cWPEwt z`19M8=$7HuOhVzhM#BEB0}18m)_#PtQR@}fUmk3|Oep`|`URmp)H;q(X0|RTlvi6z zGhbQBq$OD&bl<7?AI1~KiLBq+gb;qc)P1+?1NJ%b@7x@~f4ROj@dU&0)O_;+A<{x) zjj;R}_n-K`v+?$|;%v^B=}o@#kl0L%I?Ez7LoKK`CuDj5!?UE@oHNS|%ZAe2o_ zcRYHV^$^cj_wZl*I6a5|vP8?jr;>LhUf}WT+q)a%$)YVke$z&!-=C)ra!xsD-yqzP z|I3@O9R1``#)tP$OE4VyUXy-2MxAA}_rvcgdzZeex&Wyi@95@FTKQ8$3(DS7q zf4cT#3*u7R`1SL;uAPL9S+;zxrF(|*0n325r|l<6` z@vr%I+Z?_Z!0}FWPqw))J4U?7`SZ=ygyQ>8A8CVh1k)jWnqkP_Cti@2;Qk>ho(W0V zn{`F{snNB1<90%X0|y#92avMh{wN~pAl>!YabtXgfaUGaJY}5aV)72^IiUQSsZQj6 zEb>C8yMCEX+`!MDygk+M4D*pI7%n%k4B4V}Kf@63r~HNQfA#L%|3&ybj1+zh@fm zW!~tHw~sI#{Q4-de>9X<@cT!J`_|&uTWNsdn7o+yMRgqMiSQQlN7{n%k-x`!BOJ)I zay;=Rm#|D(oArmci>)>r8?O_eD9F>2N0|@&_)?wAGEx5*_qY%jXF8-0v0m_c)QM#@ z&LM=qKioa%nWR7bz3I$7d-3^{Jj0au3hM*^jz@feZiEF|tFi6!F5RMI5xRVF=vY(U zclTQlXI$}eu`RdKe&Zac@h8>`{(ZyId#QJVayI!GiTop;ud?DA@e0-p%{5^^)1PY6 zROTtSGGDpWz5{C#ptCV6h=7+GW$>Z#Q7`l*p zLx>+`dgxdqeb-PA2-WA9C%m4&Ul)~MAbybdVfpa;LTN3w3r(A`KOxl3w<04IC965#m@aIGEGUkb}E#u1l3`716`2$^hPg5C3UShvR zy(;kr|K5;)@7~*c%pYM};Lp$edo_`I4$|DiIfQm2*C0NSmNv~j!`C@(yu~`82y6$! zk61P;>Vq^sO9+2ow(nk!!|-x4oz1qQe3W>F-#3ptk~XM$ZZGAEjDzm_a&5LB>A|sv z-(RSfAzsm(yK?@T+1JIN`+B|hat-E(Vlm^}kQiV5{;}7)^LD?} z_KYLnF@7J`)7_6RVPDoCUH=97kFI@~&(V!)koZHohi=5jO<0IHL_C*nq~DtSZ_)!n z`xHu^TZ-R5D|>V!-^_S&r-_kyA+rpL-!pkG-SVFCdKlpa@)!Jg92aJKgufC`@cYu9 zF8POJykk5@TdO8rRf@PpJpL%xXZKqO8j&0~DTZHzw` zEVOSUv(JhjKhswkAA#q)lI~&{@} zFh6O}8{#)vF2XlVb5CG4^W^-bvE?}TEb$`U2x}S7R~30e@_DQeCa$1fE2YIpx|jPYb* zy19LjdgXXxpb`H@IwL&X`VJwy9V~BWEtA)z+|uL|=|=e#(?5&)!iZ;?(X*)^i@s!v zTgaz~x0}98=nsEiF`Y|(g4YA94tw^+iHVUT4agj1NCQ^!hN`CmVi$W0GrbS#+>bFV+i^ z9~^81$}Gt9EnkMEU`H}*1_P|}{J zJed50>Qv+JAC5f1aT8^0lsqKiMl>*4$J=kC7wkJ(One|{rY#5Z!w%eTBL>4uv07O!U+_9R}BHZplZ#zTCH`5>)8 ze?-a>@%pjF7UQA8v9!?f^j+c{)%K)6vc{EvvMxxwFdx*%n)EID!S{pmtnncEkMu+2 zTuag^W+-v}hl2HNkS7XMoSR8zA8Bxm%NRYI{E2*;i7LBQ#xHKltyvxl)>Ufe+hBP$ zO6D!ybEa2`U%8U)l$ZH0uW&q-8~Km4$Y3LIo-XO7)@y_)H|;gj;XR(m^my0Hr0H~{ zKFo}sOTI$?WoB|N`2^MNrf-zvCcL|Poc|d8z9}AMzUU|KNuunN`aUyCeihG;;d1gX z5@nwh2bi!Y{ZUUd=`FSc{{2xuU-9QkX>o=lyv6ZXCW#kh$^h}>XLyu2L}Fi+{A&~5 zq(3t0B+Wgb)d-h2HTh2RUZyLjX3&j#Zxa|t;{K-m2I+||zmqo;>W`aZhjHGAv3}}b ze%eI(H8vxJA786Y$AfseS*WZ={2kkfz`iDVnyJ=je3T2D{3_ch^Ww<`X5koMNde+%^NJ00uyns15LyY^^n zlzuyyVn@;)k$fq7cShoAX6QP~H^gg<+Q^isewet!jNCxEhko*`^tC3gW;pWYrjP$p zUtx;VSw5nciPTaXZ&L1N!g_Qgu{{!h$M(rQ6V73~kq$Kee!G7cI{b=wgTH6t$G7lx z;vebp)&j)6kZw|~Yzp$0ROA(j(NyFoDGzKNLx^ySNk=muMDn5xCsQ24{N(c{4l^A7 zK1VF+hL2Z$l;t4pY4YymBNROocVv7d*0C{_5QWA;#r`AZhNda|Hsb%yOBAQ5h>~ht_F?=sO)*`4){}@MnNFNZY4UwzK_X?M zl#7r)2&+hZv5ylPSrUl77#2BR_1y(QLOoM*PV8#Fezi?{psVF4vg& z0`ZOf4-*$4eNeAt%ALl86qHd7%EJQTbEZC;@eq$O`MB}W_&OoN*~ZV~()r`mj~NdY z{iR?W38$IrWctfVty2lneV_JN#zS$i3H#CwzfV(4r$1u9@#Ak^hV_9zhx7cF?jauF z^#{DZQCH7x8hKA<5SMaR>u-dz32`kOnRMh}^PLlaj-zM0l3q7CkdE>n`paVcM_k_c zeVKX-@+16xuDCP9k#{%s#~6z+rhJ9B%bPD_ zzVPzW+mZC|2Tq*9`0)2D{})+YRcZY1tii$B-O zoNI~?&wryEiM%Ue0rDMuyr^l>jo;>fe_t%Uz;yDs$z#k<#!cYdp>Yc#;+3u22;ue4 z<9T$WYZu@G#z#Ka`0#KF{gJ-V`U)Xv2&duC7yW&nZvS4GxRaNNSGluw)qMM2)XxcJ znK64lwb5A9c4F7w(vkFszdz&k`Te;>IG5q@Za+Ur_cM*mHIe5Nk{>ncdHN%N->5Et zs(&$9Y}xswoS%|Ww2A^g2BuU{GGk{{5OyUz?Z z=W3C#@k2s{U$kB(ls8P8V7~I03FJrd>tlajmu_OXupc!z?^QjDc$VqfZ-`7UOSe`e zly})4@%{5{{>y8v^9bdet-lh=w@vpvYcH0I!11PWCLuEG(YT5bX`adV(=Csh_z3F@ zZ&%ZwZ>G%n@a^{VT(7U%y$5m*mgp>bK&{+ zy%ewCI7GMHZ@TAf>l4oi{l>4?)2Hb#Gh1zUIFIp=E;8YAy5*|Y#e{NJ>v+QdCGEp> z2?>%V!QIY(j%%VeO(cHD z`2FfcKgk>e#k)1G#OF-9g<*)-wk{<^IIi_MLRqKvJ=R-NYc^>lkFkw%-+VJ=jQoN< zOgeFlYYhI6wA%R1^TznT6~mr3-u`v|1^wma)=PxYvwq2swK#@lM9$&F=kN7;n|GTI zW!}4+up#5f>#V1Ez2S5CFSoYtAe7@@w4M!$zc16>cb>*?^M!vG!>@C4W*mfjjPh)gZ@)^nOlz?%LE7yL+q0cgkVeus-+Y%){$|b<@rC+Ex#j9Y-QwlM1^ky&TQ?9&TaT?NQ&g_}q4je@`F`tngz~mYOAI#k!Mo=t9~!ha zG`1&{^;+8!%BH5Px71HJy7!$v$$xb9w%YEr1N{*OjMumH_r;pF5|(AyPgyVV?Z1Qn z;@9zK@L#rV-AR1PL~9D6Jp6=tfl#K;H^&poeywW>+`Pm7EW^B<@$ts! zC*EE0U%Vdqsr;A0)**!A<=ChAFMGA75{eI>%{t49^b;S?kKbNC?!h?X`{5FdE57^@ z{)?~Qnf#X-EnnVDx@A`DDnhxebqS%AtxXAK&z6tp%ekBWqOwwaI=_E#F#W{mdpZAQ zxOFz6`1=%R@n2HQrw???My*$f3-S2q=fCVR-JDM-x%CR6tUO@)31z?5rGzr8bs3@D z-b#dWcIzU-|Lr8Y#pgGd|Kj=kRQ}7IE$!Pfv-NF4xx3}(;o9fr_}2Y|;@2PF;lJG2 z^5yyXOVMB6X4_?9{!8LqTwbD|96rAh|3Uc*Z~r9g9s>OO#;<3?vy3CYzosXcAN7HL zIMxXFGECm0zxy`KA6ri0KUJz!7zDsz<9bo z$F!)Hv_`mlTnrpFZ`Hti7Ngt%zczvJ1J-)^}%pdthj)(AaI9xHv z`eJSRiQ-TS)=%2^UlYer3GXo_hmmqDhLihV=wWqSD|!^GFy^F@1{_xG+sk7;Gbm|2TZj-emY9j1HF`9Oxr z`K&7n_BF{|pNL;4b^Gbkq%+b!%m-mdrj^V1kF-3)&|HIX9pde5`1>KTpL0g|`G?ml ziw_S53BPOYL@4L7?GpKqxD3<7%lUNYSdjcQ>x;CM$_j?J`+d5b;Rv&s9@W%dBiv3u zVcG`gvH||QBtOeM;m?b`-84Uc%|Bx}!egu(@~>Dvx^{K$VYvujpdZqh@%MN9enBW0 zj{GMR7GxS(w{owQbNDa!l3sHBe6u0*LE^kg!cO#;$4v_KN7FXIlmR>DUPZn< ze5?_!XFO!C1H{`O@cIv&P;&g6MqOCu1AUuZ@?B$%?tc9k^OkkS%=Z`%>0p)vZ-*`I z%zPU3-x-&fum$78-?#Gf!0;2MmEW5D7uHj5GVw{uC8Q0<8-a2|DxRT;->0qiq})Sz zp7|j1Ttd9OD3{RO8N=iQm?{& zQ$+Hrqzz2wIhu6$?-TQrFPZW%)(hS~T)jEhU&xW^;Oz)`dnNvSplOrp!U4V!!*by5 zCi#7jv^DF6=AGYR^3%WAR?)eLEW>~Jd32=w5P$v=7G$3CtjT{TJN1lHmoYP`{K~6BmF$_n!n~5JKec{j5 zswGK(gzLu4VN8d7F3XjFjWr_ovL)}yFxku0caeVZ_M3{?tP{dntTPg6E8z{|4e<=( z3w}SjJMUbS<;xpvpB%_I@-oxOi42nknKvTymasPShCfg0|25C=;O#h8ce8!)a;UzV zd;-7kQ76_PethZbDLlk7g=bz;AIEeEaiCE#jWov!9WTP;jhu)VR3|VTUcW1GtQXJc zUY-u0JszZc{`Uvs9Dd(FJxhK>cfRBM-}-F3{F`Cu_M>%)8##|<$qJ+!Mp;+!??9$c zvkZ7U+&Qyc=vya}A02OmE0_j-KkGG`YnU_Vhmjk{8-CwDAHg&T73+hMIShv%C%t}E zVBeSeCgK#`{(T$MBHu`UL!xXGYm0@l{uHJ|_gw8&hNHPRvJm}$Z^8zonS7sgl4BW1 z<}*FKzDyNKAEcF;k9@Azr~~T-FE_$ttQYDd=r4D9b{<4)aBMx(O$- zPN;5RdiZ&7{Q={l`Xc=?dbb(Ai~Sw(9@ZCRu7na=z#p@;ed#nDv#&|v3j-em3e1yZ9 z23`HHW7$r4`wt~$vlN$(H^L9duc%fh9#C#&CeETB6~cFkUldz24Vq^rlhZi`WO`I< zF&(_#PjMst(f_oXsu87vpYo;|Y(%SE-4@$>h173m2thr^YmCnnezrCyr#L|-=XIJO=6R8#NAa15Vq z(iE1Bp({;wAnT7z{TWHDgLLhlO=o#f+xwCiV7@5VAzcs#O!YC=8Lle8}J1+PEo?S+kelR8F- zm$7}&H=-om!1Rb~Fbru8)x1w!`Xhak@sI~dCp6Ez|C{dvuFd+RX=AF7Zt}4Bdx@U@<;nDyubTJ(+YDV} zN&YtTMZFE{iITi4eqXZOg6ZJ*Rq|nM3*ub18x_YANm~%Fn0S}{3dJR)FG{x@^F>;d z?Loed`C#Nm(ive5QxCHqauMqU|Gq}?0`o-tBHM_`dyMLOHTAt7W8TQO4>r7>dH0;~ zFQlhj!1%HX+laU+^Mk)H6V~KE(%Wng;t`C4bTjJ>wY@98KZM^Bj~Kp;;}+sIOoQT7 zwjXgV`k}k;|1p*gAFrH793jnR8FB{8MWwP4`8vfF%f63c@aGr5;~RQXu0y<{*pu(W z!0R!O@U2p*9wxtH;+rOZi}geKCzcCuS2RCD+#&vz;TU?M*YNg0>T5|8g#Q|Bq!(Fd zgh$wZbl0QvSy%Zv!{PO(>o=JmO`Bma4}>BTKbV+jynVEwWytj`2cxq%Zo%vA6eqB) z7(SQ%4B>h+F^BC#`KTFvi0KgjW&FL_`gYa>{{5!D+bGx2eADkPru~TN`!)R$E@3@T z@(rHG*YtS4w zPWwK1o^I5;vcB;5u)F7lFB2cK7V|{40`r2mN2hO0G&n~nkQhg*8(AL0#!Lr)Z!~7M zMdq4%mmc*fiQCQ0#IvL;yq!mXKcxID>4f@2rfa`pcb131J|%v93l}jD(Y-ObgK^|1 zgN?W?@rm+K=8JS-ui^KFii_DE#2Ji-v>)Rjv#&_8d9RUAq#we6n6IdemoYPZJ$V;Z zB0f+YYw82p4&)cu-{njEhd&4P>yu(T)&u3N7J0lxdYW{@?>6Lnn+P@6+bC~kIMUM0 z3*n=tZ$9}OexK%*&G-%+{618Eug5cb+{N}GzQnept7r7F9_1Kuu{`}zZezT@bN(IM zfYBS+4-sx7E)Xwge0V$UexB*~m-^VJB~u1Uyoh{(dRgKJ-das|!Jc@ib+kg`*%usx`lx1@Dg zAH*M<%r&Sq&&GK^p1#C&pIe33Sua_Eb%!5s{CRxdyBDNb z#gqf&52TUS$;=m%+2n&*9umtIe~w#k!?F=}VOi3a59wI81EaT7jw5Vh(hAHM)dR-c zGl&N}@J(h|5u1QC+95i)M!gS6%Ni)QAm_Ph_#OvRN zrHB{!efuCo$i0Phx9#1|;xgP0teBWi1`>6LZUHzk9vAsyE zupTHVqopQKN_dt$gL;GUMzH|f34d=cElk`Y|AF*C_gtTHGr`|yD=Et)Z)%FjeB^T` zZOr%xUt=CfrK!n_683Fv&2VYY8~whqzo+2s4tDjV!a~do)dgnc zW#*5*OH4Vye2{)%=J0J!i9aX*!JkLgoIf^RB}877Z*=111&rT+@OsZ)-sJg%LHxbu zky$JsVHM&N)zEk&uRPwoE0i809#JeuK7rqVtd3+nl;kIgOef{FCf-dqMq3jX5&!V_ z!zm0X6Y-Hjb07PGyh=ZLo&ShS^cn@nKgq|KVi~%T7BTT3U!hyhFwMKiTQCp4Q7fOGWu_fP z{z9NUmWf+>jj#*bkNOSvGrYhwQupXapuCcJuPHfBNx0C|yOaJ%pD`nUB0bTsZ@MCV zhyJKz$`V8IJm?)}IM6L|jQ?f0Sx-0cV$*2zVGZc{Jn{j z`8K`GS;Ul-;S$egJgLp(LVU{?qwn<^BM*~*P(N;_^zl7s+_|nfU;(~=jK}x}vb?ab z>Dz~Vg*l6x{!7U}@bk**4&o6n@U3W>q^y$g4bltoE%reSkB~o5^qX+?0ChX@w274U z(w%n_he7d3UXny!kp5XFo-!V!Jl@1(=tjApiG6e5+0sY)Nc@P&_pzTKE!J9tapOXH1X!@zyzn$fui=cP3xp;88Pp{gXk;tC$|6>2ff#3HFUuM0L?;$?rY!h`%Lw%a* zzm0r@a<1vSVmwH3s%hT2KAHdI5s4cbuP2g@CLQ6&$Fv7=h447*g-P}+N#rFNe$iCt zvOP#2HIo-J9!AGa$^I%sKQa06UXZXA^A**lMSPgNf}u0V8`amzM<~co;^*Zx`g{{Ou~xzgg?jZn@c`GTBh{?>5TF~whR8e%-cCBb|bz~ z4z_d9tww zq4YgU{2~99{SMU_^Tp%{-*Lyx$4%IcJcRt)!Nw5#v^4MdtU3_-Gy5k>)<;6$SR>Eq z(H;`pMp+?`Ek}8TVUBGw@hs_!DSXRbMn7z3ax9a)1=GWy%Z#i?{=NcD&pqu0_2XH*cCdLT&%Ya)798jLk34X;so3|$^K~_iZq&P&cmdmiksq4= zzp;IoywB91U_89PGW8vBJ?BL-`&LuE&HNBf=`}`Xvt05Tmm$Uttyw!w9*;Y(EZiaqD{35?>imwx| z@aHw*Ey`c{67hpP+xUABYRgX4Mv4rbVZuRdFRBAgJd5qX#DgZi%=jp8HTfpC5u?2) z8#Q@Iic3wVj1t}ZZ0>)a#rDAK@8)9}j-+*wFS36j{Dt*K{2BQH<+`LhCYLsS|02KO zefr5`h3S8i@&)Bo6IhnaT#9lEuMC=k@nz^C;t|D8COt!Xpn2EkeB$qoC(PTF?+yCB zO}!ZI%Qp5TL^#WoTM;i9zSiVt*ggdEf=sYaO2zrIWbP@8*DoDD)v-|Aeoz{pj|u*VulHvaJ$EOdn;DEOnmw;M^yJ3@>K< zIcS>B`XSFFU&HTvra*eYubcfjSDMNADBdysm^=syh`ool0C=WCBk#r++Y;3GahLAZ=($@|pzgE7I<-)i!KD;#RHSvmFQvo37oRKaWvwk!3E*vJt1WmLf#>6~mFP zGhsElWiI<8;vK{#id~5Zq-{)GiRn?0r)1jJT<2qS3lrHd8#l9Fs6Nj6B97CIrp?Y* ziNh6GmUw)Ai2sPUFdnLtnGVIpt~#q^iu{Kc@Oe1CU0oX zB}8cDix`e#4b#=LUWs@?)0V(#oOfQ&{E(Mpd=$HxdIsr-Vr8Q?O`3L1PGwpYiYt`s zn#8$L<12)6jq!F^iY*x*>C>h>oas;F8R|vzDmq=WDN?d@rM#=U_`UU-E z8`HfX>+cJ0G1%014LcCZ69Wx@&slBGO0gL0g}UFw-B}0Z9ZXu4^+o;{c@Bx^hYjwT z>%O_y6DVddAEYmuiJwwlW9CMjUt@GVj!U7-s_>~*(?`9=K?~V zpvL=5gK}@;1H~a`f;5+Ko0+6smNeM9iugkJp45lw54E8we!kHE1mzS)9yJwtRPyWO z75Mv6>0aiCg7Qu>$3xMx6scJ+DL-NAed&hR?`*!sx`EP$?Sj`&>AvsuBl^o1*ml{b zwH_hT`6k{+e8Rsk?C+;^@5w&MGGyDqM&?{k66ed(y{G;Z%aR`Rl0#d{lSn@|`X;yd zedU_6P`n;R@ge@BTD`SAp{!x@YUC+Y8=IPQ81d)H_4ah5|1vZDEzS$z&vDa%(H_h&frwJqX1E6%-~_xI=z zpdaF;#^2ium(X9HG5*{zFE>uPOCH$P#QjK9w`<<+En^w;UVg9W(S7&QDSQ+)RFt@(rPt zCwf7=9)0yA=8K_+jMroAznT1lzPV=dD&~XYbEfKJI^=JWkK|UPHmn++pAKM~Wi#SH zj%j_85NboCX-8v6y5$9Nby`YYYYE07LIYniwT`2!_ojTAeXawgp< zPB)_$P*z}M#0;NJen54MDNbTMjFMNRywC*xOE>*pOpl3YT2B(9rd*Ot{*bVVDOfj2 z%bQ|7x)FCUX)65@KVbhrxWS}d*j|Lq6qg(a4j(k^%L(OpIpI7;J9r~Xp{~$AsOpuqP zzQDwNSr3GjOr{JKozphwwUdLCNA!EhgbnBx|Bi*%3t69dL02z^b6cI?#-)ivl*F^7 z#Y`a2NPN%uamnjvgu_TDRHT{I?#uj_vrIUj@laDX$OQRF%1h1U<&+z!uQmB9@_{gp z4BcWT#+go@Gb8trpHQA@{QSGi&s&jS5Oy{7Hq0MYpUK~3pMbx=mbT+R!lteEJ&gQo z;uQsDjZ~j8{{Cn8-rCOxsk_1PYr|fnI+5|vccm$AXL`hYOf`?;sL31R`DKK08dnpd zZM_!9 zt5(VNJ<=h>3*tK_Y)O0~_DnsEctvcL43o6(|6jc+irHP}g6I3@>@;6Pql>YGNJLT@o557HVi1k7^ z%4Cj@Qg3X+yfNBkAx@StUf(n=OgH@cAzw>8qo#ZjeX~@mWlUP2XKlfgUvy3D=P`-> zUi|*z=q;2lC~h_tp$t)0NaXk?#dl12tk=BnIK=TtBIC-$L&nRWVvO<;lzsL*xm` z^GyH!U$52+GC!2-7|%cD7IY)M#rC3mfAvm|M{+`|kLyw-;!xshq?7Do z((dE~WbL!^3*r^U5~LS$Y04{lK{9D9LzRhFG9UPRuH~hShmkp^|0<3{lc!Ox$I0~sH2XH#y?d=bgR5|%ab6}AaoeKD>TqplYZXw6~!rM(Wz50M|_ zm6q}fyxggmCcaTnhDhAQlm`;uC=N3D;PD{-K5rzQC6UHbea@6eFde)eLb{0ma)Zg& zGapP|Y=+Mp4-LwjVR^_D-($I`bL(nCMDnEs@}3mYRG(z|2p=(i9p(3vns0H>A&<-+ zFs~9K^@vO4H%*w)qi!x~e!3Y>J-*G*<5{0k8|vckQB0mqdLohL;@_pxxrxO4%*0&E z3HWoQ@-osFk-Q;!mI>#ud`w+ zY++6E1ro<`$y_5zwK#E(yqk$965j|Hn&C^xCzv1|CDLEIcK;utTtNA4Gx=OENb$58 zeVj4^!=t9F&vqa4$Iv|{+)OtjWs{6vZ1TCR7yP+i^?BA8>66Cq^A@YJJmi0}U5Gzx z%^^hB{@u33gIqMfk+vd#Al_+$u7!}79&ZHlh?HBKIuhTAq=VF7HYI5z6QsQiUt&fG zrMkjQ+`@3V#|#rn|7~XIrtu&ZWr_Iv&%+ht!N=>L$A8qVa3kx9>U0x7%=)2Py|pYM z{JcFc%=RJO%l5ZbmGUSVagz>MoiyDy&%J_n!G9Dt0sSn>5(=wp^yHukV)^b zo$><{uOOeGd6$NA)4xyKwac~j7|;90co);ezmi{2uRt20*u)czdSBUx}y4!$vY9xvY+vE zNVCRy2F|!wnDPeF4}mg4O43pKUp7O(ARl1zCua1e@zD4-Ats+UBi|hl($8=yzGG5m zdGP!cZf7~d^2OiN^Y0>gKF{~FebBwghTch&A9GG7UnOpk*{7shhxkOXvkAxbcos-r zAYH`I8^d+<#}H+|R5zKSTj)l*%Z$t;9Z@`HhR6p}K48+VjEBJVlCC#HS1=wD%an;T zjozh~`WO=qryKRbrr3?;pjzD|%D~2Rgz)zv!YBBT)Mvu*0MCzb9C0H%5?}E9x8XIq zQ7%ooqS(mj9Wg2PXdOX_>MS#SDdhr&$Qx4JZEDH{86i!je#R6}F&uqkCNqwdqh^Td zrM}hVn-~tie_N0zC3AceudkG+(vA3Q$_cr`gp=7WB<_a@ALTSh5*J8&5O=an_(fK0a1#iTz*E-;=ChsYBW z&Nah?;^!TDw^_P!<1prfGMai5mV>;G@$(RWPa*x3?M1xFboK4LeX&!CC!}4+8i8|E z@pi@iJ(s)`@s4VJQ|w9lz^_{ZX(i=lCSFe(L3N~MPAVv%?!;Y ze<0ps%Bz?TS$P8KI1?z(B=6NCKkHdiT-tQ)I-SaPA$`R7eUPTD-b083-d%0pUmYgC z5biYjmy{4dbR$(zz2WxuI5CchwUW%6zeN4>8pk7GQ9Q(Gq!qCDPIConzy z{HA{v>5q#1B}FTr&wQb8QAr}t$ncq_V4hO5EJ;V1avzq1INg++&<)=nZ*M7coRxH* z32zcVvM_NaD-)kcC${b(l-Et**du9uQ|~(7y#JmL8n^d2PoY2hE;7}X>AoXz z6Wa@aAJOYmHf_PGJ=iH6gCy`@rt)9DH(-8C2!Fq~XY{>=I#K5o3ee&AfbaXi~EX};mQIKbPD%-pY)u;O^5+?e!4G2O(^ zj0dS_n*0UQ3)M-cJcaR5FF?lnV13yky z1^tm1Heo@=N8(?8(%((BRIjOvmDlYBNt>8zfc~gI-a3L1eqNFyhsn%q@5Givcyleb^V;3KT#DiQ< zT**qrCDOw!#W~_1jh?AARwhJP%cSi|GkCXOSEodqr2c4&yj3G^VG8nPV-rHef3n`Frm!4%d6aHtyWr1(;%^ua-Tk*Q z;sWV(#sd}W%@}bdUT(k6fBCcV=O}6`vhf*0l#7v8i0hm5ksilR`W zEH&kiOkQb5uOgpdn0z8bXPA*odd;`)@}s1`Twr2iIncd6@%y!Y{3|zNxzM?eWR71F z3lnxEzaXv3^ay9rjr7y8MqHlp(7ivm{&;h2s<&c(2;>v#-mh7o>EXwX@FH=Fg0z#q z3rt*yX;5u!x^{s!pue=`j=#s0$$wIRrF9@7;&fA=O*g{dSso_OF#aB3SeI_3&zi1X&407r zvJJ!KUh;v=q@NT6W?}xzmV@Rb`or6I_vg3y3DO;Y-jH79KXea7!aK&xA+I+ONpGpw zF~u~}ALW`RZ%DpC{3q#&pfp4A3C2UFOpx$NQ-7NIK+m!y%rwQmjE~58Qf+3!E6fl1 zk0yPC^+wlT%Z+rS`R3DX%IEj#M)&=h?dg`y#>}yVazSf0A;MzgjmSPMUJj{Fywp18 zAoom}NN?1fyGTWOCFM>gT*Um)l}|J1hL0asqZ@G>lL@8#n5jR^xCqLNC|5GxzG=Fd z^+tZyc)KHs>-C1p8gMXgboJGCrCZi&9YZJ^nnd{^`DPRUPP!sZA-#}WaV63TVTMWM z5t+EsltVq^ERU6>E*FPL-!{ZS5^VkXN+E=_kGz6RYW$Qx3#ZsPT# z!vC;MNLQM84%-B;?;j3gIPx45?qvIgwznG3Q&8s!c>+I8uL zc%&&+HlXGjSkiP;f0%BRpEm{lC4IcLETL>_iscxNawij(BA+3y+FF!Q{!RWAo*6bM zCnD0NCcaKL{JW>&9{$VpF++lT@&=@z44Qgn(htqMMq86-mN4CTZMjfvM|vaun)%B;CUQ(^EI1ybyid2Z z`8fQC~2CVeG5#k^2YCEviWTl{<_E7g^^)WR#0SS3)k2gPNV_qeJZi$mj4#)dzhp=L%VvX(^eM(exUBUvLV3-^ z8<;=RohFlaC7ogdd7v>tc_2TYZvxvRZ_+JC^B>+mYST8`*{sj5OfUYv-vj&?e~zGg zH{#D%RvDz78Z6m5j8JxMol1yEdWyea;P>a#;)6lLCaqtxUhI^o-sDoCY0q& zSHB}Np3Gty=-ThPi*9&36aKy6d_CKP=G$Z=tkdoMN7ru7pZE`7e{YX1Jk0!LL53ln zXu5b~`#JGz+U{%G@cT0V!9lm-_r1dlbR%DB{JXrq-#6bHox^s2j_DCzVB2JDy4jm` zmU~-|uugIv_s=a{lSmtuZ}gxyl@ZG!}Ghpckb=T`*#J> z^2`TaJ=urm+xH^wWj$qtbw+xD@ep=mzUb}~{FU+H??*Is+LAzm zgM34ae$u`_6fa}{L$}`?#DB!|Ojwv{kTx{oDW;Xbo3t+d<=EEYgoy8$FpKHo?SgjS zYfzq(^-PoIO80&f_F(?94#Uya!+eN-GH<@|`|I1&PiD|x-fMk|e!{za;@{`>@BBoL z(c;I&_=~Y1p0COk#+!B>!uQ8G7ofkp)5fV+qI^fbpL~hH{fx%{?O<($Fd@{FZf4U2Ieoy-N51fdk+)-o zeqD?2L(b};y&fMCXK>>?GJa*w->?sMDC&1s>Ud8u9Wm2{Tf#W}{mPxled2v>))hp+b1VdrIzL!i7+Nnz8&A z|7IUWUap4sKg~D%Ct~&)**(42I=H6bKSXPgK5$18k0{RP3z$a?D*G_g;1(+TDdRAt ziHLV0|G+=rk%=~7y<#_&tV?<$9jVM`EGLGM2VhBa;p-}1k@Z3PY82u5Wyd*H*t=Dz zkNAsN4xwLWw=VO+Ji&efz=m{q$|zU-XY%JXdmYzh19x zOFF||#5j_Js1G8%Z||tzXa2)FkgUjbSZPy$<9FsfhDa$>ggI2Dlqn+FOW6f%2kGJb zkC2Zn*B_Z@nGSzt?jwc>-*>frOow@g{f4`RaETLCIDdxkuod5T4fSv82w7dBk9dST zsv~1v2kq7!91}T?b&v49KN=l4N8)-F`meP2upG>ZxkDHtyjSi1%=*Qm|1WbH^NAs4 zse@!LVTjPa<%Y2wEO}R$V+nUgek0rm$d4DxxlI)P#`ZA3_&R49ihMa+@24Nte(qfp zFXAMAi(8mSe7I1(%uvkXKZN^Z;d`USb4w>M58Pk-)o6w&-e;Y`Z?TuMT!)I{{_7L` zFT!_CkLI@+sY1Rm+b|C6l(~m-_({q=$956we||du!^|RlVg$e8j#FmM4$4)u5eH(3 z{S;?2uh@e5#RvQ+O8ke=FLk(26WX)F`OlEQG9wuZ!?h0V)1(u^@ok>tx5)dq@HdhF zP`vMXB)`S}${o}}yC%P9TD6Xr{WE!$-BPo|&X5Zkd z{EsZJkYD^X!h_=a;WU1W{Jd3szxNWhDe`<`-sd;6y8SB5|0d(&V&yJmI|$!b4Br*X z&S`R9+q_?W&iwF~kd6q~(Q=I`itobi#BcFDX()P>BM*tJ?nV8}KFD%#94kWl(#ritG&E}rDK$jb{qo%Dc7h$Gn7NmqpY6|NJ_cPt~mS5E3CVtr+4dk}6NReVP; zzYcYjQ6lu;AlHhSix$%N3m#xx9Fm*J5ONJC%ub98`39@FaiMyG|1yj}fxevSXCLq^ z)5Ssj79ky$Fdy7%{h83dRf@klOA|B!ru&@XcKt?qHm^NK32{~g~A6MM5Rv2JeGXv#$#!u$yROqdCbi#&YA z_r2%xpZHk0t%w7dS4XQU9CzY0ri+k28vG|DZbV~#rU>6e<`v6Et7vcPk9dS}xZT(e zigukU|BL+k-TaJc;$i+14f33LhTo!np~~lX+p|7|e#(pf*l7dFzL9L$wn!NlpDj== zev7knS9MS(b!6X+&AuCZ4gZVN`Crs?$1{X~RE72;=>txL{-ceY8{nME&h>J>e_4fo zt=w;!F8--3$9Co`hA8e+{gLHhx36T1cCe@TAMRvj?j_8Ksly6)9{;2Gj_D`-7U6n3 zOixJ149h3DUlr|2t1P5{G|b?CaapdbpX+KYVqBcbZ{dh%k)JQk{R>$q7BfxMm>2HX z{h5$2-7v;MCxPmIhGKQ){>OB&ttyVwLDmOX=6{&6jEnqub#43)vw!X%OoQVX5@w^0 zOz8hSeAghHuR}e=?c9-l!@B4n?9ie8N+vB7C1aqXYqIFI=p=?8ly$09;K%)i}{y<->7lXC4L-1)iZ7>aSZA21aERpCB{d4+X~o0Xlx zc3_TC$y$}{9fhKNeV_jk?&G^2e#0+P=I?}A+{Jt%ub;YGm=DGKEr#DB9JisoPxuc- zyH0)`;v~*t+L(@_9pFI5#n3|aA=?)91)1W!zdQ55P9?7(`Vi;tIkeq>d@_<>eXd>^bZ+*eA$6h0Lpa zb6(`Q-HQJazN2mAw^%7RnRSahlsk#}VeVrb_A>Svj`fP-z1Cmy8!qSjNI!({kl9;V z4%xY%^S__KbeL|!1$Pz8B9wdff6R}fy>=|q#l|W;PgL}O^gQ81ai8QR#zmcTuaIjI zVfigu{1&5#JJF`x_5Ji`)L*nCn}0Bm$j<}rCrn3Cj@`yIaU}nVaQt7&e6UlLsW45f z(4oTl+s`Lo;9#bqD8IL0T%4%v1l9wSs?aWChjIN1*Uz%zq1@^W5!$`no{S@uyROVQ z%zDakPfmpTShy~gYqQKf%nx4fP#ydh!`OE*BbQ&l6z$Z%WI2R(_RwzRE@HhRQbl{| zY{rot%ZA|JLb<`+^| zhLwAxk`{~lGv-*96J5-MaNXcmWjexpo@Not3%QpmX7d|Gx?jpT+}f-gMSIAztV2j% zfWJzG_Jr_UfTK(kA^(K=?M)rLkKFP9K0mNF+YzHkAF(ORh!MHGJS*NGk+N3wGOq~N zwNH-Dt~Wh-LD)M~(ViyvsziSL6zv83vM#tP;YD#Bm*-P=3e!;B&kxrfYqC9&pFiCF z%qPxP<}sEL*)=2cy^}kV{}8^@QM7;Du`p{>a_97C?>2pn6Z#|lDuvJvZs9IGOU5a zx-5<)o_^n<^897r>fpH${>$UfzRWnxGr6xBB0TS94rd(h&fIF012EjH$=u3xF)X(U zL%7G4zpEqrUYwi5IQ%urw%9J*ddhMSK$vUUCozllh>6NQ!hA?pqCSMsKcwea64onI zXIVjbGtC7Y-wSxQoaJGT>Q^&~GqDB#p|~!1d7-wOzROUA=eZAHIk;_9t zS6t70!cwM)jhGL9R)2;MRPb~Y!%?2#L zHUEoU*dD_3K;b)N?n0Iq!&SIWDxMqNt3#jTzL)7J?q?m&Z)DF#p2lw}Bg7MIQ}nYv z@e;q`x|kQCzGZLf&-z~o_fO1j9Xz*+h`1M*uq@mkSWax%kty1b9%8*>Ci96abDU?g zZ(-M&CLZE{*lWoLkbCID?ZNuQI;toaLptR3V>6m%#Gd_XMb;+Ya?;n5Ka{J*R7cjH>Y3U*I%7&h+T7e zy)C=8_yNl;U665XGZW6oKV_N-=MB&D;=R#oJEn>J_?2%GWM;BHkuWaua^G#v`e7uj zqMd2t!~dV@j0?l{mT2-@g!=b;3)w#M^pmnP6WU*w@2$^KEoBHdkL|)-#5&*(WnAR@ zS;WKJOc&4P!v2T)Y@O|h{Cr5qY}Ai1#CAl=v5Rm$SJXpkv&)`gdV%$dmvbi*Cish# zyvvxmnIVdHa`K`P<=n3s!tJNb0gS_6rOb7#Uxe)(%XA@m9O1lMTpymsyl|cU8GmO# z_sRL)o;#Ew%v%dHzQuIdh7g4`T;nDa|V)0%3sI5V$^f#pDIR#=L<|1=OTpnOU?Jhw|FEc$C}8Ghj4!* zoR5q9n*;qOd#>kghH$Uto?|FhB`%Qckvo_nY^O?jc331oRED?}(eXK^MKJxWU$|U} zp~&mW;rpnP_9A;%`#QM3>@X>5D3ViE=oh4oKF&p%KF&pL1?Ar--OzkV#m|vO zD7~OUf9KvaAENtJGK=*iI#XHNN=4DGnzyTk>#cC#+YE4=z#mDzhP-Pn+;J+sko`t@ zPquXDfDz%lLe1U*Ba%~;WhnevDn5XD;kH!%S&j!d(oUF*h$lGmp0J|`H$3qr>=`QF zpLl@ZS;ads4!2S6Zk9*UelVN$qv(hFcEW|wUqH+A{uAn}@ZBHu9jL0u@Vyt5JJb;0 z5E6|W1~T?j@)pANpkLCF^%HN7C$8a150U&&)%li`=-Ey+_@0kwtEut{q(9n@P`&%| zoeuQvsp9qd-U2M&oD!u^$p?rRD7PQ`kD`9~A?b;9YtjuZ$|g~MT*Yq;7}32V`5P(U zv=LqF=h)XSRQYy>SeC2u%`B0A!Fo};TSdnVWPRtx+pu1wtE!^iyo>V*?4_hF!gKNd zO5zFjHr2X|_aflts?g79N?eNgB9$J+IHEQco~tvzAuqvyr6jFIyj(5WfbV7_Vt+)> zX3Cz8g4>`-{d0q&uQv%3n@;!%(*u{xJ3fwZEzHd?Q69V^kmC+!1Ym zQst?nH|9=O?Z4+cP?-Kx<+tY>KB%p&67r5{e8Br7NUO?iOdf=^F^gn3jz74m%D&J3 zqr5Ts7;Ph!-;Qq*!L6&>*5H4nxxSS-4p5p)`XU{pvS;%~4Dc?TG9NA=pK;ysKhhNb z0OA3St8=p%!p>Bo-^JFeq_cQS#m|tgC@)l@AI~bw2{$^oCEF2sJvv#3{Y8AJO2-pU zv>sJ`e7iyn?^MyDq&rHZRJdD%#bKU_VfOSot^DU$kvP zx}yDPHTH^5BgR~(hEM4La?rDxWB%EV}-&}?9+GB(pONVu4LOms(MZQJoXEXE*;m>7xR4-S} ztH?JL(iF2Uv?=UZ#lzF0O8}bXPeE&wYpQ#*m9Z}=h7jY-)i0*AwiT{LoUyT~wX~fx+ z)E}pI8qv?V=srdD{)+Ry7^R|Vk#ISs=o3Qoe=!g5-3So$)M^{}${GQaqo^@#V#&u~9u`;b1k zg!?c5Av|vpz5|i0#Qwo@yo&JLchP?n$Gh}D8WVmI{X)sJ;v%B#7s*R1=C}~0>r`?E z|HEIX-2bs0%qGg;PMBbyQKp;nQ{?USmhB0*4aXR2l*PiWN%~+J$GV7rteRX8iSS%S zv~$IX`oGoE?K$rv*+co&$yZ3{5&w{He~ZvxLGc{(Q5_bU@2iCG3=R#W z{)omq1DT}E{=-foZ4k=kgt!y_V^v>D`3iGtu0@*{BGxsd%3Gy5~eeZD%|gX<(-VQ$HdWr*VWskI58=v4lPgdg@J(hu%b zWgcbyaK{d0>X)*Ah)GKk&O3eq>5ph-{zJN!D(;8$vVC~NexZ1Oh;yJ9C-6VqUTh0y z4US2)Q>PPVD#s;;HlnVH@>VL8$I%9C7j6Q}qeR+^?$xMgptZhAULpPwO;xR4jz1)4 zDa$pTNLM2t!C#@`V=MGCUg4Zi*wA=@e1Y^!6+OcCVFsBFcWg%{+L-@Q{a&@W2F)&&{}3SWb`+gn2^w8;B#Mt5(!`3=z*)HaEwU(~EbxZt>-mRW_k z7IPU#@t$OZ`5=80ig;7y$1o1}YZdCtZbimnOS#`MMENEa+L6tZtXG8RW#w5`@xR=! znI^`J&P4l>J_!AZ`rnZbum`E+WYP=axb@WKggGR4{Q&pth~rC1U$~o85)EYijn$S@ zKSc9E724(fGi(Q~?^XIB@dzVffn)o^k}ooUVu<)`)x3dn3!(o}c~@1`ZfAQ)TPoDY z{aVB;vUd_jk`~LEU%Wq%S;DoPh+Zcj!BM`7bX&rO_!5<#&p499autRM{UA0LQjbDy zxr#TSoJEymL-=dhZ-n=@{T%WDj3s?wdpR!P4p8AaM|VD9LgP+liF1*hpxmZRhvA$h z{L8tw7$VfS!*y=){>kkf+57mObD@YgWnYl4r;6w4%FGAL|WT8r?wpBW_dveZquvEXNVDd&Qo-)HjeReMo%|$+60;%RETts@h$I2g!lT z%q70y{;kr}SugD4$~?>RDBq~Ud%b>2Kk~AyZZR7Swa#_9h+?ZCJ_JOIQz*FI2eR zs{Ms@fLXgU(^!vdWz=Y+6Yd%I39TVj|D61U#(TK|hKQe15%Y>^lH|JGRL$q^NA1G7nl!eJJ(EDwu9wAb-af@qmTqilPeNTW4LvN2`lj9??RT zvMu4hBb+GO^e@ISczs1eDIzvPwRVW|*9F7z5pmNu-9fbD*!t+|u z`h*8AQLSe=U%))BqF$yW?o{S<{)e5X9P1L#d_^qN)SCg2Q`)Z~eVvQY4_>+j>qPN9 z=Gnv>!hJ*k3-$})c{ukM(g%k6g|JsCmk^I=&LW?}EmooZ$ZcNX`6;$_jG|GP=i%lT z?Qdy2`-AZOVDdBe7uD&??a%U%KK3)i`gsNu-!l$7iEto1M`Jc&8vOIhoXfgVe_FZ! z5I%923ik`5W64KoU7@NE6JKJ!3fKGLJ%#X`ZCg9_9C1VLOolMM)K}rSHWyJZ=>s>& zc9FiV{H^4Fw6^7X9OK8S>3ed22#vSNA7~A#o)x$+h$SObm2;dZucel)OSy#><&-eP zm4A%*fccd33POL}?j^zmdx>&CB7Eo?Mtd=uuad3^{rN;^u^-|fWjKa1rxDMHdz9IQ z|KZwMKhg`7@1`7rSwXq~V;y%I|=8_YzLxHf?y{)Fe8BC1nW!&9F??+TpfU^)pe;%z!J?MHSR z;dfT$Cn<9f->zE2$P*Z~y_!zjyKrBSJ}7^t!gaCX`Z2>f%Ru^o6@D`DDF~NHPEc_> z@qzl$>;^`s@jb6@5-wu4ar2=9B@tH~3Hw<5k^R>~RTK~&kEIFH}rVO6|G zaxvo~T966X??w37rWfN>yf^U$`#AYRyp;Pr|Dklh^2akjT!-r2iS$R~I^|F190WU= z`R?kbXjX zpteZG6PX{`yLfjI4;-Vyzn8n5JcDq5KQ1vp%#8z?A=;`$%Do3+u4H+*Gs!Qo+o^E8 zn;9$zd8SN+`weBnFT(Q%S>HGtuB;O#sCux@vui_xK zfpmn*+L|w<-n}o|f;m#zo7oP`+Js+N&UYf^Kg5)U!hX$s$llqT!gGUj**3!d+1J@7 zihi=l69$fb6?QSx;k*j>p^{1L7n)wRcXJ(u54o-qy$7oB{$aQ;pY@UWBK1@13StRu zB|`c*6VYy*!!Y|S)f`1$K{A=+A7&dB{fFZgK z$;$=v3Dd-BtXIUOoA_uTQ$AqOh`!B~Ttj4bV*4;}v8-5!`9&jlGedC=RTivjOWycB~&qTF}lQ!h1#0D$Eb}0r3j6 zkZ>TSY!!ZWRlMgjoO$3TDIj-&*HE6I)}z9F^=B)TA?)W=&Xxlg>!?QSMga1&tfYS8)5P>h;vy5c0`v z+9-v)d?4dVGvU_B-9~&NWxB9amAQ`XBJ}TT77!Lx8!Enn@WHnz-%z~Qbu`N%UYF@; zO;YL4D%rO&!t)I71GbA~HTDN)JI+_IhjEM`oc}^QojsgzA^w>P;WIa~oCxm&_*-;u7txd9Pn zyBJO#Quxi4#Ia~{|4DQmui{-vYeZME9L$O;8e|*^c|mkjj)*4bAkm@@BkDJiKN0%9 zai@~b;-|{iJLpe}>(hH!7tD#uPA5K5I)eM&a7QcqApaxYg!B`~Dt9^INAnTNS43Rz zh~j#jdX@8U0gB3-$%ZJd6l$6!tpNLwS)ud z>dcR*s>}wY7otB9F0^JUTVsC^t*Km{<;BY?Ig|Aw+|P_oV?MEo3h$eS^P_*8aEaGd z=;x-o3D=r9g!>1gn`2HyD^xP$M{-_3{Q=So32`TuP>zW3J&HQ@3ek2zXJ-0n$`Pcu zvcE7L#0k=N#u4uOnI%las8y)vBHmOrU!-1x&`(xM-9bbTC`(+3T0(sW$^FW{#{V#T zQzt?BRJDwIvBK;v)38447Bd%QqRFfmt>;v94&%uBUOt!e#&0W%>#hjN^(y@h`-AYl zQqkYU8Kf&hJC3EUCDI?MaQ&PPW51AWpo)Hq5{`5Dx&4{s7feTJr%a|Wj_}>QdV{=x z^ad63g=3#Yb(*SOJ&=71)*m&Hef!Z)Aim(X>&TcxNGCMrur0XLIlj>6RO?RS2c>Vw z?-)g$Ld55irf{T@Xg;YzzsjT5V?MO~M%B1h7V(8FhtQ8ex+n32@(rr~H}Vyl|5N3Z z|6$pd@YJD2t&jaeb&(4Fq?Ya`oG_I6BDBNT$s1zn7*%_m7c9D)|Tb1kn{L-iPobIZIW^FQS$+N3gtjpKXbq zDEGu3N}fp+Jr~eUh2CE(_dDVPNhjq#+D}mFQ|u4S6|74TXQFv8@q_km=EIVSsx*c+ zTEtHi|A^|U&QQdEQucD<2({aDH!?(Wv@*2GiaPmFl-A;W0rw~33ATgf;s2exInnR&FbbiQy)Em^9B}EPKb!O775`MOU9DE7`~5c%%lE?&~Iuy zj(9~i;`#%ni&XE0oksMORq_t&gL_cfLrF&%>XgEBjglEfx+2|Oxve=~5RQ+&cG4Nm z?Nl;(fa@amYfa`8`;(theT#U*aLNf0?We-?q;4Mb!EQ!4U|we%B7Z+C^cQ7T=RerB zm=Dn-s*Cm=F?F(Tp}m3yA>Ae@&C$F+!a zwJQhsMm26%U##NQi660{lD^$V+{1prb6qOh_EL>6*&ie$RcKdeaE=x28?&FN?xYgx79u{M z^&z|;Yk7W6g#HslzXN_B_79B-syaa4M|kh7n>-F50o+_f;|ke`~9NPqPHpNiPFsDHygqj4f_=jc90xi-p3_$KiL_qkejFzw~& z>s8Ac3V)Vr9^Pq0w1M(}V0je%9dc|KIYxe#+mm>Kxt;nNniB{=YFn}YX#7Ma5&IAG z9BGU6QB__}*$78o5Ya}ew2b&g^q1Ue4B__5UBvd`S0sFh2%`x3-pyivVTP0?EyeiN zsE?z*xr(>sTnW35N|slQFdwSW4$zuIen6Evs3_WXS7rZUb{NRC9;AK;|BY&Lo)F{N zH(_$KDKEtIQEF%x+5=JNx>3~DROa8T7uAo|5=(i4;p77`o3cijdr22GhLI0YK12T$Djt%%Da@39Fxr}H> z@&S1GEo1K?-4U*DqS;JGXzwjONBt7L9P^?pXE;ZS@{20^C(EJLQ2vYx&v{f#x|K>+ zVH{=(2YNo3WzB3zp9&(S&Lp~aVBau17n9$G|DOFo*M>~TY^(YXrF_7${ZvvR?NR=b zGIET-{XDlB`-x-+_6MPT({ODeLcU1OX1aJMw+e9}K4%FFx|BWaKDoJaaQej_1pF2p z7jQpQjY-54nv+#^2KfYOqT*}GBS=nCeruM8{hs^)|Cn-jkT2jbQ`%Q6_e;pbB8mqx z^A5fwWCBl2Z>3rf5hWHbfbBL%Pq{^IIM05@7haXA!5WlKI`#`;~ zVnjsQCc^Pzo~cltSE$Q$X6#0sFVVA!Y9k+r#&Bg9vG3v-<)^T}DEgs3h~MJv+#eXi z{+nYN$>jr?`u)TMYI9ZcApfJD3+LPF1Dqcb-JslW$qz`zsnDL&pl%}MTL!|7AU%*u z8G&RM6}PePu%8kpBrEbiqTO=8W(ap_?q-H4&r#+^;tTOv%ClbK)>YmxF7oRVKS2CI z`V0{9ngi+#h6vC7`YQ-K%oLT*BHdAbR3%Tbzo=7gh;ZMcopXff{e|lK!JrXQ2k`|T z6Bg8)D*YGnf!duaJ%w@D3sm#390wRqT|=}{mk_-_R*tqyF`jdbh;JeuU|Yl|LO(&F zzq+KI_(f<}2;W_c4`lxl&i~DR%0-meH{st<;k}#cbL0cmnMaiFP~rMCp3VATy-MoD z7tDM8s==`+^84Q5y&U%_`2_wiIr4(kJCnn6#7hEqRqihgQTM9+F!=)2US-FyuSmC6 z(Hi6@B*T@XZA9=AZ6@A;aKn#R;rK`=4;ax(lp7c@B6>#IciB&L??inAL+7d`7gOIr z59NbsUCQ$C`?FstKc(#72`55*D!zeqgne3#T2I?0dv>QBK=okNelpjUSaOD{{j}4F zu2ofBXFV|MDYqfO3nk<9* zy{dI9`-#Rv<)37q(Y#UlrIZT@{dtFWsBnBl9i$Utj$Pq4Q}*}72jW?(_7KMnn#7%G zJg!=|SByx;=k{a>yNOCzr?6kJ&*F6z`V)(`CS6gzQYF_77~y89qP+YY@gv9wqHkT= zYml6-hOQ?cVENT*+0Mip++*xJN|arq`nodzAf4bIP=@>=;`KSUQ9nqHKb7Mh-505y zuIw~oO~ysrPgHFg@dH;=b~W}HW}-M54b{$bJ!qgEQsEaQ4gjM`QWjby(t zo^jEjo-E2=P(GseFV*@d`2glkl{`*7!dF$+m)m&yCEI{-h!a%uYtjeas_@;@(sber zmiQ6Ly{dE{|D(J>HRh5J5MQm5ZJ7_neaMNF{~|m`u?NS$ScCEj=?)z4h$!AHm)CV+g)mD57%W#4j9N(A1B>0oofP7S|Rr&`-9{y zRo|I($Fg%(@70w5SUOGh+(fy652vd7Da?k5u*n zOG#rfw1?_qD29(#Rep=`yma&q@q+4|Dm;HzoyIs)>Kh{5C$OBCg}I*mh|)8v`Uvp? zGeNmsNIRslvR9J+NJ-z!M27HA#pHKk_EwfUktq5@&Cf&OJ+I<@$T`%P;hG!=2<^#L zPxuk)&86oDjELV>$*ZI%($`g^!tsC)Z&Jx4q&c3Ps%rOhe89g&cwsrNMYOBxTb=7d zB4=+-K|;!uwgp_cC7Me?;t~ zShfSlJH{WPYGcU9XzZ!_IwnT^``+fg4(bmq+sNI|5TXB7|0;PH_BkcrfXMWdu7YO-GWRfq zze7o1!=mWlb~^KlW&DTuOwt)u&S@FW{Z%v;t7emO0rn9U`ibeOacrRekgCq*ctPt> zC3W$vKE4a-kFK#Q{vqW(`l$Ph**mG>XHpNuTQk&WvpbD&xvtw;9;aQQ>f2KeAR1B0 zB-@iu5&9X3DThR|uJX5#C$V&Uj(g0GRp|uI|L_N@){cZ9<;_(*oaJ!Xx4t%5V&blr$HmA!RQmU%(Bq9K!vr(7$BpH`U(SPk-3d5!pSKN!p9Wcd1dtp@_~Tec%ouEivlXs{G?lBgSu~!gFsMOzbpb31xtod51C_ z|6=TPwS>GPqIXz7Lcg$$8wej#!YWFasN^*A0m6IsLq|~VW661{aTLctdbU)xuZaV} z`A|6Oe7T8T>cBws-KauwDLWZc$l zPwbZaDMLhCC_lvU4f|B?zYO93rrds{KSICB?#_;^uV%A4+k*Ws`2c3?+?SLIa4WGL zr01&UrKB_b$x7};it+=h^aAlKC@;kyZ%|KCE{NvuRQUc}xIewq1nPCDpQOg`O+G+< zj0*j`Od-uha+m76fpP;AuT+iGJB_g4vQKa`*l$#qQjS6T;XX|BU*rqKkE`zW2aV{xLQS8?eG2S; ziE^F9C!$?AhS4=y&AF!2h%)&?Ea_6?Pa}U|C+dM>;%#aic|klmNhODoPeflO6CX}^ zU`GsQmQi;Rp`WjKWy*K>lIrdz+~~Pbji-zdt=9%Jem&v=rl0hJ+m-l*|139^xJ2Vi zHMDxC5zUXt4@jR;5oLmiUs0i7ukgK-WPjop;r_lM-i3Wzh4$Of?qB$_LnY$n%KFb0Ydi4PS$LGt!k* zYZ>u{@_&@4{*c*%zm*9Yi6QB9mc zKESJ2sIE)MM<}17`bJY;p!7*46TZV(T=$*Bc?ym3YUlvY3rIFl<2NJyF|@Dh+k^8R z9BGl+ljB3Q6K*8`r_41Ko|h(Wo2tAi;lVQUx>&+BukcTiU&PhQ{D$S=H&LNq|MW19 zHI(jDjyk#s*JV9xl3&p_T!r_2>!gtg&n>!s@+9vB|<+rF=-)^ zot4>`JR$zlpNTlOL@1y9r~F29bIN`6ja2Q#p{T!3c;IF!{{m$T%+2I4g!-l-Jw&%t z<;mnDwCzJUk@TsP9wVP%DP@K*KU3X%l0Q)1LyafSMZAS7eMNpid9E@G*(a0+h+p&^ zM|`5jc|jySs#nT1H1A*^5phi*s^kaJxK7b{$#cRye|RbJjOZ^ayyxj}(6gqBKOjFKxhc0YLzoR&2i%UND@;w*X0ly`^Hn(RnmZGR=xtZC z4fS!DV^|J0q5MIzBkPAHE<|*#3g_R_E}W;)WtCk@+@Ns)^#XLvR^8MkMcXLVVn0Rl zGgZ5yVua;3~hz?hNebNhVDshDHezspue#fZwC`VvF9LOY72Y7~=xL83M+QdX8 z=RBmVDgPbEBGRiUcVYKa<_g+y5U)tw!9K!%!A)oTh<-)5kaQ{Y3h4)DRq-92<(#MB zFXuReyI&dV2AR7U!nd&>NcYcmGlY*-ct64|Wc@JbljiU@sMeLlC(L2WzD)Wdyyp?} zYr?){_F@S8XVsX-af76xN-uF7qM54nA;JTDfXe#Ve_^yKlV-v^saj7H4ut19{W9WL ztjKu>p`XVd&Nm|T%UWyeG-8N6BTCCCAK-6fS(qOYPYCU7sbw1|U8btDIDS!oDEAyg z*gKRvoOnZW1p9~jb*g+h$1b9uD!&==jkHJAZ)85Wla*aYK0vrG2-j&bWsfj-Df=(x zgFldcK>WCBK0&@ldZ(%pev$q$_a}z%7pm$->=%+ll%p&X{tMQPa9=Tbll_AET!rU> z-ByGf;r$5T$FeXD@;AcuPQo!ELOX5v&P{m!*K>U>%;n0hLpTt=cMoMRz8HdIMGKPM%2F}e~Xt@b%=Zd|A4Y5 zlkX9}BO6n$2umInOE)84F|?0zdr_xCjXI=o)5!~hwk%;<}M)G@0GmA|7hN;Y#Y-N-Wy5JCB0FgZVA1u%OiO@fWX|fH(8xxNR z=lO77+5Eo3d&PwFJXO7dau1GjMVLEOd>zXR;zGD*h$oo4N2~n#CG!Ke4R^DO*BRis zI?{r46)9;WN>}9S4ACUNi1M|naT)mn;rVC#NA?Y^Nh(Ya?c>QgT746FQkZz%T z&p_5kfPI4XAX$m)AJmr-pJ?5o+^2*a<_z`?=?^OzdmQ-z=5Q6t+wgpN?GlbVxI2|; zG9UamYC6{&qPn&U{Rg$)tQgUdb1C8uWhan7V9p|b#ha@5z8htf5&3tX!uQn7cl|sY zjvowU(k2tai* zgd3YXf}!Znjb|thQ|2c2OY|+w*h~AlkI--2>nd4~w1VGHl^yv5&1tHUkWXN8E%K0P zQXU9Ho)OVm%AP`8AiO^tv2J1Kvt79Rlv&bG9gk!2C1wA^bn#{GD~2#Tuzs{S7KJTw z&4hBK>=OQiIfi)=lShPqMwJ&=vi=&9=@lbvuc}_pafndv)F@X(W04B&ua0w*Fzc%D z{h;J7)`wJ%c}QQknLM36Wsiu4RWjlEu9WggL@O&xS_}76;sthN_6KpBGFA3V46=Si zRhC0?qDn`wKA4{~U98T$@WivQZ|5lUEacv1=4gg6P3lDAQu2tHM?QhOmFb9998e{O z2>HfJ-AC#`2j$LV2scNW7Z`_MuFMG1NQ_mx zPkBG%uABHoF+X{L2Ct(3UH>j|E2gXL8+`H|z8>-t!uRydBF4oCrisNl?qSJ&tgv5U zzr%Swv}+dcX^&%GxY2|Qwokba8Ar0_KqkCbokWbo@2ujVa$Ld1D(+@n{7~6%SRcGs zZiw}Y$8(f14&i>P8P9$oe7`mABHyB?jrIb(IziPg<~jxOCQ9BZ72*2MeM5eMouk}g zjKiO=8d5ePZL0FW$XBRyZWG}?QR@fXFGBlH%6vy2fa}OzNciD*AwI-zxi9z+Zlp5j z63^n6+!5?E9CZxQcp}$g2p%TQMEh`DA-s=Z|I?9uSH-unA4rC&q8}H-`r&@Vx?vtx zZW`laxH6Xc;5O*Um?tT-P?SR-u^e0w(rJwj?r$SMZtOzB1M`4#x3WHQqB0ZNj`+vI zjQc(7gjt~c>%(%i=kVaPKgT8aIKqr4JwZ6T6ex&rwFZa&M2!*ls|{FAI7q2HY9 zOVsmGK9lnuPWp=)cP-z|L3n>9iHTP58g(lX+C%Jf94Bb@QV)Q?Sv7BG9OhDGB@Ph2D;tiJ&@N>rF%8XzN~t@D z@LgqjmPy2mRGqR@B=c13a`HZ+gOs5zm6=T%!kth2!at!b`9t`X2``duaz`?RJy*p? zP#(a%MY@WoSs(mx@-gE5l{>aVzw7)yT_t}YT!_zAq1`naL--Kh4=KKfy&>y{Uz_m2 zo~)#ge^K10-HUN}jx7<|z0;$KFBtNd@H1E!!ui{f7e#u3GF#FXg>7h~5+fc_~D_P$%(!Wfy4%>wxJi`7{#ZMD2 zNam{Y49XOgI8HMhgL18x{8HH_#|g}I%31Le@hB{DEly%T5WmTKF@<(3vFs_8kheth zD)t|SvO~CI)X+Axo1=6G>4LC7(G2z*DS1nTe!zV@c@Lv#YZps-7AQkI(NaX?SPltg ztEk?Xt22Z@QSmSb*HO5U@QW2InP^j%hl@yeu?6Xc)-+{UUii7>2{bwPiu!uAUm<1R zMEx!PgPW<+b=eP?*=!4bRn~!obqhInh!EfLF2pC?^~%0L`XPNoRp+ojFp|b%Drte_ zV)h;KjT=#ZUsWmR#dPwxC{Y&>jsN5xULcMx-mcC_}{T zbyVnYGqmF;Gg$_$i8A{n8=bDiNnmVA?3xH9{UWMk%o|Gf(Rbcg=e>X#92G)X@ZeUYPV ziV*7e@rIS`-FUMuafYJ3c@yGUuQ_O@|5%lNG-!m` zN~Pp4;h0~P2bClKM7TZ;{rI~V2se_mi7PbgO8T4=?s=w**H|7scayIWf24eawr;d8 zBVLef$9)Yro*@yQJR>ai3?a`viS#z|7wU4a1L3`cq0=en(0hhzk>5o4K39V_cVXJe zUywS82=6h++wmLzWzq#^KJ$s03o>>l$0$dXcwtZ zBF@mdQMnsPBQ$STwFf!>A2kt> z@Sak03E@OzfvQs0iIihVn0CS|u4TVr_oA#q{Sp7a3cj5}l32`Osg!?V~k9Z%p5ARjz_pV8riqKwTNP7`& ztjvR>$$#|Mwmx|X=KoZE7U>7KP$iFYe872ClyiJ+!Nk1%Ee=w6W6s>Ot)J%p5 z?Oy3h6`o}zT<5DY<%5XFD}Qb!dw#COF)R|oCmN};w~-cbt|MdiWBc&)RqZYEka$yB z&Rs(KIuhn(6`n_{-Nk(HlXLqp6o2i{m>;v>qMdvtq)sn-`7L%*_B-+ihTFl+*e3^# z@YKgd=^&Ln$^O9of%7EV#;9mL(m{~Ng*m5^S#~J(FSM>yPfq7~T-{gBm9q0uC<#<&6L3BKMzpSEJy>== z*O3_Y4>jU?+9_aPBtK#a*MOpWvNF%HUf3I%4);sekM=ET2SszD8b?_s+NY|N<%P6K z2!AB;E3PITVUAFCd)AHUU}ff#9*8-{MCdQ4xrp)u;kgjGCeQ4_dJx*tqa(?u@U$z7 z&@NQJp7cTUF%`c`zDM&}6<^9Y!uLJguUJ-`mOG_`^8;>Ep}jJmOE}@aRq?9SchMq` z33-MFlx_!cWVXjh+GB0x)LveFX&aH@dQFapPf_Ng~K#B5R z)E-t1&IK9rPXqO&XE{jURiZIf8SZHcM;r@t8~Y(v<$o0IuSX1I?=FRW z67{g(Sbh=jC8PfZ)lS=m2;UP6-;IvXq}~j7C;JDxC21`dk+xzK*9J%_*F^35+$9WQ zwpXobmF#)aw438loTU8kh&iKg@a{-@wd}ujJb&<^ZO{bM6uD;@nKq7oj~hIgYr2Cv3u5=0m72 zI?e?m9;ecuu>VMQS8h9|!ycl-`!kKd5nj|duZj?V(FTMc#r@LV2`k)oY*(zs`j9wP zzlQt^`&NG@*@*wq`W43>`kz&|-Nt*-Fdr|>Sgtii`5e`%lV2duXb3ZhIx>duOnnZG zUNz-v-haaQKdbQGTcHJg=OPw!+<{nio>eAl#RzQI?7H``jZ8;U|(Vh@?z} zJd+?=*RgMCF3oW)H$mq@nfOG?1JO_^`7U!SL-;Obj$(Zxzs@ylunm;vC^nxk%s{>i5$op}&bEhpRgQ(_}jT|9|XbP1{8*WuG845zBNx9AX(uXd;Y6q#}ZdNJm7(SCV7wds}BP zp)eQ>+CFsmD1wY7(Uyo^C6@S#$P+;(Lh^rq>aM$f-|OGk^}0?~J*TRxPTh5CJ5^;o z-owT$qioIgh~Y2Kt&Kl0H^_|hO}c~S!(@)xWbiPPzRGf9{1oO3iDM+0wF&2+*!NU( z_RzLLhE6gQw_(4E;;)n!dLJ`>J-7E&`Z2sJ@rpRXgg-K`7`Tz;Kv;-v0p4Hon{@AC zJ3t(x{4w|#@rmhcaQz6`UnpOsG0Ghk%OKhLCVqu+QNFk!}2vziir&HN&C*$&|EBaSZu8~NoX?#=&2_&dL&T7lo;?Q{J7UOjV(QTTgD(utH2^6#7K0LDYw zv_VWKd7pAYe95HW(vNa^mK)&_{;xFiS#HR1bdRBa!^B%mT5oQU-gjC5IQ$^)2chSW zlq;%z`Ty|m#1{(?Kk)Cj&p(dy1%w|M|9(?NjET2X4}WL$#Znf#07=mvs1E8g=FcCM`)>ATBev_BQwSMbCJPf4@4u%6dk7d=@A#R12_t z@-0)a&5D;_oJ5RZ{2tRinYcsRhw%|E(7X}rQ%(I${&e1Fb`;Am*O}r-$_?e!%me)U zlHo&^SMKer)yFCi^7}tby1Acr(^!)Khjl?pOVU6CSQi%k%syIC?7Q8b(URbvE9i3&<%giZpszd(@ zsoM~4qg+w!$?~K8k_lg6I0i22)OxNZ{t>Qcy&&E}*<#==Gk6;78(}woM@Ec@x1;cO z6WOlBA@aja;Q!U8QC{*r{x7N(Sq_9z`cXbgIV1dt{K&R9x+g9EUZ{Ma!#BA)H1{>- z=1|BZYi%Y*WIQ~Zna z#Nd2WF*{oQ)kXHsu5Se_4`q zMA_c-a1J0PaV!P;C0`~t;)JGF|~l#)1> z@iFQLczf`$Bl8Y#XUWGxd4DCx=La)SNPVUt9>kyj?cv-{1}-Gd;NRhnn^O5iFnN#;@n3)%$~lA2Uy=&M@f)hNIY!|BH$;m#}Q(JjOx%I{ypB0jB(r_&{35 z_;WpB68YivtG`E~%vet7+MB4YY%Lq(KJHlPoo0#?nGb|TOuA!~;~p$eKJ=bx+V2P6 z%KQq;ENNro?NM{eQi`vbcmUfiisMaoGwTHL3X?N0Qk7<@sodAZ!qbd@e?8tqdEj~0 zxkPO%s4izbWJ8TpIw8Z>U+4NP(kW)bfz(HswT#LBKt4QAzii!S#wIt;$xH( zdVgo)_4K3sh}c8;3-f`3I!F?AtHeK#*1X+ayoP>c%Q9c+x!S~gDOdEKW2)sk^|#&2 znZz3sWi0W_y{AxsZNZgRRMJIqwa5eFz|n0O)Og!cI2K)Uh#PF%M}cgW1&i0f(a<<8&f z1o8WO-4mH_^p2XaD9b6tpd7xB@%M2I{=36H7wV#4n_jwQ>x}rqDr=j0YY|tNzO|W5 zoQdz3BgZXL9$P&O(4c3Eo1_9olIDr`vMr;-z4_SQhv&Ig`PPq z7s6X?JMeb5;S|P~`zUAhJU~87Uz|8W_zUC6H738Da>Ve{#=oaI{vz>*>M1j45!x+6 z-uS2`{4(~59VHJiW@qZ-Wa;z4&U_RmP2g~_v1BlF@_<5+F zHI{+P%^=Gyx;HA}Xp?qknc?vq{yWP3HU8&^#>=JpJky4shvw@sKM3RGN4(2~-5G|# z%S^Qg;~^Zv@}SzkQ_Hqtc@e1NC2e7%jy;eCen+vd>A8?Nl#5L`m~l~TYsw!`ZWy}2 zlr!l^_YULnp5Mm$L2Q(_kPrTyq+%-5lY>m`kXJS^*@ny)!n(%a7ZWdLzEMA$)Jy8^ zv(F?xkalJHgk_WP3d51MA2nXy*;xJl^75aoR|Kw6)vg&~o5ObWqrB0iM;IUe-O=_t zd_Q6s;wi@O*T(7e!>>!^#FC`FO|kPB@4&`drd)E2<7$4JWV)wOZzCtRq$H-K`XA%_ z!+0difnoAWb+H*di?~2K*koTK_E4>CbZ<%u`lX!M_zbDcWw{Z)V$w1!KicOkpXXdu zn)an(6UrHhxN4lGS`7HTRY;OW}f%tsHdl?7WlEfeMth?kpnaFk`;oByk z!f^P0FcGg3mNEHq{EmvamU4X)+2$mi$TG;CEWbQQ?8%D_e{TC_%0W*mzh+9hYrUih%bD~h z>mTLajaj5fj`>X}hfLU)`H|TyiwyCspzP3R4k49{Sd%@-BYbPF78oW6GEDBITMlo0 ziD@JKuEF-45N;!{G~dl=xBpRwNprrH=JnU_8!SKS=QzBdx}?E9#vrTqnFmRQn3MeT ztas?0_O+)OAMsZv+(JI2-pAj zqw)LJ?fV>;@8`RUn98~nt|``a^f5gW)i>(om2-;%9s z(&EGe3hGQrA2L0JXH0yUI6!#G#6Q!I@^uqlW;o(3O&y_SQ3myXu&nhHzNFKLdsoAo1~G^UZt#v|r( zQrUuG@>pXE!;o&_|H1d$;U7#}?r3Np)oPYx1ax7w|jMb|$RA^pJjLyk3vQ zzm#)KI+foMR&6}XdV_C=;Zla9WWFVBZ0dcM_FK=he#Q4Y7corsVLEbXV~A9=&C8$Y zmbHyw%wulN@E5T0f_@()uc z#zR=W5$@$U1%90ODfy6gXMEY-ghj|NSMj?{Y#cwr`=RkhV^vZq`b=}2?d_MiNy70G zt|X6aK3Z#^Z#|vykcbyi8*=gcB!O*5{JX7X!ScvhquE~5r{s}WOuUonplr0)4R>UE zNQ;@UF#U2q^C9oDPLS3Zt=0S3El0UWX5wR`Tpy+T;>H(9g=+_rIBu1275zx78Gjzd z+nuFr87@0FzDx>lKiM8fuEIRYOv+FK$D0!AmO#BO=aNU>Z48cZOoZ*3ruh20nqi1+ z2NE7N=>q;gB6YhY>RhQfb`U>~PIvK}{Kw=y?57Z(Wjb<&DQ_AL5U#s=Ajk6vLrYHY0Jd{Mea4+|x_ziyi*v9cj3`2YT-7L4R-H6wV zetb~QU^5#}}CB$Yc%B1UWfAw|9s$2Umpm~zoh5Z}MVPna&saT716U#>Oj zGNywtx$y+^DSlq-_077Yb)DwV5wzzG4^VDM>x|aIvE)N}uSp*>9O2ByJ>*APk>QAE zn6w%F@OstXJD_(|)bFWSm+|DKK64x~DCaXw3f7BkOSde`w8WqDE0hOYGfe#VLl`Fi zG9G8`amB0Tg&)UNN$iC+StDiSmC`5lvO!m%&ns-}L&;(Y%1ImVBJ za>kKjlJVn{)M5JY{Yzapseba~%Zuq2zYenm<$?O!@smiCDgQgl_Xk-w&GBGCT_fp# z$S+NOR8pr(ywem5kPo@e;dCzd5_#d@Z3%1ezs1+r@%)CgQezKNS;U0P$SXRwkm^1& zNVi-(Qfv2DL&Ung$8Yiw-Et}UWES1BEx(DMFMW;qfXbpSkK4#AKW8}73ylXzrO#*_ zsi%#cRM@;Yeuwe^#5CS@Vb@khFq;nFo3Wh&Ld#_tmj zO{bjT*FTE`C@)ld8^2FCd@vZ!RZ= z&N(G+X3Fj8M`ZsZ=_&HbuEyILtIe*Ia~o4h;n%C;2>&11f-E=64@YbMyqveci1Wz@ zzc26i+tZF?T*DY6X3X$3mLFa2Nr~T|iE|kr1!X8bYtzmFexEAs&UE0{C*$@kmt4>M zquoCoM_D1xU^oWO=6)WAe`~5|I^2UKHh$e;ctHNV8N8(vq&U^|%;tUqiocogDf!{= z4=hijoDn$Rmts*<{*vJsKFg$qSqJd@(1Go@_9iJx`Xy1vNwyVbgK(Jf_I~A0SqB)t z%nXch{|5PeW}u)S{``JUoXPl&#_uEQ87T4l)c*We*qHf2`yN2QuDMTt{Y*tXk8+id zOxTrWlH8=dSx!_tn|zH9@8agSQN~C6{OR}UmyH_vefA9bC8PB_A*vF?`C-sziRxthu@!=z9H>UF)^A%UMbk7Y8R6tsV9Hn}h@lbY6T90-im@>%>@(vE^ zeSmrlk?X7yzG@2MS-Q`d@*t)IKVPj@9IL-+l(Em0#C}!0e#v*H3^8!3DM=-}*i`p0 zKJ>0;8Tv!x8dBs3ne4~pM;bQc4-OBh){#B=e8Bo5_FN z2~z#S_;Y&U9F`H;aVB4#dC&DA!k`J__&$#Wu7m_#C=TlDCLUCepCieq5eTCDG!7n zGSAW+H>9Ka4c=aHB5gM0bYe=n#E4ApHHY`p{sX74Z*uO@OX4|DnHSBRDa0YBY-xsm z-wERFCnK>WUG}{)^luZ+r>tc$<`LNd>mOyu_1p{h)G zA=}Nh?}q;k#gb- z{`^sW4R$7ZmhPBmNipYh#09F)o8AqmgHUW_rhJij!DNO>mza{nX@@K0dz#+wG9Kpb zXnH@P9z(|VEX9-t$7==356s}5Y!4_;WnSU;`{H-lW{^>5N&KQotaI^p4&w#&532i2 z`8MT?xD@Td;osA!Uf_3ldztDO`Y~{c$+eHg&^@L+ndzY2kAJ0~d(PZ1SfW$&a*lg+ zct(ks+Q<0))@)mr8^te8@AZ@i^sZB>q6yEkUqrq-|6f>EDK|FR8Z19b4THBc94eVl zczf=_cZe^fS4=sV{HX3Q;WsP`{CV3hWh8^6rnq}7$o$XH9u05rZt|_>@_t>)@PCo`OV!h(+McFT6B6XHzpEbjD%K-J5WYkMCg*It2K$}{b zPkS}VcQJFmO1xt7W+r=``GEhw{AShz()*_R8|932h6!&ne~5RptsrphD}KGBoX0kf zjPjS_um-VEAivBE{hIPe_LeDL=O=VuVan4xTq6eCyZCp`;zKMe{Q14O4D$t#zqBv& zg`RUwyo=wVZ|6!6%P7@6)625T@O5U8GLb~RCPT!WbZ;{LzNCpd7DKh2iJ$O);PsWR zWr$y|_4Xd&+pI4X%kw+3N6kEry<}*4Q})m<8^f!a9*)Jtzc=XLtsGc_IKyQ2pAvUA zlXsvW{yv4l`-m~Q)P#AIDN15Xs!@}FmhwlK&wc~`9+>vI{w0}zlsYFs{uRm|#WBX8 zlAStlmCeMKs?X%UPb)Ck0--J zEE~!vOeB^h+-V~FLK*z6NiQ=l28c&V#F_LyWu~k&H^?dz%@F%oiCdZa9{chv!w-x< zj}o3>{UMDp9QnyCFT7oCe7?i`joIejH2&U!ft83SbeAzh@9{f&-Y{D)MmtU($1}2^)7fkL&QRCFW07XlzW1`kEBirPB4IwYVz2m=wJi7(btkL*z&KGgJJM_>_yx;B3ktex4b=$@-DkSpP^H8h>w?-w*QpN%11~ z^(aRg{~$$JmgPdlHY6U0QO5@G`)lp{2DvU6;P)4*g@}9j@o8k)#Lsss;;zQ>Rwynt z1Jj5f_>X5(@pQC9o`Gby1&(APj!Oi?EC(&>^X+R<7Mzwy5Zle_5GqhZ#VoJ z$0La3k>Zc0`$#9q_~j-)g8zeZU*p@qw~LOSXMFf|=CBLPBN@jxNb9ofa%|%gQiMwz z(@3Q>zF+d^>-{`WUPP0)l9WG zafq~lsaByMDVl75;tdsXA?1#y+M0f(Nha>Z^bjVSv@^p|>}B#pI$W!w`=`d^KkPt$ zS-nA>5a9RM@?GhcDJEn3Qm$#z`~CI|NlA+G665!e(+&(r*rf43g_r0@vA|d@tvbfL%Ev<0YqBpByD0WI`FF>H#KTN+FvI0glYYVY zLcJx~B@ODX4Aq%t;AH9>gyT*11BN5}eq)dn;m0O^oBxMm8&fSqex$cqUX(8ze}7xq zr5}FW+`j+$3GQtmEkHRUeAlF->4*1+%jiaYr7?kcK)Hs=Htht7Uo`pVtWN}nN&JEd zo6wKqOD5Z%@sL>OlJ91UZTTJ91|||SQt|&JZDFcC=|@TI)s7-X{=`J!2$rs>vq`N3T88G1xVp3*}7{6}x z;HW)^K)eOytDCSj{YYOo15=3)}*pV&G_*8&D&Lmm6;ym(x!dxfaOwq%E&%J+IEibv-~op zk=RcEFK;K*oLATPrq?C!`i<2{@+p z7mjBnJYeFZ#)Az z*KfiJV{9+P$En7z3wEcE1&P<0abijah_l*Vq$qAQ)m6lg{L1+Ao8vPW4}%w*bUN{l z>R3}8$oL48P4Pwg5!g;7Tim3-kA~Wlq{1};Y47(RH(K9!N=GpqrRUd9{gf-%|}jD`GSGj!P)@BQN3i273E3^Pog8nHGEpRVt3tFIA%$hI}* zdSjG1-7A`6DaJus$drE?4dU&`<87!>B{$z~hBxaJyIF^&%MtRa0_o2ty_p}Y2N?f8k#pF}@4Sv3!A3;CDex}-qe8{2+ z+c6x8d63v=vaR`DzGSM684qbqqj%UywycROF&+x`;gaZut9|uz2H~guw9RB)jGM4@mgv-cKODbA9@*KHyLWgOZzmMHm@vR}P_b{8bd1S=NqoTfqg~=s{5ixho$)Yq zMWY}^LBI4|Zc5@#dM`8?u_s;XL-Fqxg`DXj?a)}0R6b>y;MYsj&h(@G-sYl|8RC#h ze;5r?v7Txhks{mEc>JW}$9QgKtUX`tB?cv(V&WNNTsvnR>QX7rH2&PO-%lMpm;Eya z$Rp#YnRqheW0<&?^5-U!O7#ol&sFF2OFY&T#CT10JF>lvKc`cDnepN0(;oL>bCwBl zRik5PDPJPq;O$ksz75pHlJ;vXKnnlPY}?N99pX?PYeXRYTVhuZV@|C0=V6k;2b|BJ(E2mrYoW-;n;+Z|0C9{H(#V2znmD+sVbLlsVL< zv$pbBeO{1ptR`tEle2!M__isJW}P9OXu|1?hhbt(1}-%DC5(seG!y8S$nVlU-}wH2 zaEN%t_&FvK*OF1^N~yY5PB4BQCw-TEXs-+HNI$AAP5uSu18FUjuS7r6;*I7wG(Jap zAk8)2-Z`=FmXflP^h?v;Usz*=_KuiO*`mCFxPxEEPQRgBUN_m|9gcxnXRIs9w=~(F z3`aW9#2>PL5vH1oSd)wxknzh*aTU`+M%;77N~ArjkCoomV;lOKMcqTHB%`17*fKF-_KhD#NDc$l(6Je%?s?Tb)SFGw-T zR9|QPp*Yr5ta}+e!*nkoelR%06f?;uH<@@lafaS|jGs^Y{fyqb84ka`JWRK=_oL}9 zk=@m}jTF5%nBju_=w4#R&l?MpDP}QD%u1K-MAES)9?E>d@B2k!Rnlfg_Y5Rk-4vf= zd61Sdfqh8rKvJ2_{uus!xpW|LhHz=)c~V)0^@(g3lZY)DI^B$4LL4Blu4Q1vj6cS3 zgy+oQYn>q8E~}bPHwG5sJ`ARFuSL3zihI#AWf3!BVeZ4AT)+(ci*XU&YrIK{>=jcy z)d^CSrssP0-{_uUvV+J6-;T=Vh(q~3+ac14CLB-f!M|e|?;-AxCQz=(H#NmxlsEDp z7>_$&zy5xQ;(GE4F(&@qg#3QSL+?W-&13rLea!fGVavyfFL}a*-;U94vKhwk_#4y1 zw4{5d2{(}s>1s1HgP292o)y23)IFX2h{T>0KQ`sT{15nYhFusB`A)`-_Mcfq!^!SdWbbCZZ+YN4)2+v`&lzw zb?SG*4-ywL^s(tBj$|_J043x7VKS>RnS0RkHunQ%hQ1 zgB{+v$8T%{lAme9H<&-!z$A_@BwW~di*k@7M{4m*;tSq>DfP0xP#s|6FUNumo^8s@ zST8cubZ4{v;NJrnxNj^-_aRe0Nj~Jync{`9AcHTO-dBh>bpL1uUuQV{{Xb>J`0($) zq?hPM#q^|0EK2%yga4fnh(j5=#SF3yNcJn!dp`dc=~UC6XMK<9qCCvx-)6p1?rzfh zoEWP_KYe1mpDWE z&54I) zM_^stWO~`ZNj2Aaz0=0mA6QQ)Up4Vh#4W;GX5by-66tTI`#y1l@&n`d|A+ZqhPn-P zBff2NVpXcAO?-mk82F7z4={an?=fi>{qW;UKOgEjmHHBcC!6BuEI;DGrr3ghgkaK4 z;tSy$jSq=28K!*Yd;K-P&zdH7cz;2M_g|R&c-9kosmsK#!wo)8+#$SbhN;8EzZcb| zPLhJQ3o=Y>$=e&4RW{Gk;~`4ijm^CG(iJJWotZ_sveN znAZtX-C*KbEC-7HOtuR9Q}}yP)8~mfwAcTyrkv28$8OL1LUyRhDR-%c%-|KQ2NbL; zDQ`3WeYA{qD!yOz_j3(Vmr2j7W`LNJ^3P`QU8aldJrn=NG@zK0f;f}#cQZ&nDX9Zx zkeIGLNs928DX3p-)OC7iu-f2BG0ph#r{CX+iQf@^XsX>ExHg)dm$g(~zMh&D+#zl0IO&K>3QvA0*b1U1##M z=tp^=@%KK&cUg8h-FUmEv^(3SJZt>?Adi$Q{60h7Muz=p&$(v!a_SkRnWngzycoLE z4BSr~VdycF|DNfgc)3Ar6c~Qfq_>z3^2QMHC*@zv_}|8Yghur?>mNg}nI7Uy;*+MF z$9VALL_dD4u37um|_+JEhIQVd>cbdN!Ler@8jogmd4X8dD*#{m0GnZ>tNWCC@ORO}CB4zVVK zjnioZE&d(3T(N~=j@cyAHcPf9wq)>q=0{#KLl1R=49+&iP$x(@!X&mIi60YJ!ugPd z-}f1RUUxd>CERNlkF%_AEJ*r>$xfgj)j1|z#&A?un>3q#c)R)m>Jce_XS&3IczxFM z2Ho5efz(yhkNTm3!x z;Y?x|MKbxfm?i?tF4bpEsdIFp?w7V*&wj+1%%)t$uLr--&oh;j_xh|488F4MtS9*O zv);?7ztFweB;riMGo~cYWbmJ6m~%(*=YIw`&XV30O-3q1#FFIf3ne3_WSD)Tbg2_X z@9LE9J7)ZO;u#gOB_+pX5-v9x^|0hDPi<{d`0+vD+E49|l!e?hQY+7(+|WMPu-q8u zsjTZQj9(APe@OWwJKdyFWb=d$i>MI%ihv_Ar zWcX7v_#cL&{I|);C%tc*ai%B3{2%G14wJkzgLg1KhGrUl>q3UkF>U>|KlxF9(S!+O z+-qgtU!!c~dZTAH>*qF`>l^<5jB-{#&jR(=&!)!rIR0O=Vf|8j3GbQlvj3w z6t|dgKkE|%PnqoXPTj73=&zk1gCCk9VnYW1W5z!rKA>kUB>l@2A2D5|ZsX6S72`ic`#khAqde1zTa7;l zSuRL>N4lwZ-tOJanZPK(c?w2#{Ml*aH>m7r4nd*L~BafTmael|Zb0)mP zbTRN!Lv<3er%W$-#m_gobH{@8-emG?#)6DrX$H^d|6<_G##B=H`Ly3>^XE6hTP#1) z91~9?t`Oc~dz4;|?WH+ykCdtS`=_#{hzF>RWo<`N=pL2i#F-R7GvlXp?D?ikIy~dT zxYwKRP1Gysy~A{gIq~0WCp;#qp>moEEo=^@r-_(BuUVmc^)Vd7!*!`t~4Tk`*qRyJW3<^%CE;tc5o)3zTQ z--dQi+tlY$^*I&CB1xM21LcRr9=u&zwjJve`TnN-9_tO&PaEfxqL^leuV8(n=N8kQ z-QoHXrRTqfZZd=9mo(E1+(ozDM9#{5V+ zqVW|{RGXV@S$;=a*p!d6oCw!8_9jJI-?Y~iFDBlgdw#V;Nzt~4e1(35HyX=R{>WD~ ze*Zit{-ip{ls{m7BL2*zbH=!?$*_w}ppFr}V_vc$GccXF#P9`Xh<&o;=bD1yQeI-b z{c%N1N%nIyd}jeWFu(BYu4)S+$&9+U@uTvQShQjkZIVg%LhruZtu5qCA!E)18+ zjU7p41CuhwmxUV4b3)|WgrrMNe35?m`!4-DY}k=k2uw&ed(9YO*n?-mgatkzXu>Z$S}FVq%B5i>x?5zdEO}B z&!qc+#=)eBC!27}DDQtK&y~jGCS657c)Q1>eG2^jwBFv)-)k1G;5WqEP5L4EQC?{L zxLWTVlfeHIZ~q$}pdb3?z4&t>={Mv-c-f@a=|_CWr0eKM_@ha?(htAB8h%VS(oUvi zxut%$w%)J(MY`eFduRko`z;JougMIyO~f<$YhJIVr~5TTP6L0U(K4-8l!;tnc z;V}AT-M(5np5X}3&@ZRbjgo0f&@>S*HYN9aq-_t%@F1I+bOOJjerM%+q|Nn)^gV_{ z+e&Q*y2anm=jV%SF--OyG3$*oEo|H1nwZ`P+dgNr2Ho)OG;&;48zq(J8|RZE6vpE- z&1PJ*$8%b@NY^*CZnTcRW&FL~{=SQ_D#HX))t*m?qMX&_f;> zr+v9>(q{_Rzj(PF#c=Ub}l_n0-Ambw( z-QZY6$0OzC#@ic4j$djEkwVYTNm_yW2KkC6+lKuSa`s75P!~zLjERdeKGKJbiz4tl z!VCOgxx@JT@5)R0KWOh`U&OM>!XxGmQlyPXYkJnTb}PeWfBKPr(b$g^;W2&_ty?MR zmLus#+S>%illDE&N6`<}Vd8O_X3&rDN2Y=D!BKNADf~F5ynueh>rA?k@erwFBs|<0 zBbB`xssD?%M{kVH0OKzrb*5F|4zT$*I$d&FSX@ZU-0L4 z!vd@;MAn(4$NJ6RN#)-r{+{uXo@uO4UR1=1#Q*R+0&yW3`!)%UxEgs-{)zREd@JG! z-tI7N!S5(I4yr9minLOL{ar%%C;tQKJ<~pqmD7**xr_%{cG+aaJV`2H>sr#jLMEB` zDeD34`zz02xGX(ZYu~fEKK&@ZV6w$H?m^tRu?Q)`ij5vpqy*jQI0l{@&w? z|0nrUCTzp_!vB+eTjS3kR7;W{;jhd)RM$!U?#yR-j%-o>55hEtA>D7n4fM<7lnL7R zG`>Mh$p-u;k-AHo>88D|GrynqWBj%V>m2dV{4Tw8BfQS< z@HojizLE4S(}$iRlr)2W;C>+Ot}L82Y!7#9m=?<7B{+fE+xlKqBfKg z)-VNeCVqV?5yQ17`Cm{hO3A!QwGh)qd);a>`D6=Izl&Gz<6V>Gls!kyT*@2esiWp0 zQhCbc#EOK4P5R%_AYo1V(Y7z$eJn&|`YD3}z{v1tpDE&fyY1O3ca0l$SKyw_>h#BPq%gM{D7xQLg9H z&2g2)&k{32tclk%KD^|dONu>A+<|<^RW~7RV6xt^Ad!5vCSOMVCGjXzGLGcLjKl>R z&3vTSh<}uekq=%ESInD~AM+dhIoe1(N%^=*I@gsoO#2+*0OcT?F|OQ6naM*YE#J?( z3j6=x^S;gTZe-m^S(t1s)*pQTnm)(+LR+uw!up0^|0)mZ)X#~AgUN&H8>ajw!{OJ* z^6ltGNvueK>ugY}b&pnkdFP?~8%cb#@n=$bx4|({M19TSBf3{&9V27?*VZFN zG0{|OjIrH}h4MgCP#;O!-V{60FI$_m3&Y{@TTu7aHX?=g<&v#s+VhK57)P#Vo>2bH zp~NZS)n2*g&cVjqe08HUU1ChSJ}$nA|C`q<8Kv}xO;tV>xVp3|5`3O`><7xr^p z$*_5*ypi=MPn+~Ezr&A@!bYrfAqFI;Zj!XR(YvLj+R@~n=XZGh7syv*pBS`XT%@rq zDZ*wZUyJeJ@BPgepdaNu%oqGUzaD?}vtHXVe6nfJV~(JF{uX;&~@?}glf#HZ8?@6_gDgVy=$pA1u`>CiD?Uh#Q)6H-48dHMS&0WIrs4{dtW#Psekr zd&SR7^F@h2;ao=i`RVW`cQ`#d^zEVFk{yxXaXVNdb zH})fyBaC0quIo7Jx%T@|!*mPB+~U_K{CFq6!1_d}Or(yHESSi#yrkcnVlnD3#P=C4 z&G;EHTjTgKL$S08gJ;-AjTeYDY3jZ9 zIl5VtoAB&N?OXlzx1`fC{XFxA9ZdKV!x2w1;d1)n&wcuJ3P0X%kF#H7d=!Co4!_P2 z|HZfne=sF6Aj&I#-dXZ{?VqIZ^VL$Zfw(v^gS4da^OW)lewS&DAyUM1O`tBW-AfAn zChd2$SEL(hA>-fi2$ACr@%`w-lqo#!($S;52V;~xjc<`66{fsxl7|Ih36Bg{03dR6?qGW?xx#DAIcQSu{QY|4}9 zhrchczQ%Db!+v7|^DpH!CLPXrXzRCMQ7+=wt6wL+WSm$N>aN-phQXg7(KoZDjlb{p z+jYwykss+A6W{6&lBmmS*OJOPjr&MZ-fz-$`cXb$(y!=;_SsSr7ZPqaahTz9S>rBJ zlv9njv+?>k^1mevm~=JMN7OL@!to~cGF-lI>SyAfWqAYr&^HQeI(CyO#F`8@mKk9i zz(mRremyjF879Y!nuAEu?uU<}U%p|=vqyQSGTqY~7m*^JX5#gubz2y3$Klt#(lmaT zuNc2B8x-^M)5Za$@b^Zfb?Js*udU}r^Rr!}LyGhr(>~|11;b@kmQDWFScz25ZJbOh zoA;T=Nagy5UzeRjKid06OZD?Dl74%4HR~kIX=q()onG7+A(cx^`aR>x?;6jMim&&V z$%pc06UbX5<^oElUHdgD{5nix`n4aEqU8Te$W8ht!(}lOBE!)>|MC!VA$PKzGO>}7 z%6lVb!l=Ewd>Z}om&Qk=!nR)9k`!svMn5V1yNSAXFYWbK)d`3X8^0b>zRGY!?E_K1 zO+V6mrhJxuq<@;w!#)iK$66AXFgeG3lGx8mpj+aTOdEkZRMImhyhuO%{T?Z&TTW># zMhd@A6b_+VR&A_AD#uYKa!SMR$GuHi%S8;A5BrRlyMHI;Zw!|k8{h4>cO`w96n@;6 zj_lj?Icp!q;UYL?A>5rT3$46T+ z9kkD5EJ#06j|q#@FORWYGO_U}sWfqs7A8O1`_=g*$_XAvTaZ^OVn+_5TSoiLY*M5x z`)mGPNWY%e?nj#M*!lBs;SI)<>HIIW*U>L$n0&S0c)OPq=$ED*Oo#LTWW~lFqzJ@O zZ7Wh4YYewQVg4>@(js7{qV>6gU+mXdMA+tutyw>0OC?fu>15w=ZCWEwJmk~yDY zayY|~b{?&TA%@A8jiy~)``zT6|1CXCM;0cZ+-1_1Ob5Olrw!;wyFczFpFGfbg;adG z-lAK&OdE;%KMT(?-4#L~_nH?A|*ERfjcNzM{|GZtnZ48sw8(Wjg_Doae@IPgUvXy~8^Dh5S zn(_^oF^kA8#A88%(AskH}@%{RKbjwM7W-_U08R0- zw>)anGW=hJ-_b8;H+(wp(Jy`EL0Z7H?F|0OZ{qRuW%9{o3=<#!O}b?z)1GH|y>K4G zkyN*#{Z6pg7rs1aQ^w+Pz3+&%Cpweykv`A(2*0HtX+iqYzK84|4e!69i#!{4-e6}&daPj$nm2NrO zwAbvz@#5CK*!JXOlRNm-?PyzD>Kn{kS2i4pCh)mHguCZPEzKgH;>8 zo(?7t5_P@!^T>bpl9M*E!2Tl7olH_x)nGM`~+-;WU)CceGh(P#CG*MnVtli8EZAiv8L`sMFT zPiBxuJdQKAIng>4AAULAvT>ieiWG@+RB89mzhJnm!ZamKGRHAY?ru!yH)-k>Z$BRI z;Cuq@e9mBe$tf@K@p9%-CXLk6ddvsfm6Ic2Fnvmf0u%(&v)tuN21j3-%R1yb?yEw*9WJXb~iA#FQ+%2Ve+?Q!?Z zj3b{+G6(n7^<_Ae6p8Ii!iDt9)W-cI>|gO$`o-6~e{Xk)d6pgdO#Htj~VV~S`#Ok zqv#fohk|bSb@KXJfUXDJ$#7|Yug|$>(C^0)AJL8UOa32pY+w5h-O?|IOf&6mlh}nmHGNI9>TxAYt*PoCyCq}><} zkBf9F{b;WPu5w>pugAMaxj)D7uk_dAbo$}fxzji3M$ou&3DcKX>6W$o&BAoc*35(W ze(7bFMdmV&sE$H=o#Q-))fh*|s$&i91LOmKmkUhVi}^v=nct+@Udj=!PoaLN;~L~W zuFrTJ9L6}}_3v7A%fXF)@}rzdIivk6nO_-Znn)Y;8!z_<87_A+KD_;XT7`TNanwfSm5c7Hd3#Vj`&DbkizBQr_;HILN7QXK_G4M5QZ8uE zr@X#-mgz#@qLX%ixEp!pYL*A_M)uJ+#N0)0u`eaU1TY8)<*?fr}&NPUatey|_K!J(@f+ zkN*L$kJCbokGf9Whwd91UnNC2s_|J;=~5QZwcq;s?|#e&;?=A_gnO92tV}o3xu(4? z_-B5Tg6YU3BW9RxS#`A5uIGixE88<1dN+r}X^oRfkv?c#K`Qf&x5LP|M=Jh2fiJ3k6-I!Le(GC%{A3k((I?x?)|i>>gSx6WssZb zmPhD@x33K|8HQ~6PAz;)KO*hSYM&uRImr}XrkxPHeRZNOuHs5?uFMQ%wLjUnebWWQ9kZ7uk}+7 ztoLN(l5s9?=_W&j|K7X zfrTM{M|Fis7w{XhpO|8uG1@?q=MBmXk@X=Z+OGU$`@_>T8=sD?yq?4`%!o;t9j^Oz$ z`TgAIWgh35!1E*G&w=>;g?KCFE8DaDa)R;iz=Y2cGw|#5>2kWE zcOXfkey;^m#FH70`j}~3Vs92PCcmXybnYk3d92sFVKwFnaZ^K}vj3<1p;7ye?fxtm zswd3&$78(zjb(qpq}5q2gkOx*yq#q_nBnmE-eyZseh4cvk3#H7{D#Rl>eSzyt5#+` zqu9mxcSwfDI&9u7>pLdronX?#JH2YW^Rfr|8%zhoFPo%y6=I0@97@UiHfwy#w#4vU z@}WA?l!tbL3{5k6!Ss+0YH%#B+OAN9S(cUjLjQKpCsP@ZU?SAK{2MZO5j0Y47# z=dQvxJ3*@LOUcT?>)(SmvXe`?fHvukJaB0$bUe2AUoES-=aKF zQ7$rn@wv4rTk;)Q46S9x?==l@nh3QMqt(A{6J$O6q@=?|e!g?$N%CqT* zzt15~qm1C+52^mia$^ebl#|K4Lr!{$4SAmTUdkZvY^|+Jifk)0vM`{E-IRZ2-Y|H93Cl2#$avmD{5>FXA(l;8*EM25?^sSxneip&2AQ>@ zIeo(1AOn9Ht5vU4&KUp1OkQ|ykT{>|AU$XX6UQTH>w|~c{!wy#EbaO3GOTN)2Z;w% zTTp(;4>sXI${qSPphS)VYLiHjv7L#(7ck$G@sJj5{DA4AzSgos-~YQVH!&QH`?Ku0aGr`ydyrxc7k-Q@%kg}%W@zLn?dTI z+P$PmW5(a7J4ih*zTFjg_G2MUsKO%{^#k!Pr|B6e4V5`*H zON@J}s;e$d>-ME+s;XO6jcPd}mqo}T2!bynf?$gh+3&`<2fq@2& z3U#s6CY$Oa;-R~l{J=!EHwo{teDLRuy`083$QP`nEK2ng#)ls_$8|f4=M>B5DOP8G zh+j3uy)+XzuTbwSEMi|MP47|9pnJB-=dixf7{+^lk?n12-=Lgfh9N9e5=bZ$%X6=ov)S;=pv8*v(G zL$#%|;QPbAeji79Jv{5@IuY%;biUm0d-m`1`g6;E-0Ald`}qsMZz-EgxkP!MHeJ^U`!G*r zPbc#TWtwS>VEv6=pB|9VQkVvyAW{);-mIwGx#z42l)HW za@wNe&&QVMn~q?<$gUwh7`m|2tU|qojCNdMA|dh}O=D3f-)!y-3-|_zRM>|~H}9gB z${^(gjX#)P>O5(o&Xc&k8T^#;iM~Eld6e-G|7H4y=nuVPws_C%stiZyVLL&&-+7#F zQJWd@KlMU5mVAPLC!^&u$|CX$Oyd&rAJuzIq+XQ4M@|TZ=EN?UEdUQ6E{s@0Idd5lgPSxVQsuL+| zD6iXhG7R|)Q(RLVPQU5oha8X`Mn8GN`1y*wkMR(fCf5?e&+~?}$Vc>kWGeTOe)#il z{=Ss3Inzb{63dI)+a_G!PkXh$IESJ07`01{*T?={`TQ-$MPUCb8ONg1{VMem!sQ+2 zLZ*ipDJNLDG4&prDO)m@vMaI5aQOEmmUGM?HI5}@qV~lqn~!uB;-SPxH`_tseL{Hs z*fouE2)|zM_pgNx(uJ5Czn`uVC|}5aWc)q!RmziOvrXT1)NAnXatyK`k*=iWca&RX zPaCiQx?Us>%I_Y%HW0eu@5LXY?v(5bqj#-Kn3XIbM7+vm?ZiX8lJyUN-ZpP#eWFJB zmF)MF4V2|^J(e5(9rUtXFCvayPx(W9i+Ip8h7vwtJ<8R@L0rp}*H6wTj`(){J%*!l z4CN1lzc$rQmP^_?3)z%T+L4{byV&weNb4U+GphHR_yyJ>vQJDnr<3z{j7uFV{$Av; zoV1~L8RY}Z*Qfj-pUbpSY)jgn)-<&RlxxHtD0`Sp8I!)3sK*etH@%c?8QPk97Go!v z!A;nYqiH^67M0^nZ%%xypl+2e+M?2ZHRTiKbH*2uzi3pbcafiD!hgv_#Jk8pczKNH zv#ya>BzD?Ifu@Yy5jPeJ>CXagM1R#&9%_Gqsy3 zPl!xU{JlSMGtwy=kY?F~|7h&Wc<}l(9>_4%4kzEyXgBd7`oo@yU>#24KWfJl4_y}- zUmsyvJNMrraIH?35Fgb&I}35^&f-0*p_Tq}T-|KLv=Mh?eyFZSe!<&2wcS`g=p8AN zeccrAVBokXerg)?SuVt{F(1^PHsy6=@-|?QZB?jj3VrWVu2B2f&rRA zI8TbOk(s;(@!{>u{A#8TZx?j24kR)!8NAE{>O_e*l2#P&8n}+-T43Vt^hfw%@-oYd zxM^phx-aDjdWW3&{Q+Lj>0J}z=W!Zr_mVx`QP8!t!dry$_l`ooAL{^NM3Tm_~i-GM^m zbk-k26Vt-bV#*RKlqt!_m@tWHBi2Y4`d*;ipk*uChiGsvNBU~?N3CkIKQMo^?#yvC z{5xSyf1$pFzo$Jrop=b3nd~2QqvbA>aSlUr%AV-jx%l%t{=8B~T_`#GP-*$l^u161 z!OK|_c_clw(`D&aX3`ki?dTh2YLrcBBz>FCPZ}ylTl{H z&qMh2g)oJFh^Luw7Txgcs(u_+-j{beX_YV63oSFqTjckccn#|ZIrXPx&oW=ct0}+e zA`d0og*-vLp|j9OIhAlW)5YLTY|p41VX|>dOH%o$KF)HXcqU?q^FI&Q3$^CX;=QBU zzle*TZ8%SZ$`JX1tldQNM!MckxZc)<$hV=S?+(&~^1STlltF~~^g|ppeqAbDM7p7C zsgi%igcp|nu<$>1Q%jqZNa^)Y#di5qgB0mf6p#nFu?my={Lq?7m`mXo`w7a`@>t}5FY;ZD z*OQg4JB#}`8f&plBiqe1&Y)X*jK3$(ulMCQlb=EzE55(2wX*&Y9%a5Vzu&B1=Q$wU zM?V=$92ww0;!Z3F!h?z5ceWngsD6)p$KX`s&wVu7NFR!4qpNM9g)%4peUGp=)5lOB z^&={Wn(Qs|5&mBL@D6!~{2G=A)elU(mVA?oNh5rF8=TV_WF_Bxk_yK};`brc*k?t#}06Q8B692xp`!g0$GvN@)gP-)@->suHYqgG zA4AJc<#UE3Zj@|Bn&9t4&fgi}obv$RisxLpY|npW)T83xm(?|Q@%DP49xWWjv``sA zc|+eL)N=^ek++C4@BxOX|$TbTiA}_-=)jf<{U1%Irl3y%Bxgf zG5$To3A8DtMj4fskJ#QZM13pWmzm1hjEC?;lN~~OpnI6auS*v1#NUc_eUB;6H{3*i z%8v9${x4Jg3HgRN+vL=d1Sok0daH*B?ypSk58Ar#p&mKzc8v{32sHq^h=)+6SqeW*Nf})*+ve zf0t!PQ_WNf#qWp7?`1fulr8C9k7F6MY-=WN#r_!=z}sd1{)l)1>jn9?|ap1)5OPE52)Oi{D2Ui z4;Au78uQH{xT^_O&`v6{)bt}I?oa@si3 zpzMi%k2K@BQkHYAQT)4HaXpp;`97v`A>*NG2li2@-N!T}r+i}K&YWjNyr1#pta`z( zi}jvIIYHk9>P}2P&5Wv0ju5V9+0n#)MV51pNaByoq%*kYgO+h-=)KM$O@A_xYdqrL zQC>Nc_5pgCmSk+>5@wmakNkw+hu;{@@}cWe)Au;rDZ1V;jZYbliK8ih@cl>=$L56{ z36Xu-j2*iqNZ;lrYob4DL*yCy>L$CHGKg@4@$V4l53&B>@14pzSO(Nao65SBBZOm3 z*2{2o-C?TFbOwnpnCb&`Bb#O_hcQ0#b4{1V)ih2rddIeeFV+k3kEBKJHTn6Z54H7J z9_X8vGW1*1`wH7GS{9n7xdTBOkD0zdvHZx%U-9ew`Nwplb|iU)iAR~1i>nM@yZ)}?+!>mjCZu#@i@GR_sGAAz=qbS-ANF{+z#h^})@E9W33 zKdQ43&tY6tHf4W~mB*Vd>P!irvL298SBsbD>`A&YM13If5aaKo^6wvHV+Vqi=PSrJ zwI!QgGA(~%`O(X^Dq|^k5_dLzyHn24#5OE}I#RkRgR*odv%JD~j$Z1?!g8jGZq}XD z_BGk6qzC19?-tQ^L`GXfyuB2bu&l_InfxL03%xg+8len5XBGsmr=fcllQXU~wlwkB z4%*k0yAezmjqe(-hr_9?JLJ>IA2iJ}jrIY~jSdvwj0@{C?0Y7#ok{g|Q_ERCROgs@ z9?J-CH&uJ+k9@r8yNPm&>RxQ~m~fcMH4jAY?UE|z%nKV47o*5;$xkC5CXJ{5!hLg0 z(~;wYG>&Ka5W6Us7`l;s!h$o&C&X(_Mxhp6*+GnRNj_{}XjAfc!7XrGzNo>$!~oXk0=*qUjy8Xax7O zp!*~82iYuB+nDl*@MBYbk-S5E-Gr(1m!ruCRK^Vy!teo}FTxh|m-KvFmEqERd-5D1 zD!(@QFUTh}PB3{d-DtVf)NZ9bqPQn$3e%_TNc=tJ0bwTdk~iB6U5`*_Va3U;4=mtV zMrtpyTv+k5@r6+w8;f7}UAe)MAbA(-AH5f|Z$#~CvwSD^x2O!Kj)PxU&Dg(6>si!? zX#Cvxad(A0mvFGj<`5r#96$7D$}@Twn0O-jjId|&5z7T{Usu0MenR&uNqC=Sm&3^m z4BkFaXrT_1$(x$N$LWuFqN$PR()GUS-IDqabDB;5F6#k}YfadNdC3l@F@ydnzZ?2w zy?9q|Z4L4n;aby2n?>?3nv8NP)gO`v@cJ;Pd`b6{Cd^=b+1%uRq+BC>VEldd@kGkM z+)8;s^%(L8weyXir|M=or1u)rHP_T7HQ7d;LHzw<+4sp8 z#2bybm-AQ14}_~(eq=Ay3u8yJ|3&kc%&1}1izx5YJA*QdIFjjMXqoBd7)6>mA1;lB zlrzLTSikV^*oEi#k9-f-58{UmNAXR&-|#&07?uNl(S%>HywaYmPKdJIdoSrnz6s+& z-+Gap>nsvRGHqFRpb+ELHbTNy?>#+z~AqbpGW?{@8cP2=ei*pTPKv&2AZatFq3r17}AZ% zIajH*k>AMK??~eu6MjfsG``33qw58eKTSR(G@HtZPR=`#u7in>jJ%f?>NIKI#8hr! z`QYEJ$}b`P2&3qS8v7>cq3lWR8M=|vu9q;9dB|TGM@G@^LtLHmhw{BuXEO|yT}cs>&(M5Hb(P+p_T?0;E4_;(A!x-1L)JqP(P;vlXdj!Y*#sBFmc!LMKUoI<`~DeW8y z(@8((aO@z9b~o`KOap_zC4C4?qd?slFz;g1`hE7R$p6@BzDbCt=S+j?$%Le_3f<^> ziuw$-K9e0n{=?tD5f5Yj2v1TEp%#dT>T$;3QGd+HF$1jrD>smU+rYjDz?ylXJhC)L1XlLR`t-V;#tc%m;Cg&O)U^zN4|V zi5t-$wN*{_De)0^pg;P~Gc9vEgH#VQVFBe0`5L4fzWqne`H0__6V@l~$gVWCXGtdp zsnewKgwegl(sf0`ez*(aM<&~k@sV$9Dr*rR<$G_3xW5hMcU89|eJJ01%XR#SkEWO= z&KXGdL}#I868k?)xAz^^5p2>jYskabz6-(WsMu2)nS&U;)Rb z(zt;Bh(|IW{CZNHMnCla(bPD$kj7HtBiq_Urd{|gAwmb`9r+~Egs!_ymAB2xwP>GXBF9+L^zuN#pWDheWqFWoVaj&K2}~DdJ3;FJVR|x^eW=_* zzM%3x^TQ`omlPV2JViW;{6;s&jFRt~JkU|xZ`1S~=|N?piSM$^$j>Go1}`)d_obY{ zk4uNx7f9c>>|fEfm#L27*aS;AG|MZr@6a>MbWQ0D;_to6e@FR(KaV}cFlo8gcsZ*+ zIuN9HL)uxWEF--Li&=i;<47|iZ8-^BF$})n=vy!lq}F2m`(WAjok2pgiKj9?!Y-r< z{yo3^YSM{tJi`!AVqWr)sXjuzgrK@wP9|OO^5fTesxyg)zUxd}oAKof1Li?OG(Bzd zYbXOKuLra;978h_%F_@g(MFZ7zp`DR_eK*wAk8vJdXPWGa=?$rv=0@3KGol|m#xA) zg>70oE;oaRF9}k-(=#j%qc}ezem%kW$3u%r7eWv7g`U}!q0^Ex2r-IdQ|Wu3{J?}& z*(YM`SQ9p;zC!I2>N6}F&VCr(O{VfzC->iX{_i>8FS4B=KZJafS^Sr8Q$El;!}$Bv zvR7C}EM1rVK8C2v#NUTsr7a^Fb&$jw)0ZEUZ>UT)wULx76z>YXx1IZxDJRJ8HvU~? zJ##4ecBBp20A&ne4&%sw84rzLQXgY5n(R)dgYr7tk&GjsGY;~PItt-0#F5$54XCt} zK7>0>V>$IKdfzmS7wJZAk*QGD#M@a-4^a+LBadY0SEg||<01TwG$6a*1T72vz8Ak9 zyQ0E*4J@M^$wc;p;@6Ghr>sL{tXl~)ST6YUht-4G{!#1cEHr(I{TUV~Z%J6hx)E0#QJ!i$vK~>Yn$bxsE5#ZF=YkeLGnu`kgteGkSC~6UL_o8 z;u*{j-PFC3KW8F!Z9#Pc!bPUK-awEBb+^>cGvW9BL9+eHe>5&N;b+VT`PwEv%=8d; zqCdQxGDmR!F zo3fw6T-wo6V;?1cox_hyhOX-5{;kgPeOmca=7V^)$&O@M(KUj$5xS{kWcjA1@h;0I zFPg5mh>O96CVr81fa0FNN6C|0O!@x#1>^&&!$?0WH=CBF9Dks8ilMObu0Jd#@8k-` zLt{7c3;Djrzwc0;$o7i92aI30%34?+#0M!S2;37Q)$znf&U%t~Kf@8an5UdoFT_y; z+*iZ8I?+_GAl>M?#Kct?j&LsHB3ooaE90ZFBk4unnp{JEBU2j-;SBN$gHugqk51n8 zL3(DA9{Bre;|;7ISL#>6WWWH~OZLznHuY=gHAaJtAF{56PeEEc8xcI`I3c^6MEN@j4T}O1kCX zlmdhx=2oIa=TGA>z7=K@1V=Kyo zoNk5~N4lx|B#)-H9?JuNzPxx)Ch-xTCO=R!?%CmU-v#i z9;4@Y&atB*Iw5W|SALaA)6WA8fcm6;j+h$3SvHP3+U*s1WBaEMKX>36^ z@&`=!GvqJwGmXAsCVqcOxP@gxgLaT)H13UX0@0o%H_Pv~uh#-2>Dc zXu8Yv(0-6bUpI5U$$4m0sT-u}dEz0Gr_$KWMAn~#xh7spx3E1IP9tyN-*0G~On#u3 z`|V_TFx8XDH-tkw3VJuB`1cR1n=%~v%hX2*`!Ec7XJ?^$QYYiH&i6KX2mLWP&D7?z z-cdQ%l+T~0_GI}zj6bpdrDbu!&&LGPEb*Hr{DL&dFw!CE{8&a^Uic#+{CsBkIdSFd z$tQ%Uex2n)?Z>9Ub|vu`Q<*&wB)i9iIiv%6XNUA0Nj-p;GfnqD*j|vI!}6n-V^nE9 z(JarX6Hw(DG-)1d##Y(h(RZ;q^`h}XT8=UkzQB1B#HF2u+Ro%Bs-sCiLT>W6m^Zrr zW`>5SC(-o2X&FsA(Y(89-D*jYY!S7$0Qfxh5V&IY8r&$<` zb$?3vLFG}?*o)~PJWsws*ED75iiGWZ2-$HaUdj4K^+6Nvr#xWr5>suVKXQ&^#lM$V z-WRh0>jAahOr(t}#kWe%Vg7@Rhj5aK+cO;ge(2(zz}wNUrK8~SJ@ogRH`Zaf;O95v z-`S4P%d$%!+qsOr!pysKNs!5Bo4ihb%ila|wqMQ0t!a>H5x5KOC5vq?26#RbXzD-yT`Iu!wc*6Mo zwtgSg;1-m7)K-x1s2pI5dmuQTsvSx_jRxyZ@)4%G8_NfOuUK|AlV_1IF z_BVQ#O#J*-elObyLNn8bf4?9!vp$in%JQMHm#GbBI`I0ty30WE{;S#-Nhkbyy)cFG z6?$;(IL9jVuSo zu0nl;rq^hl=q%Q+U6@P5)o2)*+`8ee4j5k6*IIhgf_{I|rBok=6Y z>dCf@FWsa;(s|C>mXrq!ajYh~2VSz>SkE|PhM7HmNs!7;$$~^stU)0%by4{!V)sz4w@$eWUn&6_u?iS16x@ zKa%Bz-*+5l(TxW6qSU^T+)0QgwtL9}%ZsLG=!V}<;_uz}=Pl!btXKGU<=#(IXI zzl{q?pZwD39T3vkkL8yeOv?(6y)k(_`(t!WGd<@l3DUit8Ja@5K$yWirHwSeujf=b zewCIbrdr{+43YILl^>X;)ZdaHXcp~FyBuUC@-WMb_@e3iHQPP>zLN4e=0A{Ma*6The!>m?Je!1J=XXY%U`2F{dQ^^zfb($)5n9OP7xCMh>Gjo1Pw|vV?r0h#Po@tBk2Qtztt){j; z4j2UTJhoUEeHkru~gT9U$2kOxGVfL*Yq6RPQz6GS)FF z)FG0wZxeq%W0*o(kez3WXHSNc2dA0pb*y*j-BJ>-G1ZgkFKK(p->vhU1Iy+n@gIIZ zxOkVu&FoiK>ny~5SWZ+=Gu<;dZotrm3GJF8G^Ux_MU)2&u`Dupjp^c?jpSFE%1>EN z_;aQ4T*?c|@AF;RUwl8z-)>mF1)f@y+BpLR7v$`q7wVs#lXg7`nr>{ED)HriV@TGV2t5 zkD8__^hfwR(?@w6OI@gQQTabi_#WMe57i6#Pe?y9wr^=%Vp^uM+%nyCUCwrZq1h&! z&oUwZwh8;vjmY*S`E%qiVrI(kJpP9~kY>_>xK{EDLS(erCI3=qA@0&y+)t3NLN_w% z1gULHxsZt_uQFWPl0PvG1g0tROGfXMDlF>fK8k+ck3%|9+hm{+sRJZTH0Al$vssU5 z%ryCp1I07+m8a;B@U9seAb$`JNJiJWSEl~I_gw5pdZgF*^Cy118qV$Hx+BXl&%`Ax zKl0~Hc!uG~?lz5!JA-)rUTLQs!P}29Fbw&H;t}%k-gpd5imbpJZM#is>M~w{Fip{F`!z$g)d$9Q7Ri;q_IfVF+8Z zo{^tqDnDesBBS1v+Nq{8p8m+GPYMeOk*zf0MW%)FJuC0AeuQ&Tg)IqXs)@^39)$Ny zK0x}B-EG1G`XjHIa4X&L`|Qf+d0Xi(>Anh|e>|PEz}uVE)hVl}e9_d{#wD-}5;=z@ zl@^90-^zpwwr`O4F#Gjb(ZMx+kQ=YG%#&CpLM)z&lAG$hja<$PaZKr^OE6?2vrbPgB1GJd;V8e4o7!{b^_hPWPtG8Yyu*L-c-`!S5cg&} z(7ioU))#^2X5?hXLHS$}`{`W!>c7)p_AzlI#+40CSdacv?Kh(dWjp%GN0f2VIV)L@ zVX{Nw-xYtDxbj8jDKGI~#xkx%{>w28lLt-y80m!HpA&B5KQe|F-Xui+Uh;cFWUEp( z5J#Hw{Rot)%^tzh^FNP8y+ii%IdV zXYHrAp&NR~T;VV6+@pktjK1L|{#?la)-&_{2y4}iueVnjPsTA!9%i_##(oE7`y^+W zv@i_$n7%gIaGu-`n!I5IgIpg-bB<}Yg}dlAaX$!UZ#%lLCpHQHlRTw7(?!__7p zPdxbZl#NxXZxQ~%S%yzE#BAx#Y&k`ST zH{!wfJCV9iyj+BT5)Wnj*WZU6DSMLgCp3sBBa?ZA$mfx6#9NJjcdRHoDnDaQ+>qf2 z?a9fEFEd#Wh)oPfxGwSedcEAUnCsBghd!O9j4LbXFAwk^aTlf|+nDlu=5^*HONom( zg5fBa>jTD@qv!`eAC&j7d??#L&$rt(+zW_{>+hmu8^(ve zky%)c5ao4&wTLH8q*IHIQC)bG5dI#UJdz&hndibdLfMLb z$Y+`IJ=l*jOnmwN$bUJF_~OfT0`rAG*Hby509 z?GAx$K&J9vT8Jan~u}7gGMmZ_*F>6jPq}JdXJw9%#as z=$6fsiG+w3ne0-^D#9sA6QSHqdgOuRQ$m#Ga53GoLGliHE?dwoM<#8A(!(&RkT2rx zlCg`adyvsj8he@=|E10_@t@~=qm6jjkZDU(vYdY6>GArcNmIP*}u&@%?Vjc%m{Vaj~iNvwZOScP0I$p3EkcuMkIOCjErs$4lq)UuGrO63UF^ zcZ4Y43s9}IeDL!6QXB0%3@4tf#xUtjb|-|tN5qe_;{b#0q=v5}Wm~O<&P1Z{{B6YW9=NTPC6{Zu)4^8+6(?{gIh!o4ra>p~1 zwEy?zEZ_g2eHP-n#=i>@M$um$C6DC9Ewd^n9bGBxpfbw9dgv!vXf*tRN| z*JdJlFXMiEL<35DZaDUUl>5??Cx zm#-Rqo2YOUp&VfR{^s)da2)aFpkx<9*(do5p=@b9U1j23Jp*)|App2k=9)e@&;#iup9aX-)z4!(GqinaY!heKO$>&T@K22UG zlyu#82GMP|@_Zu(Ir_wF=C4VNA z|C+d7oqDNGU1;KFbR$%Z-dRxCnGkySghYl*SSM*Fgzm*JoI)tR|NlC}5yvK56H4m# z>kn~T`XP)lem=wZ_htG#9TSKzN0{=tiLWs};<3q32t{oc$rK=r2CMHvWt1Bsnv=iBRrJeoiP&$y~~u%u8AcrI&3> zLc6(yPzDlj2hF2fZcNhl9LIF<+(1Wpy&@h;H_H8CC*9Iv%I6Hbh=Zbz*@pkB6XfV* zA40i2xr0zHOHLz{*~v46vO3d3TqjwB5M}+e7XQWft8EOI6Ot1NR6{i=S5*B94SMQ=u%2w|o-eN-e>NCT z28k>GA`NnoDV|LnQ|Dc`>bNWwLAS#9yja1`e|Py z4>7JxNqqfvkybgG{_?tst1&)wEML$*R$gi|+qB#H2QNQ<-eL@K#LJn_ubX+uD8`dX z$r^;RoaxE|{FkZ8$%L|N;^U7cuJn?(a!9{fNGOjaD+y&Z%L07^MT&bj*607mNe3YU z`B`|Mam4pGz8$3LMfOcnmKWdNR+1)puid12wY;x*GQ(uiV&mJ%NaiKe5}(gF=7TWN z#Bb3p-!SEQhEwTA&VE|_esV7lp^xcG%9p6NjC?gYoluT8Wj<`qw8YE7!AwI|kbcoQ z2l4ItC5EAB6R2I#YE(80dl1S;#FKGJg=xvmWIX+4pJZm69k0IIZtpK0*1%M^PgdbS;(p2bgve)__+7dYwoUvv;B>~7Q_^x_t@VdzW8zv=f5;3(+TC+WD7#cS=TaWv1#q6-3BjjHOj1H#Fa~v6A5L%#LL0m zbc@QIr1M(EHPXM(e}2+SDE$fTsh~DhM?yZSjZhxf%_DvC>wa@1p)}D?&SN^FV|=-< z&8*jN*VDbe@a?6G;RWJ$;o78!Q06gQe7jxFe_6&bN#!zp%zs&?VeoWK?58e5B=4k& zII@&D;`w|gaiqd9`7n8sPq{SwXc4;K%wA*p+Bg8@eEcGxd zYjVE~%IDwHcA0aZr}R!Sm0xh56T+5Bs?Yp7cz!t3knfprDA$5f-P44f=tg556CY!_ zWTpu}Vfo?buR{;r@ayV+o}@VUb`*8i3{#fl!-XZe zRp~~g&XsceIe>X1u1R_jKBHT_p7;;rBA&%~a)k-h^OE0S!b5Z;zGSlBkzdH4POc_I z*dodIq(0(3was;NIiWmh!iROX5iB+S{R%1)${CI(UGf^`O=^qHO8$#4_r}amJU_gi z?qgi>fA^Zmcqt4*Xyx)z&T`neuS zzK>%(gaeZQ(qDXeE+UO`aPkDhpljrXj|dTem#jqyU*7Whi90%Y|9b~@P~!W+IiyLv zzG^TZl-DsSGey}sfc|oy@#k{FT?~ir-IiisG@Llk^&7VRqK%dICtg1DXFI45h<~ps z_m2k?Uv5ou(k5yB#S57a{5rLtPxt#j{rpHgzfSw1&auA97qPw&Z#Vf=x>2q-&+pHf zm#oG7<-+9Tc58P>=8f|H-7nEC8xl`ccHrL$&*w8AnPPO$ap7;ol^2sM2<08-jq?7o zt`5H2!t~pdyV~u1qOZ3L=oZD1Ims^x<$Q*r+`jj!^L;iv+i(1OQXrmemVAX!R+@ZT zM{z%C93VZ&8zyk?n8Z)%FAtb-CG$phk@4>)#7!BF^7`@ge%dQY9!evZT<`W-fJ92b~wSQ+Z41S!F-@<(0_l<^+87?E4 zmK>aLoKoBm`)h_tTf6c0XgXiw?Z#LkKTx(mXA@r*kSFp0(}35r@#myLzG1w6$}Xk8 zLHRuHT!zbT#_ubL=XCHrE7m>x2l4BqI=5QbntQxZ+R>q$Uo6ORL)FR5LbpsuiVIg zIh^6L(B$`%PQ-a8yNU9EayuVlndJC-p)4Q!)Hzp4zipT%;`NM!@;QeE{D;?+J|P}qiaJ>J@ae>t%ai>GWk;rq{CN}f3@NfD%nN>AFb*(1 z6#KmSbvsA*e81fb{yx)rFWH4*h%Bqrc+N(`i}Xia-}w1Uzn)UIo3CS{&h(HSO?`ntol*E2{Sm)PJZUk0ensaB3*N5NwhFJ;;%wrh+%F%% za7pE++`gV84ziiX&*$Wil1HeF;J5+heL9nvhP=*r@b~BD=acU!?>k~$2050vDDPiP z^9$D#7v+5hy${-X!G-;HK5z=5r2Rm7{{0%pk-JQIjOid_e_wc<5an~YTayN1TPj?^ zH073dvkh^jnKBBUTP|!wh_ZdPJ#kQeH}iP9WhLXu4opurr=Ltn9-^O|+;5f=N`LYW zp?sKpL@2A(&31$+kNYlZFRokV^GJ*Q#$@-f+`>ALxU(tSo!c-?QCUaamT4lKm`o&; z(aA4}Ctb$xe~SAto^&K%Bt&`KeQ>)S3+UKKs*I1~n&<@LU63>rN;h$2qYkqtp``jc zuFdr2!lZ`~#kuWMnf77CMLf+E=hntDy?-+d*^GL@zb6`c8CN`?Us`O}D<&|G+-CmQ z-e>v;V=ekiE8`-YZSu?O+;2<21Csguw4?BD@@@K~c$V=7{!{meUkBE^CJQSFj()CrPP z1|_g>EbPF%WKp}R(Poe~hRf=Sm#=e~7P9#!evfW=JruNU%7!Lx&2Z@1Q&HQZXkVmq z7WM1}{C%%sI^)6budc8!6n~!A&*x_6)$Lx%y9rS~@ADw@LH=nnl@NY?C5yyII3n@- z>p}8B(s7KpW5OKbA)9H+>tv~ZjFcns=bp-T-y7toczb6w|HaE$psb0vKW|`|ypni( z=h%9&&E*f0Cn(#`ODXrrZ)EvU;T)D^f9WWM14xrR-fyami}F5^MQpS1>*(eAUu`q+ z^F`SMEH`wIiiGt@AL6PV1zp=NcsZ%#E~(H=UdvI%J#x|#)Tg*`g@`MKDT09(e|>hDb@k&Ar50cD9_tBlNK4) zQHbXeUn-{DZ%$=?(wwL+mKT$SOhf)kH}acUUozi>=E4Sq2(uX`ItMBD@n7y@K8R;`nEME! zXYh*W@Yoi#J%l${F2q-v9u>E5jp7=e?Bd|On<2)HA0l< z-F`z{_gJVuDPnknwhJAi4gF#g zn<~%mO17QJKV^APKF@w3(??mq{DA4e+g^ zydB~1Bg!vjJe2oUp3z~?wcgKo(#$ZF=V1$GM|s_QPyQo+B)N-Fn3u!}CQM>IN{xMqtYA50BgRL0zGEWY@-)K`n;9mDo1kq_ zer59CG9PGNO1R(nd8M*`PusuOJLP@b=Mx{g_9DJtDW4bkC+Uz?h==&Yg!ZrAEl@rW zy>;F0r8$WZ#l88v_VZ3m;>agVL*_9IwKX`NhmLKfeE-67@(5l}(RicYqWd$ZE81p} zJxDo%zqha4-+haI$fud&p3_t4cWAO7X^>Mp3h~5_;yygDQ?eeWi*SgEUuB-iZ#3B> z49EYDABd;@(`_cZo8c&)ZTx`xKy@f|E>6nlqc7(_;`*jI_xusdn(`_CFY(dXmUcPf zR>VVg4bw-goA6`iB~SGmwK)*S6CdUCZD$Y%`7GnlC&a%JPdE;c>;>ile-D5kUzg{3 z*J3(y1k;v#k}U{D*QO9RBz-84U-zOL*%agVE5}2bH_G%1?SdF{e<5$;Yp2<4@A)cO4p8P9Wll=n9=YiK?x+u?sT|s;q zZ~S>HKOQZf5jcna*j(}uak`%T; zh%h3#k#xe(AIB*je4nX7B*?O`|y=V$}8G`QnrT%7>>AEMRgUGvuhaQ?zv3Jo=kem<#Dl-j zR_72U?qI_F4$eb#gzPgDV@L76-Eb*s6we>6bD6W)EMz?B9an`b2~oTg(IG42|qREeHv_=LB5+jz;r~%da{st%9-?&wTLHaer3CBKEs4#$-liNIGv$8xeddYsx~HdOh;*QM7ND(z zcl?-~`awcVvJ0V%G?9IsgiVr#?UYY=ejUPpxj4DE->wCGL@4{vAAbL&ZwJ1gFWaft z5>HM|x|tuc4@`KNZt?v`+JA;ho$Ur2^qZNCFSjR~Fbu`LF@NQ~YP9*p-`^2tFrJ)l z;*R7eGU_>rcbf1crX!~kPi9h9WH|jK4UZY|5w;_aeAAToa~#7kx!J_!#FvLmb_MfA zyd`;_5c%&-e3x!yD@<80PiA_edCNh`ZiI3M>5z?e@@s-xiT;jk6);McwK*~CYA z9(Gm!qud`IMVjOj<|7Zar|T`mIT_E&W*?<@)2Ys?>n#J$>%jb6U zcSs*HofANyekklnD5*VKzDK9QI+9PAx7?hZz%)^A=hO`mId!V&9W({cx8E?H)EN)) z9O6UohAEuEFnQSc^#wm48@DAs7`fo*iTrt&@;V#Ge^JMPlT3Mk?X`5nuV-ca7e7A} zUL(EoNivOe$)x0I(uH_@hp7@ux5+q05I@e3!|9Lmc>QC>7hmtyHtGxb@k|T<<-f#1 z**iRPhsy^wrJi2O0*TTSh1M z(_dQa=2ia72)gB*cJoW7E1%LWgUS1Z@?vrop-k^D=-g{@{#E-186qw6Nz&Mp^2q(A zM-UG>CsA0&_>#6m-=50ncyh)U)z#wDKeFAP*z5`X1#W6Z>}Vicat^xi{sVuz9!GdQ<*mM>Bh@Pc|Is@55=|mt?Q(j z`N-;wCqGK=W7*|x<|FG9R|5GdUf&NeOg3kj?3w(45OHsl&#ZI3k$ycU{*wO4<|MZe zB5E6xb4~aL@#PxkAsd)Dh2hB9uSa4`L(E%^zdte$xNozV@i@8eJTFDICA zIKvS)O>}IIFyHw8puFDjWroW(CQKuq+@FkVXFreUlP3DhLeejjlZ;UOIBF;2NHgn1 zRwkq9C$|w-Lc5u`nC%sp(=8Wun0*LkjU;DX!mlr7FL!Y76fQT#Js`AQW3Tc1MEv>r zxEuZ9=Z~}V_>ZuiiL_(I>*X+k|8l3vW)dIeao-ZsDqSp}G*|}Nf;i&aneR{M5?4kt zOuC6H$MzfVt`bMorV-zc*R6B^64d4rwK1fH@uiRdlJ1Z7_Cdxvl{mtb*Dda19663@ zA?KJzg6bZLZH4l@{$<3KC)&+Y;=s$B@5l2Vri1u3!wDj$LwP@pZiGjYNrbX1%R%NcKbb)~Wgg3c_${Ub&-b`iNAWK2;u)7SiT@pj z$s*Q?9L~6s@}oTOG=*}2a1Z0a-w#yo58tJ~{ERr#n(R_9?jOr2-{Ri^D(^o%l=Q%# zM~(N>EyEMqsXBL@-NpC_dn9j=Mwv^u98@Jwtw67GEVk%InW(^I!f-TIB{)zUSS~+g?Q+xxC+a z{0r#^we`iXFZ=z1fnx`W`!gJVJv*O49w0Uwzy6o~hUG`NJ$ae=$p=RF)D%cpM849L z_0w3&l^k3*kF-;^(Z={Pmtpb>)0bw3$@0bKQU1%%7$5PXWJf~iUC9z}pc`d7A=M*Q zo+Xm9edp~jw)KE~D(OY|fO*Kp{e^4<*D4U!PLx-2Amhnp{72k_`J%%2AS7I-VSGP^ zd!QvFuf^Xt9`0f|{CiJTJ==urMV1A{vszm*K53S6y{CG=JZ?RJw92bYPqt^?h)<9v z_;G#wf4I6AIJ>6%|NqNZi~W+Dh-bKOvMp4%V!z=(M_!U5 zU6l87JFstv{jJ6MmT>M#ma?6khFNC|(`e?nk<4J*aG$X~WV9h9-Us*z;iIuV%Om9; zh`3*|4D?Qj#QgC)jt@?0jg;@-OZc8jcpkzpW;rBxnHWFR)n4^AaVOczaxS!A-1FlSleHk)8M~MSV%r3EV+vC z;4b3$<+E0!GFu*H8vG~h7u*=eWh(oObTf`0@qNevmXTMPkH*&IFL{jkMtVBOh44M< z>S@FsGM+&e&oUCu%WM(HDzjMzp8rE2EqAx&Lb(?DU$Sjj4)vcA4`}Y<|9>F#3y1Hq zln&u}EBH@zY{cKU7)R)*%id#~NVX-e;1{r6g#VA7Kbx=T^Fw>=&%~QNV*GQ&7u*|+ zOHbimrb*FWa6e)g8D*h_>r}sr^^slOpG%%*U*Hz^nU@(xO5BRyl6@4;9|_OfCnKyU z?W8|STXCGCd(ep2kz-j0p}#d5?RU}`L%Jckk8${=CZmp)#ulV4;`d!X&wS+frjF;= zl}!ixougjr;Q5LbgeT2}4X?6L_9^G`cdYiK{2L)WxD|whWIK)n@jh%(pT>T(BUxX* z%6iDZo%aCSF501f52nLiNqQhYm-7JOBcX1QaGmF`BP=?}c8=Hst4pY5YpL zFum2DJJ^_Y#F75UE+HJm_lAq_lEwQ2Rpv>``f_nO7oIclUo7(;0@J>0;`PS_rXxJR z8t*I2?YI8vb=tVz!3&Jb8rn{X&ztT_9Kij9FyJ2|o{(M2u_HWR?ABsk_#T##>ljA- zzX6*tUy6P_zbVTgTt~&{D5i02P+zlzexu}L;v4b$broSDr3{p0D(MBswk6azv7VgE zbfGTK9l|i;eVoVGu7vjC^?kI5(POf1mX!mE50rSPTEcgQeKW_4gmXb$AKQ`QIx|_y zboiAlhu9y{!8DY{5hmR6tP8(6%OSMKt%BA0&LJuTMg{hW9JoiL5K@u`c}1EF**^vH$24=1b8|h}YSnAF`kPEsyn?FA=7M z>%1=Z2eCf-gyoQ2!G0k==XxI7mZ@wXp`D$)&TP_#S2-+mW4^Ca*Cp zbJ;g}fnf>#0VRfIJC>Ci!&02Dp`3{Q0TcST&cHP+BmXU^td$QLmpKf}GlkHveKh0p z@4|(xF8^lLX8rW3t$4u6ff3bg}b048y9q(KG zf_d^};h+43DjXU4Fs)QC5^k$F(xOWyzTWx{~}H{);<8Ao;tc?7XP z`3lyPw+j0(4}O0W@8_+2!miOj&wTg=CX}bKd_0BuvWn&9eum+IF^+nU&Z^c!+qRifyx|7Xxq#EOhb5YC4L8}gD_n>(WCRmRFfCS>bG^$sUZ$kqpb$1;?*! zTL|Of_|{=M{Km#TLKyO9A(UH-8JCP>hu@dwp=V_!To>o}{2RrxT7Cg>o6|7rh1vW{ zD`ChX3`;M|%kLSMsSHb)zYWVuQU1pMxDl4gvCarSC`@b3+jV*tCP!@Ke^)auA-vaE zPA+4bESP3`2v?fertHl!Qk0K**`z%7U)GV0%BIFT63T-&Sw@DKCgFLsGngh7rpaW6 zWy^vi@5^e&<&(Z#d~P@F$9t?Ri>Db~TS+)Sih3n(_c6keg!Ghg3`;1l9mDdR@f(uf zi0zi+8J5dhjp`=pDNN=UeiPP1%&%uKU6!(+GMRmrCWa;CziV2pJ##tBO3FOxdcu_W z%`vZp3tP$o1Z|Ke9^ffvsqU93pX)M-s&@9`*q?@=CYie$ucs?atNkJ4p%ia+mXqP@d}98Hx8Pk6>7eeBvpeB|b;? z|Hi}fY)@JWBcz#}$+%<;OOfCG24(wx@D8oCj}ZRqECas>^TnA^e`WK^d;_O!ZA;ph znP(iKzdt_b^E_e76z0kM49iT0kz8l;XBswS8tpjA`^t{ww`h;~8pDX|&tX`OHTg3; zRrX=XIEHh(@r&#labKhNhYK_?1v!&Ssv3{+C_)?K=@ogaJ=J%TYFX*_(01=j2O-mFu(mXXpv5*GrT& z653BSrb{fx7p; z<Sj8`5{#c)J_=^Y!;s27v^XC(eL5^dd9Lw@@wej;=53zkQmtk4P zam(2(CzlkS=2slcNJiL**AY+j5p4+P*D%Afv^5vXz5JUKCo}CF<{`FQ<}*z~`I3-E zvQ@tc`J$Na7xw4>FDTw;*`4KNCE-e$VL7%?wp)kk2>nK(9pz4Ax@=lFm|yq~ zqjx67&o%isb=%qAQ%o24crK~+=l}00_UEW9mt&0oKI8^x_a9tSR&wRVp`p~yz9zwn4u4OuW z7t@eGGqZ$g{~=s?r_e*5ktUXrgk@w)=F9tqjCVX_GWkaam@aR$=KQH_M@}l|;(PtY z{`sAlj?iBcukS|*LvAA+3FX(-Op|8Tk%JhP7hBCi>?`8)`Qf}@n`Mw(MmdRCUVMRJ zQQa@0dK=_dbX-^a{9n(d0(&T?~W&TqtWi1%YoVIE@rvsT%@&mY>s zr!bCie)}63M{IZQOjt6Ba71lE`K9sXCyDoUhg&&sF@v-e&oI;%E!nk&etzNp#e50z z8Gfs*D@rQ~?ZanSR!%Xo-Bz6c;klRm*^Q@I=Bd7%ud{u)8soAq!-&@bp`7Yv9oe@q zh2^BV;K_TkHuK@PCJdQi;&n*Me0iX71HaPzgsJq?Zb!(sd-dCQIM3~)|B>|Cka5KF zGvtdRJ>&ny*^4lxi0Am+;zXvwtE@r(uGNKvU6g})TT*4?8umw&hH?kXNEg!(zk_ib z(-5AgjQt6hwc7Pz%JSl;nj(JVa|Xu{KXM@ZBW(=B=@_L%xre+j{ye51%rsQ<#EAjj_ zrX%*V{FZPKo|6jC2PgB{KHNWA@W<8NX0zn_#K&!JTEFgeuH6IPB?OMzv*OHQt~SNT-HNg7w*h9E?^vP zUBZx`wVHqP3qO_lh}X+!Fb?-8mX!v}$!<)O6Z-8v;=i#R!gKuL{%&{#bJ^ zL%voR+h_emcQY<`75>9?#Ot=pnGWB}_T=+M_XH)ofpQn2ed>>AK4Sm=jjS&x7IY1P z5RU&|fByZ+&b$%Q82(QzgZTZV+gVPIW156=LDzahU6$LDW#ogt zT>Rd{^-PoAX}Rn=;uG;J;SxN&MiNN=?Kr)#QXL~m1#d>gylr%n5;2+w@Bh&rPbP7!_0^O4&g%ALgJrf z9Pxd=qTT3zz%;p{Y_?-qo+KQ2+GpaH6y`8pW*OhYe8m6b`D!co8A;FUnJ!zGb8ZsP z3dx16Cx@{PV!e6;%gOspgFCpK%QB7uu^%lX&5`g;T?y~|$LrT{-CAWiWS;dA+jpFs z4#}-1T+hYlEfUs~n^_KiE%pidwffcUcQ4ZspA)--aU>6xbMd{W%UD)Y!jh9&PG+^5 zdCWsNezyVh;VTj6kik=<^>{pgV1 zu8ZwJ-vX2HT`&J1!bNy)%CY_2I{eCv!ejix_n6qeyN>Ay=TWE+vSmy|xSy82!8pSE zJXts622f6R_3pauFko=aoLG1s$p0E+yg{LzQ zetq^6ZjfG(htsv+>>K=kOh@vF3Ezzl|Ch_%!?IE$ z9*{l6b`Z|P>?Ot#?i>5Z2@m0Xisfbqr%2a~wuFR!lo)P>ZAmCcbWHF^^yl(#o=jx? zP{tAOL!H7patPC8L)Me_J~NA9=_cK!MqZY8SO+m)|H?SB%lmWjc_hlZyv*B_Z6iL9 z?T8n-fN8Q{ze$-U$1zQAWjeCIaNLN`RTTLs)RUo~DYSz_dnkX$|8s=#1HzJU-LoBG z!L3#3=6K;ZVLHP7%J5#Qr+msyU_L_sikrkR{JJLZJ3NuFj$pc6!muo9HATB9gqPjO zaUrztyk|Rbe`cDT#W4I5!bjfbQ@igK!jn50mc5xLEeyl6ZHeDY>YT=TMtL`%>9To$ zE}`ut8Es}s_&*;K?{hxHHW2$`j_=Q(pUVhC;&a{e`ts|E@LWlFZp$Ccb`bh~;`P@( zEH57uK4LrfL6#NzJ#sHGUyAldcz!L$bBSegV{pos82&X#NSN# z2=7IP_E$EKctv==Dcsi&`Plz~_26DFtYjPTyt^tHZ4im~#V2sg(qKQ}C$gLzN;q)4 zGEd43L*KraE5;Gt=XQjXYbH(LPiHo6-(g%v$#;nTF6%H) z{!YBeMGT97Jm(K&d&r;B$hc4b3EP!#F-@*!ALTjLh2N6p;jUqtv=qW~A!@VBQ%sk; z`f~BTuJKHhM~rVGJcRrF@%xbd%$L!^`7DF1X5w=Llly4T;W_4u`Yz>ihDCL|{FiWK zVc`>|A$;#Re}R+y9n0l0tRs)H zp1j4doWS~s*BK$+{+D_3bK^H4e1!dq&!=C-e1!Wb+5Gg4q)LY2ES+{4IyvaOd*PHkri{eI#>zeqy%?RNl^s~qM@~`Yava1OPaX%I_ zjM%?bV}Fo8(>_Z1Gr;nQ?Y1VuktIx%;xFrCIrwc08}W-!--dQTY)6OoRU6C5YSKs) zm$F3Lz<*74E#V_xhc9C~!hJ(`3*&Ny3H7f(p`3rGHeS!Z%6!EB`IW?%%wRgg_q6;X z)&Y^fkts}rud#13&V=VeJ!M1g7?weHaXA<3wM_^^ zx=BYV+83c8I$n>f&KA`bvV?d=_88$IT-UmD8J3lVB^k@fZ1!1HRwDdg97mcHBF=UaULZXweVulM(0Ts|Tk`NV{L?#7b_(%f%;$FkxIJ2GAFW?UAt z@6ySBBWrNHaG&+%LcQd=m?qy~x`gB3hiUNRI7WGrVZ`Sz7qKk-l}txQ9VTw;!lc&x zIVw+_=Em@g*#BGXM{M7Jg?Vy#zx_YQZ?U|r+i&mp9?v|9e;k|R{FuZtvZ)E@Yk1DW zf6V%DKVe;j@;}}eEb?P@AIcG#+LrSb$`s_^lzE?ZyEq=Xi?F0fj~G6A*vX|VBiFGE z{Fm9L^e~LP-{JZi z^QDXBr3gQs5BswY)P|R&m*YaL&o5@1GL~sbDT|~rnRWxRiIjJ6&of`vGCnEi|FbSU z#~!{Xp4EvT#P7>d-*{yAGacc+OhUUt!u3q(C-fUK4awn@izuB)Jp*?F`+#%`?Gz+$ za4ZP#t;YIq3fn`>SE2r#M;yt{g&~$fXjkQVpZuROO~P}Wv0vnjetYKPan_d|`f_pq z&tX2YLy0ex4rjj+@^Ribau4V87dbwJ>oC8Ham43qk7QgXmUAKBc$F2%ZZhs^)>2h0 z?o`GR+ONsqNf%^KvJ9$CY!~hhmP2+I^Wf%EzQ`Kl60y9TOL+=^62~j=6E;Gat1O3jAE$$Gq{MZhRM-x(LADR4wu`*ZFk*bH(LPOc3HvPJJ9GX9mO;1= z;fL5B!hIn19pqZrrhJQK5x*ZfO1vQ4*9iC3;(OG8V|^sc$@_41_Cww?r6%$dvN~ZR zw!c5@%by(y-&<_Z=OS@`m$JV6i10;yjtK4L@SJtL4xGhtA<7aAlI$b)6Ztd6suM$dX+y$A`VI0w9PJ(P?-IUDGRZQ+LwKGo^wTG|v2W0`*tv5V zhWn_`T*a>x`{&4?y7bsH0=+-Q<6wu|sSZ}tXh0XLof zM|gfU_LKaBdD6|XBN;>4h;V-@T%UW|H4^T7l<13-*iKu_JekiiA++70zd#s>*Bv#& zgHxH7mut-Xr0j+-9ms|L!*Kt+X*wv?IjrLRiQsD%q5jymC9og@mxAN*O8X z`NS7WXR*IXSV#P9;sxQm+R3g=N9Y%b_pRPy+p=*X>{n60h4073a%2Yk0k?gBE}O;i zAoK%->zUF7_6h#C?1y~HdLToY*$m4B${6@z=0kl1c|XD0j6-#_gmB$@{p1T2?aO!_ z`6<(oTtXbd4VlvJ#0!$&FdgAOS#?+95Ai%)cYyN)eQaOOHGX~K9_~=qMJRVe|A6{7 zCG-8c(s3L&^bJOFmzmI>^>wBrK4LE@OMrMf|`!wuQV*Tg>ufiDP)e%Wc9h zVmL+m`PZ0^(0&ikV{u{<@3@nB@+jLyvLE>Z?n0&^S&MPF8(9|NzJKMOHYcGx2>qFj z>&d4G@1GZ4x8+k^vu2m6EYJhuOUam4%IZ);h~ja%6V zg!(3brlZRA1#AbQ&nZ4muAQNd8K^p}{>h$$rOtIN~yw^^xEC-YRWE@msSl!hQ3+&AyWHF3JbQ zdf*|}Ll{r~&2|v(6UFzX9%o&-oa2>hVVJhGaICo@&NukiIbOKO3w`_|+*e9lDQDrR zbELE>=Q)!1h$ED^HW7a_;ULEQL9BypjNjh?a3{gC-GTIk{zNmlqTzX<&=8Tlc%oL?!<>(EXL_c?va z_TV-($qj^qSU+9FzQI4ualyT48rzc|$f$cHUC+1^h$AH9P3V`+`?hrsE-;}#JzURu z+B~^7e&L3US6L;WG9B@{_os{_`Hjg)SMmQapP}-UENT`z}-N_^+){~+f$|ka&Y-g&w6FwSS znUFr|j;s$~HrcT(j}mR6+_wB8n_}EyZ9HF17;BsC8ukm}`IXXIERTdTQ{wklc48QQ zSKJI&~lHYfgklO9bxBl&9KEBqqc z%lIFZ`M)b=+88F`Jd*5T;~ro-vJXwV9pNFFX8b;EN5-4R4x|q}WpHjie&t2BBM%my zzYB-`91&#@k|*GxiPF5!KX zP%itgFbzp&{Bp*TQLg3Q=NBPeIu{H$@wXfIEc+!-7{8S1Xt~e03z-i8IN>7y24$V^ zy3+=e2G=Iyy{TW%H^tFOnu`CL$-YE-!M|0`h5mr>97m$E6254khwHe|kDbvrlkopG zlBXD!gGonJ$sdxOY*Nxx+#V(+zesgGlk~7I^o(WxoMjK?sPu9^!0TKR#W}K9Ole2b z4+(XXWPB?;w=cg)cQpy;hoq#j#C*_C917=>WdAKpVtq9BG`hE#BaAAtADH1@u5*#S zWm+1f6B?tY`2)V?4$m~{e9Tm-W5uZqksZppgnM?9e#bN~BN6u&5urzA~Gm1#M~tD5$C zll`6jfm^$Z_ZpWo;95A!Q; z8U3#gNuDs-RiqE%b7Y^A2jr1L=?wxj64TgvApidi z*#o3K>i=V^BLhxCI<>6gd_=a!lpZDhk&#cNv^Vi5HIqHq#=SY>cGUE4)$YV?YAO#C zuPAMAlF6huJYh(7M>!YzAM$sQsyy$w5%XlONl$EZ;*K#bmy<52Ej68wP+p^Qtx2z7 zc_hCyRnksek7=;~lAdB36Bvj8MLFkoCf?-%;uVdJh(GupOmz(LhU7ug51~CC`cac> znU2uU6#IoAri_sjnJ2Fmiu_RBjBt@mG~xf=q<0NCDGizWE2JNq-C%BN^PrQt>zhhr zz)95`cN^P5XpeVZLVThAqUrn}#?kU-fw*cxJtoKX|l7KE(a9;Mm|UK+X7{0qVjXO@y`>!tV6g+4>$Eiqz7tC zOnM{JQG3SpY%=JicMmgr%Ak|Z&ztJrgHC4eY8w9{zacx{#QT=}woy+Lmy1lTx6MiV zx+#&KxhwdEf0}ea=pXkp*>{BhD^wj%{y<}26Y87LpP$`ZrflZAWi8?zRq8oOt}>m! zBHzF-Gwzq1U#KiLDQPOD%S={g{}Ic{spKEomi#F{F!?>Ef0K>}59G26@qkd@l^oNN zy~?p5JU0;556|Dl=O@>2&LLSydcwVH;&mo%oD89z*|?ebK<8U#GUu6OV@zekK_^|C z6*%|0(EJqVBogvQ?wYdwPr=iPFEk!7!~Z3pW5V|Bx!KL_PAbn3Z%7uHbZ_Dh+3TbO z==3%hvj6bJS?;T(GfHEKXEY8sHR>lBB~8S?W0KW`kJ3jbd4qA(R+#FGq%%T&*!T(I zA>G92*-HuUmxT9;vinI7Ax}wT_X6?JfLq3X!_(f+J;SeDYT|R8MSpjA55)bN^^mA+ zMCtRUK|4s?6{hw-15Rd>7BY8&sgCFTLS<_+vhARg>N=)!@qm+1PWv5+C+Hr6v~Z3| zJWg3D41n`%>ZmeKgJ`e3@sm$4Pr6<2nuFr{wN6@Hh(+w2S6BPKrQF^6*x*}d$Sa9-qSr({U_3NQ1E zY^Cv|q?dG=@ZNBE@5-IVG0N|ar%aX5zt(vv=asBBL!^^T-r1}!4LTVuOl7*HYX))+ z%3TTPgWs0pgvz`ec~|9N4{;@)xRcJGn`9s26K?Io(Zq`!%KoA;hVYS1FyVPtcPY!j zKW|d%BI)cg$(w|W&QHwf+njf3`GfIqu^%W6nd)NBGda~XN~Am7zt|3vhm5OJe#!UP zKV*-Xgng8Z^FbQ>7{`7~@&V}vM_W*mB_@1Vh0aIf5W6rR{-wfu{36+vFwnTcB>!R@ zm7O?`(7n59rtXpn`?5)b*$zVgoTIIsE85K&*LqUjiFihGwyEDm`v;vbn)3oR!XeR%NKhtFEuq@nG?3?_Z{gPAIKK!4JYau=4D3eWLf6>_4xSg1e(#9sao8v;f zPc@S;;Ws8cgy%Y3Gt=R3V7hb>2dJzv8ReVI*woZ^8+0;xnyJwq5zq3{ILP?52@Bcv z#2eCcNhj3)Y|?)+4%cr&KS_AcGk%Au2**w4_~cAe+MVNs=NKj2pNj9(>_NCvGwE|| z52K^TaZZc>jC4Tf3R7Fg{-HryNwTo;_j3OHQuscMUytn~e@27&%zkbfyK(%;_Am!^u;k$hPf-=v!l)10Pa#FOr-IXjW^G$dzKYeb1;~H>7q>+r! zMwD*a8Io*dI+_NZ)SslCiPEOVEnr({oWSv-nKEBmIESS1N7MNL@dLF%#HmdvTe6SH z9^&}nNh4{rnJRfw9A$xo=T7vjZmx~+5ZW2Z62?*KH7&2RAE>-zYEQB(hG`Q@sQ0pi zIFFFLL%4|lpF7n1kCG0^ZZYm1_D3lDq*3rI*hggdnQ(t3$ygums=@~xw{Wi{zh80} z>4xy$QaXurK{M?NY4jLBK>VQdWmErz^g!be1ZyfH|LER2Q1gTS*VNM@{_^(gmU33fI-)y8+3=#0{!@ zlOFKbnB)=S3R&Ga+PvaFE9cxDWuAA$*9#NbKZJTG_MiQfX$afP|98Mm#Mi;BhoqV9 zpfSgU>#5NzDBlq7CxrBh<=VY0kLou}HkSQF?9UvfE|(|RHmbW4Kkx^e@c(kF$1@$? z7kIwesymo?9aWTT$qz{njP{$#3j;2pkP^L-xHS#55KQiqgC%u9Bqo(;9 z$~)xWPF+F0up{w|Qin;-;F!_4tMDej7$#mM-NWSHFzzM4Z$sS5mxx!{gJC3_4CLbT z4C^ru;XY-0FyX*YGSx4)kuPzp86ISNC_QT2(l+kBQl|Z~@GE{Xnwcu+l(_v1vqe5=S}vpfMt(1W`w5MW z$q&dL1mx5WoALvVC~!7;(E7R#K+Px$L*p7?u+2Bl{x9hWdS`GD3W# z^IemzM>`lZ5>uKp=%nK$GdhuLO|*PCkgGpSIH;a$!t=z#f8w~1jBn3%uHWvY_73Mi z8pM&fS553Mqc2O(;|wnv$aQ-53yqnk`gOJ=r!qluJ16n(4db?N;i{Ui0?IC zMY>}6d6TFN!h~`3A7k~#X83yMBYbD6%CSlFl_sNYA#Q`gTyKf{5vZ4U|ZFf?gZu}QW4^-GEsV-~F`J;&^#OG4~L-_DJ5&vjRF#bBG zA$&VHK3}~#>mxhWB-1&5q`RB&e;m`>2b?72BbmC7NfO2}LcfQ&15L+{lrI?Oe3S6L zMRoz(LF2ck^1p3PYMW7}qOpldQ??KH)p9P~k?kW%O}I`>DO;qOw3ViHO!G~o3$n+_ z=SbHgJha?yYLxXdgK}LwWr~b^+4vU5;l`L2$|h;F8rM%*jBHD`0Z)A+*?xtT?ZWR) zzC}h}mg@IS!m-KleP(nqWiOJq$?vG1O1?o4{S?x*pP70P@s5$Q8QP!n1lg9Rel_(g z68ZpT^jCz7t|symYMk5B*vpjom6rE7K4ip^q!Wp6WGXA*J~dVP`DOMOOcQ;TQh$!^ zB6*kk4SqGpjh1@}7qi*6WM$KI9OX884>Bvbw=EUQA#qu@=F5+IYIm9!nTMy)Fk5N9N^mh~b54*ob ze-(yjn=bOWgzE|aIpP|Pjmeh?<@gZWliA-jE#D-KF=2nxv?1}2w3oC-vYh+^e`hbofN~3s%($Nt$MO+niJZduiPBFg&rlgQ=|2b;qtBY~97%Qu;iA4Sc?P4Kn$8`dr875DQThNvZ_hn1pC4S{`)5SJr z@;6Q6c(#if8<^yf0VnP^t+~=694C@bP0R7bD@qH@jPFsNpp$r((rT7R?OGF_)2>q= zO79r*7iJe?d*TGrK^Bp|2>pWDPslg$ADR}@P=*&%jv%~G-Eud18R0mSM>!76a2yvV zluY_3&U1wK2uD5Xh2}?1?RoYa6E-E^pmvC<@7?aC;sy< zNI8KCQ;qwOI7K?%_{Yh6Naho-NIx(W+SxALw@vp+q%T%XGM!Ixjv?9H_@%@bDx6C) zn>MG^w>Ay-Me3KDjD8l0@8=&z93ow2LjRB>e5p?3xKQag>8}TzjJ{;LNXP$MHD!5( z?*XS>gp1+2sS~#{gL|H`dK=UD1Lre5*U?fsgLp*!x5lkM$a8dqJhN;v$}1UZF_qu5 ze+d14{s6*4eW4&Mbt)+X8nQ;vJfvMw7V-fp-@P9ZQU*SEhEDnriD5{Mu~IDItFsdtK?av zPm`{wmS~&75vMZsd^7oMt{btM`cLYwvwsNv(HZBAbgnWzw4J1d^pqaXS1G+g{KFq> z!uL(w-lP#S&Rt2yn9vWGaE~~*J@E$LYD%8)&^X07ecJ$`ek?uM=EVJ}@LzthdJB#N zb@GX1cd%WA_lbvZ8=#+pZ8gz8#K=BoHrGWmbdH&QFyp9wM*JgOC;O&0zNbXl@`{-- zjdB3>9~l1=+Gj{9>!mi?jNVWAh48*pX)(u#?y-Zpo;`?1q~uqrH=E&%{Y8w|mx%{> zuE9m$&dL?->*RAB8yXW$bv*eM=@b*{_3SsaL(t4VNw&tUCO^vT&zX*cX#Zn!!Tp0{ zfd3=gM@srgwibC033a3RADeTp7lwa_c!gJ+5b=F@o<-C%iT3uGM0Kjk)^J{#KX0|(-ptcTb-!UV5v^&wYp7_;l z7qySbckufYkEoq%e2sB*&MzFuFIrxqJc4g!eWcX6GI>wZ4tEllQn}X5xRU)t=}hA` zW*?9o*p>^=*$i{tBD1Lu9BR_II<%6g3$+!`r>j&k*}~~bJ`_H z4>F@ibDp8{eY2+4?xeFYV}J4o+!?Hoggh_Vlk5-No`bpMr=0ItdX*VHi+TvFi9;z7 zhmybJT_bI&XJsnwB z=-@n%xfh!W7gD~UdZ_84?Iw-yv;WYyFeH6}ZKG=f?Lsu|W-4299>D*TvILz!FLd#X z(w|Ka%S%eRD#Kfu&h;pdkZowvm)Q>dVdY$jb5nXMraFuLME%F+z3bbZj9p^tl$lcf zCh>>#aKb~l4s7{6WuK4-W!=SQ#&vLtNCTNm zy`L-bi`ws5AIbWp9V#WxS9F|aM$Vz!L-{hZT~E7{GI>zua{VcezGE4_k@Ewc?1QZS zs_D3f?PKO`X7+a|?~(qIctiMpb?DD-+KPOSjC7Ne?=HA7>G4~$Z-Np+s7alT8bmF3`Png)4LR%~uUzw*#dgo7$=Xc>LCEmt|6 z_`|Y!W?$k>=H6i{k1`)?IG?5Y3ED?+-y;q%%66owV$P*5mQ@d!MRyE3nR=-47jT?# z6~aKvdhNL;^1Lib&AIoqJ6Uy+877S-p{$hfy|n5~jt7-@OfPvxTp??4ZXhM!Nr|+R z`u>Btk*|?IG2CXlD5GTs&&En)7t=YPv_a$7lpFBhZqIdGO};~Rz43Q59ZPzRyOz9$ zE{;>OkEt`@DIa9=NoML5#1HPQo8J344mr=HE7*TzI#)5W5&0Zd%3A4JVwNs#cQUlt zG#^2lq1xM)%fA)4N7*%YHH;(=kl$n;>m%KgbbzOC zOsb!l(Q%vyn7x6SO#4MzjyJO|9&|Etq3NoS&oH`=>D-IBhWi!g21;Myn9(_-J-7H8 z%3&<)-@{;s?o6v-(of6)V1A(l4_P z>fLR*gf^zEyx7bkPs_?n%<2t669e3`DE;JpS2QotblkS5}Li|g1D{Wg0?M}YOlB>Y1jQYjp8t6TWYsY|C+>^dr+k*(H_hOlSuU9YeV;mzc%mF`3b68q`@bG{-b;M*Jc? zH<^5%bj8xkjr%40hq*7B=))-W@;A-Bs;Q zW zaE^1M1>t=ze;#!kvh}I!F!g(8$?cqv*!Op4&IsiP7W~G9`vHC)X^U{ZHcCA%GuW;y zzRP6yl8Ct zk~~FxA^DZ@zu@@bt|5P+(n368_76?-{6Qz(j7t+`m@K&5jGoLsB0Gm&uQC&$BN`{=qRL^n;GSo^liK5nnm-`g_O@H5KX@ z@frCNO|&J%cbb{xD;Xu;q~{=0`VZTMuAy^HW%{fLV|U^O`L|y0C*FFVFxL}LDA7)k z*_2Ik@&Z#khjc@QIFsd9nW;x}9>A^7`lzgK%k`YhejxPMG&uL9{Abfbev+P(jQ=tD z32t}7LCd>lzIz2H<;BsQ*Xo3 zx1F0v`Hkdklil3T|E1$xBmYR#Urg8Cl&1*K3;9bpJ~Ym!9EEElOw`UZLn-wKTCOok zg>nI1Yn#xYntiD)|4zj4_O#d0J*)6_eldA((@AGs#~V zT95re<2X~Pl5a5g6f=i&O{Oj}b15@q^j^{t=_Q=!$R-jm7&_A=cM)GGy<|rF$@gfG zk0ia7^$^}a$+|gzk?cu4ph7t$De)sc-!ZFqC4G=S#I_OsAIII>`Gnyp-cXcy7IVHtk|mMohhf>jW%eyRw=z zlKMWzXPjd)hjd2cr|g4l#eSgoSQGAh&EBcq$uQRj;&o3P;r^66ieY4*C#?~_>*TLx z8<;$e_6j=KCvn7&jLtL02oqd&X-#dGNFtK_Q(h1$uP3gzv8jCN5mJFQ5MPY5hm}; z*pq$Skn;(pnZ|#gdIhU*F-=cU4x#rdQ(Hyb8}5GM2lWRj4^e&7j7*|j#4>M^pK;!y z`|HO2cYym{r0od#2i1vfxzZo0uP{v9Nay#=gjt+p$aXd@i)ptbnP1Mi$A}ww#$*eL zAGjvAgQ0CGhftbr8nXtSl&D{2^aQh*^pw(Rh4rWlF*=TPLd$G3auMelLc4O&BV6a9 zo|?wyoCk166F+EqgnA6gTc)xW<&PX?>eOK}%66r;iP5(JBwep9*Z2kb2+e!a?m*K| z%*+MU|L8oyBx{HpxWi3&jwRcS^9!Z%CVYQ=bPdOd`uEung!+EMcLtqIKEurEqP#}O zg{E=wfD^w3`2`CuHmj~{cM|He{`)A8F!nanvm5n2Jbmg?qn?-0zt}_ENcZMu_6*t~ zn0usYY)SfIm}@L?*OAu9uIBhq;vACUeaJ_secN=AhopHgQ@w$Fhir@~QFrAI;}_}L zrZi)~$K$kYA8?n^o5k zZ;7OldpLW6WO1g!V}9 z2BaVAACl)WdbdfQr7V~&7kT(0Q@e|Nj*)AP zyO1&nr6!YcpIt_Gq?|zy;YxVUq9fW7E0wyh3)x8 zV?#6gBKZi_la1e&^8s$0@!zAoL-r_T6-p0L&Y-b9@r2o&_fk5~44uyYqPn}Oy+yqX zx3eiVkv?!Yo62Xj-w^H}bq)?XS^b(>@i6U5RKIPejwgS?|A_sBdx~(;pq`ihVN+X9 zykPu2X1J4b6+`2VUqv~E`m4k_S`Hze;7&D73`_SmrcR!cls1wKKWS>epu9q3o(cIN z-Ie7K{$E4#3g;Cjke8%Pc_GIZCSOAOV#Ud(W5aeQ;eDJ2=blWR!trDEQD*rsxSmD# z$7b^T)O+Z?)-?Xkda{@C+|!leBZ&`$e#?D7rr!ih{$QrFUs65EH2&U3IFzY8LoK6} zS-C2|82+YNK|YhFt<40=F$vFCbTTZ-N1QM42N?GT`4^=P$zRBhF(aE&E}-@^GvPtv z53{I$q*OH>Um(6vd70}Oq#F_cnEOS}J9M69Mh>E0!Vu@C)PHT}yhA$y@1>^xKIx74 z{`vLnAL_0>*Hot+gQfp8D?g#18cCn=XH(8186n+~zYDpf-}UTH`GxcXbLV{8;i#Q$ z!t?aaf1})j=bA3p%P$(w8ed@?p&vZFx7oRjYd$0&o8Cj(om4J2$s+a%Lrjx&Ez`M_ z^$`Bw#V}=&jP6hRV!{kFGLHDeaLLRdzNGxDNv<5^|8Nev66c3xYWpL+XBfWAGmCOe z%EX^^zh@TRLAw+^o13hk^-)1_57tGc)@!;)Szdmi;alKTg8;k!%TasJ7R>^G|Sv0qqswK@6Cb|?E@X-e;L zKEX}z%Qe4BzQXX=Nk43NnVCDEc*W4ECiMST*QZ`U_zsf$TR-=;aT><}pRq3p-z9Kw zvMr=PH2z!cC$djXdN}cnro&8$ww%QOb9V;&iTK>teZ&`5Y(Tk!bYs)Fo$27CpSi{n zq!-)~Ov7@HOU6E78b74IL+uvQ1mXYMG$yeg+-{V$=o&ODKjeJI>;cogJNXm;hpT&m zvunEl|GxwgL=1wIU?Z5S>L4`clJ25}DhHv8>aL=xs-Cvm=G*IX4}yb;AUGj3G;|O| zW+t|Ks>;+gF8%eirP3CiYP4zTxBu6Bf7a*xzmLx2@qDZ~`?_v>?X~amIns-nqsT9W zJxoz7=lKG*kuRAQQ^`lH+`we)3#2)gd_nm(^%^<%#7cHM_X{QEboXxUsL&I+FZB*Kds9_dNVj${pn{rWwdjWZScTH0dMD%nhmMi2It6 z`}(*)fPTp|ws+*@Yvpo6jJ!r$0slU8elKa0w@C-aP)B9fZ%zLK+ELVBrrkktIrR+l zHeX&@x-^-N;YWsS}cYf_0+!25G~}O{N;^ z&`PYJO_4?PMgh6xiZOel+X>%n!#C`}Pl#ztzlhcSV&b`UxXR=JxY1_ox z!G6kG!kd&8`X4oU?@*91p5@85$sw#yUQGhqC+cjI(wt1ZP(RExFJ%};RuDg|*>q~f z?}uybHZ@4C*EF}8%CQD@m~~2hkmX|9XzCfpj4_MIbIBhko@hTmxb+f8dR+dazv9jeT4((dAbb4=|b_BUv19+VstRi07pQ?D>`m&vXqAK=e}*M31d(e<2Z{(v-#+5&{-tQV0s zOY%#JFZ}*)KYx`kWjNaJbGV#xKs>^DyE5{3;(=9T=+~j-o?n@NKKYOF*O)QeQSQjM zpuFMlwQfJh_fgV^$T?&g*~^r-l78gtG9QK?F(dbqUkLA#9(3G6JBh{zrd+^$@b3_p z9h49JxyfPjNaCm1{xR=hlV8AkP(H`}sL>`%|8J=u$bMwv9>f*x`<{0qE*QDr6eaZq z`KhM;oF;WGsLst}`KZq|`EBGk;u6|9{dKzZApYG=BXkUQC%G-;(7b zj85L@sot&F{%-BMEK`2Ta^-r)qqR5dMaMm+slE+{SD6VLObs$)v}tuSJ;ISgmHHDy zLBbzQ@e1*k7fs`@q+d9vBdrHbIG*X@?_X|`cFEXR$do?Q$v$7|Uo=bES4s2hq*)Zw7zZ1>)B4xnnC=K%{JlQLGA@&Kg+fx z-d|YCahcTFHYFU^SBY~eKZH5tF|zwu4r)6sudLaU_#r!t;VAc{-Xq)9`1{xWdoJzs zQ?uCy;P16)okYCR|F|js+84y%-{Iv~Jiu^-Kay_bmy!?YSZXrLPC6bp@lNU!{CrY8 zl;80C=_B`SOSpkFqB)InL;e8Uhg@k|Hxob1ppHxbXHDdPslCBAfShfVbxCiYMvWdhS;ZEWq@0;vw@)5OPnCA1u4~;*X;#Kkk*$v6B2%%>fW!llE zL7kWKJn99)hV&_fa;$L79Wd``Gvy%K4PNgg-MJBT4fn(t#o~`NiZj;%8JRIA4FoP$jGy;u%H$A2EJ^UE?KwqjiZXCJzOP zFEhXVj|pR_Cm6nf?H_T(43kIFpnaC%D@^?-nTbghO%SHS_Z$A6-y|*|?x-(d{g}5I?LBJ5S2Ff{64sqs>1W#& zfB$!R9s3-_8%VeO$oTQCU*~QeLir(1Vtts!K1cGk61J6GW|?e{p&;$=i1#ut!Z{}H z%Ws*_y3ziQ``1Xb_;*5&W_rX&&B*=K1+?}z{$0$lhIx=3&3e(I9!UJU$<|^xTI-qe z7u09yo)amXru{zIt!P(~uVYHKX$jvaKB&H3LL7WQ6I-MMVK)=EBp;DCOlS`BJ{}yE zoJc57CMOU|`YyG^){e}N2FI1+%ZnN5fPZJCe42cN_eZ?`2DODUXkyMf(ZAAUv^^4bHGW)| z9YMJu^6Z3!TaCW4Dq#z@7qq|6-rdXh!7!8I@b?`zM^RqL4=~NC{6_mZxBdR#Jg^-2cV^-N;r-9Bc9DL`27yy9=3N$?~n5LhK5_12eB~i@7eqJHq!gS{QUsMW~?9jHc4e3 z^$@=Qi>I<2RCSPg7~e2q8s}M%ZB2Qh{I>D_QGOTcM5repCoj-7WPE#E+Oa%{Ki3)u zDP#Eehs*!4J%JbGnLP)sj;+No*~nyT6Au(;n$}v>O@#Frk79F%!}p)rc}$Nmg>;}i zllqNpTN5@Q-{J3(_U8ig<>U|ic&UBgnfDXZcZ92N+;7KppEKcFmWPr!Nb~b1Odt+& z3h|T^lCKaVZfyK}jP38$rgZuBnC9lxW8}9HKe@>?bB3e*lF8R*8nnNE`F++S>Ar)o z7ylz;JCI0RrF@lgkiVJccElgqSQD=#o(MVVlzHSU;ufSIeqFM~wkOp)%YVl3i%htD zkmoO%mbg_4LWGG%-=LJ{*H|wy_Meh}$iz=DUd}f;{Y%N3CQcvZ8D94L|6x0WzbD4e z3l(gu5+7!Ml;emaS|^+Gy+PiqOdNML{ym^#59UMInzYMA6Tix`&_TaRT2oBifp{RF zL^;6UZyTOvKDmv&gYOsOxlAud8a`%6+2MAkMZDSgdoW7+yb?|xsKh0VhkqZm{XNz* znMO8Y9P*!-u#DewWAb%ERNr{{GXLMsa^<&)zaRQOej~m(Sn=a>{~m6*p@;r2{>F52 z$)Fjgo*)tj(YNU;?-0tj7$)=iUwpj_26)#mzLVsHvIomW{H6&tmM?P|hkSkV9p%O* z9MAOfM332%bqU|Vt)%%vo%!WoCjOE5%7K(K>eo=GP;f0(MwW0K51qS~e1GaA+Wm+3 zSts%fOc?GVACTU69B9iV9$@@CrBQ7H%E>GXMP~dy*y0G{fYv8X*qO9Qzwvg<&nM)= ztRIoMNPfF%f8RcBcmABXzfZE%HiDdETL}wTz8o}YULoBwn_;43Jd{_MIGuFBpU3y_ zU-KFpe9heVcA=An>gO&K*!65#<&$yWB;paj8z1veZr=O03{*^Sx z4poXy%2Q4<;bG#BQgs%7zgzew!x1-N`DlHL_67N$h(AIH;}Q3v{-8eJ6!fJfbPz|h z_jeZz@O?ne!%#;hT*5LW_1ALtixTO#N&EXIPqKdG&zrChpm~qHC*C63z#^1Z(_j~&N?D>OCi{{ScA4aZ98ngpgbOe1I z#D5YOga&a(qz*}WJ@H5LIO+jvmzi(|ago)e6WKQG&(L+P;b4jD7if_#wB}F`WUdJx zVVwM8&|F9e|6W&%JeP1R!{O(9YqMED@-vbF@)GUy{&%uId{@G$8_ zyoYrn%wawh2T{Jrb~2&WOZ;(VQtPJO#&o8aEV-KT$gfFWAYSlxFODaFQQk#4!mmfh z>-isHAFNI+$3YmO3?;rwe2^_5o)~%3v^JvLP+rIS;P^3loy!xcY_=3XJr=SrNb1R#25aakn*cTLE7(Id4lOgZMD+30eOt@VH3N^ z2ejw|O2=gh<=27u9(e|Te_Hf zDd`rm8mPWtH|4jZNti?LypG=Q(u?ao=M)^`y_exE@3D0ztdAFLmZS>!*;+sF^J z4j}#T`@8dJSwF%R#_z*u&S!f@Mtu?AALbXaTsf5a;QgD{JCu*SWU@_|51bsX`1zJ_ z67wL^mWZEcE2-lWb|ZfgwfP6T)bgiRL#< z=pUf3%=PU1>CYo?n0OV_BV2Fdru>HQ53{Mn7x^|O?8P{F#`t^WnxA1kXx(atsf$uR zOFcs%t`alii0}~cLHQ=*g*qgD+%|F>`H23@Xut5m1tz0B#h<5cZNmBxKEv`6Z(#YT zFELzX=lBLkFb!&t8vo8?c!zbu`#T-vwd8};X=LQ7lot(F+S|`(NgMnr=LAq9$ zoNYwH@V=FN9?L^mWb#il9?d6A{uuQS{=TQU4RJy~H`$&zp=24t%RtTV36YJXoKRn8 zMqZ>HK)A*f2T)&8KFa(E5A;;xk691O3r(o8Jb3%oHAH$alWS_?*VkI74FzeOOM8NR z74by*o59NPPltlkpEiDeum3UXGp3E@`U>hlC%*9G6@Nafem}!eW1k`I^JL?RJ4PrY zX@1Yd9Z3iBWrKz?%h7+W$xDVKOd{RLoBYNI51O>^#0kgl`)Dq#!ahE`7bAl_jD+e2j$>B7ir@((%JEG4{5oRD{za!b;I)-O#{ zWrX&7+SxXAzhdZT7~1#6rSmF*bBWUW9PvO_H{svp8{&QBBg#ieCpsRX9mDWHP5(ud z8`|fIFJpRm|0=(myg}T7^nsJvmEmh>cjPZ78|e!b(v~4CH+AZc_;*3W$qYxF#d;7H z5`Xx2fLfc94y@$bpESvTnU(l^ENbjq#g7APi-&@QXH4^U$_su!{UWYQ$zVZFXe!9HGmKVIxfyNCE&)*=7tt@w9;Mp~ptZZq+A@)+f#$pS)zADNPU zs`z&R{e9_vzTdx(Gm~q-@`DA&pY!$Slj~PezVP!U@j>E<+V9OUbxR7iJ()roNbBF^ zGs=mky4KQ7zv*h)Idm~j!hOl(`6X=!;ou>@&xqM< zAIR?|UlI39zD`2K8kXO-{%-NAWj&*#jHGv z{RLJuOnvv|LHzt+IFR_DeZA<%#2LkPraY8o%QnOVt447@A^O)c`Dx6HtRrDtQ$M3| zp9$12$v$a(c>OiX1vR!g@$=RBKS&dr8TpOyGIbBdN2m+PKb~lt!SEu|iE@sKds1HV zY03{_XYxrVn(`sa2+d8X56Iu5zR9YDH0oHRHQf{!uwKN5DGwqa5PnLzB7c{7pq$A1 zk*#C=e#`cCh>~<5|9?Z3j*Gb851kjAqM!UmxPfJ(|7PRYYn!xz67Mwm|FT~BDe*<; z#Hp41RenRqUQ+&<^rA7F@<1RR(j+gXKPK-IqV|?)O(6YfZpV62e9N?tyS5-dz(eMh ztdsIZIAW+0R}fG6TyiPpf&5~VO(368>}0~(l$GqpG7$g5^vH*eUzf>FVLb?6Fy8;p zx)_dfkg`B))=;I{P5cqhrB2A7P1uZhqFmREtjDz_jK9Jx;+%+tVd@Q<&yW`=KVh;@ z5`WZb6J%tb3DcP#!_U!n62?*wkgY>}QCn=<-;w+%>%s6s zJMwEO2gKRNuczlr7>?{1(gW{@cg<(Ni~Il+c4vD*e&?XMh7jdklWE&QJlKRMNRP~* zJ%)dW;kAX!gOn$kyv6#_^)~B6NgWd3UTRB*c<%;fv)F`*EE9{y(eK47`n{5Uj`+i` z|8$&1`-?hxF6E`B>tfb}5$>s$2HTy~FJn67zb0MiKWnIxv+YRSiF`vz*;Kj+;pZdD zQKSc5BkT`RjyLgtm=Epiv6Cq`MA}FRyOSR2;D5BwAOEX|YpUe;)8r4zPqRMMl_q3I zns6}7mcVjR{+#kan8Glb%5o6*Vx1_@Nz#72=Xp!eq9K`+~UB4vX5vj|PKS{b!Ux&O$&NCiT+{!%g^AL?K zC?C}R#&!n3?tf0Y`NPBm&4bx) z;rEkxeq`&B9)vq6BlvYiKTZzUkiUqFSP!!4hb3;DjIex!ug`FVO^J{Eg8#9IZB4pfq&!i~G#$e%1Fhei{B`mbKBkAC@A31Getgs-&ni8Hh})X-b>@Y> z#VLOMCtr(nB7CCPtj9ERyop~R-_bmbbqaYU;djIz%}GP{-JhwX6Mlb1xjFHK_bc@d z7kTP_lYN!)L;YOpI#z8!JBEA_+lH*YywVsZ4^SLr!ac+j9cxowLK#b3Lp2b0EGE$uFj?5Vm7_w0_9+@=o#>Lgcf_C)6IJT}1z43+0lX{L=nrx8rLAcu#3y42jUo`m}!~_0ZR5+LA$PNQ$A!Uj90Qrbw2J1t|fC+zK z-SF>QHS5%0gyTt3W=RL;Lxzhe#`m4;YVZ>eNc(Hp&xz-lgmB)Je>n!hPl_ z{+H=de$lkAC;W> zz2ewOM$hibJou@h3y+H>VV{wy~InB`IH|#e)*F_^oxet_uItVC`$T_SleWvA)nI7oC&NE+9g>>}oqkC^s- z<_D4oGKoCF$knEcV=bBWYtDV6wef?MvFGsoIr<;wI0>~U&6;(2&Iu#uo8pJmTTJ_~ zDe1dO^9z&%iUUmiC~1&`&6FO_&tm1l#=oaH@-O0rj_US1umhJyI}T_(_%mih~nF~a&u zKkX&_dO8n(&`-qn#1Z{Bn83CtU3ZwU7IhpGXyatnZpPnZ){Tckekwu4be2(I)X5Nl$ zr^r4+9%0s&9CxGRM`qF1^g9vHqdd`IoXq&9@%IvR-AsCreT4QGlP)w%c@9wGgQO4T z;cR1QO*G*l>MBawvC5|j;qSj~9<-e6=G56^O!-UZM={pa&Y=v^!7yn&Xu9qj3K9lP z(Z}@g^C-=a)2_hJFSbaV!OysUj_$D!R#q%x|A>4#@j|%)>qmb1 zP-V(zxsMa&hfKZ$!!bNap9=oI%E^?E#8D>P+Q+>&?8lFxzGBS9ruY!sH9F>zABcN1 zJz6tO7j3!Z=g`i{BG!j+nTg*fy|TCFB@fp&*)a7DjgyvFmhQ!V12y)AqGz6@IMjrF zSRM-c{gT~a+UNiF8m#Vb$bQ^cec!QzvXs^*Onw6SC1;qpEAfF}x5^hX936i(BkR%T zqJM<#8(r6#l5;r{7m+69SDUys!%#iD@O}OtVZ5vus`QVejYXimC2q(#6!dpw>?(8m zTfFB7`RhZKCflCW$a`u2hy4ot{S&Qghk}IrSvMAalt2Ar&=Xwru>bmIMuMD#;soi1Xe@F)k&IwCdGjTK0h~XXBMWWtZlu?77i z)E}W8Lf2hp(PyX+2wyiD%a*PsjF%nxA2Yg5>rT>z_%P{$Ux&)NNDtzcy_I5j@*kmd zppvaanla@#lXdbNBUcVp3d&c?!t|dz6vW?8A08)d7#T3$UkoMXhI}UFg!0G9F@(rJ zX($k`i{ltm^bkMfzcbnPq#IKaEDf|* z7{j(JT`vq(;xXhK{CkB@-OhOjtofIjelf>G@atF&>Yjw9gO!mM=|}k$VFH_#Kmhtlmt4^e!f#PJ7KS?^I%gmy^uk1#M_I~aZ(uLvQ8Q&k38S#LhpDTaK zz6-@hv|Fg1X4dqPJ`7*Z{3xkA;{BJ}jcgytziFBism} zucIy^+-n*?A-~XM`x8IUTHe5RhK?1q-x%I*YNf`$QQG(K)hS2Wk9sTb^FPY-nIHLO zrv1JXZ^su=_fh`G)Yd2680n|HP(1^C0`D1kjCz0r`gu?ty{yy}0HR(pNE#(ORF59uwDR1QOQ=X`gW1C0g1d~lBt9(xOeSY|Q=|o$Skn z%&Yi)Z1Hu{hx{z#&sT zve=Z5Q{F;(OZXehm7M;*EE%k13uvRj%{7%Z+f&b>Z<~r=pNSU`A1pnde8Ixk&Ai*` zUn8XF(q>F0o@jBbCFT2rl{k+4N7#_K$fbQ1|1L=9>69C$beaCu^h+?Z1N{{Ed5tj0 zd~y!UK=B>w5W3zn#YOx^`ES;X))3{2`imy0E~DJngujvx@&v;%+|4$QHM^R2|Ertv zh)0Z+=$#4V zc{=#rkC0D@ zhnlb{`GxpNe#4(r%5Elp@cWMYsSD!es&_d_c#ZiHHz#fAxYcBjFh5%Ksiio;ZxC!X;8-b>m}Db^>w7@;1>inSOPEOr)<=X%cUYIiBqkE7(U%+?zNeyhYp)kK;EQud-j0&r|ML`a{#XFYOBaI$-@t z+5zPE8h<`CXCEc4uahqrS!VK`m=42d)5arPk2-)FeR?TN(uD8@IGTKczjtMXw1}VY?Yfn^fb7F2 z>_}cAPByKa^kJC1mFyd){XE%9@)gC#lpjjk`^rBlH-t|n8&EGqeN>e5m=0aPHMKue z?-8CejeAKyYFC+XF2j-cnb5^{jGVE7dFr`YXU{Y03|@{nK9S1FhD1qoZReWCab`GjHG z2C1*6P9vLUBFEg~&$EV0NjJQI*iWBWB59T|jyy&A66KBN^u9{#0Ll$<0?U(WgO#v~ zc%a2Gr|8{%(pYGUE2u~C>luE(Kt78!A&fjwDL%$@7{1c@`SW}X<%7loGfbV9d|ean zC%$rsDX*d&knhWQbj(jUe(gYGiOJYEO7nbE&_|M-b0$)5PCY;@NhkdI^4f*eA2d#+ zJw|qf@$-t=7p4Xo=KPK1H}_Vu!&x8vIlqE^qjYkdD2+W#SeJf->`fV?-7bHgyhj;K z{xI=GDA<0{Prgb0LQ^UY$lhVSDBeguNr-qjWr%!T)&cE%rEx21L)QvZupgB$iaI18 zPXgtRcrwd@U)K+__+PphFSX<*h9Q26b)o+%QzMk-md1~7TD0w=Yoe8}kslbL?n`!r z@%>=ORg^E9N0|0=z>}B{*;*#NGr;pn+^Z;Xf0+J{ zah?J5#+mGB#v`6ao+3Y)WuRk@$<>EPyFdPAriH)n%HNwlynyWq)7W>)2-}C0w~|iy zcR9iU<%qJuIArumrFfNmK-p#5&lP=)bt8V$`15#?V<-vJXm6#H|Iyrt@`qoa@4tci zff4G4WXGCtIn$$z#1Hum$!yXKzyG%XV&+F!i|LVFO`OsEz0tYwO3D22>-=$h;)l>= z7~%=k1>`rFKq!&2k}!km`iF1BbpiOL;gqBgXZ3(6XkbJgE}jnpITli9w$HL z?Y>H9AMFGDKI`l((jga{us7>Qc4A+p{~6Maj$4f1_Yij>K46DeX^^Ml_lK0^qqN(r zAF(|6exQt$FADNcYP1pJ&n0=j#WPtC{JEU|zYYay-E87)#-n|_a0c~C0(C*?D~NAL z;eYv!)`zGY$TE}fO59O=#?Wcw`X6=tho%_CaQJ(8+Se=p$hr`jPqH54`wu@a7KTV0 z{JomR(WD#x9I3z8+3!;g>o5-GG}G#3UWAKCEByGmaW?smR?W1ZKODt$$j?ibk_Q-W z(LSJf$z-<-Rqp|Ao=Ka6d^1ztL0MrMZHsvN`mZ4W;m@rV`;!j%du;qZ@a#770nM#U z{s8MoNq$yl6T+{jl-E;VP)s6T7KK=I0=uNcpY(opHD5HVcE!^FwO1QPSC&H zG%jbmK-`x4f|7F!lAmoN+q(F3=;1Ha6O@;jz;xozyXX5;Ul6}&T3;gnB{$(5rk6(s zE7>^m8DYvm#oPBt9h7i0!_lNpROov)QG3YLpB}27)hv!DzY+RaHi~V?FZl6J`Su|1 zb7!3@6XbUcR^pbd2er}+KTJJ9b3GGYWFF-IFyRd1BY$K)s9#M#0A9aa9}ESVcmeP2 z$F!-&iT6O$c8x#WK=~<~^pold?cK zhIpggf;xi!+f8;9aYf{qPe$esRcgvpgsqYzS-+fQa?WK)pbeGQBokg|Jj#C7i^#E! zWaM9EDk0*wrnL_B0CC6U+OgXLD{R$j0P_r2GBC8T^k{ALR~zKZT#K_xtce zH{~T`*q6y{;w!V5ALUx46Y+Z1kMQ@wN_{Tv1x7A3@$ff(961owp{WpSq}U@EbsS}{~>N@-yiw{)1gkAAn|ll&Z2zfN30iq zp3VE2VQ1DQ9m!`|FYU9`Y?|^Uej{8&`5->YdgLtQ_eo@1kY@OSlEEb&2pwFzG(pWyrLa+@KZcVwBDuwI0-m=AG? z`QYy%2p?k{@-wJEX#K#13t2Zh=8_-idfqg@O}x>5&+z)J2jNYoN3m&NCI2ql3){l`JI_)&N_T)S}TBngu=vqv^V8R62GRzxg z!o}nf{Jy5zb<|6QC8kBYBh@>uc+XY&MW#jVKgORI^7o&YkCV@+KW55B-69w}KFJr0Xn^7)k@5lUn+Ow3Or2elzw;6j_9>T|ye=v=_+*2u6v+bi8 zPdwn?%_$CNy;7Lab3WN{*Lj& zzDZhrln2V6nXX$X8wA=qiSPARynXcdC&oW94q;uUl^V-Lxg+I)_zmOF*Omk1JMs^c zzX)rX9=?BV?L#~;GM#fPm=R5O3iT8#xJD>5w>0G<;)^i__phL~a;VaHjCzO8y*VF% z@Oob*o2H|VI9WHvptpieDWLd;bZ~Jf%iij&#~`AnHj%MlU>ml zr2Sr%`xuXWg^4$kf5?bOWj{iMn^-UO&PxefCEj0JNWRGz84f=V_I4y(!TgA$i6{Iy ziei202g+^}Kg047j%S@{4VkX<*)HMFnT1!GMwZf!BHNXCLhsI!R)-0Dur7(zSDDN_ zD7Ip~XkKk$ zJ;@KmM_C8*>&P>#9J{>IF@^pW{C=K-c0_7-nDF!v-|OIglOI`L$^XgxC^#1_fqs~H zf7R3L?`_q&0I9v5Tt^7M{u@RUKQzy#{-HrTC;4xPD~i3yKlpXIxE<+0b{yq^*lYZH zPkt5k3w|C?=hiB_F`fLD`B6U2_J}Zz^dbL%bRlkM+Sd!-CEsOxriHgR?o99yb5M@{t|Kv{=gZR`KuI_<5SH zf3m%zf0pt0g!pr(%>!5t8dsWfJ<YI zt(x)s{o|Y=`U=W-)4pHoP?m>CpGg$4uCn<)L|OUnRSVJVleZi(f~{#}Z%ANi;h%PT0OG91~W@hTo)~ zh+nrkfdAzO#0`Fa&hLu~>oOnmb^0pdNPf%vOpo$J;wf7hzmLM-o0z}Bya*Fm2g*yC z2mZWh`+FUJUDn6n$utOCGcWSZSwG4F@(W=qjzL>coB74P9a{>VFGQc^gm}xrja;?<)PS<_5((WIo{=a|U!LR@3M^Ijf?=v65 z1IS#l=}Im+?3x4XAM^JCd)_0Fo|6z{~g2O&vELToZ|a?Z%3orP?Y0Mu_fhz)+Q#W zOeAhWI2AZB1CAgUCXAVS0*qF`7_CTgmRk+8!=w)C%+NdRwR5m znZzxnQHw0@O)lx z^ z#hmGpf6Rns2GZbv#NU{(8^5Kb?~FK?;qdk;b`Q}eu}xk} z{=n;l-!~q9z%o%@F<1%IW%2!J=;~#k#d)a1NEe#4ftB3};rAtbKi~Hgt#M3`{GQ%Q z_%h2ud4~z#<~PcDtP7zat@8b3YeGrwYuu5zBmax>_b)VmNPeM3zDf8s%aS_ziFjgf zC0xP!WW8i}#!El>CN+l3bH@8?CGALseP6Zz>m|Qr_rZ$Zr75ACVTe;$pX_Pc{Q~-u z0dWlFfe?}(Gh8kvE^>RaGsB>J7%S%!!tWc%se=+;W4n}Ty%oRDEqsyRXdlnbAbxUN z@-@c8`=9Xz{)e8Ws$5JceaQ}la=g*AVB+r;FX!+ZIu~8pkWkWjQ12&)8(Ba6`at`= z_$9+-K5dQ+k|sHE!0bjS4>JvNty^dp#rw_vzRj>U>qflBls_YW$Z0F3eZR!5jF)Ee z6+(m_6G?C7R6?}dgF}gj+(Mk-<>ciO4CWFswaLQP*9!Gu+hm5gz)nW z?f%&=tP^E4)jQ_C#jrh+UlRvelx)m!_;h}J8$Zl2`1eHo{iFWAIlq55{D$R-xBn*% z*fp|(Hd>mDlf{&g+{<_=ld+6L+?n+uY?_Q?ynKDoTtF!O43oEd%w9~7_z~mJFO&;N zKjLKxZBm5a&k&~aKm7i;_H~(6#8KW#8mvnWV%>=KWM4w~_s9JEGQQuAw=-TYH{lYN zA?vbUwC@9ay2rlN`3pisjyc5d;|mRj%e5wM&Ul2AjK0Mp?ei$_57>Uv`vq$cQm?_g zsKwu3SKc_tdl2x1@%IXs^sU5?m;C&9Sc_$d=f_W2p1fx7qBuZ*zm%H$r?;D0%mdBwl$78oyCGKO*T%z)X1Wy>A>79a1+f0SwED#pn>$sY;j zoW!T=<+nVQEFhHEyUo%b$_`!*oV%~i;de2O`2Nz@7g@J>e1`d7Hegyw{iLu#55F-h z`5B=+ko=Yq?e|Me=_QMLL)1PK;cSzi#r_0=c1a@pK+!i4Dz~#78E14XCnfu(%4>x1 zwj@YF;hlbIJb@iuW(>WI8!J86gzkFQoGH z{biUuNWAgffbsNP$UIU~w`G{|h@%E8?d?YAn&o?pm)|CL5sGiufjp2I43m2jpY9EQ zBYuMA%ZbVUgb14@s?#zp86ZRqOo#US3xCCM#Df_QKW`e@Z;HR?rQN>0#`N;7<`|HM6(zdTGGpr1oNvk$2D1K%S($k{(g{G_Ss#A{5u&_v3hGL2AnG2VY|ABUgEI^}5- z*Xyi=6Wxmn9W)gp7!eBS~%=@9XXSwnr( zOP)v?AGanx2-_v22qm?<)jb^<(;S&hB1CwcWsB$g-V8%I%j9>Ef5LHxRLj(ICnR4X zL_586Sr)vVkDq58!s*73*UH;jKHBHAuVFrU(D-{6+ULcne?fI{Bf~~ddyJnjy}U+V zi1&kb8?fWV{Rm}JGG|%!99GDfR(!kk{mzyw6Y&$tctZGf(RTP$5A_n4C*ugEp1epX zixTfwoi$+l*Cz<&rsM=dIXziQD910~*<$Z_$#g8xQ{4f1XE56+M43ozb zkFTeHec~kS$11xMqP@R)jrru2WHjStgx_*P;`LxUzhyXS5lU(=+vh=N5l2y9S-f97 zrHB3?`WYs-Gq3pm?mqsPqT5{7L;nzIIo=+JFA+!hcjMaqyLfPJHAj6OSZr2tP9UErX%5ln~|JCfv$+ zxhy$}5bgT~4(B)gxJ}PgRQ|?#W!q#Wag;Sl>jBCIi-@nxWVp=jF^>?+rAY_lGM`X#l|B48YW6bgr?4-o_DSaw zO2#x&>rPlt4gX5^@8y2_-u8Y`#{iY*887Sc8*z`s_dCC1oHUci2@$tpI_XU|BSg5G z@$wY$kR{0~Lh*DJ#8t9o#?vv(Z>c5m0qghs?+pg*xX||-E16DOEK4S`Zi&eQgox~e z#P_f5^HB6}g8Dc*R+KLoKi{o$h}C(-=}ad_B%dRc!%WEQdtu$=YEd&$QcC)e^@ zQa-fj^Y+Q>-|BAb$9ui;dU_J`inrsZ^S``hBIR01@oCq`QyDLZCch$-caysa<*=m5 z`Xx`;I;y|tm)X914WS$|VCE3Y&k}Ff*BY$OTg7z;=}+?i9~dvUB{K-cm)E4cWf9Ak zPR5DvcgFTuKl=mj2`#Lh<%^ggPTT445kj<?o8Gpl+np-LRpslgHTo`HxbI*#d@R|AP`XSzevh$y@%r7_ zZT%OoH?has`ExdBr^%+vg8Ir z@qX%3{+II;FYganrtHaZ@$KH1a}mSDm+#wmPQ4JXKWe*V+hmw=@>aK5r^mLh#=h3q ztg%ixmhsZbc$t{2Vwhx1Fa0d5!Z6kE6PQlsCPxy=3dYH6$yN;ezr37gF}Lgli7r_RkDidrbnPZ5979adfZUC!gArc0WV= z6bZd1P2aw*^f2S(k>n*pS(Cg*D32yyzdRnlVYn<#yj`2cZ@DkIl2Dcl#!VO|YbDzfqJ2Nrmi#Z7iG^Ab|I8h&!Xz01QXt4 zTKOP(mr#6p{roR}oU)kzrI8#*DBcddMxB%u$vDQz2mF@dq=RAN=NEs)|Kjog7yrx3 z;<<};z!*po3A3nYBr+8*6N<<4 zFy@v0l7eyK{l-YzrDT{)VmfK(56@qg@P1ohoYa!3gtD4>#nV5HVRCBX={bhq;{BjI z`CnfBFAwrt<|j83N;8>DC>JG@3B}hxLR{pj#Pekdzh!2U6Uwp46hiUwYxrL}S+?w) z`0}PPPP{yF@=`*Q?Q8w&z%=6ds63ZV2h4W}rJfu|DBC7u2xWBAK`5)2nUYZECrb%s zBxw67G zXu|f)_kVeN{yOu?Ly6Zn&v%dC?gJdRp*uO1P_9YtBNXrN{(=8RZJmrs{=_hODDiyp z<K43|ri1%$FZ@pRtHZ@EAD6`}ks`4^%5IvFIC zGI^d*UQFH~l(&+Vgff(9+Y|3E)cIe&liWxszCC(;{kN~*?oe*)< zpxq~u&NEi~O6@QGyrcT6a(ME2LWIKjb?R^mzY$L}?caWX$Z-spF-)*=U{4t;`OW;pzLvZatEQ@nk*)ipC>O7%CpJcgfct% zCZQbqUq(6vDkL1Z1hD$T46H27KW!f?`hVcKI#c%l_ zd7V%ubel0fOpjv{&u4F69$>gUo&26q-br30l>THkq1=?*N+@3Myq=uOFqxJ_;v;q9 zCc6!o>4cIe2NKHZ$#sOXDDi&q1N@eUlBWpe7s-8uaz%0)p&Xj*Kq#JH=MpF3-4>Nb zH|2`KWD(*2<^8dz7%n^Xm`Q}Pf?+cIzYOzRwq+Wbp6o{`z8nuHFii4f459e;5SI~O zJfHaQCH$7xk{N_DC1DBnw=V%^Gh9ZJg@jU2_r&uh@V|Kd>gu-o?7v(4vMpc?^Gauu zF^_aGy~N}#LYbM=2*t;Hz4h~;-yE>*@fq?!Jim|RfAR8~!ZO6;)nwh$vCMcq>>MDD zI59biP^KiC63V2+x9ijSE$1YWQ0mE6gfgqgEF>=C>-GE%#7TB%I@vY(CZU{_{FzX0 zGk(6bnpg85+G}Q#KG}i&ki5=t!~qj-;`f@1p83p+xDV6I7fp5UROe4`A22CD zBIh}!ecnOmK4oX(DIT9o`CoiL@ydYh3+u`g{6Bun*~wz!A+z``b(Sf=;eT1sW1eRk zN&S{~{o0Rd5OqwA_Wh$?KQ3o}@%`ce|I6xRkY%FXFHZG1>YR$st?W8bi9h5ws$O-8x(sJ(=OC_N}9s z*W1B0EEm;1dFs2&Cmr%O>yRswKq!k$DY z^cqjsN&J>B<`M6=9Ynq%Oc^vCECcaC;(_*dJD>k$GRu}9@V|U2IgVk77cn3Fykxtd zcm~77w+BBj`8(#5CgUVskMs9V#0yv+s$-emneH(Dm(e|y$Z{m?+FSAaXxqo(+cKSu zWg6Lq>7+?I#rsidf93Cy&u4QV56X!==Z5xuFn2Jo_%h-nhkw0j{dkmA4 z87|Fz%^dzm9G~1li2OPe8iVX_2SYi+@)2pDBy5npLnxmdG_SA@IV4e^OO9h2w4aOd z{X&zvCv~Qm4wfU`Ob>q^)6YA#pTFFXY2+m45kLRv`Jei`?dOVf)&V~s>C4l-S>osM z%44~(Y}9dD$}C9zZlJL z`FoF{jDvW8cq0Ex7vm*o-y(j!#M_NG87BqhE2%HI4h+wnijd&qyN z4U+O^exrS#x*tEE$1s`3GGz|=Efe`)B56ll#AHxqXzzG&|+7cg8pddy7bl?L&We=|j)tFu1v_!Tiu2#pvqWhup3 zM4Vzyq$!Iq??_)+nx!9et|j%Ws$jORJ7v`gAR^SMOcN9J~0 zOIzsvfVNRCBai0$I)BOf=q&xz6||+iPus&ep+4&9Z0Mm3WiM@_cvbjk+Ccjb`i1H{ z%5#|~$E({(BmZBy>R#vu>V1d#P|l}4RG*Q4kFr716}J5#UP)e2zjz~Q#W>h}&*Dcc zM|TWV%2(4aiZ*%eqiyB5lKC~%(Hp3vhiO9(QCG{tOzLQi?Vvr>)gMrX{QGwK+?c;t zF1HNu`yuMRoq9UQI-%T2xjxCf=zfZQhP)przDr%SzsK={^4-)!e&4+N5$dDZN13i9 zt-qu1D6e83RL^{4EHlT2qokGl?+ELsE16HDOp{}y`beWZkM{IOwc-KlqP&4T^1W_( z-emQ;VRsk(L-QW)0@AvN`A}ZVd}#jvt2ocf)s&;Urg&ZXP^%W>R`;`PE9Bn;EdFVd z&wt53%63AYpZUI^J4}5v-vfT0HZe4tzr%s*Gwate-x5 z`Mb2{xzMpfj45iaqkYs@NxM2pT5a0WnOc{9t@c^gL#`vL-xl9Woxkl=s=rBc3+*$m zS6H{w_4^y9>lAIHoJTqGd&gsy( znn7Cmp6oi(8l@kaK2&Kw2kNCv+rpj}#{fRbJaS#NH}p`ZBjj}f{nT#_)V@d=y7$m` z6wgqO@~5nyPLW3QJO00?zUHxfb&g1e@>Y_ZK zI>_s7@h6jfFO2+S>`OGy5t};oXV)j0Pu^P~|E@$cPJEPU>ZcvOnl|)a>Z_ptXups4 zQ9i@+(S4BphvxJ6v(!V$SW)3z@$cD8t>W*opm>h9_4mx9`K0wJmaRNakFY)T2+Kx! z7ww^Xce;^$j&pJRHQ!^8?by6$+)o=Cqis!bd}u4}YQBBI3etKvX=OW`DMNRR^+a)! zJj(m&51RMXdH=D7a^!PrzRxIsk8=I`Wc}XZRn*bVw5PX|R;N{al8ADWdGspgL-7vk zXp(i(I_jZ$-r<<=J}m#xdVmt$GgchF{0miPIerajG}OgZj+ zmooJ*j}~-lZc`0T)Y{yS>Ur{L#?g!EAF9tVb}(%`%%MzI(uSVz)NY#OZ*ky_Ov4a= zw@1Yx@@SqP7EvGFCs-f7?wLy7|K;a(dH-AvF)zCNCM!iR^J~1n(%#8_LG_u!=P3WD zR;Bws>Z7?2`5$a!T~*7!i`Ko3w$bj;4!ZwB9(iAs*VW=W+SLN4X`E&0JuE}N6Jop` z&8NySp!v*LbaYkFkgKLib6^k^j#}`^)qZ&3)%v7^BerzXO#ve=oDL zk9vyhW&SnGRir`g}g?`4*6qyK2G`>RQ#`MWUhq%PV=*{^8cdw!-<{Z^;^ zBz4i;KW!ncQI@9r~2LXBvt#VVM4EguJ4i=DB=3 zWhh@$>#|Prw=&A-q;3ym7@F(&TbWP!e(Oe-udmS;9StMg8|gCYYB_bZf$1pkW?9Jh zY|VR{`23`KFLx*PH8)&2$+1fxFQ_%|-DXj)94EipsebpB|4(w>=QP);A+D*qpLvk? zSNZ*`_QM=MXudDrBCUAO)P92LXugkeCuxnb&GlN+YKK1hud8a^pK*L4KY#4rMjpl6 z!g}iIyX5tzfl7B5_0T+L-b@m`6XPTuTRP`5gBwWyrsmU0g*QI@qf9Ft4tlp8k;e^(oT&NH|6votUUS z)T-aBTtHprznRq6O_Ygy?aC6;iu>2{PuMP+S1Xn?O_S6|c|GN5-b4KnX>{2>%J(Pb zf1w_Ve=}KW-#x$>N&XFCDSc57{Z?-0AS$$uCCB%CkCD%f&3*A6>Y~lqpyqpo*Rrl? zKSVjo?JNt$GU{lO_H~r8MXRZ=mGnU;NhANhOP+t-+u3Hw?*)_`8!CoEK2PLz;U3!2 z_rgh*sh^YAE9i?xCTicO4CTM4&uBjP{|}_~e>#=+ldLm}3n|kn=F=Y9))eccQ`Co_ z;a8ZaR1fW=d4IWxw0?J>QvMp#k-w`fJeHCBz4^N)?lZ;mx*z6vLT<&m8dxJ`z500st?$n+otyj_ylsv;LzaLYw4b{A-%lo67m|rW|CTP~{8?>c^ zOhdlUY}PN1+q@1G_FZvbQ~YPr%IoE8NTazv{(^S3iFMQBf!coRDbKfQ`la>MMY)Le zs?Zkuqr8ATn&UICQ@oR^e$x~0H~h>@&G*LJw5P=^OL>14+rfLj%B8fUx0Ba8=FwsL zjB-7FK=b>bH;~qI)Im9i>8Qq5$Jc|bi;j`jbFJFrr1cZ>x}3EBI>d7*Gc(>CY<|zx z?EhYlWyO74^&0_yCvbxKbxo`GI{JdVKPunPc0qM5@_O_b^>map^0>)yG@pl?&xw}M z7MjmPo?uzX_t4Gz``@OHX41CuI`ts+H8xTEIcbd^svU1J_T&GByg$qJ{5j={`w{=9 zYGol2&EH$Rm^!*4944Y%M?Ey(yWLN@?h9)>_4f+4usyVsa{ZEWT}@gqke2T-D%9P9 z-)EiC{62LSY2J3 z)b}oV{Jx3hqv`)QX-nH#2FkfiNA;VEb+HVVQ(iU_e{Md<%YNl@&QMpgsjGJ2_^jTYI~FL9vmGo`ziQRy z6ZJXjXfWJL8A{J#&*g=b>lE{9Pl)~Rca&89rtp2tHBq?P^dc4!|HA=|l&I{Go?`cBB_ggxZ7gJtL(X*BQE zHFs`bzZEg-Ml|C>oGkK4OD^>---DN`=@DDx`EpWW2cG0HSfT0^AOW!XA6 zQ7ef00d@4tR&6_JT|{1cse>}_kMejKT1C6a?Q^1^>l}JnhL$j|PKWC{yi>tR>gYoD zmDW(ESdaX^Lh;*7(^uWihy2f|+yH8b>exF^9Fd5urh z9;8g0=&QWP(FducolMglrfGySt*1;eeil;`+&zFC!%{F z_w#6;I}TH>d~Z{7KT_dd!*hSeWbGWwMBYa?AEr8M^qm7=TTQD zC{tbs=Ft}|ZqadlluZMRL<=CzRr1jI9&-T^x{bl6!c&&UD~@to3go!Ui2^-`wT z|Ha2C)5GCRKid)esiR$#>m#k&G0Jo&Wjab)C&De1X-4=y5zTe%W8{^~A0(}>hTDjG zG;Am8+re{8F~8@0b>3e{nd0~@-$*%{-;4D!O?h5jPg)-c)AV0E`fIseUP&9;Pd%Lt zIX(NA+xhcM*GPDlD8~>zKw4ugOB+e6>`)LD3Sj}`zl2_)Rrc7O~2fBeYn&bFN@)`(v9vxW4`Gg$zI!ssIr@Tm7Isbmr zDE}?TH=6GsKS;UuhMS4{+mQR`R`Qw?vcC(-E6=w_No!x|V_CYiR=%F)qq$%I4bmuQ z)tdJ(uO*MXUY3i=qj+=3?e<-kqqA&NttG8B;R{4P5uPGybGU-2Wg)loBjhzwD__m> z(R{CB7UgdzXcN20YhBnx)Q`jUL_Hq77VEOGl&F=gvr5`j zo>%=$(`5KMQC|!{B`U|2Jb!*gnWk&y%t?;L$$x#H_-V=&)2n-t`Q%TqY~4&+D?-6B zssl{Z)S=q4{`%d=cA{ptY8MhUL|q+bn%0F&X;){MrjoXGgy}jL`e;L$&*S1e%GAfa z>QY~)NNaAVwu7{Glh^g(AZ0p6UJr%buDShkdc0R{o{w_B?_)mYeu(|le80_Yu4t!x z4f_H4ec199tI>!CxIWy<)k$czE9Ntu$QP8 zLXHRdT=5OcbvS&7D92L$D4ZoK>%T}^KM5ZrYAk$-s9%I{67_fCABma@|3K8K&?Rbf zxQ3`Z!;M7ccDRGIJ{-=n&6L|O@8|M))^kp6_M!4Vwr7I-My%}AE+fh@OY2GN_Ao@5 z+Woa$&Th)IgnF78HWGDDxP++l!Z1;}oXw<_$L0Y+98%ZnAt7}Q?;xNQHq-FG7 zxqWlL4fbJ}OxN0w?L10e6X76H zli?UqN5W@`x+&y#-b!98LP6BBFhJBLAFkD2`9@@}Rj#aIjsFm@4!!bp}VRnb* zp&jle>b@{Q)LH85BGMYAZQ1vVY2>;E~XE0^K>})csM*!A5(K#hQ`S&$J0K_)I*sz_16Z8n$@c9B5HSdjHm~~bwte$ zL-a-2pWL3goQ%6!ruKw_s4byOti>#Q)Ow%Ww4n36X0D1L>NuqXy9LGiuvE5NnuH4RfJWjFA zU#ge99J6#@r*>wdzPIiruO(rWa^>;SM_QXgo2cVqCi7_^TuoG-$5)b8w!fG8l*`F} ztfh{&h8u~xCFJ>h19|0gkJ6Tog=}|>yn6a;dEVU6s^4*JCBD=>KS!BQ%R)Ip`^e?bBdxr?9%Z@eJye^+ zG#wzXEMG~Px}oTB9N{o|?Fk2n%H>Uy)~PT^)X}hos4mOWCeq6HG((hW4rOYGc|_&> z2S{sO=p$-gf31(GBjGqvd7fOucGT){mTAiEI+Jp(2w5-3iDi^)XBZ~xvd~LZwlj;g z=7wzNAj?#qx4EA4C{s?){Zp)BKVXb$Ivk!S>OjbG@a4zHDD$e|SX3St?L%y93^7e@ z+EGDTdEBg{Oh*rem^MwUP(F<(CTbUT>ieOkM76^TqHYd%6IF&$qQ*nszYLSt&hRi% zIsZb^niDn>bxpW|sB6PAqH?@jOj^rB=KINOiuKaokn6XGX_^uCGhI_`3vKGJ?IJ3V z%Z;u2`J^Q3_Ao+Jp6^$a*3Ph*sH?(xM7{j@Ehy7*mibc8lh=4yO&u)_7Za89%&`V#G=lv+<8V?sU zj~0bXh`KuD=egd4ztp4TmG|G7|14$t-(j4n2ZQITZV&embxX+mfIPo%qFl4X82#4q zaGI#ekki*tUsr_O{?AiSM?&Uvyv}j2%UG%*_KQ4rG$&-eW#lz493*No3==gT4iL3J zWc@t;Mq2ea@hDN<@HkQVKI1vk%IRMqt^2}*MCJYHy`(i9hKRZ~%dN>tY0 zOj^;)W)hXh z^#anmHe~%geluRebY(u5b0uZEEUYA|CoCaqnsridDA;Do_0RJs&x;+@Q;yR+`s;hH zDWdwq7NYisbwp+R1>09$mZjWJC3Q3&juW*%j8a!Qf1am9hd5?1JW<%9ZnF%=t>DX_R$W-rx05rY>dL)L$DRYFWtqD0xkXrLFp&VmVP8!i_}bc(H)A z=7tl@ugOpnmH+0ER$n+k-;~GY)GD?I3dUsRad4RWn#poBC!D5CQ(+P1Iz?W&KH1Og z-!7&p+ZiLRb|~qCiqJDrZ_nLCO&_WalGe7clBldVhqPQL_4d~e64ecRh?+s)mD_(I zX$^+!h}sgaCo1>HyGZMXkk^AvUFEoz`8H+B@$V+m%JVMo8#Yp=-f)C=mFG{MPunO{Ngwn) zX&nsNuUzjb%C(wywI<~FeT-?!{hZ62OFb-Y{>1^Bmof z=krSP%ITTUZIk2qICXR|J1i$E%X9xMrc4{d zFj0Abo&DHLnf8V3*EQs|I^_7C*OM8o`g)n;!{g-D4M&K2A>_F9P4fDD@Ep-Kp-t41 zu!5)!;cB984Id@yQ{gaC-w!!X{fs=yg7HVQYt7$j@w?>u7wYN7@D-vS3O5mTXUOG0 zOI{Np>wk>Az7w7!YH!H(SW8}u!~XvI9=*$0rgI#F+S;jok|@tHeI)~)SQF&hH{Zb#>T?ay!sBNLUiahdq zl=llc-tL*G-=F3FTFNq%=WCu%Iez4MHN-wvo8{M%IO!A)^XNX$HIk_ zDcAol(#r8B`mD@k}M^A_AAZCP%iOTEcF!N}H zeWfDw5>>9MwTU{?Ut8It3%E91MO1FL+ez!sLhip@&-s*Vn)Y-qw2A7nY;Bo{=W^l{ z+MU`OqVoLjBdx_@K2ftm9kMrvkMDdhJlM~1gIw=X`k*<~)#0$6sBXx9Y@lu3 z7`7Aj^88hlX=}*w>~iutM!UL*v{rUe(&k$IKtGbTAOX6sgT<%>t!rxLqnmDsA<~KtX6F)Q47LcqOJ-fMC}bX6E!nz z>aX8RoF?jA7$)jS$m4d1`E*OThN$)7Mxx5_QKEAB_mkGHu!5*upImNkr+E|gy=91c;Y=3l(eC=ODBKBnnl$mfJ|g1%#6rnA+K9`-#SFO zmV}FmdY-m49JUjc>r?d8AM6cXqV|VTqMG$$-w$D$ZJ@D<+J2(){b85&)hKm!nl`ky kRU0NM_se6X_2KYAq8