Use mimalloc

This commit is contained in:
Jonas Kvinge 2023-07-17 21:47:36 +02:00
parent c52fc90306
commit cd39e31ce7
47 changed files with 17508 additions and 1 deletions

402
3rdparty/mimalloc/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,402 @@
cmake_minimum_required(VERSION 3.13)
option(MI_SECURE "Use full security mitigations (like guard pages, allocation randomization, double-free mitigation, and free-list corruption detection)" OFF)
option(MI_DEBUG_FULL "Use full internal heap invariant checking in DEBUG mode (expensive)" OFF)
option(MI_PADDING "Enable padding to detect heap block overflow (always on in DEBUG or SECURE mode, or with Valgrind/ASAN)" OFF)
option(MI_OVERRIDE "Override the standard malloc interface (e.g. define entry points for malloc() etc)" ON)
option(MI_XMALLOC "Enable abort() call on memory allocation failure by default" OFF)
option(MI_SHOW_ERRORS "Show error and warning messages by default (only enabled by default in DEBUG mode)" OFF)
option(MI_TRACK_VALGRIND "Compile with Valgrind support (adds a small overhead)" OFF)
option(MI_TRACK_ASAN "Compile with address sanitizer support (adds a small overhead)" OFF)
option(MI_TRACK_ETW "Compile with Windows event tracing (ETW) support (adds a small overhead)" OFF)
option(MI_USE_CXX "Use the C++ compiler to compile the library (instead of the C compiler)" OFF)
option(MI_SEE_ASM "Generate assembly files" OFF)
option(MI_WIN_REDIRECT "Use redirection module ('mimalloc-redirect') on Windows if compiling mimalloc as a DLL" ON)
option(MI_LOCAL_DYNAMIC_TLS "Use slightly slower, dlopen-compatible TLS mechanism (Unix)" OFF)
option(MI_BUILD_STATIC "Build static library" ON)
option(MI_BUILD_OBJECT "Build object library" ON)
option(MI_DEBUG_TSAN "Build with thread sanitizer (needs clang)" OFF)
option(MI_DEBUG_UBSAN "Build with undefined-behavior sanitizer (needs clang++)" OFF)
option(MI_SKIP_COLLECT_ON_EXIT "Skip collecting memory on program exit" OFF)
option(MI_NO_PADDING "Force no use of padding even in DEBUG mode etc." OFF)
include(CheckIncludeFiles)
include(GNUInstallDirs)
set(mi_sources
src/alloc.c
src/alloc-aligned.c
src/alloc-posix.c
src/arena.c
src/bitmap.c
src/heap.c
src/init.c
src/options.c
src/os.c
src/page.c
src/random.c
src/segment.c
src/segment-map.c
src/stats.c
src/prim/prim.c)
set(mi_cflags "")
set(mi_libraries "")
# -----------------------------------------------------------------------------
# Convenience: set default build type depending on the build directory
# -----------------------------------------------------------------------------
message(STATUS "")
if (NOT CMAKE_BUILD_TYPE)
if ("${CMAKE_BINARY_DIR}" MATCHES ".*(D|d)ebug$" OR MI_DEBUG_FULL)
message(STATUS "No build type selected, default to: Debug")
set(CMAKE_BUILD_TYPE "Debug")
else()
message(STATUS "No build type selected, default to: Release")
set(CMAKE_BUILD_TYPE "Release")
endif()
endif()
if("${CMAKE_BINARY_DIR}" MATCHES ".*(S|s)ecure$")
message(STATUS "Default to secure build")
set(MI_SECURE "ON")
endif()
# -----------------------------------------------------------------------------
# Process options
# -----------------------------------------------------------------------------
if(CMAKE_C_COMPILER_ID MATCHES "MSVC|Intel")
set(MI_USE_CXX "ON")
endif()
if(MI_OVERRIDE)
message(STATUS "Override standard malloc (MI_OVERRIDE=ON)")
endif()
if(WIN32)
if (MI_WIN_REDIRECT)
if (MSVC_C_ARCHITECTURE_ID MATCHES "ARM")
message(STATUS "Cannot use redirection on Windows ARM (MI_WIN_REDIRECT=OFF)")
set(MI_WIN_REDIRECT OFF)
endif()
endif()
if (NOT MI_WIN_REDIRECT)
# use a negative define for backward compatibility
list(APPEND mi_defines MI_WIN_NOREDIRECT=1)
endif()
endif()
if(MI_SECURE)
message(STATUS "Set full secure build (MI_SECURE=ON)")
list(APPEND mi_defines MI_SECURE=4)
endif()
if(MI_TRACK_VALGRIND)
CHECK_INCLUDE_FILES("valgrind/valgrind.h;valgrind/memcheck.h" MI_HAS_VALGRINDH)
if (NOT MI_HAS_VALGRINDH)
set(MI_TRACK_VALGRIND OFF)
message(WARNING "Cannot find the 'valgrind/valgrind.h' and 'valgrind/memcheck.h' -- install valgrind first")
message(STATUS "Compile **without** Valgrind support (MI_TRACK_VALGRIND=OFF)")
else()
message(STATUS "Compile with Valgrind support (MI_TRACK_VALGRIND=ON)")
list(APPEND mi_defines MI_TRACK_VALGRIND=1)
endif()
endif()
if(MI_TRACK_ASAN)
if (APPLE AND MI_OVERRIDE)
set(MI_TRACK_ASAN OFF)
message(WARNING "Cannot enable address sanitizer support on macOS if MI_OVERRIDE is ON (MI_TRACK_ASAN=OFF)")
endif()
if (MI_TRACK_VALGRIND)
set(MI_TRACK_ASAN OFF)
message(WARNING "Cannot enable address sanitizer support with also Valgrind support enabled (MI_TRACK_ASAN=OFF)")
endif()
if(MI_TRACK_ASAN)
CHECK_INCLUDE_FILES("sanitizer/asan_interface.h" MI_HAS_ASANH)
if (NOT MI_HAS_ASANH)
set(MI_TRACK_ASAN OFF)
message(WARNING "Cannot find the 'sanitizer/asan_interface.h' -- install address sanitizer support first")
message(STATUS "Compile **without** address sanitizer support (MI_TRACK_ASAN=OFF)")
else()
message(STATUS "Compile with address sanitizer support (MI_TRACK_ASAN=ON)")
list(APPEND mi_defines MI_TRACK_ASAN=1)
list(APPEND mi_cflags -fsanitize=address)
list(APPEND mi_libraries -fsanitize=address)
endif()
endif()
endif()
if(MI_TRACK_ETW)
if(NOT WIN32)
set(MI_TRACK_ETW OFF)
message(WARNING "Can only enable ETW support on Windows (MI_TRACK_ETW=OFF)")
endif()
if (MI_TRACK_VALGRIND OR MI_TRACK_ASAN)
set(MI_TRACK_ETW OFF)
message(WARNING "Cannot enable ETW support with also Valgrind or ASAN support enabled (MI_TRACK_ETW=OFF)")
endif()
if(MI_TRACK_ETW)
message(STATUS "Compile with Windows event tracing support (MI_TRACK_ETW=ON)")
list(APPEND mi_defines MI_TRACK_ETW=1)
endif()
endif()
if(MI_SEE_ASM)
message(STATUS "Generate assembly listings (MI_SEE_ASM=ON)")
list(APPEND mi_cflags -save-temps)
endif()
if(MI_CHECK_FULL)
message(STATUS "The MI_CHECK_FULL option is deprecated, use MI_DEBUG_FULL instead")
set(MI_DEBUG_FULL "ON")
endif()
if (MI_SKIP_COLLECT_ON_EXIT)
message(STATUS "Skip collecting memory on program exit (MI_SKIP_COLLECT_ON_EXIT=ON)")
list(APPEND mi_defines MI_SKIP_COLLECT_ON_EXIT=1)
endif()
if(MI_DEBUG_FULL)
message(STATUS "Set debug level to full internal invariant checking (MI_DEBUG_FULL=ON)")
list(APPEND mi_defines MI_DEBUG=3) # full invariant checking
endif()
if(MI_NO_PADDING)
message(STATUS "Suppress any padding of heap blocks (MI_NO_PADDING=ON)")
list(APPEND mi_defines MI_PADDING=0)
else()
if(MI_PADDING)
message(STATUS "Enable explicit padding of heap blocks (MI_PADDING=ON)")
list(APPEND mi_defines MI_PADDING=1)
endif()
endif()
if(MI_XMALLOC)
message(STATUS "Enable abort() calls on memory allocation failure (MI_XMALLOC=ON)")
list(APPEND mi_defines MI_XMALLOC=1)
endif()
if(MI_SHOW_ERRORS)
message(STATUS "Enable printing of error and warning messages by default (MI_SHOW_ERRORS=ON)")
list(APPEND mi_defines MI_SHOW_ERRORS=1)
endif()
if(MI_DEBUG_TSAN)
if(CMAKE_C_COMPILER_ID MATCHES "Clang")
message(STATUS "Build with thread sanitizer (MI_DEBUG_TSAN=ON)")
list(APPEND mi_defines MI_TSAN=1)
list(APPEND mi_cflags -fsanitize=thread -g -O1)
list(APPEND mi_libraries -fsanitize=thread)
else()
message(WARNING "Can only use thread sanitizer with clang (MI_DEBUG_TSAN=ON but ignored)")
endif()
endif()
if(MI_DEBUG_UBSAN)
if(CMAKE_BUILD_TYPE MATCHES "Debug")
if(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
message(STATUS "Build with undefined-behavior sanitizer (MI_DEBUG_UBSAN=ON)")
list(APPEND mi_cflags -fsanitize=undefined -g -fno-sanitize-recover=undefined)
list(APPEND mi_libraries -fsanitize=undefined)
if (NOT MI_USE_CXX)
message(STATUS "(switch to use C++ due to MI_DEBUG_UBSAN)")
set(MI_USE_CXX "ON")
endif()
else()
message(WARNING "Can only use undefined-behavior sanitizer with clang++ (MI_DEBUG_UBSAN=ON but ignored)")
endif()
else()
message(WARNING "Can only use thread sanitizer with a debug build (CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE})")
endif()
endif()
if(MI_USE_CXX)
message(STATUS "Use the C++ compiler to compile (MI_USE_CXX=ON)")
set_source_files_properties(${mi_sources} PROPERTIES LANGUAGE CXX )
set_source_files_properties(src/static.c test/test-api.c test/test-api-fill test/test-stress PROPERTIES LANGUAGE CXX )
if(CMAKE_CXX_COMPILER_ID MATCHES "AppleClang|Clang")
list(APPEND mi_cflags -Wno-deprecated)
endif()
if(CMAKE_CXX_COMPILER_ID MATCHES "Intel" AND NOT CMAKE_CXX_COMPILER_ID MATCHES "IntelLLVM")
list(APPEND mi_cflags -Kc++)
endif()
endif()
if(CMAKE_SYSTEM_NAME MATCHES "Haiku")
SET(CMAKE_INSTALL_LIBDIR ~/config/non-packaged/lib)
SET(CMAKE_INSTALL_INCLUDEDIR ~/config/non-packaged/headers)
endif()
# Compiler flags
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU")
list(APPEND mi_cflags -Wall -Wextra -Wno-unknown-pragmas -fvisibility=hidden)
if(NOT MI_USE_CXX)
list(APPEND mi_cflags -Wstrict-prototypes)
endif()
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang")
list(APPEND mi_cflags -Wpedantic -Wno-static-in-inline)
endif()
endif()
if(CMAKE_C_COMPILER_ID MATCHES "Intel")
list(APPEND mi_cflags -Wall -fvisibility=hidden)
endif()
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU|Intel" AND NOT CMAKE_SYSTEM_NAME MATCHES "Haiku")
if(MI_LOCAL_DYNAMIC_TLS)
list(APPEND mi_cflags -ftls-model=local-dynamic)
else()
list(APPEND mi_cflags -ftls-model=initial-exec)
endif()
if(MI_OVERRIDE)
list(APPEND mi_cflags -fno-builtin-malloc)
endif()
endif()
if (MSVC AND MSVC_VERSION GREATER_EQUAL 1914)
list(APPEND mi_cflags /Zc:__cplusplus)
endif()
# extra needed libraries
if(WIN32)
list(APPEND mi_libraries psapi shell32 user32 advapi32 bcrypt)
set(pc_libraries "-lpsapi -lshell32 -luser32 -ladvapi32 -lbcrypt")
else()
set(pc_libraries "")
find_library(MI_LIBPTHREAD pthread)
if (MI_LIBPTHREAD)
list(APPEND mi_libraries ${MI_LIBPTHREAD})
set(pc_libraries "${pc_libraries} -pthread")
endif()
find_library(MI_LIBRT rt)
if(MI_LIBRT)
list(APPEND mi_libraries ${MI_LIBRT})
set(pc_libraries "${pc_libraries} -lrt")
endif()
find_library(MI_LIBATOMIC atomic)
if (NOT MI_LIBATOMIC AND MI_USE_LIBATOMIC)
set(MI_LIBATOMIC atomic)
endif()
if (MI_LIBATOMIC)
list(APPEND mi_libraries ${MI_LIBATOMIC})
set(pc_libraries "${pc_libraries} -latomic")
endif()
endif()
# -----------------------------------------------------------------------------
# Install and output names
# -----------------------------------------------------------------------------
# dynamic/shared library and symlinks always go to /usr/local/lib equivalent
set(mi_install_libdir "${CMAKE_INSTALL_LIBDIR}")
# static libraries and object files, includes, and cmake config files
# are either installed at top level, or use versioned directories for side-by-side installation (default)
if (MI_INSTALL_TOPLEVEL)
set(mi_install_objdir "${CMAKE_INSTALL_LIBDIR}")
set(mi_install_incdir "${CMAKE_INSTALL_INCLUDEDIR}")
set(mi_install_cmakedir "${CMAKE_INSTALL_LIBDIR}/cmake/mimalloc")
else()
set(mi_install_objdir "${CMAKE_INSTALL_LIBDIR}/mimalloc-${mi_version}") # for static library and object files
set(mi_install_incdir "${CMAKE_INSTALL_INCLUDEDIR}/mimalloc-${mi_version}") # for includes
set(mi_install_cmakedir "${CMAKE_INSTALL_LIBDIR}/cmake/mimalloc-${mi_version}") # for cmake package info
endif()
set(mi_basename "mimalloc")
if(MI_SECURE)
set(mi_basename "${mi_basename}-secure")
endif()
if(MI_TRACK_VALGRIND)
set(mi_basename "${mi_basename}-valgrind")
endif()
if(MI_TRACK_ASAN)
set(mi_basename "${mi_basename}-asan")
endif()
if(MI_BUILD_STATIC)
list(APPEND mi_build_targets "static")
endif()
if(MI_BUILD_OBJECT)
list(APPEND mi_build_targets "object")
endif()
message(STATUS "")
message(STATUS "Library base name: ${mi_basename}")
message(STATUS "Version : ${mi_version}")
if(MI_USE_CXX)
message(STATUS "C++ Compiler : ${CMAKE_CXX_COMPILER}")
else()
message(STATUS "C Compiler : ${CMAKE_C_COMPILER}")
endif()
message(STATUS "Compiler flags : ${mi_cflags}")
message(STATUS "Compiler defines : ${mi_defines}")
message(STATUS "Link libraries : ${mi_libraries}")
message(STATUS "Build targets : ${mi_build_targets}")
message(STATUS "")
# -----------------------------------------------------------------------------
# Main targets
# -----------------------------------------------------------------------------
# static library
if (MI_BUILD_STATIC)
add_library(mimalloc-static STATIC ${mi_sources})
set_property(TARGET mimalloc-static PROPERTY POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(mimalloc-static PRIVATE ${mi_defines} MI_STATIC_LIB)
target_compile_options(mimalloc-static PRIVATE ${mi_cflags})
target_link_libraries(mimalloc-static PRIVATE ${mi_libraries})
target_include_directories(mimalloc-static PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${mi_install_incdir}>
)
if(WIN32)
# When building both static and shared libraries on Windows, a static library should use a
# different output name to avoid the conflict with the import library of a shared one.
string(REPLACE "mimalloc" "mimalloc-static" mi_output_name ${mi_basename})
set_target_properties(mimalloc-static PROPERTIES OUTPUT_NAME ${mi_output_name})
else()
set_target_properties(mimalloc-static PROPERTIES OUTPUT_NAME ${mi_basename})
endif()
endif()
# single object file for more predictable static overriding
if (MI_BUILD_OBJECT)
add_library(mimalloc-obj OBJECT src/static.c)
set_property(TARGET mimalloc-obj PROPERTY POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(mimalloc-obj PRIVATE ${mi_defines})
target_compile_options(mimalloc-obj PRIVATE ${mi_cflags})
target_include_directories(mimalloc-obj PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${mi_install_incdir}>
)
# Copy the generated object file (`static.o`) to the output directory (as `mimalloc.o`)
if(NOT WIN32)
set(mimalloc-obj-static "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/mimalloc-obj.dir/src/static.c${CMAKE_C_OUTPUT_EXTENSION}")
set(mimalloc-obj-out "${CMAKE_CURRENT_BINARY_DIR}/${mi_basename}${CMAKE_C_OUTPUT_EXTENSION}")
add_custom_command(OUTPUT ${mimalloc-obj-out} DEPENDS mimalloc-obj COMMAND "${CMAKE_COMMAND}" -E copy "${mimalloc-obj-static}" "${mimalloc-obj-out}")
add_custom_target(mimalloc-obj-target ALL DEPENDS ${mimalloc-obj-out})
endif()
endif()
# -----------------------------------------------------------------------------
# Set override properties
# -----------------------------------------------------------------------------
if (MI_OVERRIDE)
if(NOT WIN32)
# It is only possible to override malloc on Windows when building as a DLL.
if (MI_BUILD_STATIC)
target_compile_definitions(mimalloc-static PRIVATE MI_MALLOC_OVERRIDE)
endif()
if (MI_BUILD_OBJECT)
target_compile_definitions(mimalloc-obj PRIVATE MI_MALLOC_OVERRIDE)
endif()
endif()
endif()

21
3rdparty/mimalloc/LICENSE vendored Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

827
3rdparty/mimalloc/README.md vendored Normal file
View File

@ -0,0 +1,827 @@
<img align="left" width="100" height="100" src="doc/mimalloc-logo.png"/>
[<img align="right" src="https://dev.azure.com/Daan0324/mimalloc/_apis/build/status/microsoft.mimalloc?branchName=dev"/>](https://dev.azure.com/Daan0324/mimalloc/_build?definitionId=1&_a=summary)
# mimalloc
&nbsp;
mimalloc (pronounced "me-malloc")
is a general purpose allocator with excellent [performance](#performance) characteristics.
Initially developed by Daan Leijen for the runtime systems of the
[Koka](https://koka-lang.github.io) and [Lean](https://github.com/leanprover/lean) languages.
Latest release tag: `v2.1.2` (2023-04-24).
Latest stable tag: `v1.8.2` (2023-04-24).
mimalloc is a drop-in replacement for `malloc` and can be used in other programs
without code changes, for example, on dynamically linked ELF-based systems (Linux, BSD, etc.) you can use it as:
```
> LD_PRELOAD=/usr/lib/libmimalloc.so myprogram
```
It also includes a robust way to override the default allocator in [Windows](#override_on_windows). Notable aspects of the design include:
- __small and consistent__: the library is about 8k LOC using simple and
consistent data structures. This makes it very suitable
to integrate and adapt in other projects. For runtime systems it
provides hooks for a monotonic _heartbeat_ and deferred freeing (for
bounded worst-case times with reference counting).
Partly due to its simplicity, mimalloc has been ported to many systems (Windows, macOS,
Linux, WASM, various BSD's, Haiku, MUSL, etc) and has excellent support for dynamic overriding.
- __free list sharding__: instead of one big free list (per size class) we have
many smaller lists per "mimalloc page" which reduces fragmentation and
increases locality --
things that are allocated close in time get allocated close in memory.
(A mimalloc page contains blocks of one size class and is usually 64KiB on a 64-bit system).
- __free list multi-sharding__: the big idea! Not only do we shard the free list
per mimalloc page, but for each page we have multiple free lists. In particular, there
is one list for thread-local `free` operations, and another one for concurrent `free`
operations. Free-ing from another thread can now be a single CAS without needing
sophisticated coordination between threads. Since there will be
thousands of separate free lists, contention is naturally distributed over the heap,
and the chance of contending on a single location will be low -- this is quite
similar to randomized algorithms like skip lists where adding
a random oracle removes the need for a more complex algorithm.
- __eager page purging__: when a "page" becomes empty (with increased chance
due to free list sharding) the memory is marked to the OS as unused (reset or decommitted)
reducing (real) memory pressure and fragmentation, especially in long running
programs.
- __secure__: _mimalloc_ can be built in secure mode, adding guard pages,
randomized allocation, encrypted free lists, etc. to protect against various
heap vulnerabilities. The performance penalty is usually around 10% on average
over our benchmarks.
- __first-class heaps__: efficiently create and use multiple heaps to allocate across different regions.
A heap can be destroyed at once instead of deallocating each object separately.
- __bounded__: it does not suffer from _blowup_ \[1\], has bounded worst-case allocation
times (_wcat_) (upto OS primitives), bounded space overhead (~0.2% meta-data, with low
internal fragmentation), and has no internal points of contention using only atomic operations.
- __fast__: In our benchmarks (see [below](#performance)),
_mimalloc_ outperforms other leading allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc),
and often uses less memory. A nice property is that it does consistently well over a wide range
of benchmarks. There is also good huge OS page support for larger server programs.
The [documentation](https://microsoft.github.io/mimalloc) gives a full overview of the API.
You can read more on the design of _mimalloc_ in the [technical report](https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action) which also has detailed benchmark results.
Enjoy!
### Branches
* `master`: latest stable release (based on `dev-slice`).
* `dev`: development branch for mimalloc v1. Use this branch for submitting PR's.
* `dev-slice`: development branch for mimalloc v2. This branch is downstream of `dev`.
### Releases
Note: the `v2.x` version has a new algorithm for managing internal mimalloc pages that tends to reduce memory usage
and fragmentation compared to mimalloc `v1.x` (especially for large workloads). Should otherwise have similar performance
(see [below](#performance)); please report if you observe any significant performance regression.
* 2023-04-24, `v1.8.2`, `v2.1.2`: Fixes build issues on freeBSD, musl, and C17 (UE 5.1.1). Reduce code size/complexity
by removing regions and segment-cache's and only use arenas with improved memory purging -- this may improve memory
usage as well for larger services. Renamed options for consistency. Improved Valgrind and ASAN checking.
* 2023-04-03, `v1.8.1`, `v2.1.1`: Fixes build issues on some platforms.
* 2023-03-29, `v1.8.0`, `v2.1.0`: Improved support dynamic overriding on Windows 11. Improved tracing precision
with [asan](#asan) and [Valgrind](#valgrind), and added Windows event tracing [ETW](#ETW) (contributed by Xinglong He). Created an OS
abstraction layer to make it easier to port and separate platform dependent code (in `src/prim`). Fixed C++ STL compilation on older Microsoft C++ compilers, and various small bug fixes.
* 2022-12-23, `v1.7.9`, `v2.0.9`: Supports building with [asan](#asan) and improved [Valgrind](#valgrind) support.
Support abitrary large alignments (in particular for `std::pmr` pools).
Added C++ STL allocators attached to a specific heap (thanks @vmarkovtsev).
Heap walks now visit all object (including huge objects). Support Windows nano server containers (by Johannes Schindelin,@dscho). Various small bug fixes.
* 2022-11-03, `v1.7.7`, `v2.0.7`: Initial support for [Valgrind](#valgrind) for leak testing and heap block overflow
detection. Initial
support for attaching heaps to a speficic memory area (only in v2). Fix `realloc` behavior for zero size blocks, remove restriction to integral multiple of the alignment in `alloc_align`, improved aligned allocation performance, reduced contention with many threads on few processors (thank you @dposluns!), vs2022 support, support `pkg-config`, .
* 2022-04-14, `v1.7.6`, `v2.0.6`: fix fallback path for aligned OS allocation on Windows, improve Windows aligned allocation
even when compiling with older SDK's, fix dynamic overriding on macOS Monterey, fix MSVC C++ dynamic overriding, fix
warnings under Clang 14, improve performance if many OS threads are created and destroyed, fix statistics for large object
allocations, using MIMALLOC_VERBOSE=1 has no maximum on the number of error messages, various small fixes.
* 2022-02-14, `v1.7.5`, `v2.0.5` (alpha): fix malloc override on
Windows 11, fix compilation with musl, potentially reduced
committed memory, add `bin/minject` for Windows,
improved wasm support, faster aligned allocation,
various small fixes.
* [Older release notes](#older-release-notes)
Special thanks to:
* [David Carlier](https://devnexen.blogspot.com/) (@devnexen) for his many contributions, and making
mimalloc work better on many less common operating systems, like Haiku, Dragonfly, etc.
* Mary Feofanova (@mary3000), Evgeniy Moiseenko, and Manuel Pöter (@mpoeter) for making mimalloc TSAN checkable, and finding
memory model bugs using the [genMC] model checker.
* Weipeng Liu (@pongba), Zhuowei Li, Junhua Wang, and Jakub Szymanski, for their early support of mimalloc and deployment
at large scale services, leading to many improvements in the mimalloc algorithms for large workloads.
* Jason Gibson (@jasongibson) for exhaustive testing on large scale workloads and server environments, and finding complex bugs
in (early versions of) `mimalloc`.
* Manuel Pöter (@mpoeter) and Sam Gross(@colesbury) for finding an ABA concurrency issue in abandoned segment reclamation. Sam also created the [no GIL](https://github.com/colesbury/nogil) Python fork which
uses mimalloc internally.
[genMC]: https://plv.mpi-sws.org/genmc/
### Usage
mimalloc is used in various large scale low-latency services and programs, for example:
<a href="https://www.bing.com"><img height="50" align="left" src="https://upload.wikimedia.org/wikipedia/commons/e/e9/Bing_logo.svg"></a>
<a href="https://azure.microsoft.com/"><img height="50" align="left" src="https://upload.wikimedia.org/wikipedia/commons/a/a8/Microsoft_Azure_Logo.svg"></a>
<a href="https://deathstrandingpc.505games.com"><img height="100" src="doc/ds-logo.png"></a>
<a href="https://docs.unrealengine.com/4.26/en-US/WhatsNew/Builds/ReleaseNotes/4_25/"><img height="100" src="doc/unreal-logo.svg"></a>
<a href="https://cab.spbu.ru/software/spades/"><img height="100" src="doc/spades-logo.png"></a>
# Building
## Windows
Open `ide/vs2019/mimalloc.sln` in Visual Studio 2019 and build.
The `mimalloc` project builds a static library (in `out/msvc-x64`), while the
`mimalloc-override` project builds a DLL for overriding malloc
in the entire program.
## macOS, Linux, BSD, etc.
We use [`cmake`](https://cmake.org)<sup>1</sup> as the build system:
```
> mkdir -p out/release
> cd out/release
> cmake ../..
> make
```
This builds the library as a shared (dynamic)
library (`.so` or `.dylib`), a static library (`.a`), and
as a single object file (`.o`).
`> sudo make install` (install the library and header files in `/usr/local/lib` and `/usr/local/include`)
You can build the debug version which does many internal checks and
maintains detailed statistics as:
```
> mkdir -p out/debug
> cd out/debug
> cmake -DCMAKE_BUILD_TYPE=Debug ../..
> make
```
This will name the shared library as `libmimalloc-debug.so`.
Finally, you can build a _secure_ version that uses guard pages, encrypted
free lists, etc., as:
```
> mkdir -p out/secure
> cd out/secure
> cmake -DMI_SECURE=ON ../..
> make
```
This will name the shared library as `libmimalloc-secure.so`.
Use `ccmake`<sup>2</sup> instead of `cmake`
to see and customize all the available build options.
Notes:
1. Install CMake: `sudo apt-get install cmake`
2. Install CCMake: `sudo apt-get install cmake-curses-gui`
## Single source
You can also directly build the single `src/static.c` file as part of your project without
needing `cmake` at all. Make sure to also add the mimalloc `include` directory to the include path.
# Using the library
The preferred usage is including `<mimalloc.h>`, linking with
the shared- or static library, and using the `mi_malloc` API exclusively for allocation. For example,
```
> gcc -o myprogram -lmimalloc myfile.c
```
mimalloc uses only safe OS calls (`mmap` and `VirtualAlloc`) and can co-exist
with other allocators linked to the same program.
If you use `cmake`, you can simply use:
```
find_package(mimalloc 1.4 REQUIRED)
```
in your `CMakeLists.txt` to find a locally installed mimalloc. Then use either:
```
target_link_libraries(myapp PUBLIC mimalloc)
```
to link with the shared (dynamic) library, or:
```
target_link_libraries(myapp PUBLIC mimalloc-static)
```
to link with the static library. See `test\CMakeLists.txt` for an example.
For best performance in C++ programs, it is also recommended to override the
global `new` and `delete` operators. For convience, mimalloc provides
[`mimalloc-new-delete.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-new-delete.h) which does this for you -- just include it in a single(!) source file in your project.
In C++, mimalloc also provides the `mi_stl_allocator` struct which implements the `std::allocator`
interface.
You can pass environment variables to print verbose messages (`MIMALLOC_VERBOSE=1`)
and statistics (`MIMALLOC_SHOW_STATS=1`) (in the debug version):
```
> env MIMALLOC_SHOW_STATS=1 ./cfrac 175451865205073170563711388363
175451865205073170563711388363 = 374456281610909315237213 * 468551
heap stats: peak total freed unit
normal 2: 16.4 kb 17.5 mb 17.5 mb 16 b ok
normal 3: 16.3 kb 15.2 mb 15.2 mb 24 b ok
normal 4: 64 b 4.6 kb 4.6 kb 32 b ok
normal 5: 80 b 118.4 kb 118.4 kb 40 b ok
normal 6: 48 b 48 b 48 b 48 b ok
normal 17: 960 b 960 b 960 b 320 b ok
heap stats: peak total freed unit
normal: 33.9 kb 32.8 mb 32.8 mb 1 b ok
huge: 0 b 0 b 0 b 1 b ok
total: 33.9 kb 32.8 mb 32.8 mb 1 b ok
malloc requested: 32.8 mb
committed: 58.2 kb 58.2 kb 58.2 kb 1 b ok
reserved: 2.0 mb 2.0 mb 2.0 mb 1 b ok
reset: 0 b 0 b 0 b 1 b ok
segments: 1 1 1
-abandoned: 0
pages: 6 6 6
-abandoned: 0
mmaps: 3
mmap fast: 0
mmap slow: 1
threads: 0
elapsed: 2.022s
process: user: 1.781s, system: 0.016s, faults: 756, reclaims: 0, rss: 2.7 mb
```
The above model of using the `mi_` prefixed API is not always possible
though in existing programs that already use the standard malloc interface,
and another option is to override the standard malloc interface
completely and redirect all calls to the _mimalloc_ library instead .
## Environment Options
You can set further options either programmatically (using [`mi_option_set`](https://microsoft.github.io/mimalloc/group__options.html)), or via environment variables:
- `MIMALLOC_SHOW_STATS=1`: show statistics when the program terminates.
- `MIMALLOC_VERBOSE=1`: show verbose messages.
- `MIMALLOC_SHOW_ERRORS=1`: show error and warning messages.
Advanced options:
- `MIMALLOC_PURGE_DELAY=N`: the delay in `N` milli-seconds (by default `10`) after which mimalloc will purge
OS pages that are not in use. This signals to the OS that the underlying physical memory can be reused which
can reduce memory fragmentation especially in long running (server) programs. Setting `N` to `0` purges immediately when
a page becomes unused which can improve memory usage but also decreases performance. Setting `N` to a higher
value like `100` can improve performance (sometimes by a lot) at the cost of potentially using more memory at times.
Setting it to `-1` disables purging completely.
- `MIMALLOC_ARENA_EAGER_COMMIT=1`: turns on eager commit for the large arenas (usually 1GiB) from which mimalloc
allocates segments and pages. This is by default
only enabled on overcommit systems (e.g. Linux) but enabling it explicitly on other systems (like Windows or macOS)
may improve performance. Note that eager commit only increases the commit but not the actual the peak resident set
(rss) so it is generally ok to enable this.
Further options for large workloads and services:
- `MIMALLOC_USE_NUMA_NODES=N`: pretend there are at most `N` NUMA nodes. If not set, the actual NUMA nodes are detected
at runtime. Setting `N` to 1 may avoid problems in some virtual environments. Also, setting it to a lower number than
the actual NUMA nodes is fine and will only cause threads to potentially allocate more memory across actual NUMA
nodes (but this can happen in any case as NUMA local allocation is always a best effort but not guaranteed).
- `MIMALLOC_ALLOW_LARGE_OS_PAGES=1`: use large OS pages (2MiB) when available; for some workloads this can significantly
improve performance. Use `MIMALLOC_VERBOSE` to check if the large OS pages are enabled -- usually one needs
to explicitly allow large OS pages (as on [Windows][windows-huge] and [Linux][linux-huge]). However, sometimes
the OS is very slow to reserve contiguous physical memory for large OS pages so use with care on systems that
can have fragmented memory (for that reason, we generally recommend to use `MIMALLOC_RESERVE_HUGE_OS_PAGES` instead whenever possible).
- `MIMALLOC_RESERVE_HUGE_OS_PAGES=N`: where `N` is the number of 1GiB _huge_ OS pages. This reserves the huge pages at
startup and sometimes this can give a large (latency) performance improvement on big workloads.
Usually it is better to not use `MIMALLOC_ALLOW_LARGE_OS_PAGES=1` in combination with this setting. Just like large
OS pages, use with care as reserving
contiguous physical memory can take a long time when memory is fragmented (but reserving the huge pages is done at
startup only once).
Note that we usually need to explicitly enable huge OS pages (as on [Windows][windows-huge] and [Linux][linux-huge])).
With huge OS pages, it may be beneficial to set the setting
`MIMALLOC_EAGER_COMMIT_DELAY=N` (`N` is 1 by default) to delay the initial `N` segments (of 4MiB)
of a thread to not allocate in the huge OS pages; this prevents threads that are short lived
and allocate just a little to take up space in the huge OS page area (which cannot be purged).
The huge pages are usually allocated evenly among NUMA nodes.
We can use `MIMALLOC_RESERVE_HUGE_OS_PAGES_AT=N` where `N` is the numa node (starting at 0) to allocate all
the huge pages at a specific numa node instead.
Use caution when using `fork` in combination with either large or huge OS pages: on a fork, the OS uses copy-on-write
for all pages in the original process including the huge OS pages. When any memory is now written in that area, the
OS will copy the entire 1GiB huge page (or 2MiB large page) which can cause the memory usage to grow in large increments.
[linux-huge]: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/tuning_and_optimizing_red_hat_enterprise_linux_for_oracle_9i_and_10g_databases/sect-oracle_9i_and_10g_tuning_guide-large_memory_optimization_big_pages_and_huge_pages-configuring_huge_pages_in_red_hat_enterprise_linux_4_or_5
[windows-huge]: https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows?view=sql-server-2017
## Secure Mode
_mimalloc_ can be build in secure mode by using the `-DMI_SECURE=ON` flags in `cmake`. This build enables various mitigations
to make mimalloc more robust against exploits. In particular:
- All internal mimalloc pages are surrounded by guard pages and the heap metadata is behind a guard page as well (so a buffer overflow
exploit cannot reach into the metadata).
- All free list pointers are
[encoded](https://github.com/microsoft/mimalloc/blob/783e3377f79ee82af43a0793910a9f2d01ac7863/include/mimalloc-internal.h#L396)
with per-page keys which is used both to prevent overwrites with a known pointer, as well as to detect heap corruption.
- Double free's are detected (and ignored).
- The free lists are initialized in a random order and allocation randomly chooses between extension and reuse within a page to
mitigate against attacks that rely on a predicable allocation order. Similarly, the larger heap blocks allocated by mimalloc
from the OS are also address randomized.
As always, evaluate with care as part of an overall security strategy as all of the above are mitigations but not guarantees.
## Debug Mode
When _mimalloc_ is built using debug mode, various checks are done at runtime to catch development errors.
- Statistics are maintained in detail for each object size. They can be shown using `MIMALLOC_SHOW_STATS=1` at runtime.
- All objects have padding at the end to detect (byte precise) heap block overflows.
- Double free's, and freeing invalid heap pointers are detected.
- Corrupted free-lists and some forms of use-after-free are detected.
# Overriding Standard Malloc
Overriding the standard `malloc` (and `new`) can be done either _dynamically_ or _statically_.
## Dynamic override
This is the recommended way to override the standard malloc interface.
### Dynamic Override on Linux, BSD
On these ELF-based systems we preload the mimalloc shared
library so all calls to the standard `malloc` interface are
resolved to the _mimalloc_ library.
```
> env LD_PRELOAD=/usr/lib/libmimalloc.so myprogram
```
You can set extra environment variables to check that mimalloc is running,
like:
```
> env MIMALLOC_VERBOSE=1 LD_PRELOAD=/usr/lib/libmimalloc.so myprogram
```
or run with the debug version to get detailed statistics:
```
> env MIMALLOC_SHOW_STATS=1 LD_PRELOAD=/usr/lib/libmimalloc-debug.so myprogram
```
### Dynamic Override on MacOS
On macOS we can also preload the mimalloc shared
library so all calls to the standard `malloc` interface are
resolved to the _mimalloc_ library.
```
> env DYLD_INSERT_LIBRARIES=/usr/lib/libmimalloc.dylib myprogram
```
Note that certain security restrictions may apply when doing this from
the [shell](https://stackoverflow.com/questions/43941322/dyld-insert-libraries-ignored-when-calling-application-through-bash).
### Dynamic Override on Windows
<span id="override_on_windows">Overriding on Windows</span> is robust and has the
particular advantage to be able to redirect all malloc/free calls that go through
the (dynamic) C runtime allocator, including those from other DLL's or libraries.
The overriding on Windows requires that you link your program explicitly with
the mimalloc DLL and use the C-runtime library as a DLL (using the `/MD` or `/MDd` switch).
Also, the `mimalloc-redirect.dll` (or `mimalloc-redirect32.dll`) must be put
in the same folder as the main `mimalloc-override.dll` at runtime (as it is a dependency).
The redirection DLL ensures that all calls to the C runtime malloc API get redirected to
mimalloc (in `mimalloc-override.dll`).
To ensure the mimalloc DLL is loaded at run-time it is easiest to insert some
call to the mimalloc API in the `main` function, like `mi_version()`
(or use the `/INCLUDE:mi_version` switch on the linker). See the `mimalloc-override-test` project
for an example on how to use this. For best performance on Windows with C++, it
is also recommended to also override the `new`/`delete` operations (by including
[`mimalloc-new-delete.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-new-delete.h) a single(!) source file in your project).
The environment variable `MIMALLOC_DISABLE_REDIRECT=1` can be used to disable dynamic
overriding at run-time. Use `MIMALLOC_VERBOSE=1` to check if mimalloc was successfully redirected.
(Note: in principle, it is possible to even patch existing executables without any recompilation
if they are linked with the dynamic C runtime (`ucrtbase.dll`) -- just put the `mimalloc-override.dll`
into the import table (and put `mimalloc-redirect.dll` in the same folder)
Such patching can be done for example with [CFF Explorer](https://ntcore.com/?page_id=388)).
## Static override
On Unix-like systems, you can also statically link with _mimalloc_ to override the standard
malloc interface. The recommended way is to link the final program with the
_mimalloc_ single object file (`mimalloc.o`). We use
an object file instead of a library file as linkers give preference to
that over archives to resolve symbols. To ensure that the standard
malloc interface resolves to the _mimalloc_ library, link it as the first
object file. For example:
```
> gcc -o myprogram mimalloc.o myfile1.c ...
```
Another way to override statically that works on all platforms, is to
link statically to mimalloc (as shown in the introduction) and include a
header file in each source file that re-defines `malloc` etc. to `mi_malloc`.
This is provided by [`mimalloc-override.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-override.h). This only works reliably though if all sources are
under your control or otherwise mixing of pointers from different heaps may occur!
## Tools
Generally, we recommend using the standard allocator with memory tracking tools, but mimalloc
can also be build to support the [address sanitizer][asan] or the excellent [Valgrind] tool.
Moreover, it can be build to support Windows event tracing ([ETW]).
This has a small performance overhead but does allow detecting memory leaks and byte-precise
buffer overflows directly on final executables. See also the `test/test-wrong.c` file to test with various tools.
### Valgrind
To build with [valgrind] support, use the `MI_TRACK_VALGRIND=ON` cmake option:
```
> cmake ../.. -DMI_TRACK_VALGRIND=ON
```
This can also be combined with secure mode or debug mode.
You can then run your programs directly under valgrind:
```
> valgrind <myprogram>
```
If you rely on overriding `malloc`/`free` by mimalloc (instead of using the `mi_malloc`/`mi_free` API directly),
you also need to tell `valgrind` to not intercept those calls itself, and use:
```
> MIMALLOC_SHOW_STATS=1 valgrind --soname-synonyms=somalloc=*mimalloc* -- <myprogram>
```
By setting the `MIMALLOC_SHOW_STATS` environment variable you can check that mimalloc is indeed
used and not the standard allocator. Even though the [Valgrind option][valgrind-soname]
is called `--soname-synonyms`, this also
works when overriding with a static library or object file. Unfortunately, it is not possible to
dynamically override mimalloc using `LD_PRELOAD` together with `valgrind`.
See also the `test/test-wrong.c` file to test with `valgrind`.
Valgrind support is in its initial development -- please report any issues.
[Valgrind]: https://valgrind.org/
[valgrind-soname]: https://valgrind.org/docs/manual/manual-core.html#opt.soname-synonyms
### ASAN
To build with the address sanitizer, use the `-DMI_TRACK_ASAN=ON` cmake option:
```
> cmake ../.. -DMI_TRACK_ASAN=ON
```
This can also be combined with secure mode or debug mode.
You can then run your programs as:'
```
> ASAN_OPTIONS=verbosity=1 <myprogram>
```
When you link a program with an address sanitizer build of mimalloc, you should
generally compile that program too with the address sanitizer enabled.
For example, assuming you build mimalloc in `out/debug`:
```
clang -g -o test-wrong -Iinclude test/test-wrong.c out/debug/libmimalloc-asan-debug.a -lpthread -fsanitize=address -fsanitize-recover=address
```
Since the address sanitizer redirects the standard allocation functions, on some platforms (macOSX for example)
it is required to compile mimalloc with `-DMI_OVERRIDE=OFF`.
Adress sanitizer support is in its initial development -- please report any issues.
[asan]: https://github.com/google/sanitizers/wiki/AddressSanitizer
### ETW
Event tracing for Windows ([ETW]) provides a high performance way to capture all allocations though
mimalloc and analyze them later. To build with ETW support, use the `-DMI_TRACK_ETW=ON` cmake option.
You can then capture an allocation trace using the Windows performance recorder (WPR), using the
`src/prim/windows/etw-mimalloc.wprp` profile. In an admin prompt, you can use:
```
> wpr -start src\prim\windows\etw-mimalloc.wprp -filemode
> <my_mimalloc_program>
> wpr -stop <my_mimalloc_program>.etl
```
and then open `<my_mimalloc_program>.etl` in the Windows Performance Analyzer (WPA), or
use a tool like [TraceControl] that is specialized for analyzing mimalloc traces.
[ETW]: https://learn.microsoft.com/en-us/windows-hardware/test/wpt/event-tracing-for-windows
[TraceControl]: https://github.com/xinglonghe/TraceControl
# Performance
Last update: 2021-01-30
We tested _mimalloc_ against many other top allocators over a wide
range of benchmarks, ranging from various real world programs to
synthetic benchmarks that see how the allocator behaves under more
extreme circumstances. In our benchmark suite, _mimalloc_ outperforms other leading
allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc), and has a similar memory footprint. A nice property is that it
does consistently well over the wide range of benchmarks.
General memory allocators are interesting as there exists no algorithm that is
optimal -- for a given allocator one can usually construct a workload
where it does not do so well. The goal is thus to find an allocation
strategy that performs well over a wide range of benchmarks without
suffering from (too much) underperformance in less common situations.
As always, interpret these results with care since some benchmarks test synthetic
or uncommon situations that may never apply to your workloads. For example, most
allocators do not do well on `xmalloc-testN` but that includes even the best
industrial allocators like _jemalloc_ and _tcmalloc_ that are used in some of
the world's largest systems (like Chrome or FreeBSD).
Also, the benchmarks here do not measure the behaviour on very large and long-running server workloads,
or worst-case latencies of allocation. Much work has gone into `mimalloc` to work well on such
workloads (for example, to reduce virtual memory fragmentation on long-running services)
but such optimizations are not always reflected in the current benchmark suite.
We show here only an overview -- for
more specific details and further benchmarks we refer to the
[technical report](https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action).
The benchmark suite is automated and available separately
as [mimalloc-bench](https://github.com/daanx/mimalloc-bench).
## Benchmark Results on a 16-core AMD 5950x (Zen3)
Testing on the 16-core AMD 5950x processor at 3.4Ghz (4.9Ghz boost), with
with 32GiB memory at 3600Mhz, running Ubuntu 20.04 with glibc 2.31 and GCC 9.3.0.
We measure three versions of _mimalloc_: the main version `mi` (tag:v1.7.0),
the new v2.0 beta version as `xmi` (tag:v2.0.0), and the main version in secure mode as `smi` (tag:v1.7.0).
The other allocators are
Google's [_tcmalloc_](https://github.com/gperftools/gperftools) (`tc`, tag:gperftools-2.8.1) used in Chrome,
Facebook's [_jemalloc_](https://github.com/jemalloc/jemalloc) (`je`, tag:5.2.1) by Jason Evans used in Firefox and FreeBSD,
the Intel thread building blocks [allocator](https://github.com/intel/tbb) (`tbb`, tag:v2020.3),
[rpmalloc](https://github.com/mjansson/rpmalloc) (`rp`,tag:1.4.1) by Mattias Jansson,
the original scalable [_Hoard_](https://github.com/emeryberger/Hoard) (git:d880f72) allocator by Emery Berger \[1],
the memory compacting [_Mesh_](https://github.com/plasma-umass/Mesh) (git:67ff31a) allocator by
Bobby Powers _et al_ \[8],
and finally the default system allocator (`glibc`, 2.31) (based on _PtMalloc2_).
<img width="90%" src="doc/bench-2021/bench-amd5950x-2021-01-30-a.svg"/>
<img width="90%" src="doc/bench-2021/bench-amd5950x-2021-01-30-b.svg"/>
Any benchmarks ending in `N` run on all 32 logical cores in parallel.
Results are averaged over 10 runs and reported relative
to mimalloc (where 1.2 means it took 1.2&times; longer to run).
The legend also contains the _overall relative score_ between the
allocators where 100 points is the maximum if an allocator is fastest on
all benchmarks.
The single threaded _cfrac_ benchmark by Dave Barrett is an implementation of
continued fraction factorization which uses many small short-lived allocations.
All allocators do well on such common usage, where _mimalloc_ is just a tad
faster than _tcmalloc_ and
_jemalloc_.
The _leanN_ program is interesting as a large realistic and
concurrent workload of the [Lean](https://github.com/leanprover/lean)
theorem prover compiling its own standard library, and there is a 13%
speedup over _tcmalloc_. This is
quite significant: if Lean spends 20% of its time in the
allocator that means that _mimalloc_ is 1.6&times; faster than _tcmalloc_
here. (This is surprising as that is not measured in a pure
allocation benchmark like _alloc-test_. We conjecture that we see this
outsized improvement here because _mimalloc_ has better locality in
the allocation which improves performance for the *other* computations
in a program as well).
The single threaded _redis_ benchmark again show that most allocators do well on such workloads.
The _larsonN_ server benchmark by Larson and Krishnan \[2] allocates and frees between threads. They observed this
behavior (which they call _bleeding_) in actual server applications, and the benchmark simulates this.
Here, _mimalloc_ is quite a bit faster than _tcmalloc_ and _jemalloc_ probably due to the object migration between different threads.
The _mstressN_ workload performs many allocations and re-allocations,
and migrates objects between threads (as in _larsonN_). However, it also
creates and destroys the _N_ worker threads a few times keeping some objects
alive beyond the life time of the allocating thread. We observed this
behavior in many larger server applications.
The [_rptestN_](https://github.com/mjansson/rpmalloc-benchmark) benchmark
by Mattias Jansson is a allocator test originally designed
for _rpmalloc_, and tries to simulate realistic allocation patterns over
multiple threads. Here the differences between allocators become more apparent.
The second benchmark set tests specific aspects of the allocators and
shows even more extreme differences between them.
The _alloc-test_, by
[OLogN Technologies AG](http://ithare.com/testing-memory-allocators-ptmalloc2-tcmalloc-hoard-jemalloc-while-trying-to-simulate-real-world-loads/), is a very allocation intensive benchmark doing millions of
allocations in various size classes. The test is scaled such that when an
allocator performs almost identically on _alloc-test1_ as _alloc-testN_ it
means that it scales linearly.
The _sh6bench_ and _sh8bench_ benchmarks are
developed by [MicroQuill](http://www.microquill.com/) as part of SmartHeap.
In _sh6bench_ _mimalloc_ does much
better than the others (more than 2.5&times; faster than _jemalloc_).
We cannot explain this well but believe it is
caused in part by the "reverse" free-ing pattern in _sh6bench_.
The _sh8bench_ is a variation with object migration
between threads; whereas _tcmalloc_ did well on _sh6bench_, the addition of object migration causes it to be 10&times; slower than before.
The _xmalloc-testN_ benchmark by Lever and Boreham \[5] and Christian Eder, simulates an asymmetric workload where
some threads only allocate, and others only free -- they observed this pattern in
larger server applications. Here we see that
the _mimalloc_ technique of having non-contended sharded thread free
lists pays off as it outperforms others by a very large margin. Only _rpmalloc_, _tbb_, and _glibc_ also scale well on this benchmark.
The _cache-scratch_ benchmark by Emery Berger \[1], and introduced with
the Hoard allocator to test for _passive-false_ sharing of cache lines.
With a single thread they all
perform the same, but when running with multiple threads the potential allocator
induced false sharing of the cache lines can cause large run-time differences.
Crundal \[6] describes in detail why the false cache line sharing occurs in the _tcmalloc_ design, and also discusses how this
can be avoided with some small implementation changes.
Only the _tbb_, _rpmalloc_ and _mesh_ allocators also avoid the
cache line sharing completely, while _Hoard_ and _glibc_ seem to mitigate
the effects. Kukanov and Voss \[7] describe in detail
how the design of _tbb_ avoids the false cache line sharing.
## On a 36-core Intel Xeon
For completeness, here are the results on a big Amazon
[c5.18xlarge](https://aws.amazon.com/ec2/instance-types/#Compute_Optimized) instance
consisting of a 2&times;18-core Intel Xeon (Cascade Lake) at 3.4GHz (boost 3.5GHz)
with 144GiB ECC memory, running Ubuntu 20.04 with glibc 2.31, GCC 9.3.0, and
Clang 10.0.0. This time, the mimalloc allocators (mi, xmi, and smi) were
compiled with the Clang compiler instead of GCC.
The results are similar to the AMD results but it is interesting to
see the differences in the _larsonN_, _mstressN_, and _xmalloc-testN_ benchmarks.
<img width="90%" src="doc/bench-2021/bench-c5-18xlarge-2021-01-30-a.svg"/>
<img width="90%" src="doc/bench-2021/bench-c5-18xlarge-2021-01-30-b.svg"/>
## Peak Working Set
The following figure shows the peak working set (rss) of the allocators
on the benchmarks (on the c5.18xlarge instance).
<img width="90%" src="doc/bench-2021/bench-c5-18xlarge-2021-01-30-rss-a.svg"/>
<img width="90%" src="doc/bench-2021/bench-c5-18xlarge-2021-01-30-rss-b.svg"/>
Note that the _xmalloc-testN_ memory usage should be disregarded as it
allocates more the faster the program runs. Similarly, memory usage of
_larsonN_, _mstressN_, _rptestN_ and _sh8bench_ can vary depending on scheduling and
speed. Nevertheless, we hope to improve the memory usage on _mstressN_
and _rptestN_ (just as _cfrac_, _larsonN_ and _sh8bench_ have a small working set which skews the results).
<!--
# Previous Benchmarks
Todo: should we create a separate page for this?
## Benchmark Results on 36-core Intel: 2020-01-20
Testing on a big Amazon EC2 compute instance
([c5.18xlarge](https://aws.amazon.com/ec2/instance-types/#Compute_Optimized))
consisting of a 72 processor Intel Xeon at 3GHz
with 144GiB ECC memory, running Ubuntu 18.04.1 with glibc 2.27 and GCC 7.4.0.
The measured allocators are _mimalloc_ (xmi, tag:v1.4.0, page reset enabled)
and its secure build as _smi_,
Google's [_tcmalloc_](https://github.com/gperftools/gperftools) (tc, tag:gperftools-2.7) used in Chrome,
Facebook's [_jemalloc_](https://github.com/jemalloc/jemalloc) (je, tag:5.2.1) by Jason Evans used in Firefox and FreeBSD,
the Intel thread building blocks [allocator](https://github.com/intel/tbb) (tbb, tag:2020),
[rpmalloc](https://github.com/mjansson/rpmalloc) (rp,tag:1.4.0) by Mattias Jansson,
the original scalable [_Hoard_](https://github.com/emeryberger/Hoard) (tag:3.13) allocator by Emery Berger \[1],
the memory compacting [_Mesh_](https://github.com/plasma-umass/Mesh) (git:51222e7) allocator by
Bobby Powers _et al_ \[8],
and finally the default system allocator (glibc, 2.27) (based on _PtMalloc2_).
<img width="90%" src="doc/bench-2020/bench-c5-18xlarge-2020-01-20-a.svg"/>
<img width="90%" src="doc/bench-2020/bench-c5-18xlarge-2020-01-20-b.svg"/>
The following figure shows the peak working set (rss) of the allocators
on the benchmarks (on the c5.18xlarge instance).
<img width="90%" src="doc/bench-2020/bench-c5-18xlarge-2020-01-20-rss-a.svg"/>
<img width="90%" src="doc/bench-2020/bench-c5-18xlarge-2020-01-20-rss-b.svg"/>
## On 24-core AMD Epyc, 2020-01-16
For completeness, here are the results on a
[r5a.12xlarge](https://aws.amazon.com/ec2/instance-types/#Memory_Optimized) instance
having a 48 processor AMD Epyc 7000 at 2.5GHz with 384GiB of memory.
The results are similar to the Intel results but it is interesting to
see the differences in the _larsonN_, _mstressN_, and _xmalloc-testN_ benchmarks.
<img width="90%" src="doc/bench-2020/bench-r5a-12xlarge-2020-01-16-a.svg"/>
<img width="90%" src="doc/bench-2020/bench-r5a-12xlarge-2020-01-16-b.svg"/>
-->
# References
- \[1] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
_Hoard: A Scalable Memory Allocator for Multithreaded Applications_
the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA, November 2000.
[pdf](http://www.cs.utexas.edu/users/mckinley/papers/asplos-2000.pdf)
- \[2] P. Larson and M. Krishnan. _Memory allocation for long-running server applications_.
In ISMM, Vancouver, B.C., Canada, 1998. [pdf](http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.45.1947&rep=rep1&type=pdf)
- \[3] D. Grunwald, B. Zorn, and R. Henderson.
_Improving the cache locality of memory allocation_. In R. Cartwright, editor,
Proceedings of the Conference on Programming Language Design and Implementation, pages 177186, New York, NY, USA, June 1993. [pdf](http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.43.6621&rep=rep1&type=pdf)
- \[4] J. Barnes and P. Hut. _A hierarchical O(n*log(n)) force-calculation algorithm_. Nature, 324:446-449, 1986.
- \[5] C. Lever, and D. Boreham. _Malloc() Performance in a Multithreaded Linux Environment._
In USENIX Annual Technical Conference, Freenix Session. San Diego, CA. Jun. 2000.
Available at <https://github.com/kuszmaul/SuperMalloc/tree/master/tests>
- \[6] Timothy Crundal. _Reducing Active-False Sharing in TCMalloc_. 2016. CS16S1 project at the Australian National University. [pdf](http://courses.cecs.anu.edu.au/courses/CSPROJECTS/16S1/Reports/Timothy_Crundal_Report.pdf)
- \[7] Alexey Kukanov, and Michael J Voss.
_The Foundations for Scalable Multi-Core Software in Intel Threading Building Blocks._
Intel Technology Journal 11 (4). 2007
- \[8] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor.
_Mesh: Compacting Memory Management for C/C++_
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'19), June 2019, pages 333-346.
<!--
- \[9] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou, Juliana Franco, Matthew J Parkinson,
Alex Shamis, Christoph M Wintersteiger, and David Chisnall.
_Snmalloc: A Message Passing Allocator._
In Proceedings of the 2019 ACM SIGPLAN International Symposium on Memory Management, 122135. ACM. 2019.
-->
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
# Older Release Notes
* 2021-11-14, `v1.7.3`, `v2.0.3` (beta): improved WASM support, improved macOS support and performance (including
M1), improved performance for v2 for large objects, Python integration improvements, more standard
installation directories, various small fixes.
* 2021-06-17, `v1.7.2`, `v2.0.2` (beta): support M1, better installation layout on Linux, fix
thread_id on Android, prefer 2-6TiB area for aligned allocation to work better on pre-windows 8, various small fixes.
* 2021-04-06, `v1.7.1`, `v2.0.1` (beta): fix bug in arena allocation for huge pages, improved aslr on large allocations, initial M1 support (still experimental).
* 2021-01-31, `v2.0.0`: beta release 2.0: new slice algorithm for managing internal mimalloc pages.
* 2021-01-31, `v1.7.0`: stable release 1.7: support explicit user provided memory regions, more precise statistics,
improve macOS overriding, initial support for Apple M1, improved DragonFly support, faster memcpy on Windows, various small fixes.
* 2020-09-24, `v1.6.7`: stable release 1.6: using standard C atomics, passing tsan testing, improved
handling of failing to commit on Windows, add [`mi_process_info`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc.h#L156) api call.
* 2020-08-06, `v1.6.4`: stable release 1.6: improved error recovery in low-memory situations,
support for IllumOS and Haiku, NUMA support for Vista/XP, improved NUMA detection for AMD Ryzen, ubsan support.
* 2020-05-05, `v1.6.3`: stable release 1.6: improved behavior in out-of-memory situations, improved malloc zones on macOS,
build PIC static libraries by default, add option to abort on out-of-memory, line buffered statistics.
* 2020-04-20, `v1.6.2`: stable release 1.6: fix compilation on Android, MingW, Raspberry, and Conda,
stability fix for Windows 7, fix multiple mimalloc instances in one executable, fix `strnlen` overload,
fix aligned debug padding.
* 2020-02-17, `v1.6.1`: stable release 1.6: minor updates (build with clang-cl, fix alignment issue for small objects).
* 2020-02-09, `v1.6.0`: stable release 1.6: fixed potential memory leak, improved overriding
and thread local support on FreeBSD, NetBSD, DragonFly, and macOSX. New byte-precise
heap block overflow detection in debug mode (besides the double-free detection and free-list
corruption detection). Add `nodiscard` attribute to most allocation functions.
Enable `MIMALLOC_PAGE_RESET` by default. New reclamation strategy for abandoned heap pages
for better memory footprint.
* 2020-02-09, `v1.5.0`: stable release 1.5: improved free performance, small bug fixes.
* 2020-01-22, `v1.4.0`: stable release 1.4: improved performance for delayed OS page reset,
more eager concurrent free, addition of STL allocator, fixed potential memory leak.
* 2020-01-15, `v1.3.0`: stable release 1.3: bug fixes, improved randomness and [stronger
free list encoding](https://github.com/microsoft/mimalloc/blob/783e3377f79ee82af43a0793910a9f2d01ac7863/include/mimalloc-internal.h#L396) in secure mode.
* 2019-12-22, `v1.2.2`: stable release 1.2: minor updates.
* 2019-11-22, `v1.2.0`: stable release 1.2: bug fixes, improved secure mode (free list corruption checks, double free mitigation). Improved dynamic overriding on Windows.
* 2019-10-07, `v1.1.0`: stable release 1.1.
* 2019-09-01, `v1.0.8`: pre-release 8: more robust windows dynamic overriding, initial huge page support.
* 2019-08-10, `v1.0.6`: pre-release 6: various performance improvements.

41
3rdparty/mimalloc/SECURITY.md vendored Normal file
View File

@ -0,0 +1,41 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.8 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

View File

@ -0,0 +1,66 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_NEW_DELETE_H
#define MIMALLOC_NEW_DELETE_H
// ----------------------------------------------------------------------------
// This header provides convenient overrides for the new and
// delete operations in C++.
//
// This header should be included in only one source file!
//
// On Windows, or when linking dynamically with mimalloc, these
// can be more performant than the standard new-delete operations.
// See <https://en.cppreference.com/w/cpp/memory/new/operator_new>
// ---------------------------------------------------------------------------
#if defined(__cplusplus)
#include <new>
#include <mimalloc.h>
#if defined(_MSC_VER) && defined(_Ret_notnull_) && defined(_Post_writable_byte_size_)
// stay consistent with VCRT definitions
#define mi_decl_new(n) mi_decl_nodiscard mi_decl_restrict _Ret_notnull_ _Post_writable_byte_size_(n)
#define mi_decl_new_nothrow(n) mi_decl_nodiscard mi_decl_restrict _Ret_maybenull_ _Success_(return != NULL) _Post_writable_byte_size_(n)
#else
#define mi_decl_new(n) mi_decl_nodiscard mi_decl_restrict
#define mi_decl_new_nothrow(n) mi_decl_nodiscard mi_decl_restrict
#endif
void operator delete(void* p) noexcept { mi_free(p); };
void operator delete[](void* p) noexcept { mi_free(p); };
void operator delete (void* p, const std::nothrow_t&) noexcept { mi_free(p); }
void operator delete[](void* p, const std::nothrow_t&) noexcept { mi_free(p); }
mi_decl_new(n) void* operator new(std::size_t n) noexcept(false) { return mi_new(n); }
mi_decl_new(n) void* operator new[](std::size_t n) noexcept(false) { return mi_new(n); }
mi_decl_new_nothrow(n) void* operator new (std::size_t n, const std::nothrow_t& tag) noexcept { (void)(tag); return mi_new_nothrow(n); }
mi_decl_new_nothrow(n) void* operator new[](std::size_t n, const std::nothrow_t& tag) noexcept { (void)(tag); return mi_new_nothrow(n); }
#if (__cplusplus >= 201402L || _MSC_VER >= 1916)
void operator delete (void* p, std::size_t n) noexcept { mi_free_size(p,n); };
void operator delete[](void* p, std::size_t n) noexcept { mi_free_size(p,n); };
#endif
#if (__cplusplus > 201402L || defined(__cpp_aligned_new))
void operator delete (void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void operator delete[](void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void operator delete (void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast<size_t>(al)); };
void operator delete[](void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast<size_t>(al)); };
void operator delete (void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void operator delete[](void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void* operator new (std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast<size_t>(al)); }
void* operator new[](std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast<size_t>(al)); }
void* operator new (std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast<size_t>(al)); }
void* operator new[](std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast<size_t>(al)); }
#endif
#endif
#endif // MIMALLOC_NEW_DELETE_H

View File

@ -0,0 +1,67 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_OVERRIDE_H
#define MIMALLOC_OVERRIDE_H
/* ----------------------------------------------------------------------------
This header can be used to statically redirect malloc/free and new/delete
to the mimalloc variants. This can be useful if one can include this file on
each source file in a project (but be careful when using external code to
not accidentally mix pointers from different allocators).
-----------------------------------------------------------------------------*/
#include <mimalloc.h>
// Standard C allocation
#define malloc(n) mi_malloc(n)
#define calloc(n,c) mi_calloc(n,c)
#define realloc(p,n) mi_realloc(p,n)
#define free(p) mi_free(p)
#define strdup(s) mi_strdup(s)
#define strndup(s,n) mi_strndup(s,n)
#define realpath(f,n) mi_realpath(f,n)
// Microsoft extensions
#define _expand(p,n) mi_expand(p,n)
#define _msize(p) mi_usable_size(p)
#define _recalloc(p,n,c) mi_recalloc(p,n,c)
#define _strdup(s) mi_strdup(s)
#define _strndup(s,n) mi_strndup(s,n)
#define _wcsdup(s) (wchar_t*)mi_wcsdup((const unsigned short*)(s))
#define _mbsdup(s) mi_mbsdup(s)
#define _dupenv_s(b,n,v) mi_dupenv_s(b,n,v)
#define _wdupenv_s(b,n,v) mi_wdupenv_s((unsigned short*)(b),n,(const unsigned short*)(v))
// Various Posix and Unix variants
#define reallocf(p,n) mi_reallocf(p,n)
#define malloc_size(p) mi_usable_size(p)
#define malloc_usable_size(p) mi_usable_size(p)
#define cfree(p) mi_free(p)
#define valloc(n) mi_valloc(n)
#define pvalloc(n) mi_pvalloc(n)
#define reallocarray(p,s,n) mi_reallocarray(p,s,n)
#define reallocarr(p,s,n) mi_reallocarr(p,s,n)
#define memalign(a,n) mi_memalign(a,n)
#define aligned_alloc(a,n) mi_aligned_alloc(a,n)
#define posix_memalign(p,a,n) mi_posix_memalign(p,a,n)
#define _posix_memalign(p,a,n) mi_posix_memalign(p,a,n)
// Microsoft aligned variants
#define _aligned_malloc(n,a) mi_malloc_aligned(n,a)
#define _aligned_realloc(p,n,a) mi_realloc_aligned(p,n,a)
#define _aligned_recalloc(p,s,n,a) mi_aligned_recalloc(p,s,n,a)
#define _aligned_msize(p,a,o) mi_usable_size(p)
#define _aligned_free(p) mi_free(p)
#define _aligned_offset_malloc(n,a,o) mi_malloc_aligned_at(n,a,o)
#define _aligned_offset_realloc(p,n,a,o) mi_realloc_aligned_at(p,n,a,o)
#define _aligned_offset_recalloc(p,s,n,a,o) mi_recalloc_aligned_at(p,s,n,a,o)
#endif // MIMALLOC_OVERRIDE_H

565
3rdparty/mimalloc/include/mimalloc.h vendored Normal file
View File

@ -0,0 +1,565 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_H
#define MIMALLOC_H
#define MI_MALLOC_VERSION 212 // major + 2 digits minor
// ------------------------------------------------------
// Compiler specific attributes
// ------------------------------------------------------
#ifdef __cplusplus
#if (__cplusplus >= 201103L) || (_MSC_VER > 1900) // C++11
#define mi_attr_noexcept noexcept
#else
#define mi_attr_noexcept throw()
#endif
#else
#define mi_attr_noexcept
#endif
#if defined(__cplusplus) && (__cplusplus >= 201703)
#define mi_decl_nodiscard [[nodiscard]]
#elif (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__) // includes clang, icc, and clang-cl
#define mi_decl_nodiscard __attribute__((warn_unused_result))
#elif defined(_HAS_NODISCARD)
#define mi_decl_nodiscard _NODISCARD
#elif (_MSC_VER >= 1700)
#define mi_decl_nodiscard _Check_return_
#else
#define mi_decl_nodiscard
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#if !defined(MI_SHARED_LIB)
#define mi_decl_export
#elif defined(MI_SHARED_LIB_EXPORT)
#define mi_decl_export __declspec(dllexport)
#else
#define mi_decl_export __declspec(dllimport)
#endif
#if defined(__MINGW32__)
#define mi_decl_restrict
#define mi_attr_malloc __attribute__((malloc))
#else
#if (_MSC_VER >= 1900) && !defined(__EDG__)
#define mi_decl_restrict __declspec(allocator) __declspec(restrict)
#else
#define mi_decl_restrict __declspec(restrict)
#endif
#define mi_attr_malloc
#endif
#define mi_cdecl __cdecl
#define mi_attr_alloc_size(s)
#define mi_attr_alloc_size2(s1,s2)
#define mi_attr_alloc_align(p)
#elif defined(__GNUC__) // includes clang and icc
#if defined(MI_SHARED_LIB) && defined(MI_SHARED_LIB_EXPORT)
#define mi_decl_export __attribute__((visibility("default")))
#else
#define mi_decl_export
#endif
#define mi_cdecl // leads to warnings... __attribute__((cdecl))
#define mi_decl_restrict
#define mi_attr_malloc __attribute__((malloc))
#if (defined(__clang_major__) && (__clang_major__ < 4)) || (__GNUC__ < 5)
#define mi_attr_alloc_size(s)
#define mi_attr_alloc_size2(s1,s2)
#define mi_attr_alloc_align(p)
#elif defined(__INTEL_COMPILER)
#define mi_attr_alloc_size(s) __attribute__((alloc_size(s)))
#define mi_attr_alloc_size2(s1,s2) __attribute__((alloc_size(s1,s2)))
#define mi_attr_alloc_align(p)
#else
#define mi_attr_alloc_size(s) __attribute__((alloc_size(s)))
#define mi_attr_alloc_size2(s1,s2) __attribute__((alloc_size(s1,s2)))
#define mi_attr_alloc_align(p) __attribute__((alloc_align(p)))
#endif
#else
#define mi_cdecl
#define mi_decl_export
#define mi_decl_restrict
#define mi_attr_malloc
#define mi_attr_alloc_size(s)
#define mi_attr_alloc_size2(s1,s2)
#define mi_attr_alloc_align(p)
#endif
// ------------------------------------------------------
// Includes
// ------------------------------------------------------
#include <stddef.h> // size_t
#include <stdbool.h> // bool
#include <stdint.h> // INTPTR_MAX
#ifdef __cplusplus
extern "C" {
#endif
// ------------------------------------------------------
// Standard malloc interface
// ------------------------------------------------------
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2);
mi_decl_nodiscard mi_decl_export void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2);
mi_decl_export void* mi_expand(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2);
mi_decl_export void mi_free(void* p) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept mi_attr_malloc;
mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept mi_attr_malloc;
mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept mi_attr_malloc;
// ------------------------------------------------------
// Extended functionality
// ------------------------------------------------------
#define MI_SMALL_WSIZE_MAX (128)
#define MI_SMALL_SIZE_MAX (MI_SMALL_WSIZE_MAX*sizeof(void*))
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2);
mi_decl_nodiscard mi_decl_export void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept mi_attr_alloc_size2(2,3);
mi_decl_nodiscard mi_decl_export void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export size_t mi_usable_size(const void* p) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export size_t mi_good_size(size_t size) mi_attr_noexcept;
// ------------------------------------------------------
// Internals
// ------------------------------------------------------
typedef void (mi_cdecl mi_deferred_free_fun)(bool force, unsigned long long heartbeat, void* arg);
mi_decl_export void mi_register_deferred_free(mi_deferred_free_fun* deferred_free, void* arg) mi_attr_noexcept;
typedef void (mi_cdecl mi_output_fun)(const char* msg, void* arg);
mi_decl_export void mi_register_output(mi_output_fun* out, void* arg) mi_attr_noexcept;
typedef void (mi_cdecl mi_error_fun)(int err, void* arg);
mi_decl_export void mi_register_error(mi_error_fun* fun, void* arg);
mi_decl_export void mi_collect(bool force) mi_attr_noexcept;
mi_decl_export int mi_version(void) mi_attr_noexcept;
mi_decl_export void mi_stats_reset(void) mi_attr_noexcept;
mi_decl_export void mi_stats_merge(void) mi_attr_noexcept;
mi_decl_export void mi_stats_print(void* out) mi_attr_noexcept; // backward compatibility: `out` is ignored and should be NULL
mi_decl_export void mi_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept;
mi_decl_export void mi_process_init(void) mi_attr_noexcept;
mi_decl_export void mi_thread_init(void) mi_attr_noexcept;
mi_decl_export void mi_thread_done(void) mi_attr_noexcept;
mi_decl_export void mi_thread_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept;
mi_decl_export void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_msecs,
size_t* current_rss, size_t* peak_rss,
size_t* current_commit, size_t* peak_commit, size_t* page_faults) mi_attr_noexcept;
// -------------------------------------------------------------------------------------
// Aligned allocation
// Note that `alignment` always follows `size` for consistency with unaligned
// allocation, but unfortunately this differs from `posix_memalign` and `aligned_alloc`.
// -------------------------------------------------------------------------------------
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2) mi_attr_alloc_align(3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2);
mi_decl_nodiscard mi_decl_export void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(2) mi_attr_alloc_align(3);
mi_decl_nodiscard mi_decl_export void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(2);
// -------------------------------------------------------------------------------------
// Heaps: first-class, but can only allocate from the same thread that created it.
// -------------------------------------------------------------------------------------
struct mi_heap_s;
typedef struct mi_heap_s mi_heap_t;
mi_decl_nodiscard mi_decl_export mi_heap_t* mi_heap_new(void);
mi_decl_export void mi_heap_delete(mi_heap_t* heap);
mi_decl_export void mi_heap_destroy(mi_heap_t* heap);
mi_decl_export mi_heap_t* mi_heap_set_default(mi_heap_t* heap);
mi_decl_export mi_heap_t* mi_heap_get_default(void);
mi_decl_export mi_heap_t* mi_heap_get_backing(void);
mi_decl_export void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(3);
mi_decl_nodiscard mi_decl_export void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept mi_attr_alloc_size2(3,4);
mi_decl_nodiscard mi_decl_export void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept mi_attr_malloc;
mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept mi_attr_malloc;
mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept mi_attr_malloc;
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3) mi_attr_alloc_align(4);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3);
mi_decl_nodiscard mi_decl_export void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(3) mi_attr_alloc_align(4);
mi_decl_nodiscard mi_decl_export void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(3);
// --------------------------------------------------------------------------------
// Zero initialized re-allocation.
// Only valid on memory that was originally allocated with zero initialization too.
// e.g. `mi_calloc`, `mi_zalloc`, `mi_zalloc_aligned` etc.
// see <https://github.com/microsoft/mimalloc/issues/63#issuecomment-508272992>
// --------------------------------------------------------------------------------
mi_decl_nodiscard mi_decl_export void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export void* mi_recalloc(void* p, size_t newcount, size_t size) mi_attr_noexcept mi_attr_alloc_size2(2,3);
mi_decl_nodiscard mi_decl_export void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(2) mi_attr_alloc_align(3);
mi_decl_nodiscard mi_decl_export void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept mi_attr_alloc_size2(2,3) mi_attr_alloc_align(4);
mi_decl_nodiscard mi_decl_export void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size2(2,3);
mi_decl_nodiscard mi_decl_export void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(3);
mi_decl_nodiscard mi_decl_export void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t newcount, size_t size) mi_attr_noexcept mi_attr_alloc_size2(3,4);
mi_decl_nodiscard mi_decl_export void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(3) mi_attr_alloc_align(4);
mi_decl_nodiscard mi_decl_export void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(3);
mi_decl_nodiscard mi_decl_export void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept mi_attr_alloc_size2(3,4) mi_attr_alloc_align(5);
mi_decl_nodiscard mi_decl_export void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size2(3,4);
// ------------------------------------------------------
// Analysis
// ------------------------------------------------------
mi_decl_export bool mi_heap_contains_block(mi_heap_t* heap, const void* p);
mi_decl_export bool mi_heap_check_owned(mi_heap_t* heap, const void* p);
mi_decl_export bool mi_check_owned(const void* p);
// An area of heap space contains blocks of a single size.
typedef struct mi_heap_area_s {
void* blocks; // start of the area containing heap blocks
size_t reserved; // bytes reserved for this area (virtual)
size_t committed; // current available bytes for this area
size_t used; // number of allocated blocks
size_t block_size; // size in bytes of each block
size_t full_block_size; // size in bytes of a full block including padding and metadata.
} mi_heap_area_t;
typedef bool (mi_cdecl mi_block_visit_fun)(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg);
mi_decl_export bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_all_blocks, mi_block_visit_fun* visitor, void* arg);
// Experimental
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export bool mi_is_redirected(void) mi_attr_noexcept;
mi_decl_export int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept;
mi_decl_export int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept;
mi_decl_export int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept;
mi_decl_export bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept;
mi_decl_export void mi_debug_show_arenas(void) mi_attr_noexcept;
// Experimental: heaps associated with specific memory arena's
typedef int mi_arena_id_t;
mi_decl_export void* mi_arena_area(mi_arena_id_t arena_id, size_t* size);
mi_decl_export int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept;
mi_decl_export int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept;
mi_decl_export bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept;
#if MI_MALLOC_VERSION >= 182
// Create a heap that only allocates in the specified arena
mi_decl_nodiscard mi_decl_export mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id);
#endif
// deprecated
mi_decl_export int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept;
// ------------------------------------------------------
// Convenience
// ------------------------------------------------------
#define mi_malloc_tp(tp) ((tp*)mi_malloc(sizeof(tp)))
#define mi_zalloc_tp(tp) ((tp*)mi_zalloc(sizeof(tp)))
#define mi_calloc_tp(tp,n) ((tp*)mi_calloc(n,sizeof(tp)))
#define mi_mallocn_tp(tp,n) ((tp*)mi_mallocn(n,sizeof(tp)))
#define mi_reallocn_tp(p,tp,n) ((tp*)mi_reallocn(p,n,sizeof(tp)))
#define mi_recalloc_tp(p,tp,n) ((tp*)mi_recalloc(p,n,sizeof(tp)))
#define mi_heap_malloc_tp(hp,tp) ((tp*)mi_heap_malloc(hp,sizeof(tp)))
#define mi_heap_zalloc_tp(hp,tp) ((tp*)mi_heap_zalloc(hp,sizeof(tp)))
#define mi_heap_calloc_tp(hp,tp,n) ((tp*)mi_heap_calloc(hp,n,sizeof(tp)))
#define mi_heap_mallocn_tp(hp,tp,n) ((tp*)mi_heap_mallocn(hp,n,sizeof(tp)))
#define mi_heap_reallocn_tp(hp,p,tp,n) ((tp*)mi_heap_reallocn(hp,p,n,sizeof(tp)))
#define mi_heap_recalloc_tp(hp,p,tp,n) ((tp*)mi_heap_recalloc(hp,p,n,sizeof(tp)))
// ------------------------------------------------------
// Options
// ------------------------------------------------------
typedef enum mi_option_e {
// stable options
mi_option_show_errors, // print error messages
mi_option_show_stats, // print statistics on termination
mi_option_verbose, // print verbose messages
// the following options are experimental (see src/options.h)
mi_option_eager_commit, // eager commit segments? (after `eager_commit_delay` segments) (=1)
mi_option_arena_eager_commit, // eager commit arenas? Use 2 to enable just on overcommit systems (=2)
mi_option_purge_decommits, // should a memory purge decommit (or only reset) (=1)
mi_option_allow_large_os_pages, // allow large (2MiB) OS pages, implies eager commit
mi_option_reserve_huge_os_pages, // reserve N huge OS pages (1GiB/page) at startup
mi_option_reserve_huge_os_pages_at, // reserve huge OS pages at a specific NUMA node
mi_option_reserve_os_memory, // reserve specified amount of OS memory in an arena at startup
mi_option_deprecated_segment_cache,
mi_option_deprecated_page_reset,
mi_option_abandoned_page_purge, // immediately purge delayed purges on thread termination
mi_option_deprecated_segment_reset,
mi_option_eager_commit_delay,
mi_option_purge_delay, // memory purging is delayed by N milli seconds; use 0 for immediate purging or -1 for no purging at all.
mi_option_use_numa_nodes, // 0 = use all available numa nodes, otherwise use at most N nodes.
mi_option_limit_os_alloc, // 1 = do not use OS memory for allocation (but only programmatically reserved arenas)
mi_option_os_tag, // tag used for OS logging (macOS only for now)
mi_option_max_errors, // issue at most N error messages
mi_option_max_warnings, // issue at most N warning messages
mi_option_max_segment_reclaim,
mi_option_destroy_on_exit, // if set, release all memory on exit; sometimes used for dynamic unloading but can be unsafe.
mi_option_arena_reserve, // initial memory size in KiB for arena reservation (1GiB on 64-bit)
mi_option_arena_purge_mult,
mi_option_purge_extend_delay,
_mi_option_last,
// legacy option names
mi_option_large_os_pages = mi_option_allow_large_os_pages,
mi_option_eager_region_commit = mi_option_arena_eager_commit,
mi_option_reset_decommits = mi_option_purge_decommits,
mi_option_reset_delay = mi_option_purge_delay,
mi_option_abandoned_page_reset = mi_option_abandoned_page_purge
} mi_option_t;
mi_decl_nodiscard mi_decl_export bool mi_option_is_enabled(mi_option_t option);
mi_decl_export void mi_option_enable(mi_option_t option);
mi_decl_export void mi_option_disable(mi_option_t option);
mi_decl_export void mi_option_set_enabled(mi_option_t option, bool enable);
mi_decl_export void mi_option_set_enabled_default(mi_option_t option, bool enable);
mi_decl_nodiscard mi_decl_export long mi_option_get(mi_option_t option);
mi_decl_nodiscard mi_decl_export long mi_option_get_clamp(mi_option_t option, long min, long max);
mi_decl_nodiscard mi_decl_export size_t mi_option_get_size(mi_option_t option);
mi_decl_export void mi_option_set(mi_option_t option, long value);
mi_decl_export void mi_option_set_default(mi_option_t option, long value);
// -------------------------------------------------------------------------------------------------------
// "mi" prefixed implementations of various posix, Unix, Windows, and C++ allocation functions.
// (This can be convenient when providing overrides of these functions as done in `mimalloc-override.h`.)
// note: we use `mi_cfree` as "checked free" and it checks if the pointer is in our heap before free-ing.
// -------------------------------------------------------------------------------------------------------
mi_decl_export void mi_cfree(void* p) mi_attr_noexcept;
mi_decl_export void* mi__expand(void* p, size_t newsize) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export size_t mi_malloc_size(const void* p) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export size_t mi_malloc_good_size(size_t size) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export size_t mi_malloc_usable_size(const void *p) mi_attr_noexcept;
mi_decl_export int mi_posix_memalign(void** p, size_t alignment, size_t size) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_valloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(1);
mi_decl_nodiscard mi_decl_export void* mi_reallocarray(void* p, size_t count, size_t size) mi_attr_noexcept mi_attr_alloc_size2(2,3);
mi_decl_nodiscard mi_decl_export int mi_reallocarr(void* p, size_t count, size_t size) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export void* mi_aligned_recalloc(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export void* mi_aligned_offset_recalloc(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept;
mi_decl_nodiscard mi_decl_export mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noexcept mi_attr_malloc;
mi_decl_nodiscard mi_decl_export mi_decl_restrict unsigned char* mi_mbsdup(const unsigned char* s) mi_attr_noexcept mi_attr_malloc;
mi_decl_export int mi_dupenv_s(char** buf, size_t* size, const char* name) mi_attr_noexcept;
mi_decl_export int mi_wdupenv_s(unsigned short** buf, size_t* size, const unsigned short* name) mi_attr_noexcept;
mi_decl_export void mi_free_size(void* p, size_t size) mi_attr_noexcept;
mi_decl_export void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept;
mi_decl_export void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept;
// The `mi_new` wrappers implement C++ semantics on out-of-memory instead of directly returning `NULL`.
// (and call `std::get_new_handler` and potentially raise a `std::bad_alloc` exception).
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new(size_t size) mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_n(size_t count, size_t size) mi_attr_malloc mi_attr_alloc_size2(1, 2);
mi_decl_nodiscard mi_decl_export void* mi_new_realloc(void* p, size_t newsize) mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export void* mi_new_reallocn(void* p, size_t newcount, size_t size) mi_attr_alloc_size2(2, 3);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) mi_attr_malloc mi_attr_alloc_size(2);
mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) mi_attr_malloc mi_attr_alloc_size2(2, 3);
#ifdef __cplusplus
}
#endif
// ---------------------------------------------------------------------------------------------
// Implement the C++ std::allocator interface for use in STL containers.
// (note: see `mimalloc-new-delete.h` for overriding the new/delete operators globally)
// ---------------------------------------------------------------------------------------------
#ifdef __cplusplus
#include <cstddef> // std::size_t
#include <cstdint> // PTRDIFF_MAX
#if (__cplusplus >= 201103L) || (_MSC_VER > 1900) // C++11
#include <type_traits> // std::true_type
#include <utility> // std::forward
#endif
template<class T> struct _mi_stl_allocator_common {
typedef T value_type;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef value_type* pointer;
typedef value_type const* const_pointer;
#if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
template <class U, class ...Args> void construct(U* p, Args&& ...args) { ::new(p) U(std::forward<Args>(args)...); }
template <class U> void destroy(U* p) mi_attr_noexcept { p->~U(); }
#else
void construct(pointer p, value_type const& val) { ::new(p) value_type(val); }
void destroy(pointer p) { p->~value_type(); }
#endif
size_type max_size() const mi_attr_noexcept { return (PTRDIFF_MAX/sizeof(value_type)); }
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
};
template<class T> struct mi_stl_allocator : public _mi_stl_allocator_common<T> {
using typename _mi_stl_allocator_common<T>::size_type;
using typename _mi_stl_allocator_common<T>::value_type;
using typename _mi_stl_allocator_common<T>::pointer;
template <class U> struct rebind { typedef mi_stl_allocator<U> other; };
mi_stl_allocator() mi_attr_noexcept = default;
mi_stl_allocator(const mi_stl_allocator&) mi_attr_noexcept = default;
template<class U> mi_stl_allocator(const mi_stl_allocator<U>&) mi_attr_noexcept { }
mi_stl_allocator select_on_container_copy_construction() const { return *this; }
void deallocate(T* p, size_type) { mi_free(p); }
#if (__cplusplus >= 201703L) // C++17
mi_decl_nodiscard T* allocate(size_type count) { return static_cast<T*>(mi_new_n(count, sizeof(T))); }
mi_decl_nodiscard T* allocate(size_type count, const void*) { return allocate(count); }
#else
mi_decl_nodiscard pointer allocate(size_type count, const void* = 0) { return static_cast<pointer>(mi_new_n(count, sizeof(value_type))); }
#endif
#if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11
using is_always_equal = std::true_type;
#endif
};
template<class T1,class T2> bool operator==(const mi_stl_allocator<T1>& , const mi_stl_allocator<T2>& ) mi_attr_noexcept { return true; }
template<class T1,class T2> bool operator!=(const mi_stl_allocator<T1>& , const mi_stl_allocator<T2>& ) mi_attr_noexcept { return false; }
#if (__cplusplus >= 201103L) || (_MSC_VER >= 1900) // C++11
#define MI_HAS_HEAP_STL_ALLOCATOR 1
#include <memory> // std::shared_ptr
// Common base class for STL allocators in a specific heap
template<class T, bool _mi_destroy> struct _mi_heap_stl_allocator_common : public _mi_stl_allocator_common<T> {
using typename _mi_stl_allocator_common<T>::size_type;
using typename _mi_stl_allocator_common<T>::value_type;
using typename _mi_stl_allocator_common<T>::pointer;
_mi_heap_stl_allocator_common(mi_heap_t* hp) : heap(hp) { } /* will not delete nor destroy the passed in heap */
#if (__cplusplus >= 201703L) // C++17
mi_decl_nodiscard T* allocate(size_type count) { return static_cast<T*>(mi_heap_alloc_new_n(this->heap.get(), count, sizeof(T))); }
mi_decl_nodiscard T* allocate(size_type count, const void*) { return allocate(count); }
#else
mi_decl_nodiscard pointer allocate(size_type count, const void* = 0) { return static_cast<pointer>(mi_heap_alloc_new_n(this->heap.get(), count, sizeof(value_type))); }
#endif
#if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11
using is_always_equal = std::false_type;
#endif
void collect(bool force) { mi_heap_collect(this->heap.get(), force); }
template<class U> bool is_equal(const _mi_heap_stl_allocator_common<U, _mi_destroy>& x) const { return (this->heap == x.heap); }
protected:
std::shared_ptr<mi_heap_t> heap;
template<class U, bool D> friend struct _mi_heap_stl_allocator_common;
_mi_heap_stl_allocator_common() {
mi_heap_t* hp = mi_heap_new();
this->heap.reset(hp, (_mi_destroy ? &heap_destroy : &heap_delete)); /* calls heap_delete/destroy when the refcount drops to zero */
}
_mi_heap_stl_allocator_common(const _mi_heap_stl_allocator_common& x) mi_attr_noexcept : heap(x.heap) { }
template<class U> _mi_heap_stl_allocator_common(const _mi_heap_stl_allocator_common<U, _mi_destroy>& x) mi_attr_noexcept : heap(x.heap) { }
private:
static void heap_delete(mi_heap_t* hp) { if (hp != NULL) { mi_heap_delete(hp); } }
static void heap_destroy(mi_heap_t* hp) { if (hp != NULL) { mi_heap_destroy(hp); } }
};
// STL allocator allocation in a specific heap
template<class T> struct mi_heap_stl_allocator : public _mi_heap_stl_allocator_common<T, false> {
using typename _mi_heap_stl_allocator_common<T, false>::size_type;
mi_heap_stl_allocator() : _mi_heap_stl_allocator_common<T, false>() { } // creates fresh heap that is deleted when the destructor is called
mi_heap_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common<T, false>(hp) { } // no delete nor destroy on the passed in heap
template<class U> mi_heap_stl_allocator(const mi_heap_stl_allocator<U>& x) mi_attr_noexcept : _mi_heap_stl_allocator_common<T, false>(x) { }
mi_heap_stl_allocator select_on_container_copy_construction() const { return *this; }
void deallocate(T* p, size_type) { mi_free(p); }
template<class U> struct rebind { typedef mi_heap_stl_allocator<U> other; };
};
template<class T1, class T2> bool operator==(const mi_heap_stl_allocator<T1>& x, const mi_heap_stl_allocator<T2>& y) mi_attr_noexcept { return (x.is_equal(y)); }
template<class T1, class T2> bool operator!=(const mi_heap_stl_allocator<T1>& x, const mi_heap_stl_allocator<T2>& y) mi_attr_noexcept { return (!x.is_equal(y)); }
// STL allocator allocation in a specific heap, where `free` does nothing and
// the heap is destroyed in one go on destruction -- use with care!
template<class T> struct mi_heap_destroy_stl_allocator : public _mi_heap_stl_allocator_common<T, true> {
using typename _mi_heap_stl_allocator_common<T, true>::size_type;
mi_heap_destroy_stl_allocator() : _mi_heap_stl_allocator_common<T, true>() { } // creates fresh heap that is destroyed when the destructor is called
mi_heap_destroy_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common<T, true>(hp) { } // no delete nor destroy on the passed in heap
template<class U> mi_heap_destroy_stl_allocator(const mi_heap_destroy_stl_allocator<U>& x) mi_attr_noexcept : _mi_heap_stl_allocator_common<T, true>(x) { }
mi_heap_destroy_stl_allocator select_on_container_copy_construction() const { return *this; }
void deallocate(T*, size_type) { /* do nothing as we destroy the heap on destruct. */ }
template<class U> struct rebind { typedef mi_heap_destroy_stl_allocator<U> other; };
};
template<class T1, class T2> bool operator==(const mi_heap_destroy_stl_allocator<T1>& x, const mi_heap_destroy_stl_allocator<T2>& y) mi_attr_noexcept { return (x.is_equal(y)); }
template<class T1, class T2> bool operator!=(const mi_heap_destroy_stl_allocator<T1>& x, const mi_heap_destroy_stl_allocator<T2>& y) mi_attr_noexcept { return (!x.is_equal(y)); }
#endif // C++11
#endif // __cplusplus
#endif

View File

@ -0,0 +1,385 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_ATOMIC_H
#define MIMALLOC_ATOMIC_H
// --------------------------------------------------------------------------------------------
// Atomics
// We need to be portable between C, C++, and MSVC.
// We base the primitives on the C/C++ atomics and create a mimimal wrapper for MSVC in C compilation mode.
// This is why we try to use only `uintptr_t` and `<type>*` as atomic types.
// To gain better insight in the range of used atomics, we use explicitly named memory order operations
// instead of passing the memory order as a parameter.
// -----------------------------------------------------------------------------------------------
#if defined(__cplusplus)
// Use C++ atomics
#include <atomic>
#define _Atomic(tp) std::atomic<tp>
#define mi_atomic(name) std::atomic_##name
#define mi_memory_order(name) std::memory_order_##name
#if !defined(ATOMIC_VAR_INIT) || (__cplusplus >= 202002L) // c++20, see issue #571
#define MI_ATOMIC_VAR_INIT(x) x
#else
#define MI_ATOMIC_VAR_INIT(x) ATOMIC_VAR_INIT(x)
#endif
#elif defined(_MSC_VER)
// Use MSVC C wrapper for C11 atomics
#define _Atomic(tp) tp
#define MI_ATOMIC_VAR_INIT(x) x
#define mi_atomic(name) mi_atomic_##name
#define mi_memory_order(name) mi_memory_order_##name
#else
// Use C11 atomics
#include <stdatomic.h>
#define mi_atomic(name) atomic_##name
#define mi_memory_order(name) memory_order_##name
#if !defined(ATOMIC_VAR_INIT) || (__STDC_VERSION__ >= 201710L) // c17, see issue #735
#define MI_ATOMIC_VAR_INIT(x) x
#else
#define MI_ATOMIC_VAR_INIT(x) ATOMIC_VAR_INIT(x)
#endif
#endif
// Various defines for all used memory orders in mimalloc
#define mi_atomic_cas_weak(p,expected,desired,mem_success,mem_fail) \
mi_atomic(compare_exchange_weak_explicit)(p,expected,desired,mem_success,mem_fail)
#define mi_atomic_cas_strong(p,expected,desired,mem_success,mem_fail) \
mi_atomic(compare_exchange_strong_explicit)(p,expected,desired,mem_success,mem_fail)
#define mi_atomic_load_acquire(p) mi_atomic(load_explicit)(p,mi_memory_order(acquire))
#define mi_atomic_load_relaxed(p) mi_atomic(load_explicit)(p,mi_memory_order(relaxed))
#define mi_atomic_store_release(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(release))
#define mi_atomic_store_relaxed(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(relaxed))
#define mi_atomic_exchange_release(p,x) mi_atomic(exchange_explicit)(p,x,mi_memory_order(release))
#define mi_atomic_exchange_acq_rel(p,x) mi_atomic(exchange_explicit)(p,x,mi_memory_order(acq_rel))
#define mi_atomic_cas_weak_release(p,exp,des) mi_atomic_cas_weak(p,exp,des,mi_memory_order(release),mi_memory_order(relaxed))
#define mi_atomic_cas_weak_acq_rel(p,exp,des) mi_atomic_cas_weak(p,exp,des,mi_memory_order(acq_rel),mi_memory_order(acquire))
#define mi_atomic_cas_strong_release(p,exp,des) mi_atomic_cas_strong(p,exp,des,mi_memory_order(release),mi_memory_order(relaxed))
#define mi_atomic_cas_strong_acq_rel(p,exp,des) mi_atomic_cas_strong(p,exp,des,mi_memory_order(acq_rel),mi_memory_order(acquire))
#define mi_atomic_add_relaxed(p,x) mi_atomic(fetch_add_explicit)(p,x,mi_memory_order(relaxed))
#define mi_atomic_sub_relaxed(p,x) mi_atomic(fetch_sub_explicit)(p,x,mi_memory_order(relaxed))
#define mi_atomic_add_acq_rel(p,x) mi_atomic(fetch_add_explicit)(p,x,mi_memory_order(acq_rel))
#define mi_atomic_sub_acq_rel(p,x) mi_atomic(fetch_sub_explicit)(p,x,mi_memory_order(acq_rel))
#define mi_atomic_and_acq_rel(p,x) mi_atomic(fetch_and_explicit)(p,x,mi_memory_order(acq_rel))
#define mi_atomic_or_acq_rel(p,x) mi_atomic(fetch_or_explicit)(p,x,mi_memory_order(acq_rel))
#define mi_atomic_increment_relaxed(p) mi_atomic_add_relaxed(p,(uintptr_t)1)
#define mi_atomic_decrement_relaxed(p) mi_atomic_sub_relaxed(p,(uintptr_t)1)
#define mi_atomic_increment_acq_rel(p) mi_atomic_add_acq_rel(p,(uintptr_t)1)
#define mi_atomic_decrement_acq_rel(p) mi_atomic_sub_acq_rel(p,(uintptr_t)1)
static inline void mi_atomic_yield(void);
static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)*p, intptr_t add);
static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)*p, intptr_t sub);
#if defined(__cplusplus) || !defined(_MSC_VER)
// In C++/C11 atomics we have polymorphic atomics so can use the typed `ptr` variants (where `tp` is the type of atomic value)
// We use these macros so we can provide a typed wrapper in MSVC in C compilation mode as well
#define mi_atomic_load_ptr_acquire(tp,p) mi_atomic_load_acquire(p)
#define mi_atomic_load_ptr_relaxed(tp,p) mi_atomic_load_relaxed(p)
// In C++ we need to add casts to help resolve templates if NULL is passed
#if defined(__cplusplus)
#define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release(p,(tp*)x)
#define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed(p,(tp*)x)
#define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release(p,exp,(tp*)des)
#define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel(p,exp,(tp*)des)
#define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release(p,exp,(tp*)des)
#define mi_atomic_exchange_ptr_release(tp,p,x) mi_atomic_exchange_release(p,(tp*)x)
#define mi_atomic_exchange_ptr_acq_rel(tp,p,x) mi_atomic_exchange_acq_rel(p,(tp*)x)
#else
#define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release(p,x)
#define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed(p,x)
#define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release(p,exp,des)
#define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel(p,exp,des)
#define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release(p,exp,des)
#define mi_atomic_exchange_ptr_release(tp,p,x) mi_atomic_exchange_release(p,x)
#define mi_atomic_exchange_ptr_acq_rel(tp,p,x) mi_atomic_exchange_acq_rel(p,x)
#endif
// These are used by the statistics
static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add) {
return mi_atomic(fetch_add_explicit)((_Atomic(int64_t)*)p, add, mi_memory_order(relaxed));
}
static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x) {
int64_t current = mi_atomic_load_relaxed((_Atomic(int64_t)*)p);
while (current < x && !mi_atomic_cas_weak_release((_Atomic(int64_t)*)p, &current, x)) { /* nothing */ };
}
// Used by timers
#define mi_atomic_loadi64_acquire(p) mi_atomic(load_explicit)(p,mi_memory_order(acquire))
#define mi_atomic_loadi64_relaxed(p) mi_atomic(load_explicit)(p,mi_memory_order(relaxed))
#define mi_atomic_storei64_release(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(release))
#define mi_atomic_storei64_relaxed(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(relaxed))
#define mi_atomic_casi64_strong_acq_rel(p,e,d) mi_atomic_cas_strong_acq_rel(p,e,d)
#define mi_atomic_addi64_acq_rel(p,i) mi_atomic_add_acq_rel(p,i)
#elif defined(_MSC_VER)
// MSVC C compilation wrapper that uses Interlocked operations to model C11 atomics.
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <intrin.h>
#ifdef _WIN64
typedef LONG64 msc_intptr_t;
#define MI_64(f) f##64
#else
typedef LONG msc_intptr_t;
#define MI_64(f) f
#endif
typedef enum mi_memory_order_e {
mi_memory_order_relaxed,
mi_memory_order_consume,
mi_memory_order_acquire,
mi_memory_order_release,
mi_memory_order_acq_rel,
mi_memory_order_seq_cst
} mi_memory_order;
static inline uintptr_t mi_atomic_fetch_add_explicit(_Atomic(uintptr_t)*p, uintptr_t add, mi_memory_order mo) {
(void)(mo);
return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
}
static inline uintptr_t mi_atomic_fetch_sub_explicit(_Atomic(uintptr_t)*p, uintptr_t sub, mi_memory_order mo) {
(void)(mo);
return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, -((msc_intptr_t)sub));
}
static inline uintptr_t mi_atomic_fetch_and_explicit(_Atomic(uintptr_t)*p, uintptr_t x, mi_memory_order mo) {
(void)(mo);
return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
}
static inline uintptr_t mi_atomic_fetch_or_explicit(_Atomic(uintptr_t)*p, uintptr_t x, mi_memory_order mo) {
(void)(mo);
return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
}
static inline bool mi_atomic_compare_exchange_strong_explicit(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired, mi_memory_order mo1, mi_memory_order mo2) {
(void)(mo1); (void)(mo2);
uintptr_t read = (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)(*expected));
if (read == *expected) {
return true;
}
else {
*expected = read;
return false;
}
}
static inline bool mi_atomic_compare_exchange_weak_explicit(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired, mi_memory_order mo1, mi_memory_order mo2) {
return mi_atomic_compare_exchange_strong_explicit(p, expected, desired, mo1, mo2);
}
static inline uintptr_t mi_atomic_exchange_explicit(_Atomic(uintptr_t)*p, uintptr_t exchange, mi_memory_order mo) {
(void)(mo);
return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange);
}
static inline void mi_atomic_thread_fence(mi_memory_order mo) {
(void)(mo);
_Atomic(uintptr_t) x = 0;
mi_atomic_exchange_explicit(&x, 1, mo);
}
static inline uintptr_t mi_atomic_load_explicit(_Atomic(uintptr_t) const* p, mi_memory_order mo) {
(void)(mo);
#if defined(_M_IX86) || defined(_M_X64)
return *p;
#else
uintptr_t x = *p;
if (mo > mi_memory_order_relaxed) {
while (!mi_atomic_compare_exchange_weak_explicit(p, &x, x, mo, mi_memory_order_relaxed)) { /* nothing */ };
}
return x;
#endif
}
static inline void mi_atomic_store_explicit(_Atomic(uintptr_t)*p, uintptr_t x, mi_memory_order mo) {
(void)(mo);
#if defined(_M_IX86) || defined(_M_X64)
*p = x;
#else
mi_atomic_exchange_explicit(p, x, mo);
#endif
}
static inline int64_t mi_atomic_loadi64_explicit(_Atomic(int64_t)*p, mi_memory_order mo) {
(void)(mo);
#if defined(_M_X64)
return *p;
#else
int64_t old = *p;
int64_t x = old;
while ((old = InterlockedCompareExchange64(p, x, old)) != x) {
x = old;
}
return x;
#endif
}
static inline void mi_atomic_storei64_explicit(_Atomic(int64_t)*p, int64_t x, mi_memory_order mo) {
(void)(mo);
#if defined(x_M_IX86) || defined(_M_X64)
*p = x;
#else
InterlockedExchange64(p, x);
#endif
}
// These are used by the statistics
static inline int64_t mi_atomic_addi64_relaxed(volatile _Atomic(int64_t)*p, int64_t add) {
#ifdef _WIN64
return (int64_t)mi_atomic_addi((int64_t*)p, add);
#else
int64_t current;
int64_t sum;
do {
current = *p;
sum = current + add;
} while (_InterlockedCompareExchange64(p, sum, current) != current);
return current;
#endif
}
static inline void mi_atomic_maxi64_relaxed(volatile _Atomic(int64_t)*p, int64_t x) {
int64_t current;
do {
current = *p;
} while (current < x && _InterlockedCompareExchange64(p, x, current) != current);
}
static inline void mi_atomic_addi64_acq_rel(volatile _Atomic(int64_t*)p, int64_t i) {
mi_atomic_addi64_relaxed(p, i);
}
static inline bool mi_atomic_casi64_strong_acq_rel(volatile _Atomic(int64_t*)p, int64_t* exp, int64_t des) {
int64_t read = _InterlockedCompareExchange64(p, des, *exp);
if (read == *exp) {
return true;
}
else {
*exp = read;
return false;
}
}
// The pointer macros cast to `uintptr_t`.
#define mi_atomic_load_ptr_acquire(tp,p) (tp*)mi_atomic_load_acquire((_Atomic(uintptr_t)*)(p))
#define mi_atomic_load_ptr_relaxed(tp,p) (tp*)mi_atomic_load_relaxed((_Atomic(uintptr_t)*)(p))
#define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release((_Atomic(uintptr_t)*)(p),(uintptr_t)(x))
#define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed((_Atomic(uintptr_t)*)(p),(uintptr_t)(x))
#define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des)
#define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des)
#define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des)
#define mi_atomic_exchange_ptr_release(tp,p,x) (tp*)mi_atomic_exchange_release((_Atomic(uintptr_t)*)(p),(uintptr_t)x)
#define mi_atomic_exchange_ptr_acq_rel(tp,p,x) (tp*)mi_atomic_exchange_acq_rel((_Atomic(uintptr_t)*)(p),(uintptr_t)x)
#define mi_atomic_loadi64_acquire(p) mi_atomic(loadi64_explicit)(p,mi_memory_order(acquire))
#define mi_atomic_loadi64_relaxed(p) mi_atomic(loadi64_explicit)(p,mi_memory_order(relaxed))
#define mi_atomic_storei64_release(p,x) mi_atomic(storei64_explicit)(p,x,mi_memory_order(release))
#define mi_atomic_storei64_relaxed(p,x) mi_atomic(storei64_explicit)(p,x,mi_memory_order(relaxed))
#endif
// Atomically add a signed value; returns the previous value.
static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)*p, intptr_t add) {
return (intptr_t)mi_atomic_add_acq_rel((_Atomic(uintptr_t)*)p, (uintptr_t)add);
}
// Atomically subtract a signed value; returns the previous value.
static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)*p, intptr_t sub) {
return (intptr_t)mi_atomic_addi(p, -sub);
}
typedef _Atomic(uintptr_t) mi_atomic_once_t;
// Returns true only on the first invocation
static inline bool mi_atomic_once( mi_atomic_once_t* once ) {
if (mi_atomic_load_relaxed(once) != 0) return false; // quick test
uintptr_t expected = 0;
return mi_atomic_cas_strong_acq_rel(once, &expected, (uintptr_t)1); // try to set to 1
}
typedef _Atomic(uintptr_t) mi_atomic_guard_t;
// Allows only one thread to execute at a time
#define mi_atomic_guard(guard) \
uintptr_t _mi_guard_expected = 0; \
for(bool _mi_guard_once = true; \
_mi_guard_once && mi_atomic_cas_strong_acq_rel(guard,&_mi_guard_expected,(uintptr_t)1); \
(mi_atomic_store_release(guard,(uintptr_t)0), _mi_guard_once = false) )
// Yield
#if defined(__cplusplus)
#include <thread>
static inline void mi_atomic_yield(void) {
std::this_thread::yield();
}
#elif defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
static inline void mi_atomic_yield(void) {
YieldProcessor();
}
#elif defined(__SSE2__)
#include <emmintrin.h>
static inline void mi_atomic_yield(void) {
_mm_pause();
}
#elif (defined(__GNUC__) || defined(__clang__)) && \
(defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__armel__) || defined(__ARMEL__) || \
defined(__aarch64__) || defined(__powerpc__) || defined(__ppc__) || defined(__PPC__)) || defined(__POWERPC__)
#if defined(__x86_64__) || defined(__i386__)
static inline void mi_atomic_yield(void) {
__asm__ volatile ("pause" ::: "memory");
}
#elif defined(__aarch64__)
static inline void mi_atomic_yield(void) {
__asm__ volatile("wfe");
}
#elif (defined(__arm__) && __ARM_ARCH__ >= 7)
static inline void mi_atomic_yield(void) {
__asm__ volatile("yield" ::: "memory");
}
#elif defined(__powerpc__) || defined(__ppc__) || defined(__PPC__) || defined(__POWERPC__)
#ifdef __APPLE__
static inline void mi_atomic_yield(void) {
__asm__ volatile ("or r27,r27,r27" ::: "memory");
}
#else
static inline void mi_atomic_yield(void) {
__asm__ __volatile__ ("or 27,27,27" ::: "memory");
}
#endif
#elif defined(__armel__) || defined(__ARMEL__)
static inline void mi_atomic_yield(void) {
__asm__ volatile ("nop" ::: "memory");
}
#endif
#elif defined(__sun)
// Fallback for other archs
#include <synch.h>
static inline void mi_atomic_yield(void) {
smt_pause();
}
#elif defined(__wasi__)
#include <sched.h>
static inline void mi_atomic_yield(void) {
sched_yield();
}
#else
#include <unistd.h>
static inline void mi_atomic_yield(void) {
sleep(0);
}
#endif
#endif // __MIMALLOC_ATOMIC_H

View File

@ -0,0 +1,979 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_INTERNAL_H
#define MIMALLOC_INTERNAL_H
// --------------------------------------------------------------------------
// This file contains the interal API's of mimalloc and various utility
// functions and macros.
// --------------------------------------------------------------------------
#include "mimalloc/types.h"
#include "mimalloc/track.h"
#if (MI_DEBUG>0)
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
#else
#define mi_trace_message(...)
#endif
#define MI_CACHE_LINE 64
#if defined(_MSC_VER)
#pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths)
#pragma warning(disable:26812) // unscoped enum warning
#define mi_decl_noinline __declspec(noinline)
#define mi_decl_thread __declspec(thread)
#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
#define mi_decl_noinline __attribute__((noinline))
#define mi_decl_thread __thread
#define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE)))
#else
#define mi_decl_noinline
#define mi_decl_thread __thread // hope for the best :-)
#define mi_decl_cache_align
#endif
#if defined(__EMSCRIPTEN__) && !defined(__wasi__)
#define __wasi__
#endif
#if defined(__cplusplus)
#define mi_decl_externc extern "C"
#else
#define mi_decl_externc
#endif
// pthreads
#if !defined(_WIN32) && !defined(__wasi__)
#define MI_USE_PTHREADS
#include <pthread.h>
#endif
// "options.c"
void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message);
void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...);
void _mi_warning_message(const char* fmt, ...);
void _mi_verbose_message(const char* fmt, ...);
void _mi_trace_message(const char* fmt, ...);
void _mi_options_init(void);
void _mi_error_message(int err, const char* fmt, ...);
// random.c
void _mi_random_init(mi_random_ctx_t* ctx);
void _mi_random_init_weak(mi_random_ctx_t* ctx);
void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx);
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
uintptr_t _mi_heap_random_next(mi_heap_t* heap);
uintptr_t _mi_os_random_weak(uintptr_t extra_seed);
static inline uintptr_t _mi_random_shuffle(uintptr_t x);
// init.c
extern mi_decl_cache_align mi_stats_t _mi_stats_main;
extern mi_decl_cache_align const mi_page_t _mi_page_empty;
bool _mi_is_main_thread(void);
size_t _mi_current_thread_count(void);
bool _mi_preloading(void); // true while the C runtime is not initialized yet
mi_threadid_t _mi_thread_id(void) mi_attr_noexcept;
mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap
void _mi_thread_done(mi_heap_t* heap);
void _mi_thread_data_collect(void);
// os.c
void _mi_os_init(void); // called from process init
void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* stats);
void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* stats);
void _mi_os_free_ex(void* p, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* stats);
size_t _mi_os_page_size(void);
size_t _mi_os_good_alloc_size(size_t size);
bool _mi_os_has_overcommit(void);
bool _mi_os_has_virtual_reserve(void);
bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats);
bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats);
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
bool _mi_os_protect(void* addr, size_t size);
bool _mi_os_unprotect(void* addr, size_t size);
bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats);
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats);
void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats);
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size);
bool _mi_os_use_large_page(size_t size, size_t alignment);
size_t _mi_os_large_page_size(void);
void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_secs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid);
// arena.c
mi_arena_id_t _mi_arena_id_none(void);
void _mi_arena_free(void* p, size_t size, size_t still_committed_size, mi_memid_t memid, mi_stats_t* stats);
void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld);
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld);
bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id);
bool _mi_arena_contains(const void* p);
void _mi_arena_collect(bool force_purge, mi_stats_t* stats);
void _mi_arena_unsafe_destroy_all(mi_stats_t* stats);
// "segment-map.c"
void _mi_segment_map_allocated_at(const mi_segment_t* segment);
void _mi_segment_map_freed_at(const mi_segment_t* segment);
// "segment.c"
mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld);
void _mi_segment_thread_collect(mi_segments_tld_t* tld);
#if MI_HUGE_PAGE_ABANDON
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
#else
void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
#endif
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size); // page start for any page
void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld);
void _mi_abandoned_await_readers(void);
void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld);
// "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc;
void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks
void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_heap_delayed_free_all(mi_heap_t* heap);
bool _mi_heap_delayed_free_partial(mi_heap_t* heap);
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
void _mi_deferred_free(mi_heap_t* heap, bool force);
void _mi_page_free_collect(mi_page_t* page,bool force);
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments
size_t _mi_bin_size(uint8_t bin); // for stats
uint8_t _mi_bin(size_t size); // for stats
// "heap.c"
void _mi_heap_destroy_pages(mi_heap_t* heap);
void _mi_heap_collect_abandon(mi_heap_t* heap);
void _mi_heap_set_default_direct(mi_heap_t* heap);
bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid);
void _mi_heap_unsafe_destroy_all(void);
// "stats.c"
void _mi_stats_done(mi_stats_t* stats);
mi_msecs_t _mi_clock_now(void);
mi_msecs_t _mi_clock_end(mi_msecs_t start);
mi_msecs_t _mi_clock_start(void);
// "alloc.c"
void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic`
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned`
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
bool _mi_free_delayed_block(mi_block_t* block);
void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size);
// option.c, c primitives
char _mi_toupper(char c);
int _mi_strnicmp(const char* s, const char* t, size_t n);
void _mi_strlcpy(char* dest, const char* src, size_t dest_size);
void _mi_strlcat(char* dest, const char* src, size_t dest_size);
size_t _mi_strlen(const char* s);
size_t _mi_strnlen(const char* s, size_t max_len);
#if MI_DEBUG>1
bool _mi_page_is_valid(mi_page_t* page);
#endif
// ------------------------------------------------------
// Branches
// ------------------------------------------------------
#if defined(__GNUC__) || defined(__clang__)
#define mi_unlikely(x) (__builtin_expect(!!(x),false))
#define mi_likely(x) (__builtin_expect(!!(x),true))
#elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#define mi_unlikely(x) (x) [[unlikely]]
#define mi_likely(x) (x) [[likely]]
#else
#define mi_unlikely(x) (x)
#define mi_likely(x) (x)
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
/* -----------------------------------------------------------
Error codes passed to `_mi_fatal_error`
All are recoverable but EFAULT is a serious error and aborts by default in secure mode.
For portability define undefined error codes using common Unix codes:
<https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html>
----------------------------------------------------------- */
#include <errno.h>
#ifndef EAGAIN // double free
#define EAGAIN (11)
#endif
#ifndef ENOMEM // out of memory
#define ENOMEM (12)
#endif
#ifndef EFAULT // corrupted free-list or meta-data
#define EFAULT (14)
#endif
#ifndef EINVAL // trying to free an invalid pointer
#define EINVAL (22)
#endif
#ifndef EOVERFLOW // count*size overflow
#define EOVERFLOW (75)
#endif
/* -----------------------------------------------------------
Inlined definitions
----------------------------------------------------------- */
#define MI_UNUSED(x) (void)(x)
#if (MI_DEBUG>0)
#define MI_UNUSED_RELEASE(x)
#else
#define MI_UNUSED_RELEASE(x) MI_UNUSED(x)
#endif
#define MI_INIT4(x) x(),x(),x(),x()
#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
#include <string.h>
// initialize a local variable to zero; use memset as compilers optimize constant sized memset's
#define _mi_memzero_var(x) memset(&x,0,sizeof(x))
// Is `x` a power of two? (0 is considered a power of two)
static inline bool _mi_is_power_of_two(uintptr_t x) {
return ((x & (x - 1)) == 0);
}
// Is a pointer aligned?
static inline bool _mi_is_aligned(void* p, size_t alignment) {
mi_assert_internal(alignment != 0);
return (((uintptr_t)p % alignment) == 0);
}
// Align upwards
static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
mi_assert_internal(alignment != 0);
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return ((sz + mask) & ~mask);
}
else {
return (((sz + mask)/alignment)*alignment);
}
}
// Align downwards
static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
mi_assert_internal(alignment != 0);
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return (sz & ~mask);
}
else {
return ((sz / alignment) * alignment);
}
}
// Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`.
static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) {
mi_assert_internal(divider != 0);
return (divider == 0 ? size : ((size + divider - 1) / divider));
}
// Is memory zero initialized?
static inline bool mi_mem_is_zero(const void* p, size_t size) {
for (size_t i = 0; i < size; i++) {
if (((uint8_t*)p)[i] != 0) return false;
}
return true;
}
// Align a byte size to a size in _machine words_,
// i.e. byte size == `wsize*sizeof(void*)`.
static inline size_t _mi_wsize_from_size(size_t size) {
mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
// Overflow detecting multiply
#if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5))
#include <limits.h> // UINT_MAX, ULONG_MAX
#if defined(_CLOCK_T) // for Illumos
#undef _CLOCK_T
#endif
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#if (SIZE_MAX == ULONG_MAX)
return __builtin_umull_overflow(count, size, (unsigned long *)total);
#elif (SIZE_MAX == UINT_MAX)
return __builtin_umul_overflow(count, size, (unsigned int *)total);
#else
return __builtin_umulll_overflow(count, size, (unsigned long long *)total);
#endif
}
#else /* __builtin_umul_overflow is unavailable */
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
*total = count * size;
// note: gcc/clang optimize this to directly check the overflow flag
return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count);
}
#endif
// Safe multiply `count*size` into `total`; return `true` on overflow.
static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) {
if (count==1) { // quick check for the case where count is one (common for C++ allocators)
*total = size;
return false;
}
else if mi_unlikely(mi_mul_overflow(count, size, total)) {
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size);
#endif
*total = SIZE_MAX;
return true;
}
else return false;
}
/*----------------------------------------------------------------------------------------
Heap functions
------------------------------------------------------------------------------------------- */
extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
return (heap->tld->heap_backing == heap);
}
static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
return (heap != &_mi_heap_empty);
}
static inline uintptr_t _mi_ptr_cookie(const void* p) {
extern mi_heap_t _mi_heap_main;
mi_assert_internal(_mi_heap_main.cookie != 0);
return ((uintptr_t)p ^ _mi_heap_main.cookie);
}
/* -----------------------------------------------------------
Pages
----------------------------------------------------------- */
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
const size_t idx = _mi_wsize_from_size(size);
mi_assert_internal(idx < MI_PAGES_DIRECT);
return heap->pages_free_direct[idx];
}
// Segment that contains the pointer
// Large aligned blocks may be aligned at N*MI_SEGMENT_SIZE (inside a huge segment > MI_SEGMENT_SIZE),
// and we need align "down" to the segment info which is `MI_SEGMENT_SIZE` bytes before it;
// therefore we align one byte before `p`.
static inline mi_segment_t* _mi_ptr_segment(const void* p) {
mi_assert_internal(p != NULL);
return (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK);
}
static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) {
mi_assert_internal(s->slice_offset== 0 && s->slice_count > 0);
return (mi_page_t*)(s);
}
static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) {
mi_assert_internal(p->slice_offset== 0 && p->slice_count > 0);
return (mi_slice_t*)(p);
}
// Segment belonging to a page
static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
mi_segment_t* segment = _mi_ptr_segment(page);
mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries));
return segment;
}
static inline mi_slice_t* mi_slice_first(const mi_slice_t* slice) {
mi_slice_t* start = (mi_slice_t*)((uint8_t*)slice - slice->slice_offset);
mi_assert_internal(start >= _mi_ptr_segment(slice)->slices);
mi_assert_internal(start->slice_offset == 0);
mi_assert_internal(start + start->slice_count > slice);
return start;
}
// Get the page containing the pointer (performance critical as it is called in mi_free)
static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) {
mi_assert_internal(p > (void*)segment);
ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment;
mi_assert_internal(diff > 0 && diff <= (ptrdiff_t)MI_SEGMENT_SIZE);
size_t idx = (size_t)diff >> MI_SEGMENT_SLICE_SHIFT;
mi_assert_internal(idx <= segment->slice_entries);
mi_slice_t* slice0 = (mi_slice_t*)&segment->slices[idx];
mi_slice_t* slice = mi_slice_first(slice0); // adjust to the block that holds the page data
mi_assert_internal(slice->slice_offset == 0);
mi_assert_internal(slice >= segment->slices && slice < segment->slices + segment->slice_entries);
return mi_slice_to_page(slice);
}
// Quick page start for initialized pages
static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
return _mi_segment_page_start(segment, page, page_size);
}
// Get the page containing the pointer
static inline mi_page_t* _mi_ptr_page(void* p) {
return _mi_segment_page_of(_mi_ptr_segment(p), p);
}
// Get the block size of a page (special case for huge objects)
static inline size_t mi_page_block_size(const mi_page_t* page) {
const size_t bsize = page->xblock_size;
mi_assert_internal(bsize > 0);
if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) {
return bsize;
}
else {
size_t psize;
_mi_segment_page_start(_mi_page_segment(page), page, &psize);
return psize;
}
}
static inline bool mi_page_is_huge(const mi_page_t* page) {
return (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
}
// Get the usable block size of a page without fixed padding.
// This may still include internal padding due to alignment and rounding up size classes.
static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
return mi_page_block_size(page) - MI_PADDING_SIZE;
}
// size of a segment
static inline size_t mi_segment_size(mi_segment_t* segment) {
return segment->segment_slices * MI_SEGMENT_SLICE_SIZE;
}
static inline uint8_t* mi_segment_end(mi_segment_t* segment) {
return (uint8_t*)segment + mi_segment_size(segment);
}
// Thread free access
static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {
return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3);
}
static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) {
return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3);
}
// Heap access
static inline mi_heap_t* mi_page_heap(const mi_page_t* page) {
return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap));
}
static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) {
mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING);
mi_atomic_store_release(&page->xheap,(uintptr_t)heap);
}
// Thread free flag helpers
static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
return (mi_block_t*)(tf & ~0x03);
}
static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) {
return (mi_delayed_t)(tf & 0x03);
}
static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) {
return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed);
}
static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) {
return mi_tf_make(mi_tf_block(tf),delayed);
}
static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) {
return mi_tf_make(block, mi_tf_delayed(tf));
}
// are all blocks in a page freed?
// note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`.
static inline bool mi_page_all_free(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->used == 0);
}
// are there any available blocks?
static inline bool mi_page_has_any_available(const mi_page_t* page) {
mi_assert_internal(page != NULL && page->reserved > 0);
return (page->used < page->reserved || (mi_page_thread_free(page) != NULL));
}
// are there immediately available blocks, i.e. blocks available on the free list.
static inline bool mi_page_immediate_available(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->free != NULL);
}
// is more than 7/8th of a page in use?
static inline bool mi_page_mostly_used(const mi_page_t* page) {
if (page==NULL) return true;
uint16_t frac = page->reserved / 8U;
return (page->reserved - page->used <= frac);
}
static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
return &((mi_heap_t*)heap)->pages[_mi_bin(size)];
}
//-----------------------------------------------------------
// Page flags
//-----------------------------------------------------------
static inline bool mi_page_is_in_full(const mi_page_t* page) {
return page->flags.x.in_full;
}
static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
page->flags.x.in_full = in_full;
}
static inline bool mi_page_has_aligned(const mi_page_t* page) {
return page->flags.x.has_aligned;
}
static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
page->flags.x.has_aligned = has_aligned;
}
/* -------------------------------------------------------------------
Encoding/Decoding the free list next pointers
This is to protect against buffer overflow exploits where the
free list is mutated. Many hardened allocators xor the next pointer `p`
with a secret key `k1`, as `p^k1`. This prevents overwriting with known
values but might be still too weak: if the attacker can guess
the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
Moreover, if multiple blocks can be read as well, the attacker can
xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
about the pointers (and subsequently `k1`).
Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
Since these operations are not associative, the above approaches do not
work so well any more even if the `p` can be guesstimated. For example,
for the read case we can subtract two entries to discard the `+k1` term,
but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
We include the left-rotation since xor and addition are otherwise linear
in the lowest bit. Finally, both keys are unique per page which reduces
the re-use of keys by a large factor.
We also pass a separate `null` value to be used as `NULL` or otherwise
`(k2<<<k1)+k1` would appear (too) often as a sentinel value.
------------------------------------------------------------------- */
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
}
static inline bool mi_is_in_same_page(const void* p, const void* q) {
mi_segment_t* segment = _mi_ptr_segment(p);
if (_mi_ptr_segment(q) != segment) return false;
// assume q may be invalid // return (_mi_segment_page_of(segment, p) == _mi_segment_page_of(segment, q));
mi_page_t* page = _mi_segment_page_of(segment, p);
size_t psize;
uint8_t* start = _mi_segment_page_start(segment, page, &psize);
return (start <= (uint8_t*)q && (uint8_t*)q < start + psize);
}
static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) {
shift %= MI_INTPTR_BITS;
return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift))));
}
static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
shift %= MI_INTPTR_BITS;
return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift))));
}
static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
return (p==null ? NULL : p);
}
static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
uintptr_t x = (uintptr_t)(p==NULL ? null : p);
return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
mi_track_mem_defined(block,sizeof(mi_block_t));
mi_block_t* next;
#ifdef MI_ENCODE_FREELIST
next = (mi_block_t*)mi_ptr_decode(null, block->next, keys);
#else
MI_UNUSED(keys); MI_UNUSED(null);
next = (mi_block_t*)block->next;
#endif
mi_track_mem_noaccess(block,sizeof(mi_block_t));
return next;
}
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) {
mi_track_mem_undefined(block,sizeof(mi_block_t));
#ifdef MI_ENCODE_FREELIST
block->next = mi_ptr_encode(null, next, keys);
#else
MI_UNUSED(keys); MI_UNUSED(null);
block->next = (mi_encoded_t)next;
#endif
mi_track_mem_noaccess(block,sizeof(mi_block_t));
}
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
#ifdef MI_ENCODE_FREELIST
mi_block_t* next = mi_block_nextx(page,block,page->keys);
// check for free list corruption: is `next` at least in the same page?
// TODO: check if `next` is `page->block_size` aligned?
if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) {
_mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next);
next = NULL;
}
return next;
#else
MI_UNUSED(page);
return mi_block_nextx(page,block,NULL);
#endif
}
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST
mi_block_set_nextx(page,block,next, page->keys);
#else
MI_UNUSED(page);
mi_block_set_nextx(page,block,next,NULL);
#endif
}
// -------------------------------------------------------------------
// commit mask
// -------------------------------------------------------------------
static inline void mi_commit_mask_create_empty(mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
cm->mask[i] = 0;
}
}
static inline void mi_commit_mask_create_full(mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
cm->mask[i] = ~((size_t)0);
}
}
static inline bool mi_commit_mask_is_empty(const mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
if (cm->mask[i] != 0) return false;
}
return true;
}
static inline bool mi_commit_mask_is_full(const mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
if (cm->mask[i] != ~((size_t)0)) return false;
}
return true;
}
// defined in `segment.c`:
size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total);
size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx);
#define mi_commit_mask_foreach(cm,idx,count) \
idx = 0; \
while ((count = _mi_commit_mask_next_run(cm,&idx)) > 0) {
#define mi_commit_mask_foreach_end() \
idx += count; \
}
/* -----------------------------------------------------------
memory id's
----------------------------------------------------------- */
static inline mi_memid_t _mi_memid_create(mi_memkind_t memkind) {
mi_memid_t memid;
_mi_memzero_var(memid);
memid.memkind = memkind;
return memid;
}
static inline mi_memid_t _mi_memid_none(void) {
return _mi_memid_create(MI_MEM_NONE);
}
static inline mi_memid_t _mi_memid_create_os(bool committed, bool is_zero, bool is_large) {
mi_memid_t memid = _mi_memid_create(MI_MEM_OS);
memid.initially_committed = committed;
memid.initially_zero = is_zero;
memid.is_pinned = is_large;
return memid;
}
// -------------------------------------------------------------------
// Fast "random" shuffle
// -------------------------------------------------------------------
static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
#if (MI_INTPTR_SIZE==8)
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
x ^= x >> 30;
x *= 0xbf58476d1ce4e5b9UL;
x ^= x >> 27;
x *= 0x94d049bb133111ebUL;
x ^= x >> 31;
#elif (MI_INTPTR_SIZE==4)
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
x ^= x >> 16;
x *= 0x7feb352dUL;
x ^= x >> 15;
x *= 0x846ca68bUL;
x ^= x >> 16;
#endif
return x;
}
// -------------------------------------------------------------------
// Optimize numa node access for the common case (= one node)
// -------------------------------------------------------------------
int _mi_os_numa_node_get(mi_os_tld_t* tld);
size_t _mi_os_numa_node_count_get(void);
extern _Atomic(size_t) _mi_numa_node_count;
static inline int _mi_os_numa_node(mi_os_tld_t* tld) {
if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; }
else return _mi_os_numa_node_get(tld);
}
static inline size_t _mi_os_numa_node_count(void) {
const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count);
if mi_likely(count > 0) { return count; }
else return _mi_os_numa_node_count_get();
}
// -----------------------------------------------------------------------
// Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero)
// -----------------------------------------------------------------------
#if defined(__GNUC__)
#include <limits.h> // LONG_MAX
#define MI_HAVE_FAST_BITSCAN
static inline size_t mi_clz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (INTPTR_MAX == LONG_MAX)
return __builtin_clzl(x);
#else
return __builtin_clzll(x);
#endif
}
static inline size_t mi_ctz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (INTPTR_MAX == LONG_MAX)
return __builtin_ctzl(x);
#else
return __builtin_ctzll(x);
#endif
}
#elif defined(_MSC_VER)
#include <limits.h> // LONG_MAX
#include <intrin.h> // BitScanReverse64
#define MI_HAVE_FAST_BITSCAN
static inline size_t mi_clz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
unsigned long idx;
#if (INTPTR_MAX == LONG_MAX)
_BitScanReverse(&idx, x);
#else
_BitScanReverse64(&idx, x);
#endif
return ((MI_INTPTR_BITS - 1) - idx);
}
static inline size_t mi_ctz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
unsigned long idx;
#if (INTPTR_MAX == LONG_MAX)
_BitScanForward(&idx, x);
#else
_BitScanForward64(&idx, x);
#endif
return idx;
}
#else
static inline size_t mi_ctz32(uint32_t x) {
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
static const unsigned char debruijn[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
if (x==0) return 32;
return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27];
}
static inline size_t mi_clz32(uint32_t x) {
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
static const uint8_t debruijn[32] = {
31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,
23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0
};
if (x==0) return 32;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27];
}
static inline size_t mi_clz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (MI_INTPTR_BITS <= 32)
return mi_clz32((uint32_t)x);
#else
size_t count = mi_clz32((uint32_t)(x >> 32));
if (count < 32) return count;
return (32 + mi_clz32((uint32_t)x));
#endif
}
static inline size_t mi_ctz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (MI_INTPTR_BITS <= 32)
return mi_ctz32((uint32_t)x);
#else
size_t count = mi_ctz32((uint32_t)x);
if (count < 32) return count;
return (32 + mi_ctz32((uint32_t)(x>>32)));
#endif
}
#endif
// "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero)
static inline size_t mi_bsr(uintptr_t x) {
return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x));
}
// ---------------------------------------------------------------------------------
// Provide our own `_mi_memcpy` for potential performance optimizations.
//
// For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if
// we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support
// (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253.
// ---------------------------------------------------------------------------------
#if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
extern bool _mi_cpu_has_fsrm;
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
if (_mi_cpu_has_fsrm) {
__movsb((unsigned char*)dst, (const unsigned char*)src, n);
}
else {
memcpy(dst, src, n);
}
}
static inline void _mi_memzero(void* dst, size_t n) {
if (_mi_cpu_has_fsrm) {
__stosb((unsigned char*)dst, 0, n);
}
else {
memset(dst, 0, n);
}
}
#else
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
memcpy(dst, src, n);
}
static inline void _mi_memzero(void* dst, size_t n) {
memset(dst, 0, n);
}
#endif
// -------------------------------------------------------------------------------
// The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned
// This is used for example in `mi_realloc`.
// -------------------------------------------------------------------------------
#if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__)
// On GCC/CLang we provide a hint that the pointers are word aligned.
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE);
_mi_memcpy(adst, asrc, n);
}
static inline void _mi_memzero_aligned(void* dst, size_t n) {
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
_mi_memzero(adst, n);
}
#else
// Default fallback on `_mi_memcpy`
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
_mi_memcpy(dst, src, n);
}
static inline void _mi_memzero_aligned(void* dst, size_t n) {
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
_mi_memzero(dst, n);
}
#endif
#endif

View File

@ -0,0 +1,323 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_PRIM_H
#define MIMALLOC_PRIM_H
// --------------------------------------------------------------------------
// This file specifies the primitive portability API.
// Each OS/host needs to implement these primitives, see `src/prim`
// for implementations on Window, macOS, WASI, and Linux/Unix.
//
// note: on all primitive functions, we always have result parameters != NUL, and:
// addr != NULL and page aligned
// size > 0 and page aligned
// return value is an error code an int where 0 is success.
// --------------------------------------------------------------------------
// OS memory configuration
typedef struct mi_os_mem_config_s {
size_t page_size; // 4KiB
size_t large_page_size; // 2MiB
size_t alloc_granularity; // smallest allocation size (on Windows 64KiB)
bool has_overcommit; // can we reserve more memory than can be actually committed?
bool must_free_whole; // must allocated blocks be freed as a whole (false for mmap, true for VirtualAlloc)
bool has_virtual_reserve; // supports virtual address space reservation? (if true we can reserve virtual address space without using commit or physical memory)
} mi_os_mem_config_t;
// Initialize
void _mi_prim_mem_init( mi_os_mem_config_t* config );
// Free OS memory
int _mi_prim_free(void* addr, size_t size );
// Allocate OS memory. Return NULL on error.
// The `try_alignment` is just a hint and the returned pointer does not have to be aligned.
// If `commit` is false, the virtual memory range only needs to be reserved (with no access)
// which will later be committed explicitly using `_mi_prim_commit`.
// `is_zero` is set to true if the memory was zero initialized (as on most OS's)
// pre: !commit => !allow_large
// try_alignment >= _mi_os_page_size() and a power of 2
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr);
// Commit memory. Returns error code or 0 on success.
// For example, on Linux this would make the memory PROT_READ|PROT_WRITE.
// `is_zero` is set to true if the memory was zero initialized (e.g. on Windows)
int _mi_prim_commit(void* addr, size_t size, bool* is_zero);
// Decommit memory. Returns error code or 0 on success. The `needs_recommit` result is true
// if the memory would need to be re-committed. For example, on Windows this is always true,
// but on Linux we could use MADV_DONTNEED to decommit which does not need a recommit.
// pre: needs_recommit != NULL
int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit);
// Reset memory. The range keeps being accessible but the content might be reset.
// Returns error code or 0 on success.
int _mi_prim_reset(void* addr, size_t size);
// Protect memory. Returns error code or 0 on success.
int _mi_prim_protect(void* addr, size_t size, bool protect);
// Allocate huge (1GiB) pages possibly associated with a NUMA node.
// `is_zero` is set to true if the memory was zero initialized (as on most OS's)
// pre: size > 0 and a multiple of 1GiB.
// numa_node is either negative (don't care), or a numa node number.
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr);
// Return the current NUMA node
size_t _mi_prim_numa_node(void);
// Return the number of logical NUMA nodes
size_t _mi_prim_numa_node_count(void);
// Clock ticks
mi_msecs_t _mi_prim_clock_now(void);
// Return process information (only for statistics)
typedef struct mi_process_info_s {
mi_msecs_t elapsed;
mi_msecs_t utime;
mi_msecs_t stime;
size_t current_rss;
size_t peak_rss;
size_t current_commit;
size_t peak_commit;
size_t page_faults;
} mi_process_info_t;
void _mi_prim_process_info(mi_process_info_t* pinfo);
// Default stderr output. (only for warnings etc. with verbose enabled)
// msg != NULL && _mi_strlen(msg) > 0
void _mi_prim_out_stderr( const char* msg );
// Get an environment variable. (only for options)
// name != NULL, result != NULL, result_size >= 64
bool _mi_prim_getenv(const char* name, char* result, size_t result_size);
// Fill a buffer with strong randomness; return `false` on error or if
// there is no strong randomization available.
bool _mi_prim_random_buf(void* buf, size_t buf_len);
// Called on the first thread start, and should ensure `_mi_thread_done` is called on thread termination.
void _mi_prim_thread_init_auto_done(void);
// Called on process exit and may take action to clean up resources associated with the thread auto done.
void _mi_prim_thread_done_auto_done(void);
// Called when the default heap for a thread changes
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap);
//-------------------------------------------------------------------
// Thread id: `_mi_prim_thread_id()`
//
// Getting the thread id should be performant as it is called in the
// fast path of `_mi_free` and we specialize for various platforms as
// inlined definitions. Regular code should call `init.c:_mi_thread_id()`.
// We only require _mi_prim_thread_id() to return a unique id
// for each thread (unequal to zero).
//-------------------------------------------------------------------
// defined in `init.c`; do not use these directly
extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
extern bool _mi_process_is_initialized; // has mi_process_init been called?
static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept;
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept {
// Windows: works on Intel and ARM in both 32- and 64-bit
return (uintptr_t)NtCurrentTeb();
}
// We use assembly for a fast thread id on the main platforms. The TLS layout depends on
// both the OS and libc implementation so we use specific tests for each main platform.
// If you test on another platform and it works please send a PR :-)
// see also https://akkadia.org/drepper/tls.pdf for more info on the TLS register.
#elif defined(__GNUC__) && ( \
(defined(__GLIBC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \
|| (defined(__APPLE__) && (defined(__x86_64__) || defined(__aarch64__))) \
|| (defined(__BIONIC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \
|| (defined(__FreeBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \
|| (defined(__OpenBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \
)
static inline void* mi_prim_tls_slot(size_t slot) mi_attr_noexcept {
void* res;
const size_t ofs = (slot*sizeof(void*));
#if defined(__i386__)
__asm__("movl %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86 32-bit always uses GS
#elif defined(__APPLE__) && defined(__x86_64__)
__asm__("movq %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 macOSX uses GS
#elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
__asm__("movl %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x32 ABI
#elif defined(__x86_64__)
__asm__("movq %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 Linux, BSD uses FS
#elif defined(__arm__)
void** tcb; MI_UNUSED(ofs);
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
res = tcb[slot];
#elif defined(__aarch64__)
void** tcb; MI_UNUSED(ofs);
#if defined(__APPLE__) // M1, issue #343
__asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb));
#else
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
#endif
res = tcb[slot];
#endif
return res;
}
// setting a tls slot is only used on macOS for now
static inline void mi_prim_tls_slot_set(size_t slot, void* value) mi_attr_noexcept {
const size_t ofs = (slot*sizeof(void*));
#if defined(__i386__)
__asm__("movl %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // 32-bit always uses GS
#elif defined(__APPLE__) && defined(__x86_64__)
__asm__("movq %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 macOS uses GS
#elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
__asm__("movl %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x32 ABI
#elif defined(__x86_64__)
__asm__("movq %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 Linux, BSD uses FS
#elif defined(__arm__)
void** tcb; MI_UNUSED(ofs);
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
tcb[slot] = value;
#elif defined(__aarch64__)
void** tcb; MI_UNUSED(ofs);
#if defined(__APPLE__) // M1, issue #343
__asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb));
#else
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
#endif
tcb[slot] = value;
#endif
}
static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept {
#if defined(__BIONIC__)
// issue #384, #495: on the Bionic libc (Android), slot 1 is the thread id
// see: https://github.com/aosp-mirror/platform_bionic/blob/c44b1d0676ded732df4b3b21c5f798eacae93228/libc/platform/bionic/tls_defines.h#L86
return (uintptr_t)mi_prim_tls_slot(1);
#else
// in all our other targets, slot 0 is the thread id
// glibc: https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/x86_64/nptl/tls.h
// apple: https://github.com/apple/darwin-xnu/blob/main/libsyscall/os/tsd.h#L36
return (uintptr_t)mi_prim_tls_slot(0);
#endif
}
#else
// otherwise use portable C, taking the address of a thread local variable (this is still very fast on most platforms).
static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept {
return (uintptr_t)&_mi_heap_default;
}
#endif
/* ----------------------------------------------------------------------------------------
The thread local default heap: `_mi_prim_get_default_heap()`
This is inlined here as it is on the fast path for allocation functions.
On most platforms (Windows, Linux, FreeBSD, NetBSD, etc), this just returns a
__thread local variable (`_mi_heap_default`). With the initial-exec TLS model this ensures
that the storage will always be available (allocated on the thread stacks).
On some platforms though we cannot use that when overriding `malloc` since the underlying
TLS implementation (or the loader) will call itself `malloc` on a first access and recurse.
We try to circumvent this in an efficient way:
- macOSX : we use an unused TLS slot from the OS allocated slots (MI_TLS_SLOT). On OSX, the
loader itself calls `malloc` even before the modules are initialized.
- OpenBSD: we use an unused slot from the pthread block (MI_TLS_PTHREAD_SLOT_OFS).
- DragonFly: defaults are working but seem slow compared to freeBSD (see PR #323)
------------------------------------------------------------------------------------------- */
static inline mi_heap_t* mi_prim_get_default_heap(void);
#if defined(MI_MALLOC_OVERRIDE)
#if defined(__APPLE__) // macOS
#define MI_TLS_SLOT 89 // seems unused?
// #define MI_TLS_RECURSE_GUARD 1
// other possible unused ones are 9, 29, __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY4 (94), __PTK_FRAMEWORK_GC_KEY9 (112) and __PTK_FRAMEWORK_OLDGC_KEY9 (89)
// see <https://github.com/rweichler/substrate/blob/master/include/pthread_machdep.h>
#elif defined(__OpenBSD__)
// use end bytes of a name; goes wrong if anyone uses names > 23 characters (ptrhread specifies 16)
// see <https://github.com/openbsd/src/blob/master/lib/libc/include/thread_private.h#L371>
#define MI_TLS_PTHREAD_SLOT_OFS (6*sizeof(int) + 4*sizeof(void*) + 24)
// #elif defined(__DragonFly__)
// #warning "mimalloc is not working correctly on DragonFly yet."
// #define MI_TLS_PTHREAD_SLOT_OFS (4 + 1*sizeof(void*)) // offset `uniqueid` (also used by gdb?) <https://github.com/DragonFlyBSD/DragonFlyBSD/blob/master/lib/libthread_xu/thread/thr_private.h#L458>
#elif defined(__ANDROID__)
// See issue #381
#define MI_TLS_PTHREAD
#endif
#endif
#if defined(MI_TLS_SLOT)
static inline mi_heap_t* mi_prim_get_default_heap(void) {
mi_heap_t* heap = (mi_heap_t*)mi_prim_tls_slot(MI_TLS_SLOT);
if mi_unlikely(heap == NULL) {
#ifdef __GNUC__
__asm(""); // prevent conditional load of the address of _mi_heap_empty
#endif
heap = (mi_heap_t*)&_mi_heap_empty;
}
return heap;
}
#elif defined(MI_TLS_PTHREAD_SLOT_OFS)
static inline mi_heap_t** mi_prim_tls_pthread_heap_slot(void) {
pthread_t self = pthread_self();
#if defined(__DragonFly__)
if (self==NULL) return NULL;
#endif
return (mi_heap_t**)((uint8_t*)self + MI_TLS_PTHREAD_SLOT_OFS);
}
static inline mi_heap_t* mi_prim_get_default_heap(void) {
mi_heap_t** pheap = mi_prim_tls_pthread_heap_slot();
if mi_unlikely(pheap == NULL) return _mi_heap_main_get();
mi_heap_t* heap = *pheap;
if mi_unlikely(heap == NULL) return (mi_heap_t*)&_mi_heap_empty;
return heap;
}
#elif defined(MI_TLS_PTHREAD)
extern pthread_key_t _mi_heap_default_key;
static inline mi_heap_t* mi_prim_get_default_heap(void) {
mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? _mi_heap_main_get() : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key));
return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
}
#else // default using a thread local variable; used on most platforms.
static inline mi_heap_t* mi_prim_get_default_heap(void) {
#if defined(MI_TLS_RECURSE_GUARD)
if (mi_unlikely(!_mi_process_is_initialized)) return _mi_heap_main_get();
#endif
return _mi_heap_default;
}
#endif // mi_prim_get_default_heap()
#endif // MIMALLOC_PRIM_H

View File

@ -0,0 +1,147 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_TRACK_H
#define MIMALLOC_TRACK_H
/* ------------------------------------------------------------------------------------------------------
Track memory ranges with macros for tools like Valgrind address sanitizer, or other memory checkers.
These can be defined for tracking allocation:
#define mi_track_malloc_size(p,reqsize,size,zero)
#define mi_track_free_size(p,_size)
The macros are set up such that the size passed to `mi_track_free_size`
always matches the size of `mi_track_malloc_size`. (currently, `size == mi_usable_size(p)`).
The `reqsize` is what the user requested, and `size >= reqsize`.
The `size` is either byte precise (and `size==reqsize`) if `MI_PADDING` is enabled,
or otherwise it is the usable block size which may be larger than the original request.
Use `_mi_block_size_of(void* p)` to get the full block size that was allocated (including padding etc).
The `zero` parameter is `true` if the allocated block is zero initialized.
Optional:
#define mi_track_align(p,alignedp,offset,size)
#define mi_track_resize(p,oldsize,newsize)
#define mi_track_init()
The `mi_track_align` is called right after a `mi_track_malloc` for aligned pointers in a block.
The corresponding `mi_track_free` still uses the block start pointer and original size (corresponding to the `mi_track_malloc`).
The `mi_track_resize` is currently unused but could be called on reallocations within a block.
`mi_track_init` is called at program start.
The following macros are for tools like asan and valgrind to track whether memory is
defined, undefined, or not accessible at all:
#define mi_track_mem_defined(p,size)
#define mi_track_mem_undefined(p,size)
#define mi_track_mem_noaccess(p,size)
-------------------------------------------------------------------------------------------------------*/
#if MI_TRACK_VALGRIND
// valgrind tool
#define MI_TRACK_ENABLED 1
#define MI_TRACK_HEAP_DESTROY 1 // track free of individual blocks on heap_destroy
#define MI_TRACK_TOOL "valgrind"
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#define mi_track_malloc_size(p,reqsize,size,zero) VALGRIND_MALLOCLIKE_BLOCK(p,size,MI_PADDING_SIZE /*red zone*/,zero)
#define mi_track_free_size(p,_size) VALGRIND_FREELIKE_BLOCK(p,MI_PADDING_SIZE /*red zone*/)
#define mi_track_resize(p,oldsize,newsize) VALGRIND_RESIZEINPLACE_BLOCK(p,oldsize,newsize,MI_PADDING_SIZE /*red zone*/)
#define mi_track_mem_defined(p,size) VALGRIND_MAKE_MEM_DEFINED(p,size)
#define mi_track_mem_undefined(p,size) VALGRIND_MAKE_MEM_UNDEFINED(p,size)
#define mi_track_mem_noaccess(p,size) VALGRIND_MAKE_MEM_NOACCESS(p,size)
#elif MI_TRACK_ASAN
// address sanitizer
#define MI_TRACK_ENABLED 1
#define MI_TRACK_HEAP_DESTROY 0
#define MI_TRACK_TOOL "asan"
#include <sanitizer/asan_interface.h>
#define mi_track_malloc_size(p,reqsize,size,zero) ASAN_UNPOISON_MEMORY_REGION(p,size)
#define mi_track_free_size(p,size) ASAN_POISON_MEMORY_REGION(p,size)
#define mi_track_mem_defined(p,size) ASAN_UNPOISON_MEMORY_REGION(p,size)
#define mi_track_mem_undefined(p,size) ASAN_UNPOISON_MEMORY_REGION(p,size)
#define mi_track_mem_noaccess(p,size) ASAN_POISON_MEMORY_REGION(p,size)
#elif MI_TRACK_ETW
// windows event tracing
#define MI_TRACK_ENABLED 1
#define MI_TRACK_HEAP_DESTROY 1
#define MI_TRACK_TOOL "ETW"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include "../src/prim/windows/etw.h"
#define mi_track_init() EventRegistermicrosoft_windows_mimalloc();
#define mi_track_malloc_size(p,reqsize,size,zero) EventWriteETW_MI_ALLOC((UINT64)(p), size)
#define mi_track_free_size(p,size) EventWriteETW_MI_FREE((UINT64)(p), size)
#else
// no tracking
#define MI_TRACK_ENABLED 0
#define MI_TRACK_HEAP_DESTROY 0
#define MI_TRACK_TOOL "none"
#define mi_track_malloc_size(p,reqsize,size,zero)
#define mi_track_free_size(p,_size)
#endif
// -------------------
// Utility definitions
#ifndef mi_track_resize
#define mi_track_resize(p,oldsize,newsize) mi_track_free_size(p,oldsize); mi_track_malloc(p,newsize,false)
#endif
#ifndef mi_track_align
#define mi_track_align(p,alignedp,offset,size) mi_track_mem_noaccess(p,offset)
#endif
#ifndef mi_track_init
#define mi_track_init()
#endif
#ifndef mi_track_mem_defined
#define mi_track_mem_defined(p,size)
#endif
#ifndef mi_track_mem_undefined
#define mi_track_mem_undefined(p,size)
#endif
#ifndef mi_track_mem_noaccess
#define mi_track_mem_noaccess(p,size)
#endif
#if MI_PADDING
#define mi_track_malloc(p,reqsize,zero) \
if ((p)!=NULL) { \
mi_assert_internal(mi_usable_size(p)==(reqsize)); \
mi_track_malloc_size(p,reqsize,reqsize,zero); \
}
#else
#define mi_track_malloc(p,reqsize,zero) \
if ((p)!=NULL) { \
mi_assert_internal(mi_usable_size(p)>=(reqsize)); \
mi_track_malloc_size(p,reqsize,mi_usable_size(p),zero); \
}
#endif
#endif

View File

@ -0,0 +1,670 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_TYPES_H
#define MIMALLOC_TYPES_H
// --------------------------------------------------------------------------
// This file contains the main type definitions for mimalloc:
// mi_heap_t : all data for a thread-local heap, contains
// lists of all managed heap pages.
// mi_segment_t : a larger chunk of memory (32GiB) from where pages
// are allocated.
// mi_page_t : a mimalloc page (usually 64KiB or 512KiB) from
// where objects are allocated.
// --------------------------------------------------------------------------
#include <stddef.h> // ptrdiff_t
#include <stdint.h> // uintptr_t, uint16_t, etc
#include "mimalloc/atomic.h" // _Atomic
#ifdef _MSC_VER
#pragma warning(disable:4214) // bitfield is not int
#endif
// Minimal alignment necessary. On most platforms 16 bytes are needed
// due to SSE registers for example. This must be at least `sizeof(void*)`
#ifndef MI_MAX_ALIGN_SIZE
#define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
#endif
// ------------------------------------------------------
// Variants
// ------------------------------------------------------
// Define NDEBUG in the release version to disable assertions.
// #define NDEBUG
// Define MI_TRACK_<tool> to enable tracking support
// #define MI_TRACK_VALGRIND 1
// #define MI_TRACK_ASAN 1
// #define MI_TRACK_ETW 1
// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance).
// #define MI_STAT 1
// Define MI_SECURE to enable security mitigations
// #define MI_SECURE 1 // guard page around metadata
// #define MI_SECURE 2 // guard page around each mimalloc page
// #define MI_SECURE 3 // encode free lists (detect corrupted free list (buffer overflow), and invalid pointer free)
// #define MI_SECURE 4 // checks for double free. (may be more expensive)
#if !defined(MI_SECURE)
#define MI_SECURE 0
#endif
// Define MI_DEBUG for debug mode
// #define MI_DEBUG 1 // basic assertion checks and statistics, check double free, corrupted free list, and invalid pointer free.
// #define MI_DEBUG 2 // + internal assertion checks
// #define MI_DEBUG 3 // + extensive internal invariant checking (cmake -DMI_DEBUG_FULL=ON)
#if !defined(MI_DEBUG)
#if !defined(NDEBUG) || defined(_DEBUG)
#define MI_DEBUG 2
#else
#define MI_DEBUG 0
#endif
#endif
// Reserve extra padding at the end of each block to be more resilient against heap block overflows.
// The padding can detect buffer overflow on free.
#if !defined(MI_PADDING) && (MI_SECURE>=3 || MI_DEBUG>=1 || (MI_TRACK_VALGRIND || MI_TRACK_ASAN || MI_TRACK_ETW))
#define MI_PADDING 1
#endif
// Check padding bytes; allows byte-precise buffer overflow detection
#if !defined(MI_PADDING_CHECK) && MI_PADDING && (MI_SECURE>=3 || MI_DEBUG>=1)
#define MI_PADDING_CHECK 1
#endif
// Encoded free lists allow detection of corrupted free lists
// and can detect buffer overflows, modify after free, and double `free`s.
#if (MI_SECURE>=3 || MI_DEBUG>=1)
#define MI_ENCODE_FREELIST 1
#endif
// We used to abandon huge pages but to eagerly deallocate if freed from another thread,
// but that makes it not possible to visit them during a heap walk or include them in a
// `mi_heap_destroy`. We therefore instead reset/decommit the huge blocks if freed from
// another thread so most memory is available until it gets properly freed by the owning thread.
// #define MI_HUGE_PAGE_ABANDON 1
// ------------------------------------------------------
// Platform specific values
// ------------------------------------------------------
// ------------------------------------------------------
// Size of a pointer.
// We assume that `sizeof(void*)==sizeof(intptr_t)`
// and it holds for all platforms we know of.
//
// However, the C standard only requires that:
// p == (void*)((intptr_t)p))
// but we also need:
// i == (intptr_t)((void*)i)
// or otherwise one might define an intptr_t type that is larger than a pointer...
// ------------------------------------------------------
#if INTPTR_MAX > INT64_MAX
# define MI_INTPTR_SHIFT (4) // assume 128-bit (as on arm CHERI for example)
#elif INTPTR_MAX == INT64_MAX
# define MI_INTPTR_SHIFT (3)
#elif INTPTR_MAX == INT32_MAX
# define MI_INTPTR_SHIFT (2)
#else
#error platform pointers must be 32, 64, or 128 bits
#endif
#if SIZE_MAX == UINT64_MAX
# define MI_SIZE_SHIFT (3)
typedef int64_t mi_ssize_t;
#elif SIZE_MAX == UINT32_MAX
# define MI_SIZE_SHIFT (2)
typedef int32_t mi_ssize_t;
#else
#error platform objects must be 32 or 64 bits
#endif
#if (SIZE_MAX/2) > LONG_MAX
# define MI_ZU(x) x##ULL
# define MI_ZI(x) x##LL
#else
# define MI_ZU(x) x##UL
# define MI_ZI(x) x##L
#endif
#define MI_INTPTR_SIZE (1<<MI_INTPTR_SHIFT)
#define MI_INTPTR_BITS (MI_INTPTR_SIZE*8)
#define MI_SIZE_SIZE (1<<MI_SIZE_SHIFT)
#define MI_SIZE_BITS (MI_SIZE_SIZE*8)
#define MI_KiB (MI_ZU(1024))
#define MI_MiB (MI_KiB*MI_KiB)
#define MI_GiB (MI_MiB*MI_KiB)
// ------------------------------------------------------
// Main internal data-structures
// ------------------------------------------------------
// Main tuning parameters for segment and page sizes
// Sizes for 64-bit (usually divide by two for 32-bit)
#define MI_SEGMENT_SLICE_SHIFT (13 + MI_INTPTR_SHIFT) // 64KiB (32KiB on 32-bit)
#if MI_INTPTR_SIZE > 4
#define MI_SEGMENT_SHIFT ( 9 + MI_SEGMENT_SLICE_SHIFT) // 32MiB
#else
#define MI_SEGMENT_SHIFT ( 7 + MI_SEGMENT_SLICE_SHIFT) // 4MiB on 32-bit
#endif
#define MI_SMALL_PAGE_SHIFT (MI_SEGMENT_SLICE_SHIFT) // 64KiB
#define MI_MEDIUM_PAGE_SHIFT ( 3 + MI_SMALL_PAGE_SHIFT) // 512KiB
// Derived constants
#define MI_SEGMENT_SIZE (MI_ZU(1)<<MI_SEGMENT_SHIFT)
#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE
#define MI_SEGMENT_MASK ((uintptr_t)(MI_SEGMENT_ALIGN - 1))
#define MI_SEGMENT_SLICE_SIZE (MI_ZU(1)<< MI_SEGMENT_SLICE_SHIFT)
#define MI_SLICES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_SEGMENT_SLICE_SIZE) // 1024
#define MI_SMALL_PAGE_SIZE (MI_ZU(1)<<MI_SMALL_PAGE_SHIFT)
#define MI_MEDIUM_PAGE_SIZE (MI_ZU(1)<<MI_MEDIUM_PAGE_SHIFT)
#define MI_SMALL_OBJ_SIZE_MAX (MI_SMALL_PAGE_SIZE/4) // 8KiB on 64-bit
#define MI_MEDIUM_OBJ_SIZE_MAX (MI_MEDIUM_PAGE_SIZE/4) // 128KiB on 64-bit
#define MI_MEDIUM_OBJ_WSIZE_MAX (MI_MEDIUM_OBJ_SIZE_MAX/MI_INTPTR_SIZE)
#define MI_LARGE_OBJ_SIZE_MAX (MI_SEGMENT_SIZE/2) // 32MiB on 64-bit
#define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX/MI_INTPTR_SIZE)
// Maximum number of size classes. (spaced exponentially in 12.5% increments)
#define MI_BIN_HUGE (73U)
#if (MI_MEDIUM_OBJ_WSIZE_MAX >= 655360)
#error "mimalloc internal: define more bins"
#endif
// Maximum slice offset (15)
#define MI_MAX_SLICE_OFFSET ((MI_ALIGNMENT_MAX / MI_SEGMENT_SLICE_SIZE) - 1)
// Used as a special value to encode block sizes in 32 bits.
#define MI_HUGE_BLOCK_SIZE ((uint32_t)(2*MI_GiB))
// blocks up to this size are always allocated aligned
#define MI_MAX_ALIGN_GUARANTEE (8*MI_MAX_ALIGN_SIZE)
// Alignments over MI_ALIGNMENT_MAX are allocated in dedicated huge page segments
#define MI_ALIGNMENT_MAX (MI_SEGMENT_SIZE >> 1)
// ------------------------------------------------------
// Mimalloc pages contain allocated blocks
// ------------------------------------------------------
// The free lists use encoded next fields
// (Only actually encodes when MI_ENCODED_FREELIST is defined.)
typedef uintptr_t mi_encoded_t;
// thread id's
typedef size_t mi_threadid_t;
// free lists contain blocks
typedef struct mi_block_s {
mi_encoded_t next;
} mi_block_t;
// The delayed flags are used for efficient multi-threaded free-ing
typedef enum mi_delayed_e {
MI_USE_DELAYED_FREE = 0, // push on the owning heap thread delayed list
MI_DELAYED_FREEING = 1, // temporary: another thread is accessing the owning heap
MI_NO_DELAYED_FREE = 2, // optimize: push on page local thread free queue if another block is already in the heap thread delayed free list
MI_NEVER_DELAYED_FREE = 3 // sticky, only resets on page reclaim
} mi_delayed_t;
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
// test if both are false (`full_aligned == 0`) in the `mi_free` routine.
#if !MI_TSAN
typedef union mi_page_flags_s {
uint8_t full_aligned;
struct {
uint8_t in_full : 1;
uint8_t has_aligned : 1;
} x;
} mi_page_flags_t;
#else
// under thread sanitizer, use a byte for each flag to suppress warning, issue #130
typedef union mi_page_flags_s {
uint16_t full_aligned;
struct {
uint8_t in_full;
uint8_t has_aligned;
} x;
} mi_page_flags_t;
#endif
// Thread free list.
// We use the bottom 2 bits of the pointer for mi_delayed_t flags
typedef uintptr_t mi_thread_free_t;
// A page contains blocks of one specific size (`block_size`).
// Each page has three list of free blocks:
// `free` for blocks that can be allocated,
// `local_free` for freed blocks that are not yet available to `mi_malloc`
// `thread_free` for freed blocks by other threads
// The `local_free` and `thread_free` lists are migrated to the `free` list
// when it is exhausted. The separate `local_free` list is necessary to
// implement a monotonic heartbeat. The `thread_free` list is needed for
// avoiding atomic operations in the common case.
//
//
// `used - |thread_free|` == actual blocks that are in use (alive)
// `used - |thread_free| + |free| + |local_free| == capacity`
//
// We don't count `freed` (as |free|) but use `used` to reduce
// the number of memory accesses in the `mi_page_all_free` function(s).
//
// Notes:
// - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`)
// - Using `uint16_t` does not seem to slow things down
// - The size is 8 words on 64-bit which helps the page index calculations
// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10
// and 12 are still good for address calculation)
// - To limit the structure size, the `xblock_size` is 32-bits only; for
// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
// - `thread_free` uses the bottom bits as a delayed-free flags to optimize
// concurrent frees where only the first concurrent free adds to the owning
// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
// The invariant is that no-delayed-free is only set if there is
// at least one block that will be added, or as already been added, to
// the owning heap `thread_delayed_free` list. This guarantees that pages
// will be freed correctly even if only other threads free blocks.
typedef struct mi_page_s {
// "owned" by the segment
uint32_t slice_count; // slices in this page (0 if not a page)
uint32_t slice_offset; // distance from the actual page data slice (0 if a page)
uint8_t is_committed : 1; // `true` if the page virtual memory is committed
uint8_t is_zero_init : 1; // `true` if the page was initially zero initialized
// layout like this to optimize access in `mi_malloc` and `mi_free`
uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear`
uint16_t reserved; // number of blocks reserved in memory
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits)
uint8_t free_is_zero : 1; // `true` if the blocks in the free list are zero initialized
uint8_t retire_expire : 7; // expiration count for retired blocks
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
uint32_t xblock_size; // size available in each block (always `>0`)
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
#if (MI_ENCODE_FREELIST || MI_PADDING)
uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary
#endif
_Atomic(mi_thread_free_t) xthread_free; // list of deferred free blocks freed by other threads
_Atomic(uintptr_t) xheap;
struct mi_page_s* next; // next page owned by this thread with the same `block_size`
struct mi_page_s* prev; // previous page owned by this thread with the same `block_size`
// 64-bit 9 words, 32-bit 12 words, (+2 for secure)
#if MI_INTPTR_SIZE==8
uintptr_t padding[1];
#endif
} mi_page_t;
// ------------------------------------------------------
// Mimalloc segments contain mimalloc pages
// ------------------------------------------------------
typedef enum mi_page_kind_e {
MI_PAGE_SMALL, // small blocks go into 64KiB pages inside a segment
MI_PAGE_MEDIUM, // medium blocks go into medium pages inside a segment
MI_PAGE_LARGE, // larger blocks go into a page of just one block
MI_PAGE_HUGE, // huge blocks (> 16 MiB) are put into a single page in a single segment.
} mi_page_kind_t;
typedef enum mi_segment_kind_e {
MI_SEGMENT_NORMAL, // MI_SEGMENT_SIZE size with pages inside.
MI_SEGMENT_HUGE, // > MI_LARGE_SIZE_MAX segment with just one huge page inside.
} mi_segment_kind_t;
// ------------------------------------------------------
// A segment holds a commit mask where a bit is set if
// the corresponding MI_COMMIT_SIZE area is committed.
// The MI_COMMIT_SIZE must be a multiple of the slice
// size. If it is equal we have the most fine grained
// decommit (but setting it higher can be more efficient).
// The MI_MINIMAL_COMMIT_SIZE is the minimal amount that will
// be committed in one go which can be set higher than
// MI_COMMIT_SIZE for efficiency (while the decommit mask
// is still tracked in fine-grained MI_COMMIT_SIZE chunks)
// ------------------------------------------------------
#define MI_MINIMAL_COMMIT_SIZE (1*MI_SEGMENT_SLICE_SIZE)
#define MI_COMMIT_SIZE (MI_SEGMENT_SLICE_SIZE) // 64KiB
#define MI_COMMIT_MASK_BITS (MI_SEGMENT_SIZE / MI_COMMIT_SIZE)
#define MI_COMMIT_MASK_FIELD_BITS MI_SIZE_BITS
#define MI_COMMIT_MASK_FIELD_COUNT (MI_COMMIT_MASK_BITS / MI_COMMIT_MASK_FIELD_BITS)
#if (MI_COMMIT_MASK_BITS != (MI_COMMIT_MASK_FIELD_COUNT * MI_COMMIT_MASK_FIELD_BITS))
#error "the segment size must be exactly divisible by the (commit size * size_t bits)"
#endif
typedef struct mi_commit_mask_s {
size_t mask[MI_COMMIT_MASK_FIELD_COUNT];
} mi_commit_mask_t;
typedef mi_page_t mi_slice_t;
typedef int64_t mi_msecs_t;
// Memory can reside in arena's, direct OS allocated, or statically allocated. The memid keeps track of this.
typedef enum mi_memkind_e {
MI_MEM_NONE, // not allocated
MI_MEM_EXTERNAL, // not owned by mimalloc but provided externally (via `mi_manage_os_memory` for example)
MI_MEM_STATIC, // allocated in a static area and should not be freed (for arena meta data for example)
MI_MEM_OS, // allocated from the OS
MI_MEM_OS_HUGE, // allocated as huge os pages
MI_MEM_OS_REMAP, // allocated in a remapable area (i.e. using `mremap`)
MI_MEM_ARENA // allocated from an arena (the usual case)
} mi_memkind_t;
static inline bool mi_memkind_is_os(mi_memkind_t memkind) {
return (memkind >= MI_MEM_OS && memkind <= MI_MEM_OS_REMAP);
}
typedef struct mi_memid_os_info {
void* base; // actual base address of the block (used for offset aligned allocations)
size_t alignment; // alignment at allocation
} mi_memid_os_info_t;
typedef struct mi_memid_arena_info {
size_t block_index; // index in the arena
mi_arena_id_t id; // arena id (>= 1)
bool is_exclusive; // the arena can only be used for specific arena allocations
} mi_memid_arena_info_t;
typedef struct mi_memid_s {
union {
mi_memid_os_info_t os; // only used for MI_MEM_OS
mi_memid_arena_info_t arena; // only used for MI_MEM_ARENA
} mem;
bool is_pinned; // `true` if we cannot decommit/reset/protect in this memory (e.g. when allocated using large OS pages)
bool initially_committed;// `true` if the memory was originally allocated as committed
bool initially_zero; // `true` if the memory was originally zero initialized
mi_memkind_t memkind;
} mi_memid_t;
// Segments are large allocated memory blocks (8mb on 64 bit) from
// the OS. Inside segments we allocated fixed size _pages_ that
// contain blocks.
typedef struct mi_segment_s {
// constant fields
mi_memid_t memid; // memory id for arena allocation
bool allow_decommit;
bool allow_purge;
size_t segment_size;
// segment fields
mi_msecs_t purge_expire;
mi_commit_mask_t purge_mask;
mi_commit_mask_t commit_mask;
_Atomic(struct mi_segment_s*) abandoned_next;
// from here is zero initialized
struct mi_segment_s* next; // the list of freed segments in the cache (must be first field, see `segment.c:mi_segment_init`)
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
size_t abandoned_visits; // count how often this segment is visited in the abandoned list (to force reclaim it it is too long)
size_t used; // count of pages in use
uintptr_t cookie; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie`
size_t segment_slices; // for huge segments this may be different from `MI_SLICES_PER_SEGMENT`
size_t segment_info_slices; // initial slices we are using segment info and possible guard pages.
// layout like this to optimize access in `mi_free`
mi_segment_kind_t kind;
size_t slice_entries; // entries in the `slices` array, at most `MI_SLICES_PER_SEGMENT`
_Atomic(mi_threadid_t) thread_id; // unique id of the thread owning this segment
mi_slice_t slices[MI_SLICES_PER_SEGMENT+1]; // one more for huge blocks with large alignment
} mi_segment_t;
// ------------------------------------------------------
// Heaps
// Provide first-class heaps to allocate from.
// A heap just owns a set of pages for allocation and
// can only be allocate/reallocate from the thread that created it.
// Freeing blocks can be done from any thread though.
// Per thread, the segments are shared among its heaps.
// Per thread, there is always a default heap that is
// used for allocation; it is initialized to statically
// point to an empty heap to avoid initialization checks
// in the fast path.
// ------------------------------------------------------
// Thread local data
typedef struct mi_tld_s mi_tld_t;
// Pages of a certain block size are held in a queue.
typedef struct mi_page_queue_s {
mi_page_t* first;
mi_page_t* last;
size_t block_size;
} mi_page_queue_t;
#define MI_BIN_FULL (MI_BIN_HUGE+1)
// Random context
typedef struct mi_random_cxt_s {
uint32_t input[16];
uint32_t output[16];
int output_available;
bool weak;
} mi_random_ctx_t;
// In debug mode there is a padding structure at the end of the blocks to check for buffer overflows
#if (MI_PADDING)
typedef struct mi_padding_s {
uint32_t canary; // encoded block value to check validity of the padding (in case of overflow)
uint32_t delta; // padding bytes before the block. (mi_usable_size(p) - delta == exact allocated bytes)
} mi_padding_t;
#define MI_PADDING_SIZE (sizeof(mi_padding_t))
#define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE)
#else
#define MI_PADDING_SIZE 0
#define MI_PADDING_WSIZE 0
#endif
#define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1)
// A heap owns a set of pages.
struct mi_heap_s {
mi_tld_t* tld;
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
_Atomic(mi_block_t*) thread_delayed_free;
mi_threadid_t thread_id; // thread this heap belongs too
mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0)
uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`)
uintptr_t keys[2]; // two random keys used to encode the `thread_delayed_free` list
mi_random_ctx_t random; // random number context used for secure allocation
size_t page_count; // total number of pages in the `pages` queues.
size_t page_retired_min; // smallest retired index (retired pages are fully free, but still in the page queues)
size_t page_retired_max; // largest retired index into the `pages` array.
mi_heap_t* next; // list of heaps per thread
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
};
// ------------------------------------------------------
// Debug
// ------------------------------------------------------
#if !defined(MI_DEBUG_UNINIT)
#define MI_DEBUG_UNINIT (0xD0)
#endif
#if !defined(MI_DEBUG_FREED)
#define MI_DEBUG_FREED (0xDF)
#endif
#if !defined(MI_DEBUG_PADDING)
#define MI_DEBUG_PADDING (0xDE)
#endif
#if (MI_DEBUG)
// use our own assertion to print without memory allocation
void _mi_assert_fail(const char* assertion, const char* fname, unsigned int line, const char* func );
#define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__))
#else
#define mi_assert(x)
#endif
#if (MI_DEBUG>1)
#define mi_assert_internal mi_assert
#else
#define mi_assert_internal(x)
#endif
#if (MI_DEBUG>2)
#define mi_assert_expensive mi_assert
#else
#define mi_assert_expensive(x)
#endif
// ------------------------------------------------------
// Statistics
// ------------------------------------------------------
#ifndef MI_STAT
#if (MI_DEBUG>0)
#define MI_STAT 2
#else
#define MI_STAT 0
#endif
#endif
typedef struct mi_stat_count_s {
int64_t allocated;
int64_t freed;
int64_t peak;
int64_t current;
} mi_stat_count_t;
typedef struct mi_stat_counter_s {
int64_t total;
int64_t count;
} mi_stat_counter_t;
typedef struct mi_stats_s {
mi_stat_count_t segments;
mi_stat_count_t pages;
mi_stat_count_t reserved;
mi_stat_count_t committed;
mi_stat_count_t reset;
mi_stat_count_t purged;
mi_stat_count_t page_committed;
mi_stat_count_t segments_abandoned;
mi_stat_count_t pages_abandoned;
mi_stat_count_t threads;
mi_stat_count_t normal;
mi_stat_count_t huge;
mi_stat_count_t large;
mi_stat_count_t malloc;
mi_stat_count_t segments_cache;
mi_stat_counter_t pages_extended;
mi_stat_counter_t mmap_calls;
mi_stat_counter_t commit_calls;
mi_stat_counter_t reset_calls;
mi_stat_counter_t purge_calls;
mi_stat_counter_t page_no_retire;
mi_stat_counter_t searches;
mi_stat_counter_t normal_count;
mi_stat_counter_t huge_count;
mi_stat_counter_t large_count;
#if MI_STAT>1
mi_stat_count_t normal_bins[MI_BIN_HUGE+1];
#endif
} mi_stats_t;
void _mi_stat_increase(mi_stat_count_t* stat, size_t amount);
void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount);
void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount);
#if (MI_STAT)
#define mi_stat_increase(stat,amount) _mi_stat_increase( &(stat), amount)
#define mi_stat_decrease(stat,amount) _mi_stat_decrease( &(stat), amount)
#define mi_stat_counter_increase(stat,amount) _mi_stat_counter_increase( &(stat), amount)
#else
#define mi_stat_increase(stat,amount) (void)0
#define mi_stat_decrease(stat,amount) (void)0
#define mi_stat_counter_increase(stat,amount) (void)0
#endif
#define mi_heap_stat_counter_increase(heap,stat,amount) mi_stat_counter_increase( (heap)->tld->stats.stat, amount)
#define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount)
#define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount)
// ------------------------------------------------------
// Thread Local data
// ------------------------------------------------------
// A "span" is is an available range of slices. The span queues keep
// track of slice spans of at most the given `slice_count` (but more than the previous size class).
typedef struct mi_span_queue_s {
mi_slice_t* first;
mi_slice_t* last;
size_t slice_count;
} mi_span_queue_t;
#define MI_SEGMENT_BIN_MAX (35) // 35 == mi_segment_bin(MI_SLICES_PER_SEGMENT)
// OS thread local data
typedef struct mi_os_tld_s {
size_t region_idx; // start point for next allocation
mi_stats_t* stats; // points to tld stats
} mi_os_tld_t;
// Segments thread local data
typedef struct mi_segments_tld_s {
mi_span_queue_t spans[MI_SEGMENT_BIN_MAX+1]; // free slice spans inside segments
size_t count; // current number of segments;
size_t peak_count; // peak number of segments
size_t current_size; // current size of all segments
size_t peak_size; // peak size of all segments
mi_stats_t* stats; // points to tld stats
mi_os_tld_t* os; // points to os stats
} mi_segments_tld_t;
// Thread local data
struct mi_tld_s {
unsigned long long heartbeat; // monotonic heartbeat count
bool recurse; // true if deferred was called; used to prevent infinite recursion.
mi_heap_t* heap_backing; // backing heap of this thread (cannot be deleted)
mi_heap_t* heaps; // list of heaps in this thread (so we can abandon all when the thread terminates)
mi_segments_tld_t segments; // segment tld
mi_os_tld_t os; // os tld
mi_stats_t stats; // statistics
};
#endif

298
3rdparty/mimalloc/src/alloc-aligned.c vendored Normal file
View File

@ -0,0 +1,298 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/prim.h" // mi_prim_get_default_heap
#include <string.h> // memset
// ------------------------------------------------------
// Aligned Allocation
// ------------------------------------------------------
// Fallback primitive aligned allocation -- split out for better codegen
static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
{
mi_assert_internal(size <= PTRDIFF_MAX);
mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment));
const uintptr_t align_mask = alignment - 1; // for any x, `(x & align_mask) == (x % alignment)`
const size_t padsize = size + MI_PADDING_SIZE;
// use regular allocation if it is guaranteed to fit the alignment constraints
if (offset==0 && alignment<=padsize && padsize<=MI_MAX_ALIGN_GUARANTEE && (padsize&align_mask)==0) {
void* p = _mi_heap_malloc_zero(heap, size, zero);
mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0);
return p;
}
void* p;
size_t oversize;
if mi_unlikely(alignment > MI_ALIGNMENT_MAX) {
// use OS allocation for very large alignment and allocate inside a huge page (dedicated segment with 1 page)
// This can support alignments >= MI_SEGMENT_SIZE by ensuring the object can be aligned at a point in the
// first (and single) page such that the segment info is `MI_SEGMENT_SIZE` bytes before it (so it can be found by aligning the pointer down)
if mi_unlikely(offset != 0) {
// todo: cannot support offset alignment for very large alignments yet
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation with a very large alignment cannot be used with an alignment offset (size %zu, alignment %zu, offset %zu)\n", size, alignment, offset);
#endif
return NULL;
}
oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size);
p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block
// zero afterwards as only the area from the aligned_p may be committed!
if (p == NULL) return NULL;
}
else {
// otherwise over-allocate
oversize = size + alignment - 1;
p = _mi_heap_malloc_zero(heap, oversize, zero);
if (p == NULL) return NULL;
}
// .. and align within the allocation
const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask;
const uintptr_t adjust = (poffset == 0 ? 0 : alignment - poffset);
mi_assert_internal(adjust < alignment);
void* aligned_p = (void*)((uintptr_t)p + adjust);
if (aligned_p != p) {
mi_page_t* page = _mi_ptr_page(p);
mi_page_set_has_aligned(page, true);
_mi_padding_shrink(page, (mi_block_t*)p, adjust + size);
}
// todo: expand padding if overallocated ?
mi_assert_internal(mi_page_usable_block_size(_mi_ptr_page(p)) >= adjust + size);
mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p));
mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
mi_assert_internal(mi_usable_size(aligned_p)>=size);
mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust);
// now zero the block if needed
if (alignment > MI_ALIGNMENT_MAX) {
// for the tracker, on huge aligned allocations only from the start of the large block is defined
mi_track_mem_undefined(aligned_p, size);
if (zero) {
_mi_memzero_aligned(aligned_p, mi_usable_size(aligned_p));
}
}
if (p != aligned_p) {
mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p));
}
return aligned_p;
}
// Primitive aligned allocation
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
{
// note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size.
if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment);
#endif
return NULL;
}
if mi_unlikely(size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment);
#endif
return NULL;
}
const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)`
const size_t padsize = size + MI_PADDING_SIZE; // note: cannot overflow due to earlier size > PTRDIFF_MAX check
// try first if there happens to be a small block available with just the right alignment
if mi_likely(padsize <= MI_SMALL_SIZE_MAX && alignment <= padsize) {
mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize);
const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
if mi_likely(page->free != NULL && is_aligned)
{
#if MI_STAT>1
mi_heap_stat_increase(heap, malloc, size);
#endif
void* p = _mi_page_malloc(heap, page, padsize, zero); // TODO: inline _mi_page_malloc
mi_assert_internal(p != NULL);
mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
mi_track_malloc(p,size,zero);
return p;
}
}
// fallback
return mi_heap_malloc_zero_aligned_at_fallback(heap, size, alignment, offset, zero);
}
// ------------------------------------------------------
// Optimized mi_heap_malloc_aligned / mi_malloc_aligned
// ------------------------------------------------------
mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false);
}
mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) return NULL;
#if !MI_PADDING
// without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`)
if mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX)
#else
// with padding, we can only guarantee this for fixed alignments
if mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2)))
&& size <= MI_SMALL_SIZE_MAX)
#endif
{
// fast path for common alignment and size
return mi_heap_malloc_small(heap, size);
}
else {
return mi_heap_malloc_aligned_at(heap, size, alignment, 0);
}
}
// ensure a definition is emitted
#if defined(__cplusplus)
static void* _mi_heap_malloc_aligned = (void*)&mi_heap_malloc_aligned;
#endif
// ------------------------------------------------------
// Aligned Allocation
// ------------------------------------------------------
mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true);
}
mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_zalloc_aligned_at(heap, size, alignment, 0);
}
mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
size_t total;
if (mi_count_size_overflow(count, size, &total)) return NULL;
return mi_heap_zalloc_aligned_at(heap, total, alignment, offset);
}
mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_calloc_aligned_at(heap,count,size,alignment,0);
}
mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_malloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset);
}
mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_malloc_aligned(mi_prim_get_default_heap(), size, alignment);
}
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_zalloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset);
}
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_zalloc_aligned(mi_prim_get_default_heap(), size, alignment);
}
mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_calloc_aligned_at(mi_prim_get_default_heap(), count, size, alignment, offset);
}
mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_calloc_aligned(mi_prim_get_default_heap(), count, size, alignment);
}
// ------------------------------------------------------
// Aligned re-allocation
// ------------------------------------------------------
static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero);
size_t size = mi_usable_size(p);
if (newsize <= size && newsize >= (size - (size / 2))
&& (((uintptr_t)p + offset) % alignment) == 0) {
return p; // reallocation still fits, is aligned and not more than 50% waste
}
else {
// note: we don't zero allocate upfront so we only zero initialize the expanded part
void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset);
if (newp != NULL) {
if (zero && newsize > size) {
// also set last word in the previous allocation to zero to ensure any padding is zero-initialized
size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
_mi_memzero((uint8_t*)newp + start, newsize - start);
}
_mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
mi_free(p); // only free if successful
}
return newp;
}
}
static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept {
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL)
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero);
}
mi_decl_nodiscard void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false);
}
mi_decl_nodiscard void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false);
}
mi_decl_nodiscard void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true);
}
mi_decl_nodiscard void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true);
}
mi_decl_nodiscard void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
size_t total;
if (mi_count_size_overflow(newcount, size, &total)) return NULL;
return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset);
}
mi_decl_nodiscard void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
size_t total;
if (mi_count_size_overflow(newcount, size, &total)) return NULL;
return mi_heap_rezalloc_aligned(heap, p, total, alignment);
}
mi_decl_nodiscard void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_realloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset);
}
mi_decl_nodiscard void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_realloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment);
}
mi_decl_nodiscard void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_rezalloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset);
}
mi_decl_nodiscard void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_rezalloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment);
}
mi_decl_nodiscard void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_recalloc_aligned_at(mi_prim_get_default_heap(), p, newcount, size, alignment, offset);
}
mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment);
}

297
3rdparty/mimalloc/src/alloc-override.c vendored Normal file
View File

@ -0,0 +1,297 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#if !defined(MI_IN_ALLOC_C)
#error "this file should be included from 'alloc.c' (so aliases can work)"
#endif
#if defined(MI_MALLOC_OVERRIDE) && defined(_WIN32) && !(defined(MI_SHARED_LIB) && defined(_DLL))
#error "It is only possible to override "malloc" on Windows when building as a DLL (and linking the C runtime as a DLL)"
#endif
#if defined(MI_MALLOC_OVERRIDE) && !(defined(_WIN32))
#if defined(__APPLE__)
#include <AvailabilityMacros.h>
mi_decl_externc void vfree(void* p);
mi_decl_externc size_t malloc_size(const void* p);
mi_decl_externc size_t malloc_good_size(size_t size);
#endif
// helper definition for C override of C++ new
typedef struct mi_nothrow_s { int _tag; } mi_nothrow_t;
// ------------------------------------------------------
// Override system malloc
// ------------------------------------------------------
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) && !MI_TRACK_ENABLED
// gcc, clang: use aliasing to alias the exported function to one of our `mi_` functions
#if (defined(__GNUC__) && __GNUC__ >= 9)
#pragma GCC diagnostic ignored "-Wattributes" // or we get warnings that nodiscard is ignored on a forward
#define MI_FORWARD(fun) __attribute__((alias(#fun), used, visibility("default"), copy(fun)));
#else
#define MI_FORWARD(fun) __attribute__((alias(#fun), used, visibility("default")));
#endif
#define MI_FORWARD1(fun,x) MI_FORWARD(fun)
#define MI_FORWARD2(fun,x,y) MI_FORWARD(fun)
#define MI_FORWARD3(fun,x,y,z) MI_FORWARD(fun)
#define MI_FORWARD0(fun,x) MI_FORWARD(fun)
#define MI_FORWARD02(fun,x,y) MI_FORWARD(fun)
#else
// otherwise use forwarding by calling our `mi_` function
#define MI_FORWARD1(fun,x) { return fun(x); }
#define MI_FORWARD2(fun,x,y) { return fun(x,y); }
#define MI_FORWARD3(fun,x,y,z) { return fun(x,y,z); }
#define MI_FORWARD0(fun,x) { fun(x); }
#define MI_FORWARD02(fun,x,y) { fun(x,y); }
#endif
#if defined(__APPLE__) && defined(MI_SHARED_LIB_EXPORT) && defined(MI_OSX_INTERPOSE)
// define MI_OSX_IS_INTERPOSED as we should not provide forwarding definitions for
// functions that are interposed (or the interposing does not work)
#define MI_OSX_IS_INTERPOSED
mi_decl_externc size_t mi_malloc_size_checked(void *p) {
if (!mi_is_in_heap_region(p)) return 0;
return mi_usable_size(p);
}
// use interposing so `DYLD_INSERT_LIBRARIES` works without `DYLD_FORCE_FLAT_NAMESPACE=1`
// See: <https://books.google.com/books?id=K8vUkpOXhN4C&pg=PA73>
struct mi_interpose_s {
const void* replacement;
const void* target;
};
#define MI_INTERPOSE_FUN(oldfun,newfun) { (const void*)&newfun, (const void*)&oldfun }
#define MI_INTERPOSE_MI(fun) MI_INTERPOSE_FUN(fun,mi_##fun)
__attribute__((used)) static struct mi_interpose_s _mi_interposes[] __attribute__((section("__DATA, __interpose"))) =
{
MI_INTERPOSE_MI(malloc),
MI_INTERPOSE_MI(calloc),
MI_INTERPOSE_MI(realloc),
MI_INTERPOSE_MI(strdup),
MI_INTERPOSE_MI(strndup),
MI_INTERPOSE_MI(realpath),
MI_INTERPOSE_MI(posix_memalign),
MI_INTERPOSE_MI(reallocf),
MI_INTERPOSE_MI(valloc),
MI_INTERPOSE_FUN(malloc_size,mi_malloc_size_checked),
MI_INTERPOSE_MI(malloc_good_size),
#if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15
MI_INTERPOSE_MI(aligned_alloc),
#endif
#ifdef MI_OSX_ZONE
// we interpose malloc_default_zone in alloc-override-osx.c so we can use mi_free safely
MI_INTERPOSE_MI(free),
MI_INTERPOSE_FUN(vfree,mi_free),
#else
// sometimes code allocates from default zone but deallocates using plain free :-( (like NxHashResizeToCapacity <https://github.com/nneonneo/osx-10.9-opensource/blob/master/objc4-551.1/runtime/hashtable2.mm>)
MI_INTERPOSE_FUN(free,mi_cfree), // use safe free that checks if pointers are from us
MI_INTERPOSE_FUN(vfree,mi_cfree),
#endif
};
#ifdef __cplusplus
extern "C" {
#endif
void _ZdlPv(void* p); // delete
void _ZdaPv(void* p); // delete[]
void _ZdlPvm(void* p, size_t n); // delete
void _ZdaPvm(void* p, size_t n); // delete[]
void* _Znwm(size_t n); // new
void* _Znam(size_t n); // new[]
void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag); // new nothrow
void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag); // new[] nothrow
#ifdef __cplusplus
}
#endif
__attribute__((used)) static struct mi_interpose_s _mi_cxx_interposes[] __attribute__((section("__DATA, __interpose"))) =
{
MI_INTERPOSE_FUN(_ZdlPv,mi_free),
MI_INTERPOSE_FUN(_ZdaPv,mi_free),
MI_INTERPOSE_FUN(_ZdlPvm,mi_free_size),
MI_INTERPOSE_FUN(_ZdaPvm,mi_free_size),
MI_INTERPOSE_FUN(_Znwm,mi_new),
MI_INTERPOSE_FUN(_Znam,mi_new),
MI_INTERPOSE_FUN(_ZnwmRKSt9nothrow_t,mi_new_nothrow),
MI_INTERPOSE_FUN(_ZnamRKSt9nothrow_t,mi_new_nothrow),
};
#elif defined(_MSC_VER)
// cannot override malloc unless using a dll.
// we just override new/delete which does work in a static library.
#else
// On all other systems forward to our API
mi_decl_export void* malloc(size_t size) MI_FORWARD1(mi_malloc, size)
mi_decl_export void* calloc(size_t size, size_t n) MI_FORWARD2(mi_calloc, size, n)
mi_decl_export void* realloc(void* p, size_t newsize) MI_FORWARD2(mi_realloc, p, newsize)
mi_decl_export void free(void* p) MI_FORWARD0(mi_free, p)
#endif
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__)
#pragma GCC visibility push(default)
#endif
// ------------------------------------------------------
// Override new/delete
// This is not really necessary as they usually call
// malloc/free anyway, but it improves performance.
// ------------------------------------------------------
#ifdef __cplusplus
// ------------------------------------------------------
// With a C++ compiler we override the new/delete operators.
// see <https://en.cppreference.com/w/cpp/memory/new/operator_new>
// ------------------------------------------------------
#include <new>
#ifndef MI_OSX_IS_INTERPOSED
void operator delete(void* p) noexcept MI_FORWARD0(mi_free,p)
void operator delete[](void* p) noexcept MI_FORWARD0(mi_free,p)
void* operator new(std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n)
void* operator new[](std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n)
void* operator new (std::size_t n, const std::nothrow_t& tag) noexcept { MI_UNUSED(tag); return mi_new_nothrow(n); }
void* operator new[](std::size_t n, const std::nothrow_t& tag) noexcept { MI_UNUSED(tag); return mi_new_nothrow(n); }
#if (__cplusplus >= 201402L || _MSC_VER >= 1916)
void operator delete (void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n)
void operator delete[](void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n)
#endif
#endif
#if (__cplusplus > 201402L && defined(__cpp_aligned_new)) && (!defined(__GNUC__) || (__GNUC__ > 5))
void operator delete (void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void operator delete[](void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void operator delete (void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast<size_t>(al)); };
void operator delete[](void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast<size_t>(al)); };
void operator delete (void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void operator delete[](void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); }
void* operator new( std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast<size_t>(al)); }
void* operator new[]( std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast<size_t>(al)); }
void* operator new (std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast<size_t>(al)); }
void* operator new[](std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast<size_t>(al)); }
#endif
#elif (defined(__GNUC__) || defined(__clang__))
// ------------------------------------------------------
// Override by defining the mangled C++ names of the operators (as
// used by GCC and CLang).
// See <https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling>
// ------------------------------------------------------
void _ZdlPv(void* p) MI_FORWARD0(mi_free,p) // delete
void _ZdaPv(void* p) MI_FORWARD0(mi_free,p) // delete[]
void _ZdlPvm(void* p, size_t n) MI_FORWARD02(mi_free_size,p,n)
void _ZdaPvm(void* p, size_t n) MI_FORWARD02(mi_free_size,p,n)
void _ZdlPvSt11align_val_t(void* p, size_t al) { mi_free_aligned(p,al); }
void _ZdaPvSt11align_val_t(void* p, size_t al) { mi_free_aligned(p,al); }
void _ZdlPvmSt11align_val_t(void* p, size_t n, size_t al) { mi_free_size_aligned(p,n,al); }
void _ZdaPvmSt11align_val_t(void* p, size_t n, size_t al) { mi_free_size_aligned(p,n,al); }
#if (MI_INTPTR_SIZE==8)
void* _Znwm(size_t n) MI_FORWARD1(mi_new,n) // new 64-bit
void* _Znam(size_t n) MI_FORWARD1(mi_new,n) // new[] 64-bit
void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); }
void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); }
void* _ZnwmSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al)
void* _ZnamSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al)
void* _ZnwmSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); }
void* _ZnamSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); }
#elif (MI_INTPTR_SIZE==4)
void* _Znwj(size_t n) MI_FORWARD1(mi_new,n) // new 64-bit
void* _Znaj(size_t n) MI_FORWARD1(mi_new,n) // new[] 64-bit
void* _ZnwjRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); }
void* _ZnajRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); }
void* _ZnwjSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al)
void* _ZnajSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al)
void* _ZnwjSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); }
void* _ZnajSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); }
#else
#error "define overloads for new/delete for this platform (just for performance, can be skipped)"
#endif
#endif // __cplusplus
// ------------------------------------------------------
// Further Posix & Unix functions definitions
// ------------------------------------------------------
#ifdef __cplusplus
extern "C" {
#endif
#ifndef MI_OSX_IS_INTERPOSED
// Forward Posix/Unix calls as well
void* reallocf(void* p, size_t newsize) MI_FORWARD2(mi_reallocf,p,newsize)
size_t malloc_size(const void* p) MI_FORWARD1(mi_usable_size,p)
#if !defined(__ANDROID__) && !defined(__FreeBSD__)
size_t malloc_usable_size(void *p) MI_FORWARD1(mi_usable_size,p)
#else
size_t malloc_usable_size(const void *p) MI_FORWARD1(mi_usable_size,p)
#endif
// No forwarding here due to aliasing/name mangling issues
void* valloc(size_t size) { return mi_valloc(size); }
void vfree(void* p) { mi_free(p); }
size_t malloc_good_size(size_t size) { return mi_malloc_good_size(size); }
int posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p, alignment, size); }
// `aligned_alloc` is only available when __USE_ISOC11 is defined.
// Note: it seems __USE_ISOC11 is not defined in musl (and perhaps other libc's) so we only check
// for it if using glibc.
// Note: Conda has a custom glibc where `aligned_alloc` is declared `static inline` and we cannot
// override it, but both _ISOC11_SOURCE and __USE_ISOC11 are undefined in Conda GCC7 or GCC9.
// Fortunately, in the case where `aligned_alloc` is declared as `static inline` it
// uses internally `memalign`, `posix_memalign`, or `_aligned_malloc` so we can avoid overriding it ourselves.
#if !defined(__GLIBC__) || __USE_ISOC11
void* aligned_alloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); }
#endif
#endif
// no forwarding here due to aliasing/name mangling issues
void cfree(void* p) { mi_free(p); }
void* pvalloc(size_t size) { return mi_pvalloc(size); }
void* reallocarray(void* p, size_t count, size_t size) { return mi_reallocarray(p, count, size); }
int reallocarr(void* p, size_t count, size_t size) { return mi_reallocarr(p, count, size); }
void* memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); }
void* _aligned_malloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); }
#if defined(__wasi__)
// forward __libc interface (see PR #667)
void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc, size)
void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc, count, size)
void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc, p, size)
void __libc_free(void* p) MI_FORWARD0(mi_free, p)
void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); }
#elif defined(__GLIBC__) && defined(__linux__)
// forward __libc interface (needed for glibc-based Linux distributions)
void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc,size)
void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc,count,size)
void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc,p,size)
void __libc_free(void* p) MI_FORWARD0(mi_free,p)
void __libc_cfree(void* p) MI_FORWARD0(mi_free,p)
void* __libc_valloc(size_t size) { return mi_valloc(size); }
void* __libc_pvalloc(size_t size) { return mi_pvalloc(size); }
void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment,size); }
int __posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p,alignment,size); }
#endif
#ifdef __cplusplus
}
#endif
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__)
#pragma GCC visibility pop
#endif
#endif // MI_MALLOC_OVERRIDE && !_WIN32

185
3rdparty/mimalloc/src/alloc-posix.c vendored Normal file
View File

@ -0,0 +1,185 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// ------------------------------------------------------------------------
// mi prefixed publi definitions of various Posix, Unix, and C++ functions
// for convenience and used when overriding these functions.
// ------------------------------------------------------------------------
#include "mimalloc.h"
#include "mimalloc/internal.h"
// ------------------------------------------------------
// Posix & Unix functions definitions
// ------------------------------------------------------
#include <errno.h>
#include <string.h> // memset
#include <stdlib.h> // getenv
#ifdef _MSC_VER
#pragma warning(disable:4996) // getenv _wgetenv
#endif
#ifndef EINVAL
#define EINVAL 22
#endif
#ifndef ENOMEM
#define ENOMEM 12
#endif
mi_decl_nodiscard size_t mi_malloc_size(const void* p) mi_attr_noexcept {
// if (!mi_is_in_heap_region(p)) return 0;
return mi_usable_size(p);
}
mi_decl_nodiscard size_t mi_malloc_usable_size(const void *p) mi_attr_noexcept {
// if (!mi_is_in_heap_region(p)) return 0;
return mi_usable_size(p);
}
mi_decl_nodiscard size_t mi_malloc_good_size(size_t size) mi_attr_noexcept {
return mi_good_size(size);
}
void mi_cfree(void* p) mi_attr_noexcept {
if (mi_is_in_heap_region(p)) {
mi_free(p);
}
}
int mi_posix_memalign(void** p, size_t alignment, size_t size) mi_attr_noexcept {
// Note: The spec dictates we should not modify `*p` on an error. (issue#27)
// <http://man7.org/linux/man-pages/man3/posix_memalign.3.html>
if (p == NULL) return EINVAL;
if ((alignment % sizeof(void*)) != 0) return EINVAL; // natural alignment
// it is also required that alignment is a power of 2 and > 0; this is checked in `mi_malloc_aligned`
if (alignment==0 || !_mi_is_power_of_two(alignment)) return EINVAL; // not a power of 2
void* q = mi_malloc_aligned(size, alignment);
if (q==NULL && size != 0) return ENOMEM;
mi_assert_internal(((uintptr_t)q % alignment) == 0);
*p = q;
return 0;
}
mi_decl_nodiscard mi_decl_restrict void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept {
void* p = mi_malloc_aligned(size, alignment);
mi_assert_internal(((uintptr_t)p % alignment) == 0);
return p;
}
mi_decl_nodiscard mi_decl_restrict void* mi_valloc(size_t size) mi_attr_noexcept {
return mi_memalign( _mi_os_page_size(), size );
}
mi_decl_nodiscard mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcept {
size_t psize = _mi_os_page_size();
if (size >= SIZE_MAX - psize) return NULL; // overflow
size_t asize = _mi_align_up(size, psize);
return mi_malloc_aligned(asize, psize);
}
mi_decl_nodiscard mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept {
// C11 requires the size to be an integral multiple of the alignment, see <https://en.cppreference.com/w/c/memory/aligned_alloc>.
// unfortunately, it turns out quite some programs pass a size that is not an integral multiple so skip this check..
/* if mi_unlikely((size & (alignment - 1)) != 0) { // C11 requires alignment>0 && integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc>
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "(mi_)aligned_alloc requires the size to be an integral multiple of the alignment (size %zu, alignment %zu)\n", size, alignment);
#endif
return NULL;
}
*/
// C11 also requires alignment to be a power-of-two (and > 0) which is checked in mi_malloc_aligned
void* p = mi_malloc_aligned(size, alignment);
mi_assert_internal(((uintptr_t)p % alignment) == 0);
return p;
}
mi_decl_nodiscard void* mi_reallocarray( void* p, size_t count, size_t size ) mi_attr_noexcept { // BSD
void* newp = mi_reallocn(p,count,size);
if (newp==NULL) { errno = ENOMEM; }
return newp;
}
mi_decl_nodiscard int mi_reallocarr( void* p, size_t count, size_t size ) mi_attr_noexcept { // NetBSD
mi_assert(p != NULL);
if (p == NULL) {
errno = EINVAL;
return EINVAL;
}
void** op = (void**)p;
void* newp = mi_reallocarray(*op, count, size);
if mi_unlikely(newp == NULL) { return errno; }
*op = newp;
return 0;
}
void* mi__expand(void* p, size_t newsize) mi_attr_noexcept { // Microsoft
void* res = mi_expand(p, newsize);
if (res == NULL) { errno = ENOMEM; }
return res;
}
mi_decl_nodiscard mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noexcept {
if (s==NULL) return NULL;
size_t len;
for(len = 0; s[len] != 0; len++) { }
size_t size = (len+1)*sizeof(unsigned short);
unsigned short* p = (unsigned short*)mi_malloc(size);
if (p != NULL) {
_mi_memcpy(p,s,size);
}
return p;
}
mi_decl_nodiscard mi_decl_restrict unsigned char* mi_mbsdup(const unsigned char* s) mi_attr_noexcept {
return (unsigned char*)mi_strdup((const char*)s);
}
int mi_dupenv_s(char** buf, size_t* size, const char* name) mi_attr_noexcept {
if (buf==NULL || name==NULL) return EINVAL;
if (size != NULL) *size = 0;
char* p = getenv(name); // mscver warning 4996
if (p==NULL) {
*buf = NULL;
}
else {
*buf = mi_strdup(p);
if (*buf==NULL) return ENOMEM;
if (size != NULL) *size = _mi_strlen(p);
}
return 0;
}
int mi_wdupenv_s(unsigned short** buf, size_t* size, const unsigned short* name) mi_attr_noexcept {
if (buf==NULL || name==NULL) return EINVAL;
if (size != NULL) *size = 0;
#if !defined(_WIN32) || (defined(WINAPI_FAMILY) && (WINAPI_FAMILY != WINAPI_FAMILY_DESKTOP_APP))
// not supported
*buf = NULL;
return EINVAL;
#else
unsigned short* p = (unsigned short*)_wgetenv((const wchar_t*)name); // msvc warning 4996
if (p==NULL) {
*buf = NULL;
}
else {
*buf = mi_wcsdup(p);
if (*buf==NULL) return ENOMEM;
if (size != NULL) *size = wcslen((const wchar_t*)p);
}
return 0;
#endif
}
mi_decl_nodiscard void* mi_aligned_offset_recalloc(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { // Microsoft
return mi_recalloc_aligned_at(p, newcount, size, alignment, offset);
}
mi_decl_nodiscard void* mi_aligned_recalloc(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { // Microsoft
return mi_recalloc_aligned(p, newcount, size, alignment);
}

1060
3rdparty/mimalloc/src/alloc.c vendored Normal file

File diff suppressed because it is too large Load Diff

936
3rdparty/mimalloc/src/arena.c vendored Normal file
View File

@ -0,0 +1,936 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* ----------------------------------------------------------------------------
"Arenas" are fixed area's of OS memory from which we can allocate
large blocks (>= MI_ARENA_MIN_BLOCK_SIZE, 4MiB).
In contrast to the rest of mimalloc, the arenas are shared between
threads and need to be accessed using atomic operations.
Arenas are used to for huge OS page (1GiB) reservations or for reserving
OS memory upfront which can be improve performance or is sometimes needed
on embedded devices. We can also employ this with WASI or `sbrk` systems
to reserve large arenas upfront and be able to reuse the memory more effectively.
The arena allocation needs to be thread safe and we use an atomic bitmap to allocate.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include <string.h> // memset
#include <errno.h> // ENOMEM
#include "bitmap.h" // atomic bitmap
/* -----------------------------------------------------------
Arena allocation
----------------------------------------------------------- */
// Block info: bit 0 contains the `in_use` bit, the upper bits the
// size in count of arena blocks.
typedef uintptr_t mi_block_info_t;
#define MI_ARENA_BLOCK_SIZE (MI_SEGMENT_SIZE) // 64MiB (must be at least MI_SEGMENT_ALIGN)
#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_BLOCK_SIZE/2) // 32MiB
#define MI_MAX_ARENAS (112) // not more than 126 (since we use 7 bits in the memid and an arena index + 1)
// A memory arena descriptor
typedef struct mi_arena_s {
mi_arena_id_t id; // arena id; 0 for non-specific
mi_memid_t memid; // memid of the memory area
_Atomic(uint8_t*) start; // the start of the memory area
size_t block_count; // size of the area in arena blocks (of `MI_ARENA_BLOCK_SIZE`)
size_t field_count; // number of bitmap fields (where `field_count * MI_BITMAP_FIELD_BITS >= block_count`)
size_t meta_size; // size of the arena structure itself (including its bitmaps)
mi_memid_t meta_memid; // memid of the arena structure itself (OS or static allocation)
int numa_node; // associated NUMA node
bool exclusive; // only allow allocations if specifically for this arena
bool is_large; // memory area consists of large- or huge OS pages (always committed)
_Atomic(size_t) search_idx; // optimization to start the search for free blocks
_Atomic(mi_msecs_t) purge_expire; // expiration time when blocks should be decommitted from `blocks_decommit`.
mi_bitmap_field_t* blocks_dirty; // are the blocks potentially non-zero?
mi_bitmap_field_t* blocks_committed; // are the blocks committed? (can be NULL for memory that cannot be decommitted)
mi_bitmap_field_t* blocks_purge; // blocks that can be (reset) decommitted. (can be NULL for memory that cannot be (reset) decommitted)
mi_bitmap_field_t blocks_inuse[1]; // in-place bitmap of in-use blocks (of size `field_count`)
} mi_arena_t;
// The available arenas
static mi_decl_cache_align _Atomic(mi_arena_t*) mi_arenas[MI_MAX_ARENAS];
static mi_decl_cache_align _Atomic(size_t) mi_arena_count; // = 0
//static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept;
/* -----------------------------------------------------------
Arena id's
id = arena_index + 1
----------------------------------------------------------- */
static size_t mi_arena_id_index(mi_arena_id_t id) {
return (size_t)(id <= 0 ? MI_MAX_ARENAS : id - 1);
}
static mi_arena_id_t mi_arena_id_create(size_t arena_index) {
mi_assert_internal(arena_index < MI_MAX_ARENAS);
return (int)arena_index + 1;
}
mi_arena_id_t _mi_arena_id_none(void) {
return 0;
}
static bool mi_arena_id_is_suitable(mi_arena_id_t arena_id, bool arena_is_exclusive, mi_arena_id_t req_arena_id) {
return ((!arena_is_exclusive && req_arena_id == _mi_arena_id_none()) ||
(arena_id == req_arena_id));
}
bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id) {
if (memid.memkind == MI_MEM_ARENA) {
return mi_arena_id_is_suitable(memid.mem.arena.id, memid.mem.arena.is_exclusive, request_arena_id);
}
else {
return mi_arena_id_is_suitable(0, false, request_arena_id);
}
}
bool _mi_arena_memid_is_os_allocated(mi_memid_t memid) {
return (memid.memkind == MI_MEM_OS);
}
/* -----------------------------------------------------------
Arena allocations get a (currently) 16-bit memory id where the
lower 8 bits are the arena id, and the upper bits the block index.
----------------------------------------------------------- */
static size_t mi_block_count_of_size(size_t size) {
return _mi_divide_up(size, MI_ARENA_BLOCK_SIZE);
}
static size_t mi_arena_block_size(size_t bcount) {
return (bcount * MI_ARENA_BLOCK_SIZE);
}
static size_t mi_arena_size(mi_arena_t* arena) {
return mi_arena_block_size(arena->block_count);
}
static mi_memid_t mi_memid_create_arena(mi_arena_id_t id, bool is_exclusive, mi_bitmap_index_t bitmap_index) {
mi_memid_t memid = _mi_memid_create(MI_MEM_ARENA);
memid.mem.arena.id = id;
memid.mem.arena.block_index = bitmap_index;
memid.mem.arena.is_exclusive = is_exclusive;
return memid;
}
static bool mi_arena_memid_indices(mi_memid_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index) {
mi_assert_internal(memid.memkind == MI_MEM_ARENA);
*arena_index = mi_arena_id_index(memid.mem.arena.id);
*bitmap_index = memid.mem.arena.block_index;
return memid.mem.arena.is_exclusive;
}
/* -----------------------------------------------------------
Special static area for mimalloc internal structures
to avoid OS calls (for example, for the arena metadata)
----------------------------------------------------------- */
#define MI_ARENA_STATIC_MAX (MI_INTPTR_SIZE*MI_KiB) // 8 KiB on 64-bit
static uint8_t mi_arena_static[MI_ARENA_STATIC_MAX];
static _Atomic(size_t) mi_arena_static_top;
static void* mi_arena_static_zalloc(size_t size, size_t alignment, mi_memid_t* memid) {
*memid = _mi_memid_none();
if (size == 0 || size > MI_ARENA_STATIC_MAX) return NULL;
if ((mi_atomic_load_relaxed(&mi_arena_static_top) + size) > MI_ARENA_STATIC_MAX) return NULL;
// try to claim space
if (alignment == 0) { alignment = 1; }
const size_t oversize = size + alignment - 1;
if (oversize > MI_ARENA_STATIC_MAX) return NULL;
const size_t oldtop = mi_atomic_add_acq_rel(&mi_arena_static_top, oversize);
size_t top = oldtop + oversize;
if (top > MI_ARENA_STATIC_MAX) {
// try to roll back, ok if this fails
mi_atomic_cas_strong_acq_rel(&mi_arena_static_top, &top, oldtop);
return NULL;
}
// success
*memid = _mi_memid_create(MI_MEM_STATIC);
const size_t start = _mi_align_up(oldtop, alignment);
uint8_t* const p = &mi_arena_static[start];
_mi_memzero(p, size);
return p;
}
static void* mi_arena_meta_zalloc(size_t size, mi_memid_t* memid, mi_stats_t* stats) {
*memid = _mi_memid_none();
// try static
void* p = mi_arena_static_zalloc(size, MI_ALIGNMENT_MAX, memid);
if (p != NULL) return p;
// or fall back to the OS
return _mi_os_alloc(size, memid, stats);
}
static void mi_arena_meta_free(void* p, mi_memid_t memid, size_t size, mi_stats_t* stats) {
if (mi_memkind_is_os(memid.memkind)) {
_mi_os_free(p, size, memid, stats);
}
else {
mi_assert(memid.memkind == MI_MEM_STATIC);
}
}
static void* mi_arena_block_start(mi_arena_t* arena, mi_bitmap_index_t bindex) {
return (arena->start + mi_arena_block_size(mi_bitmap_index_bit(bindex)));
}
/* -----------------------------------------------------------
Thread safe allocation in an arena
----------------------------------------------------------- */
// claim the `blocks_inuse` bits
static bool mi_arena_try_claim(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* bitmap_idx)
{
size_t idx = 0; // mi_atomic_load_relaxed(&arena->search_idx); // start from last search; ok to be relaxed as the exact start does not matter
if (_mi_bitmap_try_find_from_claim_across(arena->blocks_inuse, arena->field_count, idx, blocks, bitmap_idx)) {
mi_atomic_store_relaxed(&arena->search_idx, mi_bitmap_index_field(*bitmap_idx)); // start search from found location next time around
return true;
};
return false;
}
/* -----------------------------------------------------------
Arena Allocation
----------------------------------------------------------- */
static mi_decl_noinline void* mi_arena_try_alloc_at(mi_arena_t* arena, size_t arena_index, size_t needed_bcount,
bool commit, mi_memid_t* memid, mi_os_tld_t* tld)
{
MI_UNUSED(arena_index);
mi_assert_internal(mi_arena_id_index(arena->id) == arena_index);
mi_bitmap_index_t bitmap_index;
if (!mi_arena_try_claim(arena, needed_bcount, &bitmap_index)) return NULL;
// claimed it!
void* p = mi_arena_block_start(arena, bitmap_index);
*memid = mi_memid_create_arena(arena->id, arena->exclusive, bitmap_index);
memid->is_pinned = arena->memid.is_pinned;
// none of the claimed blocks should be scheduled for a decommit
if (arena->blocks_purge != NULL) {
// this is thread safe as a potential purge only decommits parts that are not yet claimed as used (in `blocks_inuse`).
_mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, needed_bcount, bitmap_index);
}
// set the dirty bits (todo: no need for an atomic op here?)
if (arena->memid.initially_zero && arena->blocks_dirty != NULL) {
memid->initially_zero = _mi_bitmap_claim_across(arena->blocks_dirty, arena->field_count, needed_bcount, bitmap_index, NULL);
}
// set commit state
if (arena->blocks_committed == NULL) {
// always committed
memid->initially_committed = true;
}
else if (commit) {
// commit requested, but the range may not be committed as a whole: ensure it is committed now
memid->initially_committed = true;
bool any_uncommitted;
_mi_bitmap_claim_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index, &any_uncommitted);
if (any_uncommitted) {
bool commit_zero = false;
if (!_mi_os_commit(p, mi_arena_block_size(needed_bcount), &commit_zero, tld->stats)) {
memid->initially_committed = false;
}
else {
if (commit_zero) { memid->initially_zero = true; }
}
}
}
else {
// no need to commit, but check if already fully committed
memid->initially_committed = _mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index);
}
return p;
}
// allocate in a speficic arena
static void* mi_arena_try_alloc_at_id(mi_arena_id_t arena_id, bool match_numa_node, int numa_node, size_t size, size_t alignment,
bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld )
{
MI_UNUSED_RELEASE(alignment);
mi_assert_internal(alignment <= MI_SEGMENT_ALIGN);
const size_t bcount = mi_block_count_of_size(size);
const size_t arena_index = mi_arena_id_index(arena_id);
mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count));
mi_assert_internal(size <= mi_arena_block_size(bcount));
// Check arena suitability
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]);
if (arena == NULL) return NULL;
if (!allow_large && arena->is_large) return NULL;
if (!mi_arena_id_is_suitable(arena->id, arena->exclusive, req_arena_id)) return NULL;
if (req_arena_id == _mi_arena_id_none()) { // in not specific, check numa affinity
const bool numa_suitable = (numa_node < 0 || arena->numa_node < 0 || arena->numa_node == numa_node);
if (match_numa_node) { if (!numa_suitable) return NULL; }
else { if (numa_suitable) return NULL; }
}
// try to allocate
void* p = mi_arena_try_alloc_at(arena, arena_index, bcount, commit, memid, tld);
mi_assert_internal(p == NULL || _mi_is_aligned(p, alignment));
return p;
}
// allocate from an arena with fallback to the OS
static mi_decl_noinline void* mi_arena_try_alloc(int numa_node, size_t size, size_t alignment,
bool commit, bool allow_large,
mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld )
{
MI_UNUSED(alignment);
mi_assert_internal(alignment <= MI_SEGMENT_ALIGN);
const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
if mi_likely(max_arena == 0) return NULL;
if (req_arena_id != _mi_arena_id_none()) {
// try a specific arena if requested
if (mi_arena_id_index(req_arena_id) < max_arena) {
void* p = mi_arena_try_alloc_at_id(req_arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
if (p != NULL) return p;
}
}
else {
// try numa affine allocation
for (size_t i = 0; i < max_arena; i++) {
void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
if (p != NULL) return p;
}
// try from another numa node instead..
if (numa_node >= 0) { // if numa_node was < 0 (no specific affinity requested), all arena's have been tried already
for (size_t i = 0; i < max_arena; i++) {
void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), false /* only proceed if not numa local */, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
if (p != NULL) return p;
}
}
}
return NULL;
}
// try to reserve a fresh arena space
static bool mi_arena_reserve(size_t req_size, bool allow_large, mi_arena_id_t req_arena_id, mi_arena_id_t *arena_id)
{
if (_mi_preloading()) return false; // use OS only while pre loading
if (req_arena_id != _mi_arena_id_none()) return false;
const size_t arena_count = mi_atomic_load_acquire(&mi_arena_count);
if (arena_count > (MI_MAX_ARENAS - 4)) return false;
size_t arena_reserve = mi_option_get_size(mi_option_arena_reserve);
if (arena_reserve == 0) return false;
if (!_mi_os_has_virtual_reserve()) {
arena_reserve = arena_reserve/4; // be conservative if virtual reserve is not supported (for some embedded systems for example)
}
arena_reserve = _mi_align_up(arena_reserve, MI_ARENA_BLOCK_SIZE);
if (arena_count >= 8 && arena_count <= 128) {
arena_reserve = ((size_t)1<<(arena_count/8)) * arena_reserve; // scale up the arena sizes exponentially
}
if (arena_reserve < req_size) return false; // should be able to at least handle the current allocation size
// commit eagerly?
bool arena_commit = false;
if (mi_option_get(mi_option_arena_eager_commit) == 2) { arena_commit = _mi_os_has_overcommit(); }
else if (mi_option_get(mi_option_arena_eager_commit) == 1) { arena_commit = true; }
return (mi_reserve_os_memory_ex(arena_reserve, arena_commit, allow_large, false /* exclusive */, arena_id) == 0);
}
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large,
mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld)
{
mi_assert_internal(memid != NULL && tld != NULL);
mi_assert_internal(size > 0);
*memid = _mi_memid_none();
const int numa_node = _mi_os_numa_node(tld); // current numa node
// try to allocate in an arena if the alignment is small enough and the object is not too small (as for heap meta data)
if (size >= MI_ARENA_MIN_OBJ_SIZE && alignment <= MI_SEGMENT_ALIGN && align_offset == 0) {
void* p = mi_arena_try_alloc(numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
if (p != NULL) return p;
// otherwise, try to first eagerly reserve a new arena
if (req_arena_id == _mi_arena_id_none()) {
mi_arena_id_t arena_id = 0;
if (mi_arena_reserve(size, allow_large, req_arena_id, &arena_id)) {
// and try allocate in there
mi_assert_internal(req_arena_id == _mi_arena_id_none());
p = mi_arena_try_alloc_at_id(arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
if (p != NULL) return p;
}
}
}
// if we cannot use OS allocation, return NULL
if (mi_option_is_enabled(mi_option_limit_os_alloc) || req_arena_id != _mi_arena_id_none()) {
errno = ENOMEM;
return NULL;
}
// finally, fall back to the OS
if (align_offset > 0) {
return _mi_os_alloc_aligned_at_offset(size, alignment, align_offset, commit, allow_large, memid, tld->stats);
}
else {
return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld->stats);
}
}
void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld)
{
return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, 0, commit, allow_large, req_arena_id, memid, tld);
}
void* mi_arena_area(mi_arena_id_t arena_id, size_t* size) {
if (size != NULL) *size = 0;
size_t arena_index = mi_arena_id_index(arena_id);
if (arena_index >= MI_MAX_ARENAS) return NULL;
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]);
if (arena == NULL) return NULL;
if (size != NULL) { *size = mi_arena_block_size(arena->block_count); }
return arena->start;
}
/* -----------------------------------------------------------
Arena purge
----------------------------------------------------------- */
static long mi_arena_purge_delay(void) {
// <0 = no purging allowed, 0=immediate purging, >0=milli-second delay
return (mi_option_get(mi_option_purge_delay) * mi_option_get(mi_option_arena_purge_mult));
}
// reset or decommit in an arena and update the committed/decommit bitmaps
// assumes we own the area (i.e. blocks_in_use is claimed by us)
static void mi_arena_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) {
mi_assert_internal(arena->blocks_committed != NULL);
mi_assert_internal(arena->blocks_purge != NULL);
mi_assert_internal(!arena->memid.is_pinned);
const size_t size = mi_arena_block_size(blocks);
void* const p = mi_arena_block_start(arena, bitmap_idx);
bool needs_recommit;
if (_mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx)) {
// all blocks are committed, we can purge freely
needs_recommit = _mi_os_purge(p, size, stats);
}
else {
// some blocks are not committed -- this can happen when a partially committed block is freed
// in `_mi_arena_free` and it is conservatively marked as uncommitted but still scheduled for a purge
// we need to ensure we do not try to reset (as that may be invalid for uncommitted memory),
// and also undo the decommit stats (as it was already adjusted)
mi_assert_internal(mi_option_is_enabled(mi_option_purge_decommits));
needs_recommit = _mi_os_purge_ex(p, size, false /* allow reset? */, stats);
_mi_stat_increase(&stats->committed, size);
}
// clear the purged blocks
_mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx);
// update committed bitmap
if (needs_recommit) {
_mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx);
}
}
// Schedule a purge. This is usually delayed to avoid repeated decommit/commit calls.
// Note: assumes we (still) own the area as we may purge immediately
static void mi_arena_schedule_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) {
mi_assert_internal(arena->blocks_purge != NULL);
const long delay = mi_arena_purge_delay();
if (delay < 0) return; // is purging allowed at all?
if (_mi_preloading() || delay == 0) {
// decommit directly
mi_arena_purge(arena, bitmap_idx, blocks, stats);
}
else {
// schedule decommit
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire);
if (expire != 0) {
mi_atomic_addi64_acq_rel(&arena->purge_expire, delay/10); // add smallish extra delay
}
else {
mi_atomic_storei64_release(&arena->purge_expire, _mi_clock_now() + delay);
}
_mi_bitmap_claim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx, NULL);
}
}
// purge a range of blocks
// return true if the full range was purged.
// assumes we own the area (i.e. blocks_in_use is claimed by us)
static bool mi_arena_purge_range(mi_arena_t* arena, size_t idx, size_t startidx, size_t bitlen, size_t purge, mi_stats_t* stats) {
const size_t endidx = startidx + bitlen;
size_t bitidx = startidx;
bool all_purged = false;
while (bitidx < endidx) {
// count consequetive ones in the purge mask
size_t count = 0;
while (bitidx + count < endidx && (purge & ((size_t)1 << (bitidx + count))) != 0) {
count++;
}
if (count > 0) {
// found range to be purged
const mi_bitmap_index_t range_idx = mi_bitmap_index_create(idx, bitidx);
mi_arena_purge(arena, range_idx, count, stats);
if (count == bitlen) {
all_purged = true;
}
}
bitidx += (count+1); // +1 to skip the zero bit (or end)
}
return all_purged;
}
// returns true if anything was purged
static bool mi_arena_try_purge(mi_arena_t* arena, mi_msecs_t now, bool force, mi_stats_t* stats)
{
if (arena->memid.is_pinned || arena->blocks_purge == NULL) return false;
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire);
if (expire == 0) return false;
if (!force && expire > now) return false;
// reset expire (if not already set concurrently)
mi_atomic_casi64_strong_acq_rel(&arena->purge_expire, &expire, 0);
// potential purges scheduled, walk through the bitmap
bool any_purged = false;
bool full_purge = true;
for (size_t i = 0; i < arena->field_count; i++) {
size_t purge = mi_atomic_load_relaxed(&arena->blocks_purge[i]);
if (purge != 0) {
size_t bitidx = 0;
while (bitidx < MI_BITMAP_FIELD_BITS) {
// find consequetive range of ones in the purge mask
size_t bitlen = 0;
while (bitidx + bitlen < MI_BITMAP_FIELD_BITS && (purge & ((size_t)1 << (bitidx + bitlen))) != 0) {
bitlen++;
}
// try to claim the longest range of corresponding in_use bits
const mi_bitmap_index_t bitmap_index = mi_bitmap_index_create(i, bitidx);
while( bitlen > 0 ) {
if (_mi_bitmap_try_claim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index)) {
break;
}
bitlen--;
}
// actual claimed bits at `in_use`
if (bitlen > 0) {
// read purge again now that we have the in_use bits
purge = mi_atomic_load_acquire(&arena->blocks_purge[i]);
if (!mi_arena_purge_range(arena, i, bitidx, bitlen, purge, stats)) {
full_purge = false;
}
any_purged = true;
// release the claimed `in_use` bits again
_mi_bitmap_unclaim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index);
}
bitidx += (bitlen+1); // +1 to skip the zero (or end)
} // while bitidx
} // purge != 0
}
// if not fully purged, make sure to purge again in the future
if (!full_purge) {
const long delay = mi_arena_purge_delay();
mi_msecs_t expected = 0;
mi_atomic_casi64_strong_acq_rel(&arena->purge_expire,&expected,_mi_clock_now() + delay);
}
return any_purged;
}
static void mi_arenas_try_purge( bool force, bool visit_all, mi_stats_t* stats ) {
if (_mi_preloading() || mi_arena_purge_delay() <= 0) return; // nothing will be scheduled
const size_t max_arena = mi_atomic_load_acquire(&mi_arena_count);
if (max_arena == 0) return;
// allow only one thread to purge at a time
static mi_atomic_guard_t purge_guard;
mi_atomic_guard(&purge_guard)
{
mi_msecs_t now = _mi_clock_now();
size_t max_purge_count = (visit_all ? max_arena : 1);
for (size_t i = 0; i < max_arena; i++) {
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
if (arena != NULL) {
if (mi_arena_try_purge(arena, now, force, stats)) {
if (max_purge_count <= 1) break;
max_purge_count--;
}
}
}
}
}
/* -----------------------------------------------------------
Arena free
----------------------------------------------------------- */
void _mi_arena_free(void* p, size_t size, size_t committed_size, mi_memid_t memid, mi_stats_t* stats) {
mi_assert_internal(size > 0 && stats != NULL);
mi_assert_internal(committed_size <= size);
if (p==NULL) return;
if (size==0) return;
const bool all_committed = (committed_size == size);
if (mi_memkind_is_os(memid.memkind)) {
// was a direct OS allocation, pass through
if (!all_committed && committed_size > 0) {
// if partially committed, adjust the committed stats (as `_mi_os_free` will increase decommit by the full size)
_mi_stat_decrease(&stats->committed, committed_size);
}
_mi_os_free(p, size, memid, stats);
}
else if (memid.memkind == MI_MEM_ARENA) {
// allocated in an arena
size_t arena_idx;
size_t bitmap_idx;
mi_arena_memid_indices(memid, &arena_idx, &bitmap_idx);
mi_assert_internal(arena_idx < MI_MAX_ARENAS);
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t,&mi_arenas[arena_idx]);
mi_assert_internal(arena != NULL);
const size_t blocks = mi_block_count_of_size(size);
// checks
if (arena == NULL) {
_mi_error_message(EINVAL, "trying to free from non-existent arena: %p, size %zu, memid: 0x%zx\n", p, size, memid);
return;
}
mi_assert_internal(arena->field_count > mi_bitmap_index_field(bitmap_idx));
if (arena->field_count <= mi_bitmap_index_field(bitmap_idx)) {
_mi_error_message(EINVAL, "trying to free from non-existent arena block: %p, size %zu, memid: 0x%zx\n", p, size, memid);
return;
}
// need to set all memory to undefined as some parts may still be marked as no_access (like padding etc.)
mi_track_mem_undefined(p,size);
// potentially decommit
if (arena->memid.is_pinned || arena->blocks_committed == NULL) {
mi_assert_internal(all_committed);
}
else {
mi_assert_internal(arena->blocks_committed != NULL);
mi_assert_internal(arena->blocks_purge != NULL);
if (!all_committed) {
// mark the entire range as no longer committed (so we recommit the full range when re-using)
_mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx);
mi_track_mem_noaccess(p,size);
if (committed_size > 0) {
// if partially committed, adjust the committed stats (is it will be recommitted when re-using)
// in the delayed purge, we now need to not count a decommit if the range is not marked as committed.
_mi_stat_decrease(&stats->committed, committed_size);
}
// note: if not all committed, it may be that the purge will reset/decommit the entire range
// that contains already decommitted parts. Since purge consistently uses reset or decommit that
// works (as we should never reset decommitted parts).
}
// (delay) purge the entire range
mi_arena_schedule_purge(arena, bitmap_idx, blocks, stats);
}
// and make it available to others again
bool all_inuse = _mi_bitmap_unclaim_across(arena->blocks_inuse, arena->field_count, blocks, bitmap_idx);
if (!all_inuse) {
_mi_error_message(EAGAIN, "trying to free an already freed arena block: %p, size %zu\n", p, size);
return;
};
}
else {
// arena was none, external, or static; nothing to do
mi_assert_internal(memid.memkind < MI_MEM_OS);
}
// purge expired decommits
mi_arenas_try_purge(false, false, stats);
}
// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit`
// for dynamic libraries that are unloaded and need to release all their allocated memory.
static void mi_arenas_unsafe_destroy(void) {
const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
size_t new_max_arena = 0;
for (size_t i = 0; i < max_arena; i++) {
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
if (arena != NULL) {
if (arena->start != NULL && mi_memkind_is_os(arena->memid.memkind)) {
mi_atomic_store_ptr_release(mi_arena_t, &mi_arenas[i], NULL);
_mi_os_free(arena->start, mi_arena_size(arena), arena->memid, &_mi_stats_main);
}
else {
new_max_arena = i;
}
mi_arena_meta_free(arena, arena->meta_memid, arena->meta_size, &_mi_stats_main);
}
}
// try to lower the max arena.
size_t expected = max_arena;
mi_atomic_cas_strong_acq_rel(&mi_arena_count, &expected, new_max_arena);
}
// Purge the arenas; if `force_purge` is true, amenable parts are purged even if not yet expired
void _mi_arena_collect(bool force_purge, mi_stats_t* stats) {
mi_arenas_try_purge(force_purge, true /* visit all */, stats);
}
// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit`
// for dynamic libraries that are unloaded and need to release all their allocated memory.
void _mi_arena_unsafe_destroy_all(mi_stats_t* stats) {
mi_arenas_unsafe_destroy();
_mi_arena_collect(true /* force purge */, stats); // purge non-owned arenas
}
// Is a pointer inside any of our arenas?
bool _mi_arena_contains(const void* p) {
const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
for (size_t i = 0; i < max_arena; i++) {
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
if (arena != NULL && arena->start <= (const uint8_t*)p && arena->start + mi_arena_block_size(arena->block_count) > (const uint8_t*)p) {
return true;
}
}
return false;
}
/* -----------------------------------------------------------
Add an arena.
----------------------------------------------------------- */
static bool mi_arena_add(mi_arena_t* arena, mi_arena_id_t* arena_id) {
mi_assert_internal(arena != NULL);
mi_assert_internal((uintptr_t)mi_atomic_load_ptr_relaxed(uint8_t,&arena->start) % MI_SEGMENT_ALIGN == 0);
mi_assert_internal(arena->block_count > 0);
if (arena_id != NULL) { *arena_id = -1; }
size_t i = mi_atomic_increment_acq_rel(&mi_arena_count);
if (i >= MI_MAX_ARENAS) {
mi_atomic_decrement_acq_rel(&mi_arena_count);
return false;
}
arena->id = mi_arena_id_create(i);
mi_atomic_store_ptr_release(mi_arena_t,&mi_arenas[i], arena);
if (arena_id != NULL) { *arena_id = arena->id; }
return true;
}
static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept
{
if (arena_id != NULL) *arena_id = _mi_arena_id_none();
if (size < MI_ARENA_BLOCK_SIZE) return false;
if (is_large) {
mi_assert_internal(memid.initially_committed && memid.is_pinned);
}
const size_t bcount = size / MI_ARENA_BLOCK_SIZE;
const size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS);
const size_t bitmaps = (memid.is_pinned ? 2 : 4);
const size_t asize = sizeof(mi_arena_t) + (bitmaps*fields*sizeof(mi_bitmap_field_t));
mi_memid_t meta_memid;
mi_arena_t* arena = (mi_arena_t*)mi_arena_meta_zalloc(asize, &meta_memid, &_mi_stats_main); // TODO: can we avoid allocating from the OS?
if (arena == NULL) return false;
// already zero'd due to os_alloc
// _mi_memzero(arena, asize);
arena->id = _mi_arena_id_none();
arena->memid = memid;
arena->exclusive = exclusive;
arena->meta_size = asize;
arena->meta_memid = meta_memid;
arena->block_count = bcount;
arena->field_count = fields;
arena->start = (uint8_t*)start;
arena->numa_node = numa_node; // TODO: or get the current numa node if -1? (now it allows anyone to allocate on -1)
arena->is_large = is_large;
arena->purge_expire = 0;
arena->search_idx = 0;
arena->blocks_dirty = &arena->blocks_inuse[fields]; // just after inuse bitmap
arena->blocks_committed = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[2*fields]); // just after dirty bitmap
arena->blocks_purge = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[3*fields]); // just after committed bitmap
// initialize committed bitmap?
if (arena->blocks_committed != NULL && arena->memid.initially_committed) {
memset((void*)arena->blocks_committed, 0xFF, fields*sizeof(mi_bitmap_field_t)); // cast to void* to avoid atomic warning
}
// and claim leftover blocks if needed (so we never allocate there)
ptrdiff_t post = (fields * MI_BITMAP_FIELD_BITS) - bcount;
mi_assert_internal(post >= 0);
if (post > 0) {
// don't use leftover bits at the end
mi_bitmap_index_t postidx = mi_bitmap_index_create(fields - 1, MI_BITMAP_FIELD_BITS - post);
_mi_bitmap_claim(arena->blocks_inuse, fields, post, postidx, NULL);
}
return mi_arena_add(arena, arena_id);
}
bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
mi_memid_t memid = _mi_memid_create(MI_MEM_EXTERNAL);
memid.initially_committed = is_committed;
memid.initially_zero = is_zero;
memid.is_pinned = is_large;
return mi_manage_os_memory_ex2(start,size,is_large,numa_node,exclusive,memid, arena_id);
}
// Reserve a range of regular OS memory
int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
if (arena_id != NULL) *arena_id = _mi_arena_id_none();
size = _mi_align_up(size, MI_ARENA_BLOCK_SIZE); // at least one block
mi_memid_t memid;
void* start = _mi_os_alloc_aligned(size, MI_SEGMENT_ALIGN, commit, allow_large, &memid, &_mi_stats_main);
if (start == NULL) return ENOMEM;
const bool is_large = memid.is_pinned; // todo: use separate is_large field?
if (!mi_manage_os_memory_ex2(start, size, is_large, -1 /* numa node */, exclusive, memid, arena_id)) {
_mi_os_free_ex(start, size, commit, memid, &_mi_stats_main);
_mi_verbose_message("failed to reserve %zu k memory\n", _mi_divide_up(size, 1024));
return ENOMEM;
}
_mi_verbose_message("reserved %zu KiB memory%s\n", _mi_divide_up(size, 1024), is_large ? " (in large os pages)" : "");
return 0;
}
// Manage a range of regular OS memory
bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept {
return mi_manage_os_memory_ex(start, size, is_committed, is_large, is_zero, numa_node, false /* exclusive? */, NULL);
}
// Reserve a range of regular OS memory
int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept {
return mi_reserve_os_memory_ex(size, commit, allow_large, false, NULL);
}
/* -----------------------------------------------------------
Debugging
----------------------------------------------------------- */
static size_t mi_debug_show_bitmap(const char* prefix, mi_bitmap_field_t* fields, size_t field_count ) {
size_t inuse_count = 0;
for (size_t i = 0; i < field_count; i++) {
char buf[MI_BITMAP_FIELD_BITS + 1];
uintptr_t field = mi_atomic_load_relaxed(&fields[i]);
for (size_t bit = 0; bit < MI_BITMAP_FIELD_BITS; bit++) {
bool inuse = ((((uintptr_t)1 << bit) & field) != 0);
if (inuse) inuse_count++;
buf[MI_BITMAP_FIELD_BITS - 1 - bit] = (inuse ? 'x' : '.');
}
buf[MI_BITMAP_FIELD_BITS] = 0;
_mi_verbose_message("%s%s\n", prefix, buf);
}
return inuse_count;
}
void mi_debug_show_arenas(void) mi_attr_noexcept {
size_t max_arenas = mi_atomic_load_relaxed(&mi_arena_count);
for (size_t i = 0; i < max_arenas; i++) {
mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]);
if (arena == NULL) break;
size_t inuse_count = 0;
_mi_verbose_message("arena %zu: %zu blocks with %zu fields\n", i, arena->block_count, arena->field_count);
inuse_count += mi_debug_show_bitmap(" ", arena->blocks_inuse, arena->field_count);
_mi_verbose_message(" blocks in use ('x'): %zu\n", inuse_count);
}
}
/* -----------------------------------------------------------
Reserve a huge page arena.
----------------------------------------------------------- */
// reserve at a specific numa node
int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
if (arena_id != NULL) *arena_id = -1;
if (pages==0) return 0;
if (numa_node < -1) numa_node = -1;
if (numa_node >= 0) numa_node = numa_node % _mi_os_numa_node_count();
size_t hsize = 0;
size_t pages_reserved = 0;
mi_memid_t memid;
void* p = _mi_os_alloc_huge_os_pages(pages, numa_node, timeout_msecs, &pages_reserved, &hsize, &memid);
if (p==NULL || pages_reserved==0) {
_mi_warning_message("failed to reserve %zu GiB huge pages\n", pages);
return ENOMEM;
}
_mi_verbose_message("numa node %i: reserved %zu GiB huge pages (of the %zu GiB requested)\n", numa_node, pages_reserved, pages);
if (!mi_manage_os_memory_ex2(p, hsize, true, numa_node, exclusive, memid, arena_id)) {
_mi_os_free(p, hsize, memid, &_mi_stats_main);
return ENOMEM;
}
return 0;
}
int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept {
return mi_reserve_huge_os_pages_at_ex(pages, numa_node, timeout_msecs, false, NULL);
}
// reserve huge pages evenly among the given number of numa nodes (or use the available ones as detected)
int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept {
if (pages == 0) return 0;
// pages per numa node
size_t numa_count = (numa_nodes > 0 ? numa_nodes : _mi_os_numa_node_count());
if (numa_count <= 0) numa_count = 1;
const size_t pages_per = pages / numa_count;
const size_t pages_mod = pages % numa_count;
const size_t timeout_per = (timeout_msecs==0 ? 0 : (timeout_msecs / numa_count) + 50);
// reserve evenly among numa nodes
for (size_t numa_node = 0; numa_node < numa_count && pages > 0; numa_node++) {
size_t node_pages = pages_per; // can be 0
if (numa_node < pages_mod) node_pages++;
int err = mi_reserve_huge_os_pages_at(node_pages, (int)numa_node, timeout_per);
if (err) return err;
if (pages < node_pages) {
pages = 0;
}
else {
pages -= node_pages;
}
}
return 0;
}
int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept {
MI_UNUSED(max_secs);
_mi_warning_message("mi_reserve_huge_os_pages is deprecated: use mi_reserve_huge_os_pages_interleave/at instead\n");
if (pages_reserved != NULL) *pages_reserved = 0;
int err = mi_reserve_huge_os_pages_interleave(pages, 0, (size_t)(max_secs * 1000.0));
if (err==0 && pages_reserved!=NULL) *pages_reserved = pages;
return err;
}

432
3rdparty/mimalloc/src/bitmap.c vendored Normal file
View File

@ -0,0 +1,432 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2023 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* ----------------------------------------------------------------------------
Concurrent bitmap that can set/reset sequences of bits atomically,
represeted as an array of fields where each field is a machine word (`size_t`)
There are two api's; the standard one cannot have sequences that cross
between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS).
The `_across` postfixed functions do allow sequences that can cross over
between the fields. (This is used in arena allocation)
---------------------------------------------------------------------------- */
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "bitmap.h"
/* -----------------------------------------------------------
Bitmap definition
----------------------------------------------------------- */
// The bit mask for a given number of blocks at a specified bit index.
static inline size_t mi_bitmap_mask_(size_t count, size_t bitidx) {
mi_assert_internal(count + bitidx <= MI_BITMAP_FIELD_BITS);
mi_assert_internal(count > 0);
if (count >= MI_BITMAP_FIELD_BITS) return MI_BITMAP_FIELD_FULL;
if (count == 0) return 0;
return ((((size_t)1 << count) - 1) << bitidx);
}
/* -----------------------------------------------------------
Claim a bit sequence atomically
----------------------------------------------------------- */
// Try to atomically claim a sequence of `count` bits in a single
// field at `idx` in `bitmap`. Returns `true` on success.
inline bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx)
{
mi_assert_internal(bitmap_idx != NULL);
mi_assert_internal(count <= MI_BITMAP_FIELD_BITS);
mi_assert_internal(count > 0);
mi_bitmap_field_t* field = &bitmap[idx];
size_t map = mi_atomic_load_relaxed(field);
if (map==MI_BITMAP_FIELD_FULL) return false; // short cut
// search for 0-bit sequence of length count
const size_t mask = mi_bitmap_mask_(count, 0);
const size_t bitidx_max = MI_BITMAP_FIELD_BITS - count;
#ifdef MI_HAVE_FAST_BITSCAN
size_t bitidx = mi_ctz(~map); // quickly find the first zero bit if possible
#else
size_t bitidx = 0; // otherwise start at 0
#endif
size_t m = (mask << bitidx); // invariant: m == mask shifted by bitidx
// scan linearly for a free range of zero bits
while (bitidx <= bitidx_max) {
const size_t mapm = (map & m);
if (mapm == 0) { // are the mask bits free at bitidx?
mi_assert_internal((m >> bitidx) == mask); // no overflow?
const size_t newmap = (map | m);
mi_assert_internal((newmap^map) >> bitidx == mask);
if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { // TODO: use weak cas here?
// no success, another thread claimed concurrently.. keep going (with updated `map`)
continue;
}
else {
// success, we claimed the bits!
*bitmap_idx = mi_bitmap_index_create(idx, bitidx);
return true;
}
}
else {
// on to the next bit range
#ifdef MI_HAVE_FAST_BITSCAN
mi_assert_internal(mapm != 0);
const size_t shift = (count == 1 ? 1 : (MI_INTPTR_BITS - mi_clz(mapm) - bitidx));
mi_assert_internal(shift > 0 && shift <= count);
#else
const size_t shift = 1;
#endif
bitidx += shift;
m <<= shift;
}
}
// no bits found
return false;
}
// Find `count` bits of 0 and set them to 1 atomically; returns `true` on success.
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
// `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields.
bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) {
size_t idx = start_field_idx;
for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) {
if (idx >= bitmap_fields) { idx = 0; } // wrap
if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) {
return true;
}
}
return false;
}
// Like _mi_bitmap_try_find_from_claim but with an extra predicate that must be fullfilled
bool _mi_bitmap_try_find_from_claim_pred(mi_bitmap_t bitmap, const size_t bitmap_fields,
const size_t start_field_idx, const size_t count,
mi_bitmap_pred_fun_t pred_fun, void* pred_arg,
mi_bitmap_index_t* bitmap_idx) {
size_t idx = start_field_idx;
for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) {
if (idx >= bitmap_fields) idx = 0; // wrap
if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) {
if (pred_fun == NULL || pred_fun(*bitmap_idx, pred_arg)) {
return true;
}
// predicate returned false, unclaim and look further
_mi_bitmap_unclaim(bitmap, bitmap_fields, count, *bitmap_idx);
}
}
return false;
}
// Set `count` bits at `bitmap_idx` to 0 atomically
// Returns `true` if all `count` bits were 1 previously.
bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
const size_t idx = mi_bitmap_index_field(bitmap_idx);
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
const size_t mask = mi_bitmap_mask_(count, bitidx);
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
// mi_assert_internal((bitmap[idx] & mask) == mask);
const size_t prev = mi_atomic_and_acq_rel(&bitmap[idx], ~mask);
return ((prev & mask) == mask);
}
// Set `count` bits at `bitmap_idx` to 1 atomically
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero) {
const size_t idx = mi_bitmap_index_field(bitmap_idx);
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
const size_t mask = mi_bitmap_mask_(count, bitidx);
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
//mi_assert_internal(any_zero != NULL || (bitmap[idx] & mask) == 0);
size_t prev = mi_atomic_or_acq_rel(&bitmap[idx], mask);
if (any_zero != NULL) { *any_zero = ((prev & mask) != mask); }
return ((prev & mask) == 0);
}
// Returns `true` if all `count` bits were 1. `any_ones` is `true` if there was at least one bit set to one.
static bool mi_bitmap_is_claimedx(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_ones) {
const size_t idx = mi_bitmap_index_field(bitmap_idx);
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
const size_t mask = mi_bitmap_mask_(count, bitidx);
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
const size_t field = mi_atomic_load_relaxed(&bitmap[idx]);
if (any_ones != NULL) { *any_ones = ((field & mask) != 0); }
return ((field & mask) == mask);
}
// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically.
// Returns `true` if successful when all previous `count` bits were 0.
bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
const size_t idx = mi_bitmap_index_field(bitmap_idx);
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
const size_t mask = mi_bitmap_mask_(count, bitidx);
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
size_t expected = mi_atomic_load_relaxed(&bitmap[idx]);
do {
if ((expected & mask) != 0) return false;
}
while (!mi_atomic_cas_strong_acq_rel(&bitmap[idx], &expected, expected | mask));
mi_assert_internal((expected & mask) == 0);
return true;
}
bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
return mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, NULL);
}
bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
bool any_ones;
mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, &any_ones);
return any_ones;
}
//--------------------------------------------------------------------------
// the `_across` functions work on bitmaps where sequences can cross over
// between the fields. This is used in arena allocation
//--------------------------------------------------------------------------
// Try to atomically claim a sequence of `count` bits starting from the field
// at `idx` in `bitmap` and crossing into subsequent fields. Returns `true` on success.
// Only needs to consider crossing into the next fields (see `mi_bitmap_try_find_from_claim_across`)
static bool mi_bitmap_try_find_claim_field_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t idx, const size_t count, const size_t retries, mi_bitmap_index_t* bitmap_idx)
{
mi_assert_internal(bitmap_idx != NULL);
// check initial trailing zeros
mi_bitmap_field_t* field = &bitmap[idx];
size_t map = mi_atomic_load_relaxed(field);
const size_t initial = mi_clz(map); // count of initial zeros starting at idx
mi_assert_internal(initial <= MI_BITMAP_FIELD_BITS);
if (initial == 0) return false;
if (initial >= count) return _mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx); // no need to cross fields (this case won't happen for us)
if (_mi_divide_up(count - initial, MI_BITMAP_FIELD_BITS) >= (bitmap_fields - idx)) return false; // not enough entries
// scan ahead
size_t found = initial;
size_t mask = 0; // mask bits for the final field
while(found < count) {
field++;
map = mi_atomic_load_relaxed(field);
const size_t mask_bits = (found + MI_BITMAP_FIELD_BITS <= count ? MI_BITMAP_FIELD_BITS : (count - found));
mi_assert_internal(mask_bits > 0 && mask_bits <= MI_BITMAP_FIELD_BITS);
mask = mi_bitmap_mask_(mask_bits, 0);
if ((map & mask) != 0) return false; // some part is already claimed
found += mask_bits;
}
mi_assert_internal(field < &bitmap[bitmap_fields]);
// we found a range of contiguous zeros up to the final field; mask contains mask in the final field
// now try to claim the range atomically
mi_bitmap_field_t* const final_field = field;
const size_t final_mask = mask;
mi_bitmap_field_t* const initial_field = &bitmap[idx];
const size_t initial_idx = MI_BITMAP_FIELD_BITS - initial;
const size_t initial_mask = mi_bitmap_mask_(initial, initial_idx);
// initial field
size_t newmap;
field = initial_field;
map = mi_atomic_load_relaxed(field);
do {
newmap = (map | initial_mask);
if ((map & initial_mask) != 0) { goto rollback; };
} while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap));
// intermediate fields
while (++field < final_field) {
newmap = MI_BITMAP_FIELD_FULL;
map = 0;
if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { goto rollback; }
}
// final field
mi_assert_internal(field == final_field);
map = mi_atomic_load_relaxed(field);
do {
newmap = (map | final_mask);
if ((map & final_mask) != 0) { goto rollback; }
} while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap));
// claimed!
*bitmap_idx = mi_bitmap_index_create(idx, initial_idx);
return true;
rollback:
// roll back intermediate fields
// (we just failed to claim `field` so decrement first)
while (--field > initial_field) {
newmap = 0;
map = MI_BITMAP_FIELD_FULL;
mi_assert_internal(mi_atomic_load_relaxed(field) == map);
mi_atomic_store_release(field, newmap);
}
if (field == initial_field) { // (if we failed on the initial field, `field + 1 == initial_field`)
map = mi_atomic_load_relaxed(field);
do {
mi_assert_internal((map & initial_mask) == initial_mask);
newmap = (map & ~initial_mask);
} while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap));
}
// retry? (we make a recursive call instead of goto to be able to use const declarations)
if (retries <= 2) {
return mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, retries+1, bitmap_idx);
}
else {
return false;
}
}
// Find `count` bits of zeros and set them to 1 atomically; returns `true` on success.
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) {
mi_assert_internal(count > 0);
if (count <= 2) {
// we don't bother with crossover fields for small counts
return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, start_field_idx, count, bitmap_idx);
}
// visit the fields
size_t idx = start_field_idx;
for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) {
if (idx >= bitmap_fields) { idx = 0; } // wrap
// first try to claim inside a field
if (count <= MI_BITMAP_FIELD_BITS) {
if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) {
return true;
}
}
// if that fails, then try to claim across fields
if (mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, 0, bitmap_idx)) {
return true;
}
}
return false;
}
// Helper for masks across fields; returns the mid count, post_mask may be 0
static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) {
MI_UNUSED(bitmap_fields);
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
if mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS) {
*pre_mask = mi_bitmap_mask_(count, bitidx);
*mid_mask = 0;
*post_mask = 0;
mi_assert_internal(mi_bitmap_index_field(bitmap_idx) < bitmap_fields);
return 0;
}
else {
const size_t pre_bits = MI_BITMAP_FIELD_BITS - bitidx;
mi_assert_internal(pre_bits < count);
*pre_mask = mi_bitmap_mask_(pre_bits, bitidx);
count -= pre_bits;
const size_t mid_count = (count / MI_BITMAP_FIELD_BITS);
*mid_mask = MI_BITMAP_FIELD_FULL;
count %= MI_BITMAP_FIELD_BITS;
*post_mask = (count==0 ? 0 : mi_bitmap_mask_(count, 0));
mi_assert_internal(mi_bitmap_index_field(bitmap_idx) + mid_count + (count==0 ? 0 : 1) < bitmap_fields);
return mid_count;
}
}
// Set `count` bits at `bitmap_idx` to 0 atomically
// Returns `true` if all `count` bits were 1 previously.
bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
size_t idx = mi_bitmap_index_field(bitmap_idx);
size_t pre_mask;
size_t mid_mask;
size_t post_mask;
size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask);
bool all_one = true;
mi_bitmap_field_t* field = &bitmap[idx];
size_t prev = mi_atomic_and_acq_rel(field++, ~pre_mask); // clear first part
if ((prev & pre_mask) != pre_mask) all_one = false;
while(mid_count-- > 0) {
prev = mi_atomic_and_acq_rel(field++, ~mid_mask); // clear mid part
if ((prev & mid_mask) != mid_mask) all_one = false;
}
if (post_mask!=0) {
prev = mi_atomic_and_acq_rel(field, ~post_mask); // clear end part
if ((prev & post_mask) != post_mask) all_one = false;
}
return all_one;
}
// Set `count` bits at `bitmap_idx` to 1 atomically
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero) {
size_t idx = mi_bitmap_index_field(bitmap_idx);
size_t pre_mask;
size_t mid_mask;
size_t post_mask;
size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask);
bool all_zero = true;
bool any_zero = false;
_Atomic(size_t)*field = &bitmap[idx];
size_t prev = mi_atomic_or_acq_rel(field++, pre_mask);
if ((prev & pre_mask) != 0) all_zero = false;
if ((prev & pre_mask) != pre_mask) any_zero = true;
while (mid_count-- > 0) {
prev = mi_atomic_or_acq_rel(field++, mid_mask);
if ((prev & mid_mask) != 0) all_zero = false;
if ((prev & mid_mask) != mid_mask) any_zero = true;
}
if (post_mask!=0) {
prev = mi_atomic_or_acq_rel(field, post_mask);
if ((prev & post_mask) != 0) all_zero = false;
if ((prev & post_mask) != post_mask) any_zero = true;
}
if (pany_zero != NULL) { *pany_zero = any_zero; }
return all_zero;
}
// Returns `true` if all `count` bits were 1.
// `any_ones` is `true` if there was at least one bit set to one.
static bool mi_bitmap_is_claimedx_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_ones) {
size_t idx = mi_bitmap_index_field(bitmap_idx);
size_t pre_mask;
size_t mid_mask;
size_t post_mask;
size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask);
bool all_ones = true;
bool any_ones = false;
mi_bitmap_field_t* field = &bitmap[idx];
size_t prev = mi_atomic_load_relaxed(field++);
if ((prev & pre_mask) != pre_mask) all_ones = false;
if ((prev & pre_mask) != 0) any_ones = true;
while (mid_count-- > 0) {
prev = mi_atomic_load_relaxed(field++);
if ((prev & mid_mask) != mid_mask) all_ones = false;
if ((prev & mid_mask) != 0) any_ones = true;
}
if (post_mask!=0) {
prev = mi_atomic_load_relaxed(field);
if ((prev & post_mask) != post_mask) all_ones = false;
if ((prev & post_mask) != 0) any_ones = true;
}
if (pany_ones != NULL) { *pany_ones = any_ones; }
return all_ones;
}
bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
return mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, NULL);
}
bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
bool any_ones;
mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, &any_ones);
return any_ones;
}

115
3rdparty/mimalloc/src/bitmap.h vendored Normal file
View File

@ -0,0 +1,115 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2023 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* ----------------------------------------------------------------------------
Concurrent bitmap that can set/reset sequences of bits atomically,
represeted as an array of fields where each field is a machine word (`size_t`)
There are two api's; the standard one cannot have sequences that cross
between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS).
(this is used in region allocation)
The `_across` postfixed functions do allow sequences that can cross over
between the fields. (This is used in arena allocation)
---------------------------------------------------------------------------- */
#pragma once
#ifndef MI_BITMAP_H
#define MI_BITMAP_H
/* -----------------------------------------------------------
Bitmap definition
----------------------------------------------------------- */
#define MI_BITMAP_FIELD_BITS (8*MI_SIZE_SIZE)
#define MI_BITMAP_FIELD_FULL (~((size_t)0)) // all bits set
// An atomic bitmap of `size_t` fields
typedef _Atomic(size_t) mi_bitmap_field_t;
typedef mi_bitmap_field_t* mi_bitmap_t;
// A bitmap index is the index of the bit in a bitmap.
typedef size_t mi_bitmap_index_t;
// Create a bit index.
static inline mi_bitmap_index_t mi_bitmap_index_create(size_t idx, size_t bitidx) {
mi_assert_internal(bitidx < MI_BITMAP_FIELD_BITS);
return (idx*MI_BITMAP_FIELD_BITS) + bitidx;
}
// Create a bit index.
static inline mi_bitmap_index_t mi_bitmap_index_create_from_bit(size_t full_bitidx) {
return mi_bitmap_index_create(full_bitidx / MI_BITMAP_FIELD_BITS, full_bitidx % MI_BITMAP_FIELD_BITS);
}
// Get the field index from a bit index.
static inline size_t mi_bitmap_index_field(mi_bitmap_index_t bitmap_idx) {
return (bitmap_idx / MI_BITMAP_FIELD_BITS);
}
// Get the bit index in a bitmap field
static inline size_t mi_bitmap_index_bit_in_field(mi_bitmap_index_t bitmap_idx) {
return (bitmap_idx % MI_BITMAP_FIELD_BITS);
}
// Get the full bit index
static inline size_t mi_bitmap_index_bit(mi_bitmap_index_t bitmap_idx) {
return bitmap_idx;
}
/* -----------------------------------------------------------
Claim a bit sequence atomically
----------------------------------------------------------- */
// Try to atomically claim a sequence of `count` bits in a single
// field at `idx` in `bitmap`. Returns `true` on success.
bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx);
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
// For now, `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields.
bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx);
// Like _mi_bitmap_try_find_from_claim but with an extra predicate that must be fullfilled
typedef bool (mi_cdecl *mi_bitmap_pred_fun_t)(mi_bitmap_index_t bitmap_idx, void* pred_arg);
bool _mi_bitmap_try_find_from_claim_pred(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_pred_fun_t pred_fun, void* pred_arg, mi_bitmap_index_t* bitmap_idx);
// Set `count` bits at `bitmap_idx` to 0 atomically
// Returns `true` if all `count` bits were 1 previously.
bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically.
// Returns `true` if successful when all previous `count` bits were 0.
bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
// Set `count` bits at `bitmap_idx` to 1 atomically
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero);
bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
//--------------------------------------------------------------------------
// the `_across` functions work on bitmaps where sequences can cross over
// between the fields. This is used in arena allocation
//--------------------------------------------------------------------------
// Find `count` bits of zeros and set them to 1 atomically; returns `true` on success.
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx);
// Set `count` bits at `bitmap_idx` to 0 atomically
// Returns `true` if all `count` bits were 1 previously.
bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
// Set `count` bits at `bitmap_idx` to 1 atomically
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero);
bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
#endif

626
3rdparty/mimalloc/src/heap.c vendored Normal file
View File

@ -0,0 +1,626 @@
/*----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h" // mi_prim_get_default_heap
#include <string.h> // memset, memcpy
#if defined(_MSC_VER) && (_MSC_VER < 1920)
#pragma warning(disable:4204) // non-constant aggregate initializer
#endif
/* -----------------------------------------------------------
Helpers
----------------------------------------------------------- */
// return `true` if ok, `false` to break
typedef bool (heap_page_visitor_fun)(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2);
// Visit all pages in a heap; returns `false` if break was called.
static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void* arg1, void* arg2)
{
if (heap==NULL || heap->page_count==0) return 0;
// visit all pages
#if MI_DEBUG>1
size_t total = heap->page_count;
size_t count = 0;
#endif
for (size_t i = 0; i <= MI_BIN_FULL; i++) {
mi_page_queue_t* pq = &heap->pages[i];
mi_page_t* page = pq->first;
while(page != NULL) {
mi_page_t* next = page->next; // save next in case the page gets removed from the queue
mi_assert_internal(mi_page_heap(page) == heap);
#if MI_DEBUG>1
count++;
#endif
if (!fn(heap, pq, page, arg1, arg2)) return false;
page = next; // and continue
}
}
mi_assert_internal(count == total);
return true;
}
#if MI_DEBUG>=2
static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
MI_UNUSED(arg1);
MI_UNUSED(arg2);
MI_UNUSED(pq);
mi_assert_internal(mi_page_heap(page) == heap);
mi_segment_t* segment = _mi_page_segment(page);
mi_assert_internal(segment->thread_id == heap->thread_id);
mi_assert_expensive(_mi_page_is_valid(page));
return true;
}
#endif
#if MI_DEBUG>=3
static bool mi_heap_is_valid(mi_heap_t* heap) {
mi_assert_internal(heap!=NULL);
mi_heap_visit_pages(heap, &mi_heap_page_is_valid, NULL, NULL);
return true;
}
#endif
/* -----------------------------------------------------------
"Collect" pages by migrating `local_free` and `thread_free`
lists and freeing empty pages. This is done when a thread
stops (and in that case abandons pages if there are still
blocks alive)
----------------------------------------------------------- */
typedef enum mi_collect_e {
MI_NORMAL,
MI_FORCE,
MI_ABANDON
} mi_collect_t;
static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) {
MI_UNUSED(arg2);
MI_UNUSED(heap);
mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL));
mi_collect_t collect = *((mi_collect_t*)arg_collect);
_mi_page_free_collect(page, collect >= MI_FORCE);
if (mi_page_all_free(page)) {
// no more used blocks, free the page.
// note: this will free retired pages as well.
_mi_page_free(page, pq, collect >= MI_FORCE);
}
else if (collect == MI_ABANDON) {
// still used blocks but the thread is done; abandon the page
_mi_page_abandon(page, pq);
}
return true; // don't break
}
static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
MI_UNUSED(arg1);
MI_UNUSED(arg2);
MI_UNUSED(heap);
MI_UNUSED(pq);
_mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
return true; // don't break
}
static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect)
{
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
const bool force = collect >= MI_FORCE;
_mi_deferred_free(heap, force);
// note: never reclaim on collect but leave it to threads that need storage to reclaim
const bool force_main =
#ifdef NDEBUG
collect == MI_FORCE
#else
collect >= MI_FORCE
#endif
&& _mi_is_main_thread() && mi_heap_is_backing(heap) && !heap->no_reclaim;
if (force_main) {
// the main thread is abandoned (end-of-program), try to reclaim all abandoned segments.
// if all memory is freed by now, all segments should be freed.
_mi_abandoned_reclaim_all(heap, &heap->tld->segments);
}
// if abandoning, mark all pages to no longer add to delayed_free
if (collect == MI_ABANDON) {
mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL);
}
// free all current thread delayed blocks.
// (if abandoning, after this there are no more thread-delayed references into the pages.)
_mi_heap_delayed_free_all(heap);
// collect retired pages
_mi_heap_collect_retired(heap, force);
// collect all pages owned by this thread
mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL);
mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL );
// collect abandoned segments (in particular, purge expired parts of segments in the abandoned segment list)
// note: forced purge can be quite expensive if many threads are created/destroyed so we do not force on abandonment
_mi_abandoned_collect(heap, collect == MI_FORCE /* force? */, &heap->tld->segments);
// collect segment local caches
if (force) {
_mi_segment_thread_collect(&heap->tld->segments);
}
// collect regions on program-exit (or shared library unload)
if (force && _mi_is_main_thread() && mi_heap_is_backing(heap)) {
_mi_thread_data_collect(); // collect thread data cache
_mi_arena_collect(true /* force purge */, &heap->tld->stats);
}
}
void _mi_heap_collect_abandon(mi_heap_t* heap) {
mi_heap_collect_ex(heap, MI_ABANDON);
}
void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept {
mi_heap_collect_ex(heap, (force ? MI_FORCE : MI_NORMAL));
}
void mi_collect(bool force) mi_attr_noexcept {
mi_heap_collect(mi_prim_get_default_heap(), force);
}
/* -----------------------------------------------------------
Heap new
----------------------------------------------------------- */
mi_heap_t* mi_heap_get_default(void) {
mi_thread_init();
return mi_prim_get_default_heap();
}
static bool mi_heap_is_default(const mi_heap_t* heap) {
return (heap == mi_prim_get_default_heap());
}
mi_heap_t* mi_heap_get_backing(void) {
mi_heap_t* heap = mi_heap_get_default();
mi_assert_internal(heap!=NULL);
mi_heap_t* bheap = heap->tld->heap_backing;
mi_assert_internal(bheap!=NULL);
mi_assert_internal(bheap->thread_id == _mi_thread_id());
return bheap;
}
mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id) {
mi_heap_t* bheap = mi_heap_get_backing();
mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t); // todo: OS allocate in secure mode?
if (heap == NULL) return NULL;
_mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t));
heap->tld = bheap->tld;
heap->thread_id = _mi_thread_id();
heap->arena_id = arena_id;
_mi_random_split(&bheap->random, &heap->random);
heap->cookie = _mi_heap_random_next(heap) | 1;
heap->keys[0] = _mi_heap_random_next(heap);
heap->keys[1] = _mi_heap_random_next(heap);
heap->no_reclaim = true; // don't reclaim abandoned pages or otherwise destroy is unsafe
// push on the thread local heaps list
heap->next = heap->tld->heaps;
heap->tld->heaps = heap;
return heap;
}
mi_decl_nodiscard mi_heap_t* mi_heap_new(void) {
return mi_heap_new_in_arena(_mi_arena_id_none());
}
bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid) {
return _mi_arena_memid_is_suitable(memid, heap->arena_id);
}
uintptr_t _mi_heap_random_next(mi_heap_t* heap) {
return _mi_random_next(&heap->random);
}
// zero out the page queues
static void mi_heap_reset_pages(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
mi_assert_internal(mi_heap_is_initialized(heap));
// TODO: copy full empty heap instead?
memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct));
_mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages));
heap->thread_delayed_free = NULL;
heap->page_count = 0;
}
// called from `mi_heap_destroy` and `mi_heap_delete` to free the internal heap resources.
static void mi_heap_free(mi_heap_t* heap) {
mi_assert(heap != NULL);
mi_assert_internal(mi_heap_is_initialized(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
if (mi_heap_is_backing(heap)) return; // dont free the backing heap
// reset default
if (mi_heap_is_default(heap)) {
_mi_heap_set_default_direct(heap->tld->heap_backing);
}
// remove ourselves from the thread local heaps list
// linear search but we expect the number of heaps to be relatively small
mi_heap_t* prev = NULL;
mi_heap_t* curr = heap->tld->heaps;
while (curr != heap && curr != NULL) {
prev = curr;
curr = curr->next;
}
mi_assert_internal(curr == heap);
if (curr == heap) {
if (prev != NULL) { prev->next = heap->next; }
else { heap->tld->heaps = heap->next; }
}
mi_assert_internal(heap->tld->heaps != NULL);
// and free the used memory
mi_free(heap);
}
/* -----------------------------------------------------------
Heap destroy
----------------------------------------------------------- */
static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) {
MI_UNUSED(arg1);
MI_UNUSED(arg2);
MI_UNUSED(heap);
MI_UNUSED(pq);
// ensure no more thread_delayed_free will be added
_mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
// stats
const size_t bsize = mi_page_block_size(page);
if (bsize > MI_MEDIUM_OBJ_SIZE_MAX) {
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, large, bsize);
}
else {
mi_heap_stat_decrease(heap, huge, bsize);
}
}
#if (MI_STAT)
_mi_page_free_collect(page, false); // update used count
const size_t inuse = page->used;
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, normal, bsize * inuse);
#if (MI_STAT>1)
mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], inuse);
#endif
}
mi_heap_stat_decrease(heap, malloc, bsize * inuse); // todo: off for aligned blocks...
#endif
/// pretend it is all free now
mi_assert_internal(mi_page_thread_free(page) == NULL);
page->used = 0;
// and free the page
// mi_page_free(page,false);
page->next = NULL;
page->prev = NULL;
_mi_segment_page_free(page,false /* no force? */, &heap->tld->segments);
return true; // keep going
}
void _mi_heap_destroy_pages(mi_heap_t* heap) {
mi_heap_visit_pages(heap, &_mi_heap_page_destroy, NULL, NULL);
mi_heap_reset_pages(heap);
}
#if MI_TRACK_HEAP_DESTROY
static bool mi_cdecl mi_heap_track_block_free(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) {
MI_UNUSED(heap); MI_UNUSED(area); MI_UNUSED(arg); MI_UNUSED(block_size);
mi_track_free_size(block,mi_usable_size(block));
return true;
}
#endif
void mi_heap_destroy(mi_heap_t* heap) {
mi_assert(heap != NULL);
mi_assert(mi_heap_is_initialized(heap));
mi_assert(heap->no_reclaim);
mi_assert_expensive(mi_heap_is_valid(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
if (!heap->no_reclaim) {
// don't free in case it may contain reclaimed pages
mi_heap_delete(heap);
}
else {
// track all blocks as freed
#if MI_TRACK_HEAP_DESTROY
mi_heap_visit_blocks(heap, true, mi_heap_track_block_free, NULL);
#endif
// free all pages
_mi_heap_destroy_pages(heap);
mi_heap_free(heap);
}
}
// forcefully destroy all heaps in the current thread
void _mi_heap_unsafe_destroy_all(void) {
mi_heap_t* bheap = mi_heap_get_backing();
mi_heap_t* curr = bheap->tld->heaps;
while (curr != NULL) {
mi_heap_t* next = curr->next;
if (curr->no_reclaim) {
mi_heap_destroy(curr);
}
else {
_mi_heap_destroy_pages(curr);
}
curr = next;
}
}
/* -----------------------------------------------------------
Safe Heap delete
----------------------------------------------------------- */
// Transfer the pages from one heap to the other
static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) {
mi_assert_internal(heap!=NULL);
if (from==NULL || from->page_count == 0) return;
// reduce the size of the delayed frees
_mi_heap_delayed_free_partial(from);
// transfer all pages by appending the queues; this will set a new heap field
// so threads may do delayed frees in either heap for a while.
// note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state
// so after this only the new heap will get delayed frees
for (size_t i = 0; i <= MI_BIN_FULL; i++) {
mi_page_queue_t* pq = &heap->pages[i];
mi_page_queue_t* append = &from->pages[i];
size_t pcount = _mi_page_queue_append(heap, pq, append);
heap->page_count += pcount;
from->page_count -= pcount;
}
mi_assert_internal(from->page_count == 0);
// and do outstanding delayed frees in the `from` heap
// note: be careful here as the `heap` field in all those pages no longer point to `from`,
// turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a
// the regular `_mi_free_delayed_block` which is safe.
_mi_heap_delayed_free_all(from);
#if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353
mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL);
#endif
// and reset the `from` heap
mi_heap_reset_pages(from);
}
// Safe delete a heap without freeing any still allocated blocks in that heap.
void mi_heap_delete(mi_heap_t* heap)
{
mi_assert(heap != NULL);
mi_assert(mi_heap_is_initialized(heap));
mi_assert_expensive(mi_heap_is_valid(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
if (!mi_heap_is_backing(heap)) {
// tranfer still used pages to the backing heap
mi_heap_absorb(heap->tld->heap_backing, heap);
}
else {
// the backing heap abandons its pages
_mi_heap_collect_abandon(heap);
}
mi_assert_internal(heap->page_count==0);
mi_heap_free(heap);
}
mi_heap_t* mi_heap_set_default(mi_heap_t* heap) {
mi_assert(heap != NULL);
mi_assert(mi_heap_is_initialized(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL;
mi_assert_expensive(mi_heap_is_valid(heap));
mi_heap_t* old = mi_prim_get_default_heap();
_mi_heap_set_default_direct(heap);
return old;
}
/* -----------------------------------------------------------
Analysis
----------------------------------------------------------- */
// static since it is not thread safe to access heaps from other threads.
static mi_heap_t* mi_heap_of_block(const void* p) {
if (p == NULL) return NULL;
mi_segment_t* segment = _mi_ptr_segment(p);
bool valid = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(valid);
if mi_unlikely(!valid) return NULL;
return mi_page_heap(_mi_segment_page_of(segment,p));
}
bool mi_heap_contains_block(mi_heap_t* heap, const void* p) {
mi_assert(heap != NULL);
if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
return (heap == mi_heap_of_block(p));
}
static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) {
MI_UNUSED(heap);
MI_UNUSED(pq);
bool* found = (bool*)vfound;
mi_segment_t* segment = _mi_page_segment(page);
void* start = _mi_page_start(segment, page, NULL);
void* end = (uint8_t*)start + (page->capacity * mi_page_block_size(page));
*found = (p >= start && p < end);
return (!*found); // continue if not found
}
bool mi_heap_check_owned(mi_heap_t* heap, const void* p) {
mi_assert(heap != NULL);
if (heap==NULL || !mi_heap_is_initialized(heap)) return false;
if (((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) return false; // only aligned pointers
bool found = false;
mi_heap_visit_pages(heap, &mi_heap_page_check_owned, (void*)p, &found);
return found;
}
bool mi_check_owned(const void* p) {
return mi_heap_check_owned(mi_prim_get_default_heap(), p);
}
/* -----------------------------------------------------------
Visit all heap blocks and areas
Todo: enable visiting abandoned pages, and
enable visiting all blocks of all heaps across threads
----------------------------------------------------------- */
// Separate struct to keep `mi_page_t` out of the public interface
typedef struct mi_heap_area_ex_s {
mi_heap_area_t area;
mi_page_t* page;
} mi_heap_area_ex_t;
static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_visit_fun* visitor, void* arg) {
mi_assert(xarea != NULL);
if (xarea==NULL) return true;
const mi_heap_area_t* area = &xarea->area;
mi_page_t* page = xarea->page;
mi_assert(page != NULL);
if (page == NULL) return true;
_mi_page_free_collect(page,true);
mi_assert_internal(page->local_free == NULL);
if (page->used == 0) return true;
const size_t bsize = mi_page_block_size(page);
const size_t ubsize = mi_page_usable_block_size(page); // without padding
size_t psize;
uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize);
if (page->capacity == 1) {
// optimize page with one block
mi_assert_internal(page->used == 1 && page->free == NULL);
return visitor(mi_page_heap(page), area, pstart, ubsize, arg);
}
// create a bitmap of free blocks.
#define MI_MAX_BLOCKS (MI_SMALL_PAGE_SIZE / sizeof(void*))
uintptr_t free_map[MI_MAX_BLOCKS / sizeof(uintptr_t)];
memset(free_map, 0, sizeof(free_map));
#if MI_DEBUG>1
size_t free_count = 0;
#endif
for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
#if MI_DEBUG>1
free_count++;
#endif
mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize));
size_t offset = (uint8_t*)block - pstart;
mi_assert_internal(offset % bsize == 0);
size_t blockidx = offset / bsize; // Todo: avoid division?
mi_assert_internal( blockidx < MI_MAX_BLOCKS);
size_t bitidx = (blockidx / sizeof(uintptr_t));
size_t bit = blockidx - (bitidx * sizeof(uintptr_t));
free_map[bitidx] |= ((uintptr_t)1 << bit);
}
mi_assert_internal(page->capacity == (free_count + page->used));
// walk through all blocks skipping the free ones
#if MI_DEBUG>1
size_t used_count = 0;
#endif
for (size_t i = 0; i < page->capacity; i++) {
size_t bitidx = (i / sizeof(uintptr_t));
size_t bit = i - (bitidx * sizeof(uintptr_t));
uintptr_t m = free_map[bitidx];
if (bit == 0 && m == UINTPTR_MAX) {
i += (sizeof(uintptr_t) - 1); // skip a run of free blocks
}
else if ((m & ((uintptr_t)1 << bit)) == 0) {
#if MI_DEBUG>1
used_count++;
#endif
uint8_t* block = pstart + (i * bsize);
if (!visitor(mi_page_heap(page), area, block, ubsize, arg)) return false;
}
}
mi_assert_internal(page->used == used_count);
return true;
}
typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ex_t* area, void* arg);
static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) {
MI_UNUSED(heap);
MI_UNUSED(pq);
mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun;
mi_heap_area_ex_t xarea;
const size_t bsize = mi_page_block_size(page);
const size_t ubsize = mi_page_usable_block_size(page);
xarea.page = page;
xarea.area.reserved = page->reserved * bsize;
xarea.area.committed = page->capacity * bsize;
xarea.area.blocks = _mi_page_start(_mi_page_segment(page), page, NULL);
xarea.area.used = page->used; // number of blocks in use (#553)
xarea.area.block_size = ubsize;
xarea.area.full_block_size = bsize;
return fun(heap, &xarea, arg);
}
// Visit all heap pages as areas
static bool mi_heap_visit_areas(const mi_heap_t* heap, mi_heap_area_visit_fun* visitor, void* arg) {
if (visitor == NULL) return false;
return mi_heap_visit_pages((mi_heap_t*)heap, &mi_heap_visit_areas_page, (void*)(visitor), arg); // note: function pointer to void* :-{
}
// Just to pass arguments
typedef struct mi_visit_blocks_args_s {
bool visit_blocks;
mi_block_visit_fun* visitor;
void* arg;
} mi_visit_blocks_args_t;
static bool mi_heap_area_visitor(const mi_heap_t* heap, const mi_heap_area_ex_t* xarea, void* arg) {
mi_visit_blocks_args_t* args = (mi_visit_blocks_args_t*)arg;
if (!args->visitor(heap, &xarea->area, NULL, xarea->area.block_size, args->arg)) return false;
if (args->visit_blocks) {
return mi_heap_area_visit_blocks(xarea, args->visitor, args->arg);
}
else {
return true;
}
}
// Visit all blocks in a heap
bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) {
mi_visit_blocks_args_t args = { visit_blocks, visitor, arg };
return mi_heap_visit_areas(heap, &mi_heap_area_visitor, &args);
}

709
3rdparty/mimalloc/src/init.c vendored Normal file
View File

@ -0,0 +1,709 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/prim.h"
#include <string.h> // memcpy, memset
#include <stdlib.h> // atexit
// Empty page used to initialize the small free pages array
const mi_page_t _mi_page_empty = {
0, false, false, false,
0, // capacity
0, // reserved capacity
{ 0 }, // flags
false, // is_zero
0, // retire_expire
NULL, // free
0, // used
0, // xblock_size
NULL, // local_free
#if (MI_PADDING || MI_ENCODE_FREELIST)
{ 0, 0 },
#endif
MI_ATOMIC_VAR_INIT(0), // xthread_free
MI_ATOMIC_VAR_INIT(0), // xheap
NULL, NULL
#if MI_INTPTR_SIZE==8
, { 0 } // padding
#endif
};
#define MI_PAGE_EMPTY() ((mi_page_t*)&_mi_page_empty)
#if (MI_SMALL_WSIZE_MAX==128)
#if (MI_PADDING>0) && (MI_INTPTR_SIZE >= 8)
#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() }
#elif (MI_PADDING>0)
#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() }
#else
#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY() }
#endif
#else
#error "define right initialization sizes corresponding to MI_SMALL_WSIZE_MAX"
#endif
// Empty page queues for every bin
#define QNULL(sz) { NULL, NULL, (sz)*sizeof(uintptr_t) }
#define MI_PAGE_QUEUES_EMPTY \
{ QNULL(1), \
QNULL( 1), QNULL( 2), QNULL( 3), QNULL( 4), QNULL( 5), QNULL( 6), QNULL( 7), QNULL( 8), /* 8 */ \
QNULL( 10), QNULL( 12), QNULL( 14), QNULL( 16), QNULL( 20), QNULL( 24), QNULL( 28), QNULL( 32), /* 16 */ \
QNULL( 40), QNULL( 48), QNULL( 56), QNULL( 64), QNULL( 80), QNULL( 96), QNULL( 112), QNULL( 128), /* 24 */ \
QNULL( 160), QNULL( 192), QNULL( 224), QNULL( 256), QNULL( 320), QNULL( 384), QNULL( 448), QNULL( 512), /* 32 */ \
QNULL( 640), QNULL( 768), QNULL( 896), QNULL( 1024), QNULL( 1280), QNULL( 1536), QNULL( 1792), QNULL( 2048), /* 40 */ \
QNULL( 2560), QNULL( 3072), QNULL( 3584), QNULL( 4096), QNULL( 5120), QNULL( 6144), QNULL( 7168), QNULL( 8192), /* 48 */ \
QNULL( 10240), QNULL( 12288), QNULL( 14336), QNULL( 16384), QNULL( 20480), QNULL( 24576), QNULL( 28672), QNULL( 32768), /* 56 */ \
QNULL( 40960), QNULL( 49152), QNULL( 57344), QNULL( 65536), QNULL( 81920), QNULL( 98304), QNULL(114688), QNULL(131072), /* 64 */ \
QNULL(163840), QNULL(196608), QNULL(229376), QNULL(262144), QNULL(327680), QNULL(393216), QNULL(458752), QNULL(524288), /* 72 */ \
QNULL(MI_MEDIUM_OBJ_WSIZE_MAX + 1 /* 655360, Huge queue */), \
QNULL(MI_MEDIUM_OBJ_WSIZE_MAX + 2) /* Full queue */ }
#define MI_STAT_COUNT_NULL() {0,0,0,0}
// Empty statistics
#if MI_STAT>1
#define MI_STAT_COUNT_END_NULL() , { MI_STAT_COUNT_NULL(), MI_INIT32(MI_STAT_COUNT_NULL) }
#else
#define MI_STAT_COUNT_END_NULL()
#endif
#define MI_STATS_NULL \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), \
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } \
MI_STAT_COUNT_END_NULL()
// Empty slice span queues for every bin
#define SQNULL(sz) { NULL, NULL, sz }
#define MI_SEGMENT_SPAN_QUEUES_EMPTY \
{ SQNULL(1), \
SQNULL( 1), SQNULL( 2), SQNULL( 3), SQNULL( 4), SQNULL( 5), SQNULL( 6), SQNULL( 7), SQNULL( 10), /* 8 */ \
SQNULL( 12), SQNULL( 14), SQNULL( 16), SQNULL( 20), SQNULL( 24), SQNULL( 28), SQNULL( 32), SQNULL( 40), /* 16 */ \
SQNULL( 48), SQNULL( 56), SQNULL( 64), SQNULL( 80), SQNULL( 96), SQNULL( 112), SQNULL( 128), SQNULL( 160), /* 24 */ \
SQNULL( 192), SQNULL( 224), SQNULL( 256), SQNULL( 320), SQNULL( 384), SQNULL( 448), SQNULL( 512), SQNULL( 640), /* 32 */ \
SQNULL( 768), SQNULL( 896), SQNULL( 1024) /* 35 */ }
// --------------------------------------------------------
// Statically allocate an empty heap as the initial
// thread local value for the default heap,
// and statically allocate the backing heap for the main
// thread so it can function without doing any allocation
// itself (as accessing a thread local for the first time
// may lead to allocation itself on some platforms)
// --------------------------------------------------------
mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
NULL,
MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY,
MI_ATOMIC_VAR_INIT(NULL),
0, // tid
0, // cookie
0, // arena id
{ 0, 0 }, // keys
{ {0}, {0}, 0, true }, // random
0, // page count
MI_BIN_FULL, 0, // page retired min/max
NULL, // next
false
};
#define tld_empty_stats ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats)))
#define tld_empty_os ((mi_os_tld_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,os)))
mi_decl_cache_align static const mi_tld_t tld_empty = {
0,
false,
NULL, NULL,
{ MI_SEGMENT_SPAN_QUEUES_EMPTY, 0, 0, 0, 0, tld_empty_stats, tld_empty_os }, // segments
{ 0, tld_empty_stats }, // os
{ MI_STATS_NULL } // stats
};
mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
return _mi_prim_thread_id();
}
// the thread-local default heap for allocation
mi_decl_thread mi_heap_t* _mi_heap_default = (mi_heap_t*)&_mi_heap_empty;
extern mi_heap_t _mi_heap_main;
static mi_tld_t tld_main = {
0, false,
&_mi_heap_main, & _mi_heap_main,
{ MI_SEGMENT_SPAN_QUEUES_EMPTY, 0, 0, 0, 0, &tld_main.stats, &tld_main.os }, // segments
{ 0, &tld_main.stats }, // os
{ MI_STATS_NULL } // stats
};
mi_heap_t _mi_heap_main = {
&tld_main,
MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY,
MI_ATOMIC_VAR_INIT(NULL),
0, // thread id
0, // initial cookie
0, // arena id
{ 0, 0 }, // the key of the main heap can be fixed (unlike page keys that need to be secure!)
{ {0x846ca68b}, {0}, 0, true }, // random
0, // page count
MI_BIN_FULL, 0, // page retired min/max
NULL, // next heap
false // can reclaim
};
bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`.
mi_stats_t _mi_stats_main = { MI_STATS_NULL };
static void mi_heap_main_init(void) {
if (_mi_heap_main.cookie == 0) {
_mi_heap_main.thread_id = _mi_thread_id();
_mi_heap_main.cookie = 1;
#if defined(_WIN32) && !defined(MI_SHARED_LIB)
_mi_random_init_weak(&_mi_heap_main.random); // prevent allocation failure during bcrypt dll initialization with static linking
#else
_mi_random_init(&_mi_heap_main.random);
#endif
_mi_heap_main.cookie = _mi_heap_random_next(&_mi_heap_main);
_mi_heap_main.keys[0] = _mi_heap_random_next(&_mi_heap_main);
_mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main);
}
}
mi_heap_t* _mi_heap_main_get(void) {
mi_heap_main_init();
return &_mi_heap_main;
}
/* -----------------------------------------------------------
Initialization and freeing of the thread local heaps
----------------------------------------------------------- */
// note: in x64 in release build `sizeof(mi_thread_data_t)` is under 4KiB (= OS page size).
typedef struct mi_thread_data_s {
mi_heap_t heap; // must come first due to cast in `_mi_heap_done`
mi_tld_t tld;
mi_memid_t memid;
} mi_thread_data_t;
// Thread meta-data is allocated directly from the OS. For
// some programs that do not use thread pools and allocate and
// destroy many OS threads, this may causes too much overhead
// per thread so we maintain a small cache of recently freed metadata.
#define TD_CACHE_SIZE (16)
static _Atomic(mi_thread_data_t*) td_cache[TD_CACHE_SIZE];
static mi_thread_data_t* mi_thread_data_zalloc(void) {
// try to find thread metadata in the cache
bool is_zero = false;
mi_thread_data_t* td = NULL;
for (int i = 0; i < TD_CACHE_SIZE; i++) {
td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]);
if (td != NULL) {
// found cached allocation, try use it
td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL);
if (td != NULL) {
break;
}
}
}
// if that fails, allocate as meta data
if (td == NULL) {
mi_memid_t memid;
td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main);
if (td == NULL) {
// if this fails, try once more. (issue #257)
td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main);
if (td == NULL) {
// really out of memory
_mi_error_message(ENOMEM, "unable to allocate thread local heap metadata (%zu bytes)\n", sizeof(mi_thread_data_t));
}
}
if (td != NULL) {
td->memid = memid;
is_zero = memid.initially_zero;
}
}
if (td != NULL && !is_zero) {
_mi_memzero_aligned(td, sizeof(*td));
}
return td;
}
static void mi_thread_data_free( mi_thread_data_t* tdfree ) {
// try to add the thread metadata to the cache
for (int i = 0; i < TD_CACHE_SIZE; i++) {
mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]);
if (td == NULL) {
mi_thread_data_t* expected = NULL;
if (mi_atomic_cas_ptr_weak_acq_rel(mi_thread_data_t, &td_cache[i], &expected, tdfree)) {
return;
}
}
}
// if that fails, just free it directly
_mi_os_free(tdfree, sizeof(mi_thread_data_t), tdfree->memid, &_mi_stats_main);
}
void _mi_thread_data_collect(void) {
// free all thread metadata from the cache
for (int i = 0; i < TD_CACHE_SIZE; i++) {
mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]);
if (td != NULL) {
td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL);
if (td != NULL) {
_mi_os_free(td, sizeof(mi_thread_data_t), td->memid, &_mi_stats_main);
}
}
}
}
// Initialize the thread local default heap, called from `mi_thread_init`
static bool _mi_heap_init(void) {
if (mi_heap_is_initialized(mi_prim_get_default_heap())) return true;
if (_mi_is_main_thread()) {
// mi_assert_internal(_mi_heap_main.thread_id != 0); // can happen on freeBSD where alloc is called before any initialization
// the main heap is statically allocated
mi_heap_main_init();
_mi_heap_set_default_direct(&_mi_heap_main);
//mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_prim_get_default_heap());
}
else {
// use `_mi_os_alloc` to allocate directly from the OS
mi_thread_data_t* td = mi_thread_data_zalloc();
if (td == NULL) return false;
mi_tld_t* tld = &td->tld;
mi_heap_t* heap = &td->heap;
_mi_memcpy_aligned(tld, &tld_empty, sizeof(*tld));
_mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(*heap));
heap->thread_id = _mi_thread_id();
_mi_random_init(&heap->random);
heap->cookie = _mi_heap_random_next(heap) | 1;
heap->keys[0] = _mi_heap_random_next(heap);
heap->keys[1] = _mi_heap_random_next(heap);
heap->tld = tld;
tld->heap_backing = heap;
tld->heaps = heap;
tld->segments.stats = &tld->stats;
tld->segments.os = &tld->os;
tld->os.stats = &tld->stats;
_mi_heap_set_default_direct(heap);
}
return false;
}
// Free the thread local default heap (called from `mi_thread_done`)
static bool _mi_heap_done(mi_heap_t* heap) {
if (!mi_heap_is_initialized(heap)) return true;
// reset default heap
_mi_heap_set_default_direct(_mi_is_main_thread() ? &_mi_heap_main : (mi_heap_t*)&_mi_heap_empty);
// switch to backing heap
heap = heap->tld->heap_backing;
if (!mi_heap_is_initialized(heap)) return false;
// delete all non-backing heaps in this thread
mi_heap_t* curr = heap->tld->heaps;
while (curr != NULL) {
mi_heap_t* next = curr->next; // save `next` as `curr` will be freed
if (curr != heap) {
mi_assert_internal(!mi_heap_is_backing(curr));
mi_heap_delete(curr);
}
curr = next;
}
mi_assert_internal(heap->tld->heaps == heap && heap->next == NULL);
mi_assert_internal(mi_heap_is_backing(heap));
// collect if not the main thread
if (heap != &_mi_heap_main) {
_mi_heap_collect_abandon(heap);
}
// merge stats
_mi_stats_done(&heap->tld->stats);
// free if not the main thread
if (heap != &_mi_heap_main) {
// the following assertion does not always hold for huge segments as those are always treated
// as abondened: one may allocate it in one thread, but deallocate in another in which case
// the count can be too large or negative. todo: perhaps not count huge segments? see issue #363
// mi_assert_internal(heap->tld->segments.count == 0 || heap->thread_id != _mi_thread_id());
mi_thread_data_free((mi_thread_data_t*)heap);
}
else {
#if 0
// never free the main thread even in debug mode; if a dll is linked statically with mimalloc,
// there may still be delete/free calls after the mi_fls_done is called. Issue #207
_mi_heap_destroy_pages(heap);
mi_assert_internal(heap->tld->heap_backing == &_mi_heap_main);
#endif
}
return false;
}
// --------------------------------------------------------
// Try to run `mi_thread_done()` automatically so any memory
// owned by the thread but not yet released can be abandoned
// and re-owned by another thread.
//
// 1. windows dynamic library:
// call from DllMain on DLL_THREAD_DETACH
// 2. windows static library:
// use `FlsAlloc` to call a destructor when the thread is done
// 3. unix, pthreads:
// use a pthread key to call a destructor when a pthread is done
//
// In the last two cases we also need to call `mi_process_init`
// to set up the thread local keys.
// --------------------------------------------------------
// Set up handlers so `mi_thread_done` is called automatically
static void mi_process_setup_auto_thread_done(void) {
static bool tls_initialized = false; // fine if it races
if (tls_initialized) return;
tls_initialized = true;
_mi_prim_thread_init_auto_done();
_mi_heap_set_default_direct(&_mi_heap_main);
}
bool _mi_is_main_thread(void) {
return (_mi_heap_main.thread_id==0 || _mi_heap_main.thread_id == _mi_thread_id());
}
static _Atomic(size_t) thread_count = MI_ATOMIC_VAR_INIT(1);
size_t _mi_current_thread_count(void) {
return mi_atomic_load_relaxed(&thread_count);
}
// This is called from the `mi_malloc_generic`
void mi_thread_init(void) mi_attr_noexcept
{
// ensure our process has started already
mi_process_init();
// initialize the thread local default heap
// (this will call `_mi_heap_set_default_direct` and thus set the
// fiber/pthread key to a non-zero value, ensuring `_mi_thread_done` is called)
if (_mi_heap_init()) return; // returns true if already initialized
_mi_stat_increase(&_mi_stats_main.threads, 1);
mi_atomic_increment_relaxed(&thread_count);
//_mi_verbose_message("thread init: 0x%zx\n", _mi_thread_id());
}
void mi_thread_done(void) mi_attr_noexcept {
_mi_thread_done(NULL);
}
void _mi_thread_done(mi_heap_t* heap)
{
// calling with NULL implies using the default heap
if (heap == NULL) {
heap = mi_prim_get_default_heap();
if (heap == NULL) return;
}
// prevent re-entrancy through heap_done/heap_set_default_direct (issue #699)
if (!mi_heap_is_initialized(heap)) {
return;
}
// adjust stats
mi_atomic_decrement_relaxed(&thread_count);
_mi_stat_decrease(&_mi_stats_main.threads, 1);
// check thread-id as on Windows shutdown with FLS the main (exit) thread may call this on thread-local heaps...
if (heap->thread_id != _mi_thread_id()) return;
// abandon the thread local heap
if (_mi_heap_done(heap)) return; // returns true if already ran
}
void _mi_heap_set_default_direct(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
#if defined(MI_TLS_SLOT)
mi_prim_tls_slot_set(MI_TLS_SLOT,heap);
#elif defined(MI_TLS_PTHREAD_SLOT_OFS)
*mi_tls_pthread_heap_slot() = heap;
#elif defined(MI_TLS_PTHREAD)
// we use _mi_heap_default_key
#else
_mi_heap_default = heap;
#endif
// ensure the default heap is passed to `_mi_thread_done`
// setting to a non-NULL value also ensures `mi_thread_done` is called.
_mi_prim_thread_associate_default_heap(heap);
}
// --------------------------------------------------------
// Run functions on process init/done, and thread init/done
// --------------------------------------------------------
static void mi_cdecl mi_process_done(void);
static bool os_preloading = true; // true until this module is initialized
static bool mi_redirected = false; // true if malloc redirects to mi_malloc
// Returns true if this module has not been initialized; Don't use C runtime routines until it returns false.
bool mi_decl_noinline _mi_preloading(void) {
return os_preloading;
}
mi_decl_nodiscard bool mi_is_redirected(void) mi_attr_noexcept {
return mi_redirected;
}
// Communicate with the redirection module on Windows
#if defined(_WIN32) && defined(MI_SHARED_LIB) && !defined(MI_WIN_NOREDIRECT)
#ifdef __cplusplus
extern "C" {
#endif
mi_decl_export void _mi_redirect_entry(DWORD reason) {
// called on redirection; careful as this may be called before DllMain
if (reason == DLL_PROCESS_ATTACH) {
mi_redirected = true;
}
else if (reason == DLL_PROCESS_DETACH) {
mi_redirected = false;
}
else if (reason == DLL_THREAD_DETACH) {
mi_thread_done();
}
}
__declspec(dllimport) bool mi_cdecl mi_allocator_init(const char** message);
__declspec(dllimport) void mi_cdecl mi_allocator_done(void);
#ifdef __cplusplus
}
#endif
#else
static bool mi_allocator_init(const char** message) {
if (message != NULL) *message = NULL;
return true;
}
static void mi_allocator_done(void) {
// nothing to do
}
#endif
// Called once by the process loader
static void mi_process_load(void) {
mi_heap_main_init();
#if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true;
if (dummy == NULL) return; // use dummy or otherwise the access may get optimized away (issue #697)
#endif
os_preloading = false;
mi_assert_internal(_mi_is_main_thread());
#if !(defined(_WIN32) && defined(MI_SHARED_LIB)) // use Dll process detach (see below) instead of atexit (issue #521)
atexit(&mi_process_done);
#endif
_mi_options_init();
mi_process_setup_auto_thread_done();
mi_process_init();
if (mi_redirected) _mi_verbose_message("malloc is redirected.\n");
// show message from the redirector (if present)
const char* msg = NULL;
mi_allocator_init(&msg);
if (msg != NULL && (mi_option_is_enabled(mi_option_verbose) || mi_option_is_enabled(mi_option_show_errors))) {
_mi_fputs(NULL,NULL,NULL,msg);
}
// reseed random
_mi_random_reinit_if_weak(&_mi_heap_main.random);
}
#if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
mi_decl_cache_align bool _mi_cpu_has_fsrm = false;
static void mi_detect_cpu_features(void) {
// FSRM for fast rep movsb support (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017))
int32_t cpu_info[4];
__cpuid(cpu_info, 7);
_mi_cpu_has_fsrm = ((cpu_info[3] & (1 << 4)) != 0); // bit 4 of EDX : see <https://en.wikipedia.org/wiki/CPUID#EAX=7,_ECX=0:_Extended_Features>
}
#else
static void mi_detect_cpu_features(void) {
// nothing
}
#endif
// Initialize the process; called by thread_init or the process loader
void mi_process_init(void) mi_attr_noexcept {
// ensure we are called once
static mi_atomic_once_t process_init;
#if _MSC_VER < 1920
mi_heap_main_init(); // vs2017 can dynamically re-initialize _mi_heap_main
#endif
if (!mi_atomic_once(&process_init)) return;
_mi_process_is_initialized = true;
_mi_verbose_message("process init: 0x%zx\n", _mi_thread_id());
mi_process_setup_auto_thread_done();
mi_detect_cpu_features();
_mi_os_init();
mi_heap_main_init();
#if MI_DEBUG
_mi_verbose_message("debug level : %d\n", MI_DEBUG);
#endif
_mi_verbose_message("secure level: %d\n", MI_SECURE);
_mi_verbose_message("mem tracking: %s\n", MI_TRACK_TOOL);
#if MI_TSAN
_mi_verbose_message("thread santizer enabled\n");
#endif
mi_thread_init();
#if defined(_WIN32)
// On windows, when building as a static lib the FLS cleanup happens to early for the main thread.
// To avoid this, set the FLS value for the main thread to NULL so the fls cleanup
// will not call _mi_thread_done on the (still executing) main thread. See issue #508.
_mi_prim_thread_associate_default_heap(NULL);
#endif
mi_stats_reset(); // only call stat reset *after* thread init (or the heap tld == NULL)
mi_track_init();
if (mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
size_t pages = mi_option_get_clamp(mi_option_reserve_huge_os_pages, 0, 128*1024);
long reserve_at = mi_option_get(mi_option_reserve_huge_os_pages_at);
if (reserve_at != -1) {
mi_reserve_huge_os_pages_at(pages, reserve_at, pages*500);
} else {
mi_reserve_huge_os_pages_interleave(pages, 0, pages*500);
}
}
if (mi_option_is_enabled(mi_option_reserve_os_memory)) {
long ksize = mi_option_get(mi_option_reserve_os_memory);
if (ksize > 0) {
mi_reserve_os_memory((size_t)ksize*MI_KiB, true /* commit? */, true /* allow large pages? */);
}
}
}
// Called when the process is done (through `at_exit`)
static void mi_cdecl mi_process_done(void) {
// only shutdown if we were initialized
if (!_mi_process_is_initialized) return;
// ensure we are called once
static bool process_done = false;
if (process_done) return;
process_done = true;
// release any thread specific resources and ensure _mi_thread_done is called on all but the main thread
_mi_prim_thread_done_auto_done();
#ifndef MI_SKIP_COLLECT_ON_EXIT
#if (MI_DEBUG || !defined(MI_SHARED_LIB))
// free all memory if possible on process exit. This is not needed for a stand-alone process
// but should be done if mimalloc is statically linked into another shared library which
// is repeatedly loaded/unloaded, see issue #281.
mi_collect(true /* force */ );
#endif
#endif
// Forcefully release all retained memory; this can be dangerous in general if overriding regular malloc/free
// since after process_done there might still be other code running that calls `free` (like at_exit routines,
// or C-runtime termination code.
if (mi_option_is_enabled(mi_option_destroy_on_exit)) {
mi_collect(true /* force */);
_mi_heap_unsafe_destroy_all(); // forcefully release all memory held by all heaps (of this thread only!)
_mi_arena_unsafe_destroy_all(& _mi_heap_main_get()->tld->stats);
}
if (mi_option_is_enabled(mi_option_show_stats) || mi_option_is_enabled(mi_option_verbose)) {
mi_stats_print(NULL);
}
mi_allocator_done();
_mi_verbose_message("process done: 0x%zx\n", _mi_heap_main.thread_id);
os_preloading = true; // don't call the C runtime anymore
}
#if defined(_WIN32) && defined(MI_SHARED_LIB)
// Windows DLL: easy to hook into process_init and thread_done
__declspec(dllexport) BOOL WINAPI DllMain(HINSTANCE inst, DWORD reason, LPVOID reserved) {
MI_UNUSED(reserved);
MI_UNUSED(inst);
if (reason==DLL_PROCESS_ATTACH) {
mi_process_load();
}
else if (reason==DLL_PROCESS_DETACH) {
mi_process_done();
}
else if (reason==DLL_THREAD_DETACH) {
if (!mi_is_redirected()) {
mi_thread_done();
}
}
return TRUE;
}
#elif defined(_MSC_VER)
// MSVC: use data section magic for static libraries
// See <https://www.codeguru.com/cpp/misc/misc/applicationcontrol/article.php/c6945/Running-Code-Before-and-After-Main.htm>
static int _mi_process_init(void) {
mi_process_load();
return 0;
}
typedef int(*_mi_crt_callback_t)(void);
#if defined(_M_X64) || defined(_M_ARM64)
__pragma(comment(linker, "/include:" "_mi_msvc_initu"))
#pragma section(".CRT$XIU", long, read)
#else
__pragma(comment(linker, "/include:" "__mi_msvc_initu"))
#endif
#pragma data_seg(".CRT$XIU")
mi_decl_externc _mi_crt_callback_t _mi_msvc_initu[] = { &_mi_process_init };
#pragma data_seg()
#elif defined(__cplusplus)
// C++: use static initialization to detect process start
static bool _mi_process_init(void) {
mi_process_load();
return (_mi_heap_main.thread_id != 0);
}
static bool mi_initialized = _mi_process_init();
#elif defined(__GNUC__) || defined(__clang__)
// GCC,Clang: use the constructor attribute
static void __attribute__((constructor)) _mi_process_init(void) {
mi_process_load();
}
#else
#pragma message("define a way to call mi_process_load on your platform")
#endif

571
3rdparty/mimalloc/src/options.c vendored Normal file
View File

@ -0,0 +1,571 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h" // mi_prim_out_stderr
#include <stdio.h> // FILE
#include <stdlib.h> // abort
#include <stdarg.h>
static long mi_max_error_count = 16; // stop outputting errors after this (use < 0 for no limit)
static long mi_max_warning_count = 16; // stop outputting warnings after this (use < 0 for no limit)
static void mi_add_stderr_output(void);
int mi_version(void) mi_attr_noexcept {
return MI_MALLOC_VERSION;
}
// --------------------------------------------------------
// Options
// These can be accessed by multiple threads and may be
// concurrently initialized, but an initializing data race
// is ok since they resolve to the same value.
// --------------------------------------------------------
typedef enum mi_init_e {
UNINIT, // not yet initialized
DEFAULTED, // not found in the environment, use default value
INITIALIZED // found in environment or set explicitly
} mi_init_t;
typedef struct mi_option_desc_s {
long value; // the value
mi_init_t init; // is it initialized yet? (from the environment)
mi_option_t option; // for debugging: the option index should match the option
const char* name; // option name without `mimalloc_` prefix
const char* legacy_name; // potential legacy option name
} mi_option_desc_t;
#define MI_OPTION(opt) mi_option_##opt, #opt, NULL
#define MI_OPTION_LEGACY(opt,legacy) mi_option_##opt, #opt, #legacy
static mi_option_desc_t options[_mi_option_last] =
{
// stable options
#if MI_DEBUG || defined(MI_SHOW_ERRORS)
{ 1, UNINIT, MI_OPTION(show_errors) },
#else
{ 0, UNINIT, MI_OPTION(show_errors) },
#endif
{ 0, UNINIT, MI_OPTION(show_stats) },
{ 0, UNINIT, MI_OPTION(verbose) },
// the following options are experimental and not all combinations make sense.
{ 1, UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`)
{ 2, UNINIT, MI_OPTION_LEGACY(arena_eager_commit,eager_region_commit) }, // eager commit arena's? 2 is used to enable this only on an OS that has overcommit (i.e. linux)
{ 1, UNINIT, MI_OPTION_LEGACY(purge_decommits,reset_decommits) }, // purge decommits memory (instead of reset) (note: on linux this uses MADV_DONTNEED for decommit)
{ 0, UNINIT, MI_OPTION_LEGACY(allow_large_os_pages,large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's
{ 0, UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages
{-1, UNINIT, MI_OPTION(reserve_huge_os_pages_at) }, // reserve huge pages at node N
{ 0, UNINIT, MI_OPTION(reserve_os_memory) },
{ 0, UNINIT, MI_OPTION(deprecated_segment_cache) }, // cache N segments per thread
{ 0, UNINIT, MI_OPTION(deprecated_page_reset) }, // reset page memory on free
{ 0, UNINIT, MI_OPTION_LEGACY(abandoned_page_purge,abandoned_page_reset) }, // reset free page memory when a thread terminates
{ 0, UNINIT, MI_OPTION(deprecated_segment_reset) }, // reset segment memory on free (needs eager commit)
#if defined(__NetBSD__)
{ 0, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed
#else
{ 1, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed (but per page in the segment on demand)
#endif
{ 10, UNINIT, MI_OPTION_LEGACY(purge_delay,reset_delay) }, // purge delay in milli-seconds
{ 0, UNINIT, MI_OPTION(use_numa_nodes) }, // 0 = use available numa nodes, otherwise use at most N nodes.
{ 0, UNINIT, MI_OPTION(limit_os_alloc) }, // 1 = do not use OS memory for allocation (but only reserved arenas)
{ 100, UNINIT, MI_OPTION(os_tag) }, // only apple specific for now but might serve more or less related purpose
{ 16, UNINIT, MI_OPTION(max_errors) }, // maximum errors that are output
{ 16, UNINIT, MI_OPTION(max_warnings) }, // maximum warnings that are output
{ 8, UNINIT, MI_OPTION(max_segment_reclaim)}, // max. number of segment reclaims from the abandoned segments per try.
{ 0, UNINIT, MI_OPTION(destroy_on_exit)}, // release all OS memory on process exit; careful with dangling pointer or after-exit frees!
#if (MI_INTPTR_SIZE>4)
{ 1024L * 1024L, UNINIT, MI_OPTION(arena_reserve) }, // reserve memory N KiB at a time
#else
{ 128L * 1024L, UNINIT, MI_OPTION(arena_reserve) },
#endif
{ 10, UNINIT, MI_OPTION(arena_purge_mult) }, // purge delay multiplier for arena's
{ 1, UNINIT, MI_OPTION_LEGACY(purge_extend_delay, decommit_extend_delay) },
};
static void mi_option_init(mi_option_desc_t* desc);
void _mi_options_init(void) {
// called on process load; should not be called before the CRT is initialized!
// (e.g. do not call this from process_init as that may run before CRT initialization)
mi_add_stderr_output(); // now it safe to use stderr for output
for(int i = 0; i < _mi_option_last; i++ ) {
mi_option_t option = (mi_option_t)i;
long l = mi_option_get(option); MI_UNUSED(l); // initialize
// if (option != mi_option_verbose)
{
mi_option_desc_t* desc = &options[option];
_mi_verbose_message("option '%s': %ld\n", desc->name, desc->value);
}
}
mi_max_error_count = mi_option_get(mi_option_max_errors);
mi_max_warning_count = mi_option_get(mi_option_max_warnings);
}
mi_decl_nodiscard long mi_option_get(mi_option_t option) {
mi_assert(option >= 0 && option < _mi_option_last);
if (option < 0 || option >= _mi_option_last) return 0;
mi_option_desc_t* desc = &options[option];
mi_assert(desc->option == option); // index should match the option
if mi_unlikely(desc->init == UNINIT) {
mi_option_init(desc);
}
return desc->value;
}
mi_decl_nodiscard long mi_option_get_clamp(mi_option_t option, long min, long max) {
long x = mi_option_get(option);
return (x < min ? min : (x > max ? max : x));
}
mi_decl_nodiscard size_t mi_option_get_size(mi_option_t option) {
mi_assert_internal(option == mi_option_reserve_os_memory || option == mi_option_arena_reserve);
long x = mi_option_get(option);
return (x < 0 ? 0 : (size_t)x * MI_KiB);
}
void mi_option_set(mi_option_t option, long value) {
mi_assert(option >= 0 && option < _mi_option_last);
if (option < 0 || option >= _mi_option_last) return;
mi_option_desc_t* desc = &options[option];
mi_assert(desc->option == option); // index should match the option
desc->value = value;
desc->init = INITIALIZED;
}
void mi_option_set_default(mi_option_t option, long value) {
mi_assert(option >= 0 && option < _mi_option_last);
if (option < 0 || option >= _mi_option_last) return;
mi_option_desc_t* desc = &options[option];
if (desc->init != INITIALIZED) {
desc->value = value;
}
}
mi_decl_nodiscard bool mi_option_is_enabled(mi_option_t option) {
return (mi_option_get(option) != 0);
}
void mi_option_set_enabled(mi_option_t option, bool enable) {
mi_option_set(option, (enable ? 1 : 0));
}
void mi_option_set_enabled_default(mi_option_t option, bool enable) {
mi_option_set_default(option, (enable ? 1 : 0));
}
void mi_option_enable(mi_option_t option) {
mi_option_set_enabled(option,true);
}
void mi_option_disable(mi_option_t option) {
mi_option_set_enabled(option,false);
}
static void mi_cdecl mi_out_stderr(const char* msg, void* arg) {
MI_UNUSED(arg);
if (msg != NULL && msg[0] != 0) {
_mi_prim_out_stderr(msg);
}
}
// Since an output function can be registered earliest in the `main`
// function we also buffer output that happens earlier. When
// an output function is registered it is called immediately with
// the output up to that point.
#ifndef MI_MAX_DELAY_OUTPUT
#define MI_MAX_DELAY_OUTPUT ((size_t)(32*1024))
#endif
static char out_buf[MI_MAX_DELAY_OUTPUT+1];
static _Atomic(size_t) out_len;
static void mi_cdecl mi_out_buf(const char* msg, void* arg) {
MI_UNUSED(arg);
if (msg==NULL) return;
if (mi_atomic_load_relaxed(&out_len)>=MI_MAX_DELAY_OUTPUT) return;
size_t n = _mi_strlen(msg);
if (n==0) return;
// claim space
size_t start = mi_atomic_add_acq_rel(&out_len, n);
if (start >= MI_MAX_DELAY_OUTPUT) return;
// check bound
if (start+n >= MI_MAX_DELAY_OUTPUT) {
n = MI_MAX_DELAY_OUTPUT-start-1;
}
_mi_memcpy(&out_buf[start], msg, n);
}
static void mi_out_buf_flush(mi_output_fun* out, bool no_more_buf, void* arg) {
if (out==NULL) return;
// claim (if `no_more_buf == true`, no more output will be added after this point)
size_t count = mi_atomic_add_acq_rel(&out_len, (no_more_buf ? MI_MAX_DELAY_OUTPUT : 1));
// and output the current contents
if (count>MI_MAX_DELAY_OUTPUT) count = MI_MAX_DELAY_OUTPUT;
out_buf[count] = 0;
out(out_buf,arg);
if (!no_more_buf) {
out_buf[count] = '\n'; // if continue with the buffer, insert a newline
}
}
// Once this module is loaded, switch to this routine
// which outputs to stderr and the delayed output buffer.
static void mi_cdecl mi_out_buf_stderr(const char* msg, void* arg) {
mi_out_stderr(msg,arg);
mi_out_buf(msg,arg);
}
// --------------------------------------------------------
// Default output handler
// --------------------------------------------------------
// Should be atomic but gives errors on many platforms as generally we cannot cast a function pointer to a uintptr_t.
// For now, don't register output from multiple threads.
static mi_output_fun* volatile mi_out_default; // = NULL
static _Atomic(void*) mi_out_arg; // = NULL
static mi_output_fun* mi_out_get_default(void** parg) {
if (parg != NULL) { *parg = mi_atomic_load_ptr_acquire(void,&mi_out_arg); }
mi_output_fun* out = mi_out_default;
return (out == NULL ? &mi_out_buf : out);
}
void mi_register_output(mi_output_fun* out, void* arg) mi_attr_noexcept {
mi_out_default = (out == NULL ? &mi_out_stderr : out); // stop using the delayed output buffer
mi_atomic_store_ptr_release(void,&mi_out_arg, arg);
if (out!=NULL) mi_out_buf_flush(out,true,arg); // output all the delayed output now
}
// add stderr to the delayed output after the module is loaded
static void mi_add_stderr_output(void) {
mi_assert_internal(mi_out_default == NULL);
mi_out_buf_flush(&mi_out_stderr, false, NULL); // flush current contents to stderr
mi_out_default = &mi_out_buf_stderr; // and add stderr to the delayed output
}
// --------------------------------------------------------
// Messages, all end up calling `_mi_fputs`.
// --------------------------------------------------------
static _Atomic(size_t) error_count; // = 0; // when >= max_error_count stop emitting errors
static _Atomic(size_t) warning_count; // = 0; // when >= max_warning_count stop emitting warnings
// When overriding malloc, we may recurse into mi_vfprintf if an allocation
// inside the C runtime causes another message.
// In some cases (like on macOS) the loader already allocates which
// calls into mimalloc; if we then access thread locals (like `recurse`)
// this may crash as the access may call _tlv_bootstrap that tries to
// (recursively) invoke malloc again to allocate space for the thread local
// variables on demand. This is why we use a _mi_preloading test on such
// platforms. However, C code generator may move the initial thread local address
// load before the `if` and we therefore split it out in a separate funcion.
static mi_decl_thread bool recurse = false;
static mi_decl_noinline bool mi_recurse_enter_prim(void) {
if (recurse) return false;
recurse = true;
return true;
}
static mi_decl_noinline void mi_recurse_exit_prim(void) {
recurse = false;
}
static bool mi_recurse_enter(void) {
#if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
if (_mi_preloading()) return false;
#endif
return mi_recurse_enter_prim();
}
static void mi_recurse_exit(void) {
#if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
if (_mi_preloading()) return;
#endif
mi_recurse_exit_prim();
}
void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message) {
if (out==NULL || (void*)out==(void*)stdout || (void*)out==(void*)stderr) { // TODO: use mi_out_stderr for stderr?
if (!mi_recurse_enter()) return;
out = mi_out_get_default(&arg);
if (prefix != NULL) out(prefix, arg);
out(message, arg);
mi_recurse_exit();
}
else {
if (prefix != NULL) out(prefix, arg);
out(message, arg);
}
}
// Define our own limited `fprintf` that avoids memory allocation.
// We do this using `snprintf` with a limited buffer.
static void mi_vfprintf( mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args ) {
char buf[512];
if (fmt==NULL) return;
if (!mi_recurse_enter()) return;
vsnprintf(buf,sizeof(buf)-1,fmt,args);
mi_recurse_exit();
_mi_fputs(out,arg,prefix,buf);
}
void _mi_fprintf( mi_output_fun* out, void* arg, const char* fmt, ... ) {
va_list args;
va_start(args,fmt);
mi_vfprintf(out,arg,NULL,fmt,args);
va_end(args);
}
static void mi_vfprintf_thread(mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args) {
if (prefix != NULL && _mi_strnlen(prefix,33) <= 32 && !_mi_is_main_thread()) {
char tprefix[64];
snprintf(tprefix, sizeof(tprefix), "%sthread 0x%llx: ", prefix, (unsigned long long)_mi_thread_id());
mi_vfprintf(out, arg, tprefix, fmt, args);
}
else {
mi_vfprintf(out, arg, prefix, fmt, args);
}
}
void _mi_trace_message(const char* fmt, ...) {
if (mi_option_get(mi_option_verbose) <= 1) return; // only with verbose level 2 or higher
va_list args;
va_start(args, fmt);
mi_vfprintf_thread(NULL, NULL, "mimalloc: ", fmt, args);
va_end(args);
}
void _mi_verbose_message(const char* fmt, ...) {
if (!mi_option_is_enabled(mi_option_verbose)) return;
va_list args;
va_start(args,fmt);
mi_vfprintf(NULL, NULL, "mimalloc: ", fmt, args);
va_end(args);
}
static void mi_show_error_message(const char* fmt, va_list args) {
if (!mi_option_is_enabled(mi_option_verbose)) {
if (!mi_option_is_enabled(mi_option_show_errors)) return;
if (mi_max_error_count >= 0 && (long)mi_atomic_increment_acq_rel(&error_count) > mi_max_error_count) return;
}
mi_vfprintf_thread(NULL, NULL, "mimalloc: error: ", fmt, args);
}
void _mi_warning_message(const char* fmt, ...) {
if (!mi_option_is_enabled(mi_option_verbose)) {
if (!mi_option_is_enabled(mi_option_show_errors)) return;
if (mi_max_warning_count >= 0 && (long)mi_atomic_increment_acq_rel(&warning_count) > mi_max_warning_count) return;
}
va_list args;
va_start(args,fmt);
mi_vfprintf_thread(NULL, NULL, "mimalloc: warning: ", fmt, args);
va_end(args);
}
#if MI_DEBUG
void _mi_assert_fail(const char* assertion, const char* fname, unsigned line, const char* func ) {
_mi_fprintf(NULL, NULL, "mimalloc: assertion failed: at \"%s\":%u, %s\n assertion: \"%s\"\n", fname, line, (func==NULL?"":func), assertion);
abort();
}
#endif
// --------------------------------------------------------
// Errors
// --------------------------------------------------------
static mi_error_fun* volatile mi_error_handler; // = NULL
static _Atomic(void*) mi_error_arg; // = NULL
static void mi_error_default(int err) {
MI_UNUSED(err);
#if (MI_DEBUG>0)
if (err==EFAULT) {
#ifdef _MSC_VER
__debugbreak();
#endif
abort();
}
#endif
#if (MI_SECURE>0)
if (err==EFAULT) { // abort on serious errors in secure mode (corrupted meta-data)
abort();
}
#endif
#if defined(MI_XMALLOC)
if (err==ENOMEM || err==EOVERFLOW) { // abort on memory allocation fails in xmalloc mode
abort();
}
#endif
}
void mi_register_error(mi_error_fun* fun, void* arg) {
mi_error_handler = fun; // can be NULL
mi_atomic_store_ptr_release(void,&mi_error_arg, arg);
}
void _mi_error_message(int err, const char* fmt, ...) {
// show detailed error message
va_list args;
va_start(args, fmt);
mi_show_error_message(fmt, args);
va_end(args);
// and call the error handler which may abort (or return normally)
if (mi_error_handler != NULL) {
mi_error_handler(err, mi_atomic_load_ptr_acquire(void,&mi_error_arg));
}
else {
mi_error_default(err);
}
}
// --------------------------------------------------------
// Initialize options by checking the environment
// --------------------------------------------------------
char _mi_toupper(char c) {
if (c >= 'a' && c <= 'z') return (c - 'a' + 'A');
else return c;
}
int _mi_strnicmp(const char* s, const char* t, size_t n) {
if (n == 0) return 0;
for (; *s != 0 && *t != 0 && n > 0; s++, t++, n--) {
if (_mi_toupper(*s) != _mi_toupper(*t)) break;
}
return (n == 0 ? 0 : *s - *t);
}
void _mi_strlcpy(char* dest, const char* src, size_t dest_size) {
if (dest==NULL || src==NULL || dest_size == 0) return;
// copy until end of src, or when dest is (almost) full
while (*src != 0 && dest_size > 1) {
*dest++ = *src++;
dest_size--;
}
// always zero terminate
*dest = 0;
}
void _mi_strlcat(char* dest, const char* src, size_t dest_size) {
if (dest==NULL || src==NULL || dest_size == 0) return;
// find end of string in the dest buffer
while (*dest != 0 && dest_size > 1) {
dest++;
dest_size--;
}
// and catenate
_mi_strlcpy(dest, src, dest_size);
}
size_t _mi_strlen(const char* s) {
if (s==NULL) return 0;
size_t len = 0;
while(s[len] != 0) { len++; }
return len;
}
size_t _mi_strnlen(const char* s, size_t max_len) {
if (s==NULL) return 0;
size_t len = 0;
while(s[len] != 0 && len < max_len) { len++; }
return len;
}
#ifdef MI_NO_GETENV
static bool mi_getenv(const char* name, char* result, size_t result_size) {
MI_UNUSED(name);
MI_UNUSED(result);
MI_UNUSED(result_size);
return false;
}
#else
static bool mi_getenv(const char* name, char* result, size_t result_size) {
if (name==NULL || result == NULL || result_size < 64) return false;
return _mi_prim_getenv(name,result,result_size);
}
#endif
// TODO: implement ourselves to reduce dependencies on the C runtime
#include <stdlib.h> // strtol
#include <string.h> // strstr
static void mi_option_init(mi_option_desc_t* desc) {
// Read option value from the environment
char s[64 + 1];
char buf[64+1];
_mi_strlcpy(buf, "mimalloc_", sizeof(buf));
_mi_strlcat(buf, desc->name, sizeof(buf));
bool found = mi_getenv(buf, s, sizeof(s));
if (!found && desc->legacy_name != NULL) {
_mi_strlcpy(buf, "mimalloc_", sizeof(buf));
_mi_strlcat(buf, desc->legacy_name, sizeof(buf));
found = mi_getenv(buf, s, sizeof(s));
if (found) {
_mi_warning_message("environment option \"mimalloc_%s\" is deprecated -- use \"mimalloc_%s\" instead.\n", desc->legacy_name, desc->name);
}
}
if (found) {
size_t len = _mi_strnlen(s, sizeof(buf) - 1);
for (size_t i = 0; i < len; i++) {
buf[i] = _mi_toupper(s[i]);
}
buf[len] = 0;
if (buf[0] == 0 || strstr("1;TRUE;YES;ON", buf) != NULL) {
desc->value = 1;
desc->init = INITIALIZED;
}
else if (strstr("0;FALSE;NO;OFF", buf) != NULL) {
desc->value = 0;
desc->init = INITIALIZED;
}
else {
char* end = buf;
long value = strtol(buf, &end, 10);
if (desc->option == mi_option_reserve_os_memory || desc->option == mi_option_arena_reserve) {
// this option is interpreted in KiB to prevent overflow of `long`
if (*end == 'K') { end++; }
else if (*end == 'M') { value *= MI_KiB; end++; }
else if (*end == 'G') { value *= MI_MiB; end++; }
else { value = (value + MI_KiB - 1) / MI_KiB; }
if (end[0] == 'I' && end[1] == 'B') { end += 2; }
else if (*end == 'B') { end++; }
}
if (*end == 0) {
desc->value = value;
desc->init = INITIALIZED;
}
else {
// set `init` first to avoid recursion through _mi_warning_message on mimalloc_verbose.
desc->init = DEFAULTED;
if (desc->option == mi_option_verbose && desc->value == 0) {
// if the 'mimalloc_verbose' env var has a bogus value we'd never know
// (since the value defaults to 'off') so in that case briefly enable verbose
desc->value = 1;
_mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name);
desc->value = 0;
}
else {
_mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name);
}
}
}
mi_assert_internal(desc->init != UNINIT);
}
else if (!_mi_preloading()) {
desc->init = DEFAULTED;
}
}

689
3rdparty/mimalloc/src/os.c vendored Normal file
View File

@ -0,0 +1,689 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
/* -----------------------------------------------------------
Initialization.
On windows initializes support for aligned allocation and
large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
----------------------------------------------------------- */
static mi_os_mem_config_t mi_os_mem_config = {
4096, // page size
0, // large page size (usually 2MiB)
4096, // allocation granularity
true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems)
false, // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span)
true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory)
};
bool _mi_os_has_overcommit(void) {
return mi_os_mem_config.has_overcommit;
}
bool _mi_os_has_virtual_reserve(void) {
return mi_os_mem_config.has_virtual_reserve;
}
// OS (small) page size
size_t _mi_os_page_size(void) {
return mi_os_mem_config.page_size;
}
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
size_t _mi_os_large_page_size(void) {
return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size());
}
bool _mi_os_use_large_page(size_t size, size_t alignment) {
// if we have access, check the size and alignment requirements
if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false;
return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0);
}
// round to a good OS allocation size (bounded by max 12.5% waste)
size_t _mi_os_good_alloc_size(size_t size) {
size_t align_size;
if (size < 512*MI_KiB) align_size = _mi_os_page_size();
else if (size < 2*MI_MiB) align_size = 64*MI_KiB;
else if (size < 8*MI_MiB) align_size = 256*MI_KiB;
else if (size < 32*MI_MiB) align_size = 1*MI_MiB;
else align_size = 4*MI_MiB;
if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow?
return _mi_align_up(size, align_size);
}
void _mi_os_init(void) {
_mi_prim_mem_init(&mi_os_mem_config);
}
/* -----------------------------------------------------------
Util
-------------------------------------------------------------- */
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats);
static void* mi_align_up_ptr(void* p, size_t alignment) {
return (void*)_mi_align_up((uintptr_t)p, alignment);
}
static void* mi_align_down_ptr(void* p, size_t alignment) {
return (void*)_mi_align_down((uintptr_t)p, alignment);
}
/* -----------------------------------------------------------
aligned hinting
-------------------------------------------------------------- */
// On 64-bit systems, we can do efficient aligned allocation by using
// the 2TiB to 30TiB area to allocate those.
#if (MI_INTPTR_SIZE >= 8)
static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
// Return a MI_SEGMENT_SIZE aligned address that is probably available.
// If this returns NULL, the OS will determine the address but on some OS's that may not be
// properly aligned which can be more costly as it needs to be adjusted afterwards.
// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization;
// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses
// in the middle of the 2TiB - 6TiB address range (see issue #372))
#define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start
#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes)
#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages)
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size)
{
if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL;
size = _mi_align_up(size, MI_SEGMENT_SIZE);
if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096.
#if (MI_SECURE>0)
size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas.
#endif
uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size);
if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize
uintptr_t init = MI_HINT_BASE;
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode
uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB
#endif
uintptr_t expected = hint + size;
mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init);
hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all
}
if (hint%try_alignment != 0) return NULL;
return (void*)hint;
}
#else
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
MI_UNUSED(try_alignment); MI_UNUSED(size);
return NULL;
}
#endif
/* -----------------------------------------------------------
Free memory
-------------------------------------------------------------- */
static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats);
static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
mi_assert_internal((size % _mi_os_page_size()) == 0);
if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr)
int err = _mi_prim_free(addr, size);
if (err != 0) {
_mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr);
}
mi_stats_t* stats = &_mi_stats_main;
if (still_committed) { _mi_stat_decrease(&stats->committed, size); }
_mi_stat_decrease(&stats->reserved, size);
}
void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) {
if (mi_memkind_is_os(memid.memkind)) {
size_t csize = _mi_os_good_alloc_size(size);
void* base = addr;
// different base? (due to alignment)
if (memid.mem.os.base != NULL) {
mi_assert(memid.mem.os.base <= addr);
mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr);
base = memid.mem.os.base;
csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base);
}
// free it
if (memid.memkind == MI_MEM_OS_HUGE) {
mi_assert(memid.is_pinned);
mi_os_free_huge_os_pages(base, csize, tld_stats);
}
else {
mi_os_prim_free(base, csize, still_committed, tld_stats);
}
}
else {
// nothing to do
mi_assert(memid.memkind < MI_MEM_OS);
}
}
void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) {
_mi_os_free_ex(p, size, true, memid, tld_stats);
}
/* -----------------------------------------------------------
Primitive allocation from the OS.
-------------------------------------------------------------- */
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* stats) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(is_zero != NULL);
mi_assert_internal(is_large != NULL);
if (size == 0) return NULL;
if (!commit) { allow_large = false; }
if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning
*is_zero = false;
void* p = NULL;
int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p);
if (err != 0) {
_mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large);
}
mi_stat_counter_increase(stats->mmap_calls, 1);
if (p != NULL) {
_mi_stat_increase(&stats->reserved, size);
if (commit) {
_mi_stat_increase(&stats->committed, size);
// seems needed for asan (or `mimalloc-test-api` fails)
#ifdef MI_TRACK_ASAN
if (*is_zero) { mi_track_mem_defined(p,size); }
else { mi_track_mem_undefined(p,size); }
#endif
}
}
return p;
}
// Primitive aligned allocation from the OS.
// This function guarantees the allocated memory is aligned.
static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) {
mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(is_large != NULL);
mi_assert_internal(is_zero != NULL);
mi_assert_internal(base != NULL);
if (!commit) allow_large = false;
if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
size = _mi_align_up(size, _mi_os_page_size());
// try first with a hint (this will be aligned directly on Win 10+ or BSD)
void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats);
if (p == NULL) return NULL;
// aligned already?
if (((uintptr_t)p % alignment) == 0) {
*base = p;
}
else {
// if not aligned, free it, overallocate, and unmap around it
_mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
mi_os_prim_free(p, size, commit, stats);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
const size_t over_size = size + alignment;
if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block
// over-allocate uncommitted (virtual) memory
p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats);
if (p == NULL) return NULL;
// set p to the aligned part in the full region
// note: this is dangerous on Windows as VirtualFree needs the actual base pointer
// this is handled though by having the `base` field in the memid's
*base = p; // remember the base
p = mi_align_up_ptr(p, alignment);
// explicitly commit only the aligned part
if (commit) {
_mi_os_commit(p, size, NULL, stats);
}
}
else { // mmap can free inside an allocation
// overallocate...
p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats);
if (p == NULL) return NULL;
// and selectively unmap parts around the over-allocated area. (noop on sbrk)
void* aligned_p = mi_align_up_ptr(p, alignment);
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
size_t post_size = over_size - pre_size - mid_size;
mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size);
if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); }
if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); }
// we can return the aligned pointer on `mmap` (and sbrk) systems
p = aligned_p;
*base = aligned_p; // since we freed the pre part, `*base == p`.
}
}
mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0));
return p;
}
/* -----------------------------------------------------------
OS API: alloc and alloc_aligned
----------------------------------------------------------- */
void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
*memid = _mi_memid_none();
mi_stats_t* stats = &_mi_stats_main;
if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size);
bool os_is_large = false;
bool os_is_zero = false;
void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats);
if (p != NULL) {
*memid = _mi_memid_create_os(true, os_is_zero, os_is_large);
}
return p;
}
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats)
{
MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings
MI_UNUSED(tld_stats);
*memid = _mi_memid_none();
if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size);
alignment = _mi_align_up(alignment, _mi_os_page_size());
bool os_is_large = false;
bool os_is_zero = false;
void* os_base = NULL;
void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &_mi_stats_main /*tld->stats*/ );
if (p != NULL) {
*memid = _mi_memid_create_os(commit, os_is_zero, os_is_large);
memid->mem.os.base = os_base;
memid->mem.os.alignment = alignment;
}
return p;
}
/* -----------------------------------------------------------
OS aligned allocation with an offset. This is used
for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc
page where the object can be aligned at an offset from the start of the segment.
As we may need to overallocate, we need to free such pointers using `mi_free_aligned`
to use the actual start of the memory region.
----------------------------------------------------------- */
void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) {
mi_assert(offset <= MI_SEGMENT_SIZE);
mi_assert(offset <= size);
mi_assert((alignment % _mi_os_page_size()) == 0);
*memid = _mi_memid_none();
if (offset > MI_SEGMENT_SIZE) return NULL;
if (offset == 0) {
// regular aligned allocation
return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld_stats);
}
else {
// overallocate to align at an offset
const size_t extra = _mi_align_up(offset, alignment) - offset;
const size_t oversize = size + extra;
void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, tld_stats);
if (start == NULL) return NULL;
void* const p = (uint8_t*)start + extra;
mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment));
// decommit the overallocation at the start
if (commit && extra > _mi_os_page_size()) {
_mi_os_decommit(start, extra, tld_stats);
}
return p;
}
}
/* -----------------------------------------------------------
OS memory API: reset, commit, decommit, protect, unprotect.
----------------------------------------------------------- */
// OS page align within a given area, either conservative (pages inside the area only),
// or not (straddling pages outside the area is possible)
static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) {
mi_assert(addr != NULL && size > 0);
if (newsize != NULL) *newsize = 0;
if (size == 0 || addr == NULL) return NULL;
// page align conservatively within the range
void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size())
: mi_align_down_ptr(addr, _mi_os_page_size()));
void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size())
: mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size()));
ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
if (diff <= 0) return NULL;
mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size));
if (newsize != NULL) *newsize = (size_t)diff;
return start;
}
static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) {
return mi_os_page_align_areax(true, addr, size, newsize);
}
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
mi_stats_t* stats = &_mi_stats_main;
if (is_zero != NULL) { *is_zero = false; }
_mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit
_mi_stat_counter_increase(&stats->commit_calls, 1);
// page align range
size_t csize;
void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize);
if (csize == 0) return true;
// commit
bool os_is_zero = false;
int err = _mi_prim_commit(start, csize, &os_is_zero);
if (err != 0) {
_mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
return false;
}
if (os_is_zero && is_zero != NULL) {
*is_zero = true;
mi_assert_expensive(mi_mem_is_zero(start, csize));
}
// note: the following seems required for asan (otherwise `mimalloc-test-stress` fails)
#ifdef MI_TRACK_ASAN
if (os_is_zero) { mi_track_mem_defined(start,csize); }
else { mi_track_mem_undefined(start,csize); }
#endif
return true;
}
static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
mi_stats_t* stats = &_mi_stats_main;
mi_assert_internal(needs_recommit!=NULL);
_mi_stat_decrease(&stats->committed, size);
// page align
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return true;
// decommit
*needs_recommit = true;
int err = _mi_prim_decommit(start,csize,needs_recommit);
if (err != 0) {
_mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
}
mi_assert_internal(err == 0);
return (err == 0);
}
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) {
bool needs_recommit;
return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats);
}
// Signal to the OS that the address range is no longer in use
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr)
_mi_stat_increase(&stats->reset, csize);
_mi_stat_counter_increase(&stats->reset_calls, 1);
#if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN
memset(start, 0, csize); // pretend it is eagerly reset
#endif
int err = _mi_prim_reset(start, csize);
if (err != 0) {
_mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
}
return (err == 0);
}
// either resets or decommits memory, returns true if the memory needs
// to be recommitted if it is to be re-used later on.
bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
{
if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed?
_mi_stat_counter_increase(&stats->purge_calls, 1);
_mi_stat_increase(&stats->purged, size);
if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit?
!_mi_preloading()) // don't decommit during preloading (unsafe)
{
bool needs_recommit = true;
mi_os_decommit_ex(p, size, &needs_recommit, stats);
return needs_recommit;
}
else {
if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed
_mi_os_reset(p, size, stats);
}
return false; // needs no recommit
}
}
// either resets or decommits memory, returns true if the memory needs
// to be recommitted if it is to be re-used later on.
bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) {
return _mi_os_purge_ex(p, size, true, stats);
}
// Protect a region in memory to be not accessible.
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
// page align conservatively within the range
size_t csize = 0;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return false;
/*
if (_mi_os_is_huge_reserved(addr)) {
_mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
}
*/
int err = _mi_prim_protect(start,csize,protect);
if (err != 0) {
_mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize);
}
return (err == 0);
}
bool _mi_os_protect(void* addr, size_t size) {
return mi_os_protectx(addr, size, true);
}
bool _mi_os_unprotect(void* addr, size_t size) {
return mi_os_protectx(addr, size, false);
}
/* ----------------------------------------------------------------------------
Support for allocating huge OS pages (1Gib) that are reserved up-front
and possibly associated with a specific NUMA node. (use `numa_node>=0`)
-----------------------------------------------------------------------------*/
#define MI_HUGE_OS_PAGE_SIZE (MI_GiB)
#if (MI_INTPTR_SIZE >= 8)
// To ensure proper alignment, use our own area for huge OS pages
static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0
// Claim an aligned address range for huge pages
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
if (total_size != NULL) *total_size = 0;
const size_t size = pages * MI_HUGE_OS_PAGE_SIZE;
uintptr_t start = 0;
uintptr_t end = 0;
uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start);
do {
start = huge_start;
if (start == 0) {
// Initialize the start address after the 32TiB area
start = ((uintptr_t)32 << 40); // 32TiB virtual start address
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap());
start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB
#endif
}
end = start + size;
mi_assert_internal(end % MI_SEGMENT_SIZE == 0);
} while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end));
if (total_size != NULL) *total_size = size;
return (uint8_t*)start;
}
#else
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
MI_UNUSED(pages);
if (total_size != NULL) *total_size = 0;
return NULL;
}
#endif
// Allocate MI_SEGMENT_SIZE aligned huge pages
void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) {
*memid = _mi_memid_none();
if (psize != NULL) *psize = 0;
if (pages_reserved != NULL) *pages_reserved = 0;
size_t size = 0;
uint8_t* start = mi_os_claim_huge_pages(pages, &size);
if (start == NULL) return NULL; // or 32-bit systems
// Allocate one page at the time but try to place them contiguously
// We allocate one page at the time to be able to abort if it takes too long
// or to at least allocate as many as available on the system.
mi_msecs_t start_t = _mi_clock_start();
size_t page = 0;
bool all_zero = true;
while (page < pages) {
// allocate a page
bool is_zero = false;
void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE);
void* p = NULL;
int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p);
if (!is_zero) { all_zero = false; }
if (err != 0) {
_mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE);
break;
}
// Did we succeed at a contiguous address?
if (p != addr) {
// no success, issue a warning and break
if (p != NULL) {
_mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr);
mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main);
}
break;
}
// success, record it
page++; // increase before timeout check (see issue #711)
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
_mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
// check for timeout
if (max_msecs > 0) {
mi_msecs_t elapsed = _mi_clock_end(start_t);
if (page >= 1) {
mi_msecs_t estimate = ((elapsed / (page+1)) * pages);
if (estimate > 2*max_msecs) { // seems like we are going to timeout, break
elapsed = max_msecs + 1;
}
}
if (elapsed > max_msecs) {
_mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page);
break;
}
}
}
mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size);
if (pages_reserved != NULL) { *pages_reserved = page; }
if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; }
if (page != 0) {
mi_assert(start != NULL);
*memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */);
memid->memkind = MI_MEM_OS_HUGE;
mi_assert(memid->is_pinned);
#ifdef MI_TRACK_ASAN
if (all_zero) { mi_track_mem_defined(start,size); }
#endif
}
return (page == 0 ? NULL : start);
}
// free every huge page in a range individually (as we allocated per page)
// note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems.
static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) {
if (p==NULL || size==0) return;
uint8_t* base = (uint8_t*)p;
while (size >= MI_HUGE_OS_PAGE_SIZE) {
mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats);
size -= MI_HUGE_OS_PAGE_SIZE;
base += MI_HUGE_OS_PAGE_SIZE;
}
}
/* ----------------------------------------------------------------------------
Support NUMA aware allocation
-----------------------------------------------------------------------------*/
_Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count
size_t _mi_os_numa_node_count_get(void) {
size_t count = mi_atomic_load_acquire(&_mi_numa_node_count);
if (count <= 0) {
long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly?
if (ncount > 0) {
count = (size_t)ncount;
}
else {
count = _mi_prim_numa_node_count(); // or detect dynamically
if (count == 0) count = 1;
}
mi_atomic_store_release(&_mi_numa_node_count, count); // save it
_mi_verbose_message("using %zd numa regions\n", count);
}
return count;
}
int _mi_os_numa_node_get(mi_os_tld_t* tld) {
MI_UNUSED(tld);
size_t numa_count = _mi_os_numa_node_count();
if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0
// never more than the node count and >= 0
size_t numa_node = _mi_prim_numa_node();
if (numa_node >= numa_count) { numa_node = numa_node % numa_count; }
return (int)numa_node;
}

332
3rdparty/mimalloc/src/page-queue.c vendored Normal file
View File

@ -0,0 +1,332 @@
/*----------------------------------------------------------------------------
Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* -----------------------------------------------------------
Definition of page queues for each block size
----------------------------------------------------------- */
#ifndef MI_IN_PAGE_C
#error "this file should be included from 'page.c'"
#endif
/* -----------------------------------------------------------
Minimal alignment in machine words (i.e. `sizeof(void*)`)
----------------------------------------------------------- */
#if (MI_MAX_ALIGN_SIZE > 4*MI_INTPTR_SIZE)
#error "define alignment for more than 4x word size for this platform"
#elif (MI_MAX_ALIGN_SIZE > 2*MI_INTPTR_SIZE)
#define MI_ALIGN4W // 4 machine words minimal alignment
#elif (MI_MAX_ALIGN_SIZE > MI_INTPTR_SIZE)
#define MI_ALIGN2W // 2 machine words minimal alignment
#else
// ok, default alignment is 1 word
#endif
/* -----------------------------------------------------------
Queue query
----------------------------------------------------------- */
static inline bool mi_page_queue_is_huge(const mi_page_queue_t* pq) {
return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+sizeof(uintptr_t)));
}
static inline bool mi_page_queue_is_full(const mi_page_queue_t* pq) {
return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+(2*sizeof(uintptr_t))));
}
static inline bool mi_page_queue_is_special(const mi_page_queue_t* pq) {
return (pq->block_size > MI_MEDIUM_OBJ_SIZE_MAX);
}
/* -----------------------------------------------------------
Bins
----------------------------------------------------------- */
// Return the bin for a given field size.
// Returns MI_BIN_HUGE if the size is too large.
// We use `wsize` for the size in "machine word sizes",
// i.e. byte size == `wsize*sizeof(void*)`.
static inline uint8_t mi_bin(size_t size) {
size_t wsize = _mi_wsize_from_size(size);
uint8_t bin;
if (wsize <= 1) {
bin = 1;
}
#if defined(MI_ALIGN4W)
else if (wsize <= 4) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#elif defined(MI_ALIGN2W)
else if (wsize <= 8) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#else
else if (wsize <= 8) {
bin = (uint8_t)wsize;
}
#endif
else if (wsize > MI_MEDIUM_OBJ_WSIZE_MAX) {
bin = MI_BIN_HUGE;
}
else {
#if defined(MI_ALIGN4W)
if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes
#endif
wsize--;
// find the highest bit
uint8_t b = (uint8_t)mi_bsr(wsize); // note: wsize != 0
// and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation).
// - adjust with 3 because we use do not round the first 8 sizes
// which each get an exact bin
bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3;
mi_assert_internal(bin < MI_BIN_HUGE);
}
mi_assert_internal(bin > 0 && bin <= MI_BIN_HUGE);
return bin;
}
/* -----------------------------------------------------------
Queue of pages with free blocks
----------------------------------------------------------- */
uint8_t _mi_bin(size_t size) {
return mi_bin(size);
}
size_t _mi_bin_size(uint8_t bin) {
return _mi_heap_empty.pages[bin].block_size;
}
// Good size for allocation
size_t mi_good_size(size_t size) mi_attr_noexcept {
if (size <= MI_MEDIUM_OBJ_SIZE_MAX) {
return _mi_bin_size(mi_bin(size));
}
else {
return _mi_align_up(size,_mi_os_page_size());
}
}
#if (MI_DEBUG>1)
static bool mi_page_queue_contains(mi_page_queue_t* queue, const mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_page_t* list = queue->first;
while (list != NULL) {
mi_assert_internal(list->next == NULL || list->next->prev == list);
mi_assert_internal(list->prev == NULL || list->prev->next == list);
if (list == page) break;
list = list->next;
}
return (list == page);
}
#endif
#if (MI_DEBUG>1)
static bool mi_heap_contains_queue(const mi_heap_t* heap, const mi_page_queue_t* pq) {
return (pq >= &heap->pages[0] && pq <= &heap->pages[MI_BIN_FULL]);
}
#endif
static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) {
uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size));
mi_heap_t* heap = mi_page_heap(page);
mi_assert_internal(heap != NULL && bin <= MI_BIN_FULL);
mi_page_queue_t* pq = &heap->pages[bin];
mi_assert_internal(bin >= MI_BIN_HUGE || page->xblock_size == pq->block_size);
mi_assert_expensive(mi_page_queue_contains(pq, page));
return pq;
}
static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) {
uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size));
mi_assert_internal(bin <= MI_BIN_FULL);
mi_page_queue_t* pq = &heap->pages[bin];
mi_assert_internal(mi_page_is_in_full(page) || page->xblock_size == pq->block_size);
return pq;
}
// The current small page array is for efficiency and for each
// small size (up to 256) it points directly to the page for that
// size without having to compute the bin. This means when the
// current free page queue is updated for a small bin, we need to update a
// range of entries in `_mi_page_small_free`.
static inline void mi_heap_queue_first_update(mi_heap_t* heap, const mi_page_queue_t* pq) {
mi_assert_internal(mi_heap_contains_queue(heap,pq));
size_t size = pq->block_size;
if (size > MI_SMALL_SIZE_MAX) return;
mi_page_t* page = pq->first;
if (pq->first == NULL) page = (mi_page_t*)&_mi_page_empty;
// find index in the right direct page array
size_t start;
size_t idx = _mi_wsize_from_size(size);
mi_page_t** pages_free = heap->pages_free_direct;
if (pages_free[idx] == page) return; // already set
// find start slot
if (idx<=1) {
start = 0;
}
else {
// find previous size; due to minimal alignment upto 3 previous bins may need to be skipped
uint8_t bin = mi_bin(size);
const mi_page_queue_t* prev = pq - 1;
while( bin == mi_bin(prev->block_size) && prev > &heap->pages[0]) {
prev--;
}
start = 1 + _mi_wsize_from_size(prev->block_size);
if (start > idx) start = idx;
}
// set size range to the right page
mi_assert(start <= idx);
for (size_t sz = start; sz <= idx; sz++) {
pages_free[sz] = page;
}
}
/*
static bool mi_page_queue_is_empty(mi_page_queue_t* queue) {
return (queue->first == NULL);
}
*/
static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(queue, page));
mi_assert_internal(page->xblock_size == queue->block_size || (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue)) || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
mi_heap_t* heap = mi_page_heap(page);
if (page->prev != NULL) page->prev->next = page->next;
if (page->next != NULL) page->next->prev = page->prev;
if (page == queue->last) queue->last = page->prev;
if (page == queue->first) {
queue->first = page->next;
// update first
mi_assert_internal(mi_heap_contains_queue(heap, queue));
mi_heap_queue_first_update(heap,queue);
}
heap->page_count--;
page->next = NULL;
page->prev = NULL;
// mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), NULL);
mi_page_set_in_full(page,false);
}
static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) {
mi_assert_internal(mi_page_heap(page) == heap);
mi_assert_internal(!mi_page_queue_contains(queue, page));
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
#endif
mi_assert_internal(page->xblock_size == queue->block_size ||
(page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX) ||
(mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
mi_page_set_in_full(page, mi_page_queue_is_full(queue));
// mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), heap);
page->next = queue->first;
page->prev = NULL;
if (queue->first != NULL) {
mi_assert_internal(queue->first->prev == NULL);
queue->first->prev = page;
queue->first = page;
}
else {
queue->first = queue->last = page;
}
// update direct
mi_heap_queue_first_update(heap, queue);
heap->page_count++;
}
static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(from, page));
mi_assert_expensive(!mi_page_queue_contains(to, page));
mi_assert_internal((page->xblock_size == to->block_size && page->xblock_size == from->block_size) ||
(page->xblock_size == to->block_size && mi_page_queue_is_full(from)) ||
(page->xblock_size == from->block_size && mi_page_queue_is_full(to)) ||
(page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(to)) ||
(page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_full(to)));
mi_heap_t* heap = mi_page_heap(page);
if (page->prev != NULL) page->prev->next = page->next;
if (page->next != NULL) page->next->prev = page->prev;
if (page == from->last) from->last = page->prev;
if (page == from->first) {
from->first = page->next;
// update first
mi_assert_internal(mi_heap_contains_queue(heap, from));
mi_heap_queue_first_update(heap, from);
}
page->prev = to->last;
page->next = NULL;
if (to->last != NULL) {
mi_assert_internal(heap == mi_page_heap(to->last));
to->last->next = page;
to->last = page;
}
else {
to->first = page;
to->last = page;
mi_heap_queue_first_update(heap, to);
}
mi_page_set_in_full(page, mi_page_queue_is_full(to));
}
// Only called from `mi_heap_absorb`.
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append) {
mi_assert_internal(mi_heap_contains_queue(heap,pq));
mi_assert_internal(pq->block_size == append->block_size);
if (append->first==NULL) return 0;
// set append pages to new heap and count
size_t count = 0;
for (mi_page_t* page = append->first; page != NULL; page = page->next) {
// inline `mi_page_set_heap` to avoid wrong assertion during absorption;
// in this case it is ok to be delayed freeing since both "to" and "from" heap are still alive.
mi_atomic_store_release(&page->xheap, (uintptr_t)heap);
// set the flag to delayed free (not overriding NEVER_DELAYED_FREE) which has as a
// side effect that it spins until any DELAYED_FREEING is finished. This ensures
// that after appending only the new heap will be used for delayed free operations.
_mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false);
count++;
}
if (pq->last==NULL) {
// take over afresh
mi_assert_internal(pq->first==NULL);
pq->first = append->first;
pq->last = append->last;
mi_heap_queue_first_update(heap, pq);
}
else {
// append to end
mi_assert_internal(pq->last!=NULL);
mi_assert_internal(append->first!=NULL);
pq->last->next = append->first;
append->first->prev = pq->last;
pq->last = append->last;
}
return count;
}

939
3rdparty/mimalloc/src/page.c vendored Normal file
View File

@ -0,0 +1,939 @@
/*----------------------------------------------------------------------------
Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* -----------------------------------------------------------
The core of the allocator. Every segment contains
pages of a certain block size. The main function
exported is `mi_malloc_generic`.
----------------------------------------------------------- */
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
/* -----------------------------------------------------------
Definition of page queues for each block size
----------------------------------------------------------- */
#define MI_IN_PAGE_C
#include "page-queue.c"
#undef MI_IN_PAGE_C
/* -----------------------------------------------------------
Page helpers
----------------------------------------------------------- */
// Index a block in a page
static inline mi_block_t* mi_page_block_at(const mi_page_t* page, void* page_start, size_t block_size, size_t i) {
MI_UNUSED(page);
mi_assert_internal(page != NULL);
mi_assert_internal(i <= page->reserved);
return (mi_block_t*)((uint8_t*)page_start + (i * block_size));
}
static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t size, mi_tld_t* tld);
static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld);
#if (MI_DEBUG>=3)
static size_t mi_page_list_count(mi_page_t* page, mi_block_t* head) {
size_t count = 0;
while (head != NULL) {
mi_assert_internal(page == _mi_ptr_page(head));
count++;
head = mi_block_next(page, head);
}
return count;
}
/*
// Start of the page available memory
static inline uint8_t* mi_page_area(const mi_page_t* page) {
return _mi_page_start(_mi_page_segment(page), page, NULL);
}
*/
static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
size_t psize;
uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize);
mi_block_t* start = (mi_block_t*)page_area;
mi_block_t* end = (mi_block_t*)(page_area + psize);
while(p != NULL) {
if (p < start || p >= end) return false;
p = mi_block_next(page, p);
}
#if MI_DEBUG>3 // generally too expensive to check this
if (page->free_is_zero) {
const size_t ubsize = mi_page_usable_block_size(page);
for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page, block)) {
mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t)));
}
}
#endif
return true;
}
static bool mi_page_is_valid_init(mi_page_t* page) {
mi_assert_internal(page->xblock_size > 0);
mi_assert_internal(page->used <= page->capacity);
mi_assert_internal(page->capacity <= page->reserved);
mi_segment_t* segment = _mi_page_segment(page);
uint8_t* start = _mi_page_start(segment,page,NULL);
mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL));
//const size_t bsize = mi_page_block_size(page);
//mi_assert_internal(start + page->capacity*page->block_size == page->top);
mi_assert_internal(mi_page_list_is_valid(page,page->free));
mi_assert_internal(mi_page_list_is_valid(page,page->local_free));
#if MI_DEBUG>3 // generally too expensive to check this
if (page->free_is_zero) {
const size_t ubsize = mi_page_usable_block_size(page);
for(mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) {
mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t)));
}
}
#endif
#if !MI_TRACK_ENABLED && !MI_TSAN
mi_block_t* tfree = mi_page_thread_free(page);
mi_assert_internal(mi_page_list_is_valid(page, tfree));
//size_t tfree_count = mi_page_list_count(page, tfree);
//mi_assert_internal(tfree_count <= page->thread_freed + 1);
#endif
size_t free_count = mi_page_list_count(page, page->free) + mi_page_list_count(page, page->local_free);
mi_assert_internal(page->used + free_count == page->capacity);
return true;
}
extern bool _mi_process_is_initialized; // has mi_process_init been called?
bool _mi_page_is_valid(mi_page_t* page) {
mi_assert_internal(mi_page_is_valid_init(page));
#if MI_SECURE
mi_assert_internal(page->keys[0] != 0);
#endif
if (mi_page_heap(page)!=NULL) {
mi_segment_t* segment = _mi_page_segment(page);
mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id);
#if MI_HUGE_PAGE_ABANDON
if (segment->kind != MI_SEGMENT_HUGE)
#endif
{
mi_page_queue_t* pq = mi_page_queue_of(page);
mi_assert_internal(mi_page_queue_contains(pq, page));
mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page));
mi_assert_internal(mi_heap_contains_queue(mi_page_heap(page),pq));
}
}
return true;
}
#endif
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) {
while (!_mi_page_try_use_delayed_free(page, delay, override_never)) {
mi_atomic_yield();
}
}
bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) {
mi_thread_free_t tfreex;
mi_delayed_t old_delay;
mi_thread_free_t tfree;
size_t yield_count = 0;
do {
tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS;
tfreex = mi_tf_set_delayed(tfree, delay);
old_delay = mi_tf_delayed(tfree);
if mi_unlikely(old_delay == MI_DELAYED_FREEING) {
if (yield_count >= 4) return false; // give up after 4 tries
yield_count++;
mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done.
// tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail
}
else if (delay == old_delay) {
break; // avoid atomic operation if already equal
}
else if (!override_never && old_delay == MI_NEVER_DELAYED_FREE) {
break; // leave never-delayed flag set
}
} while ((old_delay == MI_DELAYED_FREEING) ||
!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
return true; // success
}
/* -----------------------------------------------------------
Page collect the `local_free` and `thread_free` lists
----------------------------------------------------------- */
// Collect the local `thread_free` list using an atomic exchange.
// Note: The exchange must be done atomically as this is used right after
// moving to the full list in `mi_page_collect_ex` and we need to
// ensure that there was no race where the page became unfull just before the move.
static void _mi_page_thread_free_collect(mi_page_t* page)
{
mi_block_t* head;
mi_thread_free_t tfreex;
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
head = mi_tf_block(tfree);
tfreex = mi_tf_set_block(tfree,NULL);
} while (!mi_atomic_cas_weak_acq_rel(&page->xthread_free, &tfree, tfreex));
// return if the list is empty
if (head == NULL) return;
// find the tail -- also to get a proper count (without data races)
uint32_t max_count = page->capacity; // cannot collect more than capacity
uint32_t count = 1;
mi_block_t* tail = head;
mi_block_t* next;
while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) {
count++;
tail = next;
}
// if `count > max_count` there was a memory corruption (possibly infinite list due to double multi-threaded free)
if (count > max_count) {
_mi_error_message(EFAULT, "corrupted thread-free list\n");
return; // the thread-free items cannot be freed
}
// and append the current local free list
mi_block_set_next(page,tail, page->local_free);
page->local_free = head;
// update counts now
page->used -= count;
}
void _mi_page_free_collect(mi_page_t* page, bool force) {
mi_assert_internal(page!=NULL);
// collect the thread free list
if (force || mi_page_thread_free(page) != NULL) { // quick test to avoid an atomic operation
_mi_page_thread_free_collect(page);
}
// and the local free list
if (page->local_free != NULL) {
if mi_likely(page->free == NULL) {
// usual case
page->free = page->local_free;
page->local_free = NULL;
page->free_is_zero = false;
}
else if (force) {
// append -- only on shutdown (force) as this is a linear operation
mi_block_t* tail = page->local_free;
mi_block_t* next;
while ((next = mi_block_next(page, tail)) != NULL) {
tail = next;
}
mi_block_set_next(page, tail, page->free);
page->free = page->local_free;
page->local_free = NULL;
page->free_is_zero = false;
}
}
mi_assert_internal(!force || page->local_free == NULL);
}
/* -----------------------------------------------------------
Page fresh and retire
----------------------------------------------------------- */
// called from segments when reclaiming abandoned pages
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
mi_assert_expensive(mi_page_is_valid_init(page));
mi_assert_internal(mi_page_heap(page) == heap);
mi_assert_internal(mi_page_thread_free_flag(page) != MI_NEVER_DELAYED_FREE);
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
#endif
// TODO: push on full queue immediately if it is full?
mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page));
mi_page_queue_push(heap, pq, page);
mi_assert_expensive(_mi_page_is_valid(page));
}
// allocate a fresh page from a segment
static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size, size_t page_alignment) {
#if !MI_HUGE_PAGE_ABANDON
mi_assert_internal(pq != NULL);
mi_assert_internal(mi_heap_contains_queue(heap, pq));
mi_assert_internal(page_alignment > 0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || block_size == pq->block_size);
#endif
mi_page_t* page = _mi_segment_page_alloc(heap, block_size, page_alignment, &heap->tld->segments, &heap->tld->os);
if (page == NULL) {
// this may be out-of-memory, or an abandoned page was reclaimed (and in our queue)
return NULL;
}
mi_assert_internal(page_alignment >0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || _mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
mi_assert_internal(pq!=NULL || page->xblock_size != 0);
mi_assert_internal(pq!=NULL || mi_page_block_size(page) >= block_size);
// a fresh page was found, initialize it
const size_t full_block_size = ((pq == NULL || mi_page_queue_is_huge(pq)) ? mi_page_block_size(page) : block_size); // see also: mi_segment_huge_page_alloc
mi_assert_internal(full_block_size >= block_size);
mi_page_init(heap, page, full_block_size, heap->tld);
mi_heap_stat_increase(heap, pages, 1);
if (pq != NULL) { mi_page_queue_push(heap, pq, page); }
mi_assert_expensive(_mi_page_is_valid(page));
return page;
}
// Get a fresh page to use
static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) {
mi_assert_internal(mi_heap_contains_queue(heap, pq));
mi_page_t* page = mi_page_fresh_alloc(heap, pq, pq->block_size, 0);
if (page==NULL) return NULL;
mi_assert_internal(pq->block_size==mi_page_block_size(page));
mi_assert_internal(pq==mi_page_queue(heap, mi_page_block_size(page)));
return page;
}
/* -----------------------------------------------------------
Do any delayed frees
(put there by other threads if they deallocated in a full page)
----------------------------------------------------------- */
void _mi_heap_delayed_free_all(mi_heap_t* heap) {
while (!_mi_heap_delayed_free_partial(heap)) {
mi_atomic_yield();
}
}
// returns true if all delayed frees were processed
bool _mi_heap_delayed_free_partial(mi_heap_t* heap) {
// take over the list (note: no atomic exchange since it is often NULL)
mi_block_t* block = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
while (block != NULL && !mi_atomic_cas_ptr_weak_acq_rel(mi_block_t, &heap->thread_delayed_free, &block, NULL)) { /* nothing */ };
bool all_freed = true;
// and free them all
while(block != NULL) {
mi_block_t* next = mi_block_nextx(heap,block, heap->keys);
// use internal free instead of regular one to keep stats etc correct
if (!_mi_free_delayed_block(block)) {
// we might already start delayed freeing while another thread has not yet
// reset the delayed_freeing flag; in that case delay it further by reinserting the current block
// into the delayed free list
all_freed = false;
mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
do {
mi_block_set_nextx(heap, block, dfree, heap->keys);
} while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
}
block = next;
}
return all_freed;
}
/* -----------------------------------------------------------
Unfull, abandon, free and retire
----------------------------------------------------------- */
// Move a page from the full list back to a regular list
void _mi_page_unfull(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(mi_page_is_in_full(page));
if (!mi_page_is_in_full(page)) return;
mi_heap_t* heap = mi_page_heap(page);
mi_page_queue_t* pqfull = &heap->pages[MI_BIN_FULL];
mi_page_set_in_full(page, false); // to get the right queue
mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
mi_page_set_in_full(page, true);
mi_page_queue_enqueue_from(pq, pqfull, page);
}
static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) {
mi_assert_internal(pq == mi_page_queue_of(page));
mi_assert_internal(!mi_page_immediate_available(page));
mi_assert_internal(!mi_page_is_in_full(page));
if (mi_page_is_in_full(page)) return;
mi_page_queue_enqueue_from(&mi_page_heap(page)->pages[MI_BIN_FULL], pq, page);
_mi_page_free_collect(page,false); // try to collect right away in case another thread freed just before MI_USE_DELAYED_FREE was set
}
// Abandon a page with used blocks at the end of a thread.
// Note: only call if it is ensured that no references exist from
// the `page->heap->thread_delayed_free` into this page.
// Currently only called through `mi_heap_collect_ex` which ensures this.
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(pq == mi_page_queue_of(page));
mi_assert_internal(mi_page_heap(page) != NULL);
mi_heap_t* pheap = mi_page_heap(page);
// remove from our page list
mi_segments_tld_t* segments_tld = &pheap->tld->segments;
mi_page_queue_remove(pq, page);
// page is no longer associated with our heap
mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
mi_page_set_heap(page, NULL);
#if (MI_DEBUG>1) && !MI_TRACK_ENABLED
// check there are no references left..
for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) {
mi_assert_internal(_mi_ptr_page(block) != page);
}
#endif
// and abandon it
mi_assert_internal(mi_page_heap(page) == NULL);
_mi_segment_page_abandon(page,segments_tld);
}
// Free a page with no more free blocks
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(pq == mi_page_queue_of(page));
mi_assert_internal(mi_page_all_free(page));
mi_assert_internal(mi_page_thread_free_flag(page)!=MI_DELAYED_FREEING);
// no more aligned blocks in here
mi_page_set_has_aligned(page, false);
mi_heap_t* heap = mi_page_heap(page);
// remove from the page list
// (no need to do _mi_heap_delayed_free first as all blocks are already free)
mi_segments_tld_t* segments_tld = &heap->tld->segments;
mi_page_queue_remove(pq, page);
// and free it
mi_page_set_heap(page,NULL);
_mi_segment_page_free(page, force, segments_tld);
}
// Retire parameters
#define MI_MAX_RETIRE_SIZE (MI_MEDIUM_OBJ_SIZE_MAX)
#define MI_RETIRE_CYCLES (16)
// Retire a page with no more used blocks
// Important to not retire too quickly though as new
// allocations might coming.
// Note: called from `mi_free` and benchmarks often
// trigger this due to freeing everything and then
// allocating again so careful when changing this.
void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(mi_page_all_free(page));
mi_page_set_has_aligned(page, false);
// don't retire too often..
// (or we end up retiring and re-allocating most of the time)
// NOTE: refine this more: we should not retire if this
// is the only page left with free blocks. It is not clear
// how to check this efficiently though...
// for now, we don't retire if it is the only page left of this size class.
mi_page_queue_t* pq = mi_page_queue_of(page);
if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue?
if (pq->last==page && pq->first==page) { // the only page in the queue?
mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
mi_heap_t* heap = mi_page_heap(page);
mi_assert_internal(pq >= heap->pages);
const size_t index = pq - heap->pages;
mi_assert_internal(index < MI_BIN_FULL && index < MI_BIN_HUGE);
if (index < heap->page_retired_min) heap->page_retired_min = index;
if (index > heap->page_retired_max) heap->page_retired_max = index;
mi_assert_internal(mi_page_all_free(page));
return; // dont't free after all
}
}
_mi_page_free(page, pq, false);
}
// free retired pages: we don't need to look at the entire queues
// since we only retire pages that are at the head position in a queue.
void _mi_heap_collect_retired(mi_heap_t* heap, bool force) {
size_t min = MI_BIN_FULL;
size_t max = 0;
for(size_t bin = heap->page_retired_min; bin <= heap->page_retired_max; bin++) {
mi_page_queue_t* pq = &heap->pages[bin];
mi_page_t* page = pq->first;
if (page != NULL && page->retire_expire != 0) {
if (mi_page_all_free(page)) {
page->retire_expire--;
if (force || page->retire_expire == 0) {
_mi_page_free(pq->first, pq, force);
}
else {
// keep retired, update min/max
if (bin < min) min = bin;
if (bin > max) max = bin;
}
}
else {
page->retire_expire = 0;
}
}
}
heap->page_retired_min = min;
heap->page_retired_max = max;
}
/* -----------------------------------------------------------
Initialize the initial free list in a page.
In secure mode we initialize a randomized list by
alternating between slices.
----------------------------------------------------------- */
#define MI_MAX_SLICE_SHIFT (6) // at most 64 slices
#define MI_MAX_SLICES (1UL << MI_MAX_SLICE_SHIFT)
#define MI_MIN_SLICES (2)
static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) {
MI_UNUSED(stats);
#if (MI_SECURE<=2)
mi_assert_internal(page->free == NULL);
mi_assert_internal(page->local_free == NULL);
#endif
mi_assert_internal(page->capacity + extend <= page->reserved);
mi_assert_internal(bsize == mi_page_block_size(page));
void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL);
// initialize a randomized free list
// set up `slice_count` slices to alternate between
size_t shift = MI_MAX_SLICE_SHIFT;
while ((extend >> shift) == 0) {
shift--;
}
const size_t slice_count = (size_t)1U << shift;
const size_t slice_extend = extend / slice_count;
mi_assert_internal(slice_extend >= 1);
mi_block_t* blocks[MI_MAX_SLICES]; // current start of the slice
size_t counts[MI_MAX_SLICES]; // available objects in the slice
for (size_t i = 0; i < slice_count; i++) {
blocks[i] = mi_page_block_at(page, page_area, bsize, page->capacity + i*slice_extend);
counts[i] = slice_extend;
}
counts[slice_count-1] += (extend % slice_count); // final slice holds the modulus too (todo: distribute evenly?)
// and initialize the free list by randomly threading through them
// set up first element
const uintptr_t r = _mi_heap_random_next(heap);
size_t current = r % slice_count;
counts[current]--;
mi_block_t* const free_start = blocks[current];
// and iterate through the rest; use `random_shuffle` for performance
uintptr_t rnd = _mi_random_shuffle(r|1); // ensure not 0
for (size_t i = 1; i < extend; i++) {
// call random_shuffle only every INTPTR_SIZE rounds
const size_t round = i%MI_INTPTR_SIZE;
if (round == 0) rnd = _mi_random_shuffle(rnd);
// select a random next slice index
size_t next = ((rnd >> 8*round) & (slice_count-1));
while (counts[next]==0) { // ensure it still has space
next++;
if (next==slice_count) next = 0;
}
// and link the current block to it
counts[next]--;
mi_block_t* const block = blocks[current];
blocks[current] = (mi_block_t*)((uint8_t*)block + bsize); // bump to the following block
mi_block_set_next(page, block, blocks[next]); // and set next; note: we may have `current == next`
current = next;
}
// prepend to the free list (usually NULL)
mi_block_set_next(page, blocks[current], page->free); // end of the list
page->free = free_start;
}
static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats)
{
MI_UNUSED(stats);
#if (MI_SECURE <= 2)
mi_assert_internal(page->free == NULL);
mi_assert_internal(page->local_free == NULL);
#endif
mi_assert_internal(page->capacity + extend <= page->reserved);
mi_assert_internal(bsize == mi_page_block_size(page));
void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL );
mi_block_t* const start = mi_page_block_at(page, page_area, bsize, page->capacity);
// initialize a sequential free list
mi_block_t* const last = mi_page_block_at(page, page_area, bsize, page->capacity + extend - 1);
mi_block_t* block = start;
while(block <= last) {
mi_block_t* next = (mi_block_t*)((uint8_t*)block + bsize);
mi_block_set_next(page,block,next);
block = next;
}
// prepend to free list (usually `NULL`)
mi_block_set_next(page, last, page->free);
page->free = start;
}
/* -----------------------------------------------------------
Page initialize and extend the capacity
----------------------------------------------------------- */
#define MI_MAX_EXTEND_SIZE (4*1024) // heuristic, one OS page seems to work well.
#if (MI_SECURE>0)
#define MI_MIN_EXTEND (8*MI_SECURE) // extend at least by this many
#else
#define MI_MIN_EXTEND (4)
#endif
// Extend the capacity (up to reserved) by initializing a free list
// We do at most `MI_MAX_EXTEND` to avoid touching too much memory
// Note: we also experimented with "bump" allocation on the first
// allocations but this did not speed up any benchmark (due to an
// extra test in malloc? or cache effects?)
static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) {
MI_UNUSED(tld);
mi_assert_expensive(mi_page_is_valid_init(page));
#if (MI_SECURE<=2)
mi_assert(page->free == NULL);
mi_assert(page->local_free == NULL);
if (page->free != NULL) return;
#endif
if (page->capacity >= page->reserved) return;
size_t page_size;
_mi_page_start(_mi_page_segment(page), page, &page_size);
mi_stat_counter_increase(tld->stats.pages_extended, 1);
// calculate the extend count
const size_t bsize = (page->xblock_size < MI_HUGE_BLOCK_SIZE ? page->xblock_size : page_size);
size_t extend = page->reserved - page->capacity;
mi_assert_internal(extend > 0);
size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/(uint32_t)bsize);
if (max_extend < MI_MIN_EXTEND) { max_extend = MI_MIN_EXTEND; }
mi_assert_internal(max_extend > 0);
if (extend > max_extend) {
// ensure we don't touch memory beyond the page to reduce page commit.
// the `lean` benchmark tests this. Going from 1 to 8 increases rss by 50%.
extend = max_extend;
}
mi_assert_internal(extend > 0 && extend + page->capacity <= page->reserved);
mi_assert_internal(extend < (1UL<<16));
// and append the extend the free list
if (extend < MI_MIN_SLICES || MI_SECURE==0) { //!mi_option_is_enabled(mi_option_secure)) {
mi_page_free_list_extend(page, bsize, extend, &tld->stats );
}
else {
mi_page_free_list_extend_secure(heap, page, bsize, extend, &tld->stats);
}
// enable the new free list
page->capacity += (uint16_t)extend;
mi_stat_increase(tld->stats.page_committed, extend * bsize);
mi_assert_expensive(mi_page_is_valid_init(page));
}
// Initialize a fresh page
static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi_tld_t* tld) {
mi_assert(page != NULL);
mi_segment_t* segment = _mi_page_segment(page);
mi_assert(segment != NULL);
mi_assert_internal(block_size > 0);
// set fields
mi_page_set_heap(page, heap);
page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start
size_t page_size;
const void* page_start = _mi_segment_page_start(segment, page, &page_size);
MI_UNUSED(page_start);
mi_track_mem_noaccess(page_start,page_size);
mi_assert_internal(mi_page_block_size(page) <= page_size);
mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE);
mi_assert_internal(page_size / block_size < (1L<<16));
page->reserved = (uint16_t)(page_size / block_size);
mi_assert_internal(page->reserved > 0);
#if (MI_PADDING || MI_ENCODE_FREELIST)
page->keys[0] = _mi_heap_random_next(heap);
page->keys[1] = _mi_heap_random_next(heap);
#endif
page->free_is_zero = page->is_zero_init;
#if MI_DEBUG>2
if (page->is_zero_init) {
mi_track_mem_defined(page_start, page_size);
mi_assert_expensive(mi_mem_is_zero(page_start, page_size));
}
#endif
mi_assert_internal(page->is_committed);
mi_assert_internal(page->capacity == 0);
mi_assert_internal(page->free == NULL);
mi_assert_internal(page->used == 0);
mi_assert_internal(page->xthread_free == 0);
mi_assert_internal(page->next == NULL);
mi_assert_internal(page->prev == NULL);
mi_assert_internal(page->retire_expire == 0);
mi_assert_internal(!mi_page_has_aligned(page));
#if (MI_PADDING || MI_ENCODE_FREELIST)
mi_assert_internal(page->keys[0] != 0);
mi_assert_internal(page->keys[1] != 0);
#endif
mi_assert_expensive(mi_page_is_valid_init(page));
// initialize an initial free list
mi_page_extend_free(heap,page,tld);
mi_assert(mi_page_immediate_available(page));
}
/* -----------------------------------------------------------
Find pages with free blocks
-------------------------------------------------------------*/
// Find a page with free blocks of `page->block_size`.
static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq, bool first_try)
{
// search through the pages in "next fit" order
#if MI_STAT
size_t count = 0;
#endif
mi_page_t* page = pq->first;
while (page != NULL)
{
mi_page_t* next = page->next; // remember next
#if MI_STAT
count++;
#endif
// 0. collect freed blocks by us and other threads
_mi_page_free_collect(page, false);
// 1. if the page contains free blocks, we are done
if (mi_page_immediate_available(page)) {
break; // pick this one
}
// 2. Try to extend
if (page->capacity < page->reserved) {
mi_page_extend_free(heap, page, heap->tld);
mi_assert_internal(mi_page_immediate_available(page));
break;
}
// 3. If the page is completely full, move it to the `mi_pages_full`
// queue so we don't visit long-lived pages too often.
mi_assert_internal(!mi_page_is_in_full(page) && !mi_page_immediate_available(page));
mi_page_to_full(page, pq);
page = next;
} // for each page
mi_heap_stat_counter_increase(heap, searches, count);
if (page == NULL) {
_mi_heap_collect_retired(heap, false); // perhaps make a page available?
page = mi_page_fresh(heap, pq);
if (page == NULL && first_try) {
// out-of-memory _or_ an abandoned page with free blocks was reclaimed, try once again
page = mi_page_queue_find_free_ex(heap, pq, false);
}
}
else {
mi_assert(pq->first == page);
page->retire_expire = 0;
}
mi_assert_internal(page == NULL || mi_page_immediate_available(page));
return page;
}
// Find a page with free blocks of `size`.
static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) {
mi_page_queue_t* pq = mi_page_queue(heap,size);
mi_page_t* page = pq->first;
if (page != NULL) {
#if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness
if (page->capacity < page->reserved && ((_mi_heap_random_next(heap) & 1) == 1)) {
mi_page_extend_free(heap, page, heap->tld);
mi_assert_internal(mi_page_immediate_available(page));
}
else
#endif
{
_mi_page_free_collect(page,false);
}
if (mi_page_immediate_available(page)) {
page->retire_expire = 0;
return page; // fast path
}
}
return mi_page_queue_find_free_ex(heap, pq, true);
}
/* -----------------------------------------------------------
Users can register a deferred free function called
when the `free` list is empty. Since the `local_free`
is separate this is deterministically called after
a certain number of allocations.
----------------------------------------------------------- */
static mi_deferred_free_fun* volatile deferred_free = NULL;
static _Atomic(void*) deferred_arg; // = NULL
void _mi_deferred_free(mi_heap_t* heap, bool force) {
heap->tld->heartbeat++;
if (deferred_free != NULL && !heap->tld->recurse) {
heap->tld->recurse = true;
deferred_free(force, heap->tld->heartbeat, mi_atomic_load_ptr_relaxed(void,&deferred_arg));
heap->tld->recurse = false;
}
}
void mi_register_deferred_free(mi_deferred_free_fun* fn, void* arg) mi_attr_noexcept {
deferred_free = fn;
mi_atomic_store_ptr_release(void,&deferred_arg, arg);
}
/* -----------------------------------------------------------
General allocation
----------------------------------------------------------- */
// Large and huge page allocation.
// Huge pages are allocated directly without being in a queue.
// Because huge pages contain just one block, and the segment contains
// just that page, we always treat them as abandoned and any thread
// that frees the block can free the whole page and segment directly.
// Huge pages are also use if the requested alignment is very large (> MI_ALIGNMENT_MAX).
static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t page_alignment) {
size_t block_size = _mi_os_good_alloc_size(size);
mi_assert_internal(mi_bin(block_size) == MI_BIN_HUGE || page_alignment > 0);
bool is_huge = (block_size > MI_LARGE_OBJ_SIZE_MAX || page_alignment > 0);
#if MI_HUGE_PAGE_ABANDON
mi_page_queue_t* pq = (is_huge ? NULL : mi_page_queue(heap, block_size));
#else
mi_page_queue_t* pq = mi_page_queue(heap, is_huge ? MI_HUGE_BLOCK_SIZE : block_size); // not block_size as that can be low if the page_alignment > 0
mi_assert_internal(!is_huge || mi_page_queue_is_huge(pq));
#endif
mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment);
if (page != NULL) {
mi_assert_internal(mi_page_immediate_available(page));
if (is_huge) {
mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
mi_assert_internal(_mi_page_segment(page)->used==1);
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue
mi_page_set_heap(page, NULL);
#endif
}
else {
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
}
const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_increase(heap, large, bsize);
mi_heap_stat_counter_increase(heap, large_count, 1);
}
else {
mi_heap_stat_increase(heap, huge, bsize);
mi_heap_stat_counter_increase(heap, huge_count, 1);
}
}
return page;
}
// Allocate a page
// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept {
// huge allocation?
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) {
if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
return NULL;
}
else {
return mi_large_huge_page_alloc(heap,size,huge_alignment);
}
}
else {
// otherwise find a page with free blocks in our size segregated queues
#if MI_PADDING
mi_assert_internal(size >= MI_PADDING_SIZE);
#endif
return mi_find_free_page(heap, size);
}
}
// Generic allocation routine if the fast path (`alloc.c:mi_page_malloc`) does not succeed.
// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
// The `huge_alignment` is normally 0 but is set to a multiple of MI_SEGMENT_SIZE for
// very large requested alignments in which case we use a huge segment.
void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept
{
mi_assert_internal(heap != NULL);
// initialize if necessary
if mi_unlikely(!mi_heap_is_initialized(heap)) {
heap = mi_heap_get_default(); // calls mi_thread_init
if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; }
}
mi_assert_internal(mi_heap_is_initialized(heap));
// call potential deferred free routines
_mi_deferred_free(heap, false);
// free delayed frees from other threads (but skip contended ones)
_mi_heap_delayed_free_partial(heap);
// find (or allocate) a page of the right size
mi_page_t* page = mi_find_page(heap, size, huge_alignment);
if mi_unlikely(page == NULL) { // first time out of memory, try to collect and retry the allocation once more
mi_heap_collect(heap, true /* force */);
page = mi_find_page(heap, size, huge_alignment);
}
if mi_unlikely(page == NULL) { // out of memory
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
_mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size);
return NULL;
}
mi_assert_internal(mi_page_immediate_available(page));
mi_assert_internal(mi_page_block_size(page) >= size);
// and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc)
if mi_unlikely(zero && page->xblock_size == 0) {
// note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case.
void* p = _mi_page_malloc(heap, page, size, false);
mi_assert_internal(p != NULL);
_mi_memzero_aligned(p, mi_page_usable_block_size(page));
return p;
}
else {
return _mi_page_malloc(heap, page, size, zero);
}
}

View File

@ -0,0 +1,458 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#if defined(MI_MALLOC_OVERRIDE)
#if !defined(__APPLE__)
#error "this file should only be included on macOS"
#endif
/* ------------------------------------------------------
Override system malloc on macOS
This is done through the malloc zone interface.
It seems to be most robust in combination with interposing
though or otherwise we may get zone errors as there are could
be allocations done by the time we take over the
zone.
------------------------------------------------------ */
#include <AvailabilityMacros.h>
#include <malloc/malloc.h>
#include <string.h> // memset
#include <stdlib.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6)
// only available from OSX 10.6
extern malloc_zone_t* malloc_default_purgeable_zone(void) __attribute__((weak_import));
#endif
/* ------------------------------------------------------
malloc zone members
------------------------------------------------------ */
static size_t zone_size(malloc_zone_t* zone, const void* p) {
MI_UNUSED(zone);
if (!mi_is_in_heap_region(p)){ return 0; } // not our pointer, bail out
return mi_usable_size(p);
}
static void* zone_malloc(malloc_zone_t* zone, size_t size) {
MI_UNUSED(zone);
return mi_malloc(size);
}
static void* zone_calloc(malloc_zone_t* zone, size_t count, size_t size) {
MI_UNUSED(zone);
return mi_calloc(count, size);
}
static void* zone_valloc(malloc_zone_t* zone, size_t size) {
MI_UNUSED(zone);
return mi_malloc_aligned(size, _mi_os_page_size());
}
static void zone_free(malloc_zone_t* zone, void* p) {
MI_UNUSED(zone);
mi_cfree(p);
}
static void* zone_realloc(malloc_zone_t* zone, void* p, size_t newsize) {
MI_UNUSED(zone);
return mi_realloc(p, newsize);
}
static void* zone_memalign(malloc_zone_t* zone, size_t alignment, size_t size) {
MI_UNUSED(zone);
return mi_malloc_aligned(size,alignment);
}
static void zone_destroy(malloc_zone_t* zone) {
MI_UNUSED(zone);
// todo: ignore for now?
}
static unsigned zone_batch_malloc(malloc_zone_t* zone, size_t size, void** ps, unsigned count) {
size_t i;
for (i = 0; i < count; i++) {
ps[i] = zone_malloc(zone, size);
if (ps[i] == NULL) break;
}
return i;
}
static void zone_batch_free(malloc_zone_t* zone, void** ps, unsigned count) {
for(size_t i = 0; i < count; i++) {
zone_free(zone, ps[i]);
ps[i] = NULL;
}
}
static size_t zone_pressure_relief(malloc_zone_t* zone, size_t size) {
MI_UNUSED(zone); MI_UNUSED(size);
mi_collect(false);
return 0;
}
static void zone_free_definite_size(malloc_zone_t* zone, void* p, size_t size) {
MI_UNUSED(size);
zone_free(zone,p);
}
static boolean_t zone_claimed_address(malloc_zone_t* zone, void* p) {
MI_UNUSED(zone);
return mi_is_in_heap_region(p);
}
/* ------------------------------------------------------
Introspection members
------------------------------------------------------ */
static kern_return_t intro_enumerator(task_t task, void* p,
unsigned type_mask, vm_address_t zone_address,
memory_reader_t reader,
vm_range_recorder_t recorder)
{
// todo: enumerate all memory
MI_UNUSED(task); MI_UNUSED(p); MI_UNUSED(type_mask); MI_UNUSED(zone_address);
MI_UNUSED(reader); MI_UNUSED(recorder);
return KERN_SUCCESS;
}
static size_t intro_good_size(malloc_zone_t* zone, size_t size) {
MI_UNUSED(zone);
return mi_good_size(size);
}
static boolean_t intro_check(malloc_zone_t* zone) {
MI_UNUSED(zone);
return true;
}
static void intro_print(malloc_zone_t* zone, boolean_t verbose) {
MI_UNUSED(zone); MI_UNUSED(verbose);
mi_stats_print(NULL);
}
static void intro_log(malloc_zone_t* zone, void* p) {
MI_UNUSED(zone); MI_UNUSED(p);
// todo?
}
static void intro_force_lock(malloc_zone_t* zone) {
MI_UNUSED(zone);
// todo?
}
static void intro_force_unlock(malloc_zone_t* zone) {
MI_UNUSED(zone);
// todo?
}
static void intro_statistics(malloc_zone_t* zone, malloc_statistics_t* stats) {
MI_UNUSED(zone);
// todo...
stats->blocks_in_use = 0;
stats->size_in_use = 0;
stats->max_size_in_use = 0;
stats->size_allocated = 0;
}
static boolean_t intro_zone_locked(malloc_zone_t* zone) {
MI_UNUSED(zone);
return false;
}
/* ------------------------------------------------------
At process start, override the default allocator
------------------------------------------------------ */
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wc99-extensions"
#endif
static malloc_introspection_t mi_introspect = {
.enumerator = &intro_enumerator,
.good_size = &intro_good_size,
.check = &intro_check,
.print = &intro_print,
.log = &intro_log,
.force_lock = &intro_force_lock,
.force_unlock = &intro_force_unlock,
#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) && !defined(__ppc__)
.statistics = &intro_statistics,
.zone_locked = &intro_zone_locked,
#endif
};
static malloc_zone_t mi_malloc_zone = {
// note: even with designators, the order is important for C++ compilation
//.reserved1 = NULL,
//.reserved2 = NULL,
.size = &zone_size,
.malloc = &zone_malloc,
.calloc = &zone_calloc,
.valloc = &zone_valloc,
.free = &zone_free,
.realloc = &zone_realloc,
.destroy = &zone_destroy,
.zone_name = "mimalloc",
.batch_malloc = &zone_batch_malloc,
.batch_free = &zone_batch_free,
.introspect = &mi_introspect,
#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) && !defined(__ppc__)
#if defined(MAC_OS_X_VERSION_10_14) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_14)
.version = 10,
#else
.version = 9,
#endif
// switch to version 9+ on OSX 10.6 to support memalign.
.memalign = &zone_memalign,
.free_definite_size = &zone_free_definite_size,
.pressure_relief = &zone_pressure_relief,
#if defined(MAC_OS_X_VERSION_10_14) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_14)
.claimed_address = &zone_claimed_address,
#endif
#else
.version = 4,
#endif
};
#ifdef __cplusplus
}
#endif
#if defined(MI_OSX_INTERPOSE) && defined(MI_SHARED_LIB_EXPORT)
// ------------------------------------------------------
// Override malloc_xxx and malloc_zone_xxx api's to use only
// our mimalloc zone. Since even the loader uses malloc
// on macOS, this ensures that all allocations go through
// mimalloc (as all calls are interposed).
// The main `malloc`, `free`, etc calls are interposed in `alloc-override.c`,
// Here, we also override macOS specific API's like
// `malloc_zone_calloc` etc. see <https://github.com/aosm/libmalloc/blob/master/man/malloc_zone_malloc.3>
// ------------------------------------------------------
static inline malloc_zone_t* mi_get_default_zone(void)
{
static bool init;
if mi_unlikely(!init) {
init = true;
malloc_zone_register(&mi_malloc_zone); // by calling register we avoid a zone error on free (see <http://eatmyrandom.blogspot.com/2010/03/mallocfree-interception-on-mac-os-x.html>)
}
return &mi_malloc_zone;
}
mi_decl_externc int malloc_jumpstart(uintptr_t cookie);
mi_decl_externc void _malloc_fork_prepare(void);
mi_decl_externc void _malloc_fork_parent(void);
mi_decl_externc void _malloc_fork_child(void);
static malloc_zone_t* mi_malloc_create_zone(vm_size_t size, unsigned flags) {
MI_UNUSED(size); MI_UNUSED(flags);
return mi_get_default_zone();
}
static malloc_zone_t* mi_malloc_default_zone (void) {
return mi_get_default_zone();
}
static malloc_zone_t* mi_malloc_default_purgeable_zone(void) {
return mi_get_default_zone();
}
static void mi_malloc_destroy_zone(malloc_zone_t* zone) {
MI_UNUSED(zone);
// nothing.
}
static kern_return_t mi_malloc_get_all_zones (task_t task, memory_reader_t mr, vm_address_t** addresses, unsigned* count) {
MI_UNUSED(task); MI_UNUSED(mr);
if (addresses != NULL) *addresses = NULL;
if (count != NULL) *count = 0;
return KERN_SUCCESS;
}
static const char* mi_malloc_get_zone_name(malloc_zone_t* zone) {
return (zone == NULL ? mi_malloc_zone.zone_name : zone->zone_name);
}
static void mi_malloc_set_zone_name(malloc_zone_t* zone, const char* name) {
MI_UNUSED(zone); MI_UNUSED(name);
}
static int mi_malloc_jumpstart(uintptr_t cookie) {
MI_UNUSED(cookie);
return 1; // or 0 for no error?
}
static void mi__malloc_fork_prepare(void) {
// nothing
}
static void mi__malloc_fork_parent(void) {
// nothing
}
static void mi__malloc_fork_child(void) {
// nothing
}
static void mi_malloc_printf(const char* fmt, ...) {
MI_UNUSED(fmt);
}
static bool zone_check(malloc_zone_t* zone) {
MI_UNUSED(zone);
return true;
}
static malloc_zone_t* zone_from_ptr(const void* p) {
MI_UNUSED(p);
return mi_get_default_zone();
}
static void zone_log(malloc_zone_t* zone, void* p) {
MI_UNUSED(zone); MI_UNUSED(p);
}
static void zone_print(malloc_zone_t* zone, bool b) {
MI_UNUSED(zone); MI_UNUSED(b);
}
static void zone_print_ptr_info(void* p) {
MI_UNUSED(p);
}
static void zone_register(malloc_zone_t* zone) {
MI_UNUSED(zone);
}
static void zone_unregister(malloc_zone_t* zone) {
MI_UNUSED(zone);
}
// use interposing so `DYLD_INSERT_LIBRARIES` works without `DYLD_FORCE_FLAT_NAMESPACE=1`
// See: <https://books.google.com/books?id=K8vUkpOXhN4C&pg=PA73>
struct mi_interpose_s {
const void* replacement;
const void* target;
};
#define MI_INTERPOSE_FUN(oldfun,newfun) { (const void*)&newfun, (const void*)&oldfun }
#define MI_INTERPOSE_MI(fun) MI_INTERPOSE_FUN(fun,mi_##fun)
#define MI_INTERPOSE_ZONE(fun) MI_INTERPOSE_FUN(malloc_##fun,fun)
__attribute__((used)) static const struct mi_interpose_s _mi_zone_interposes[] __attribute__((section("__DATA, __interpose"))) =
{
MI_INTERPOSE_MI(malloc_create_zone),
MI_INTERPOSE_MI(malloc_default_purgeable_zone),
MI_INTERPOSE_MI(malloc_default_zone),
MI_INTERPOSE_MI(malloc_destroy_zone),
MI_INTERPOSE_MI(malloc_get_all_zones),
MI_INTERPOSE_MI(malloc_get_zone_name),
MI_INTERPOSE_MI(malloc_jumpstart),
MI_INTERPOSE_MI(malloc_printf),
MI_INTERPOSE_MI(malloc_set_zone_name),
MI_INTERPOSE_MI(_malloc_fork_child),
MI_INTERPOSE_MI(_malloc_fork_parent),
MI_INTERPOSE_MI(_malloc_fork_prepare),
MI_INTERPOSE_ZONE(zone_batch_free),
MI_INTERPOSE_ZONE(zone_batch_malloc),
MI_INTERPOSE_ZONE(zone_calloc),
MI_INTERPOSE_ZONE(zone_check),
MI_INTERPOSE_ZONE(zone_free),
MI_INTERPOSE_ZONE(zone_from_ptr),
MI_INTERPOSE_ZONE(zone_log),
MI_INTERPOSE_ZONE(zone_malloc),
MI_INTERPOSE_ZONE(zone_memalign),
MI_INTERPOSE_ZONE(zone_print),
MI_INTERPOSE_ZONE(zone_print_ptr_info),
MI_INTERPOSE_ZONE(zone_realloc),
MI_INTERPOSE_ZONE(zone_register),
MI_INTERPOSE_ZONE(zone_unregister),
MI_INTERPOSE_ZONE(zone_valloc)
};
#else
// ------------------------------------------------------
// hook into the zone api's without interposing
// This is the official way of adding an allocator but
// it seems less robust than using interpose.
// ------------------------------------------------------
static inline malloc_zone_t* mi_get_default_zone(void)
{
// The first returned zone is the real default
malloc_zone_t** zones = NULL;
unsigned count = 0;
kern_return_t ret = malloc_get_all_zones(0, NULL, (vm_address_t**)&zones, &count);
if (ret == KERN_SUCCESS && count > 0) {
return zones[0];
}
else {
// fallback
return malloc_default_zone();
}
}
#if defined(__clang__)
__attribute__((constructor(0)))
#else
__attribute__((constructor)) // seems not supported by g++-11 on the M1
#endif
static void _mi_macos_override_malloc(void) {
malloc_zone_t* purgeable_zone = NULL;
#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6)
// force the purgeable zone to exist to avoid strange bugs
if (malloc_default_purgeable_zone) {
purgeable_zone = malloc_default_purgeable_zone();
}
#endif
// Register our zone.
// thomcc: I think this is still needed to put us in the zone list.
malloc_zone_register(&mi_malloc_zone);
// Unregister the default zone, this makes our zone the new default
// as that was the last registered.
malloc_zone_t *default_zone = mi_get_default_zone();
// thomcc: Unsure if the next test is *always* false or just false in the
// cases I've tried. I'm also unsure if the code inside is needed. at all
if (default_zone != &mi_malloc_zone) {
malloc_zone_unregister(default_zone);
// Reregister the default zone so free and realloc in that zone keep working.
malloc_zone_register(default_zone);
}
// Unregister, and re-register the purgeable_zone to avoid bugs if it occurs
// earlier than the default zone.
if (purgeable_zone != NULL) {
malloc_zone_unregister(purgeable_zone);
malloc_zone_register(purgeable_zone);
}
}
#endif // MI_OSX_INTERPOSE
#endif // MI_MALLOC_OVERRIDE

9
3rdparty/mimalloc/src/prim/osx/prim.c vendored Normal file
View File

@ -0,0 +1,9 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// We use the unix/prim.c with the mmap API on macOSX
#include "../unix/prim.c"

24
3rdparty/mimalloc/src/prim/prim.c vendored Normal file
View File

@ -0,0 +1,24 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// Select the implementation of the primitives
// depending on the OS.
#if defined(_WIN32)
#include "windows/prim.c" // VirtualAlloc (Windows)
#elif defined(__APPLE__)
#include "osx/prim.c" // macOSX (actually defers to mmap in unix/prim.c)
#elif defined(__wasi__)
#define MI_USE_SBRK
#include "wasi/prim.c" // memory-grow or sbrk (Wasm)
#else
#include "unix/prim.c" // mmap() (Linux, macOSX, BSD, Illumnos, Haiku, DragonFly, etc.)
#endif

9
3rdparty/mimalloc/src/prim/readme.md vendored Normal file
View File

@ -0,0 +1,9 @@
## Portability Primitives
This is the portability layer where all primitives needed from the OS are defined.
- `include/mimalloc/prim.h`: primitive portability API definition.
- `prim.c`: Selects one of `unix/prim.c`, `wasi/prim.c`, or `windows/prim.c` depending on the host platform
(and on macOS, `osx/prim.c` defers to `unix/prim.c`).
Note: still work in progress, there may still be places in the sources that still depend on OS ifdef's.

859
3rdparty/mimalloc/src/prim/unix/prim.c vendored Normal file
View File

@ -0,0 +1,859 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// This file is included in `src/prim/prim.c`
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE // ensure mmap flags and syscall are defined
#endif
#if defined(__sun)
// illumos provides new mman.h api when any of these are defined
// otherwise the old api based on caddr_t which predates the void pointers one.
// stock solaris provides only the former, chose to atomically to discard those
// flags only here rather than project wide tough.
#undef _XOPEN_SOURCE
#undef _POSIX_C_SOURCE
#endif
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
#include <sys/mman.h> // mmap
#include <unistd.h> // sysconf
#if defined(__linux__)
#include <features.h>
#include <fcntl.h>
#if defined(__GLIBC__)
#include <linux/mman.h> // linux mmap flags
#else
#include <sys/mman.h>
#endif
#elif defined(__APPLE__)
#include <TargetConditionals.h>
#if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR
#include <mach/vm_statistics.h>
#endif
#elif defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/param.h>
#if __FreeBSD_version >= 1200000
#include <sys/cpuset.h>
#include <sys/domainset.h>
#endif
#include <sys/sysctl.h>
#endif
#if !defined(__HAIKU__) && !defined(__APPLE__) && !defined(__CYGWIN__)
#define MI_HAS_SYSCALL_H
#include <sys/syscall.h>
#endif
//------------------------------------------------------------------------------------
// Use syscalls for some primitives to allow for libraries that override open/read/close etc.
// and do allocation themselves; using syscalls prevents recursion when mimalloc is
// still initializing (issue #713)
//------------------------------------------------------------------------------------
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_open) && defined(SYS_close) && defined(SYS_read) && defined(SYS_access)
static int mi_prim_open(const char* fpath, int open_flags) {
return syscall(SYS_open,fpath,open_flags,0);
}
static ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) {
return syscall(SYS_read,fd,buf,bufsize);
}
static int mi_prim_close(int fd) {
return syscall(SYS_close,fd);
}
static int mi_prim_access(const char *fpath, int mode) {
return syscall(SYS_access,fpath,mode);
}
#elif !defined(__APPLE__) // avoid unused warnings
static int mi_prim_open(const char* fpath, int open_flags) {
return open(fpath,open_flags);
}
static ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) {
return read(fd,buf,bufsize);
}
static int mi_prim_close(int fd) {
return close(fd);
}
static int mi_prim_access(const char *fpath, int mode) {
return access(fpath,mode);
}
#endif
//---------------------------------------------
// init
//---------------------------------------------
static bool unix_detect_overcommit(void) {
bool os_overcommit = true;
#if defined(__linux__)
int fd = mi_prim_open("/proc/sys/vm/overcommit_memory", O_RDONLY);
if (fd >= 0) {
char buf[32];
ssize_t nread = mi_prim_read(fd, &buf, sizeof(buf));
mi_prim_close(fd);
// <https://www.kernel.org/doc/Documentation/vm/overcommit-accounting>
// 0: heuristic overcommit, 1: always overcommit, 2: never overcommit (ignore NORESERVE)
if (nread >= 1) {
os_overcommit = (buf[0] == '0' || buf[0] == '1');
}
}
#elif defined(__FreeBSD__)
int val = 0;
size_t olen = sizeof(val);
if (sysctlbyname("vm.overcommit", &val, &olen, NULL, 0) == 0) {
os_overcommit = (val != 0);
}
#else
// default: overcommit is true
#endif
return os_overcommit;
}
void _mi_prim_mem_init( mi_os_mem_config_t* config ) {
long psize = sysconf(_SC_PAGESIZE);
if (psize > 0) {
config->page_size = (size_t)psize;
config->alloc_granularity = (size_t)psize;
}
config->large_page_size = 2*MI_MiB; // TODO: can we query the OS for this?
config->has_overcommit = unix_detect_overcommit();
config->must_free_whole = false; // mmap can free in parts
config->has_virtual_reserve = true; // todo: check if this true for NetBSD? (for anonymous mmap with PROT_NONE)
}
//---------------------------------------------
// free
//---------------------------------------------
int _mi_prim_free(void* addr, size_t size ) {
bool err = (munmap(addr, size) == -1);
return (err ? errno : 0);
}
//---------------------------------------------
// mmap
//---------------------------------------------
static int unix_madvise(void* addr, size_t size, int advice) {
#if defined(__sun)
return madvise((caddr_t)addr, size, advice); // Solaris needs cast (issue #520)
#else
return madvise(addr, size, advice);
#endif
}
static void* unix_mmap_prim(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) {
MI_UNUSED(try_alignment);
void* p = NULL;
#if defined(MAP_ALIGNED) // BSD
if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) {
size_t n = mi_bsr(try_alignment);
if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB
p = mmap(addr, size, protect_flags, flags | MAP_ALIGNED(n), fd, 0);
if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) {
int err = errno;
_mi_warning_message("unable to directly request aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, addr);
}
if (p!=MAP_FAILED) return p;
// fall back to regular mmap
}
}
#elif defined(MAP_ALIGN) // Solaris
if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) {
p = mmap((void*)try_alignment, size, protect_flags, flags | MAP_ALIGN, fd, 0); // addr parameter is the required alignment
if (p!=MAP_FAILED) return p;
// fall back to regular mmap
}
#endif
#if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED)
// on 64-bit systems, use the virtual address area after 2TiB for 4MiB aligned allocations
if (addr == NULL) {
void* hint = _mi_os_get_aligned_hint(try_alignment, size);
if (hint != NULL) {
p = mmap(hint, size, protect_flags, flags, fd, 0);
if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) {
#if MI_TRACK_ENABLED // asan sometimes does not instrument errno correctly?
int err = 0;
#else
int err = errno;
#endif
_mi_warning_message("unable to directly request hinted aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, hint);
}
if (p!=MAP_FAILED) return p;
// fall back to regular mmap
}
}
#endif
// regular mmap
p = mmap(addr, size, protect_flags, flags, fd, 0);
if (p!=MAP_FAILED) return p;
// failed to allocate
return NULL;
}
static int unix_mmap_fd(void) {
#if defined(VM_MAKE_TAG)
// macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99)
int os_tag = (int)mi_option_get(mi_option_os_tag);
if (os_tag < 100 || os_tag > 255) { os_tag = 100; }
return VM_MAKE_TAG(os_tag);
#else
return -1;
#endif
}
static void* unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) {
#if !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#if !defined(MAP_NORESERVE)
#define MAP_NORESERVE 0
#endif
void* p = NULL;
const int fd = unix_mmap_fd();
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
if (_mi_os_has_overcommit()) {
flags |= MAP_NORESERVE;
}
#if defined(PROT_MAX)
protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD
#endif
// huge page allocation
if ((large_only || _mi_os_use_large_page(size, try_alignment)) && allow_large) {
static _Atomic(size_t) large_page_try_ok; // = 0;
size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
if (!large_only && try_ok > 0) {
// If the OS is not configured for large OS pages, or the user does not have
// enough permission, the `mmap` will always fail (but it might also fail for other reasons).
// Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times
// to avoid too many failing calls to mmap.
mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
}
else {
int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux
int lfd = fd;
#ifdef MAP_ALIGNED_SUPER
lflags |= MAP_ALIGNED_SUPER;
#endif
#ifdef MAP_HUGETLB
lflags |= MAP_HUGETLB;
#endif
#ifdef MAP_HUGE_1GB
static bool mi_huge_pages_available = true;
if ((size % MI_GiB) == 0 && mi_huge_pages_available) {
lflags |= MAP_HUGE_1GB;
}
else
#endif
{
#ifdef MAP_HUGE_2MB
lflags |= MAP_HUGE_2MB;
#endif
}
#ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB
lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
#endif
if (large_only || lflags != flags) {
// try large OS page allocation
*is_large = true;
p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd);
#ifdef MAP_HUGE_1GB
if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) {
mi_huge_pages_available = false; // don't try huge 1GiB pages again
_mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (errno: %i)\n", errno);
lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB);
p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd);
}
#endif
if (large_only) return p;
if (p == NULL) {
mi_atomic_store_release(&large_page_try_ok, (size_t)8); // on error, don't try again for the next N allocations
}
}
}
}
// regular allocation
if (p == NULL) {
*is_large = false;
p = unix_mmap_prim(addr, size, try_alignment, protect_flags, flags, fd);
if (p != NULL) {
#if defined(MADV_HUGEPAGE)
// Many Linux systems don't allow MAP_HUGETLB but they support instead
// transparent huge pages (THP). Generally, it is not required to call `madvise` with MADV_HUGE
// though since properly aligned allocations will already use large pages if available
// in that case -- in particular for our large regions (in `memory.c`).
// However, some systems only allow THP if called with explicit `madvise`, so
// when large OS pages are enabled for mimalloc, we call `madvise` anyways.
if (allow_large && _mi_os_use_large_page(size, try_alignment)) {
if (unix_madvise(p, size, MADV_HUGEPAGE) == 0) {
*is_large = true; // possibly
};
}
#elif defined(__sun)
if (allow_large && _mi_os_use_large_page(size, try_alignment)) {
struct memcntl_mha cmd = {0};
cmd.mha_pagesize = large_os_page_size;
cmd.mha_cmd = MHA_MAPSIZE_VA;
if (memcntl((caddr_t)p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) {
*is_large = true;
}
}
#endif
}
}
return p;
}
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0);
*is_zero = true;
int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE);
*addr = unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : errno);
}
//---------------------------------------------
// Commit/Reset
//---------------------------------------------
static void unix_mprotect_hint(int err) {
#if defined(__linux__) && (MI_SECURE>=2) // guard page around every mimalloc page
if (err == ENOMEM) {
_mi_warning_message("The next warning may be caused by a low memory map limit.\n"
" On Linux this is controlled by the vm.max_map_count -- maybe increase it?\n"
" For example: sudo sysctl -w vm.max_map_count=262144\n");
}
#else
MI_UNUSED(err);
#endif
}
int _mi_prim_commit(void* start, size_t size, bool* is_zero) {
// commit: ensure we can access the area
// note: we may think that *is_zero can be true since the memory
// was either from mmap PROT_NONE, or from decommit MADV_DONTNEED, but
// we sometimes call commit on a range with still partially committed
// memory and `mprotect` does not zero the range.
*is_zero = false;
int err = mprotect(start, size, (PROT_READ | PROT_WRITE));
if (err != 0) {
err = errno;
unix_mprotect_hint(err);
}
return err;
}
int _mi_prim_decommit(void* start, size_t size, bool* needs_recommit) {
int err = 0;
// decommit: use MADV_DONTNEED as it decreases rss immediately (unlike MADV_FREE)
err = unix_madvise(start, size, MADV_DONTNEED);
#if !MI_DEBUG && !MI_SECURE
*needs_recommit = false;
#else
*needs_recommit = true;
mprotect(start, size, PROT_NONE);
#endif
/*
// decommit: use mmap with MAP_FIXED and PROT_NONE to discard the existing memory (and reduce rss)
*needs_recommit = true;
const int fd = unix_mmap_fd();
void* p = mmap(start, size, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), fd, 0);
if (p != start) { err = errno; }
*/
return err;
}
int _mi_prim_reset(void* start, size_t size) {
// We try to use `MADV_FREE` as that is the fastest. A drawback though is that it
// will not reduce the `rss` stats in tools like `top` even though the memory is available
// to other processes. With the default `MIMALLOC_PURGE_DECOMMITS=1` we ensure that by
// default `MADV_DONTNEED` is used though.
#if defined(MADV_FREE)
static _Atomic(size_t) advice = MI_ATOMIC_VAR_INIT(MADV_FREE);
int oadvice = (int)mi_atomic_load_relaxed(&advice);
int err;
while ((err = unix_madvise(start, size, oadvice)) != 0 && errno == EAGAIN) { errno = 0; };
if (err != 0 && errno == EINVAL && oadvice == MADV_FREE) {
// if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on
mi_atomic_store_release(&advice, (size_t)MADV_DONTNEED);
err = unix_madvise(start, size, MADV_DONTNEED);
}
#else
int err = unix_madvise(start, size, MADV_DONTNEED);
#endif
return err;
}
int _mi_prim_protect(void* start, size_t size, bool protect) {
int err = mprotect(start, size, protect ? PROT_NONE : (PROT_READ | PROT_WRITE));
if (err != 0) { err = errno; }
unix_mprotect_hint(err);
return err;
}
//---------------------------------------------
// Huge page allocation
//---------------------------------------------
#if (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__) && !defined(__CYGWIN__)
#ifndef MPOL_PREFERRED
#define MPOL_PREFERRED 1
#endif
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_mbind)
static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags);
}
#else
static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
MI_UNUSED(start); MI_UNUSED(len); MI_UNUSED(mode); MI_UNUSED(nmask); MI_UNUSED(maxnode); MI_UNUSED(flags);
return 0;
}
#endif
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
bool is_large = true;
*is_zero = true;
*addr = unix_mmap(hint_addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large);
if (*addr != NULL && numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes
unsigned long numa_mask = (1UL << numa_node);
// TODO: does `mbind` work correctly for huge OS pages? should we
// use `set_mempolicy` before calling mmap instead?
// see: <https://lkml.org/lkml/2017/2/9/875>
long err = mi_prim_mbind(*addr, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0);
if (err != 0) {
err = errno;
_mi_warning_message("failed to bind huge (1GiB) pages to numa node %d (error: %d (0x%x))\n", numa_node, err, err);
}
}
return (*addr != NULL ? 0 : errno);
}
#else
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node);
*is_zero = false;
*addr = NULL;
return ENOMEM;
}
#endif
//---------------------------------------------
// NUMA nodes
//---------------------------------------------
#if defined(__linux__)
#include <stdio.h> // snprintf
size_t _mi_prim_numa_node(void) {
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_getcpu)
unsigned long node = 0;
unsigned long ncpu = 0;
long err = syscall(SYS_getcpu, &ncpu, &node, NULL);
if (err != 0) return 0;
return node;
#else
return 0;
#endif
}
size_t _mi_prim_numa_node_count(void) {
char buf[128];
unsigned node = 0;
for(node = 0; node < 256; node++) {
// enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation)
snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1);
if (mi_prim_access(buf,R_OK) != 0) break;
}
return (node+1);
}
#elif defined(__FreeBSD__) && __FreeBSD_version >= 1200000
size_t _mi_prim_numa_node(void) {
domainset_t dom;
size_t node;
int policy;
if (cpuset_getdomain(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(dom), &dom, &policy) == -1) return 0ul;
for (node = 0; node < MAXMEMDOM; node++) {
if (DOMAINSET_ISSET(node, &dom)) return node;
}
return 0ul;
}
size_t _mi_prim_numa_node_count(void) {
size_t ndomains = 0;
size_t len = sizeof(ndomains);
if (sysctlbyname("vm.ndomains", &ndomains, &len, NULL, 0) == -1) return 0ul;
return ndomains;
}
#elif defined(__DragonFly__)
size_t _mi_prim_numa_node(void) {
// TODO: DragonFly does not seem to provide any userland means to get this information.
return 0ul;
}
size_t _mi_prim_numa_node_count(void) {
size_t ncpus = 0, nvirtcoresperphys = 0;
size_t len = sizeof(size_t);
if (sysctlbyname("hw.ncpu", &ncpus, &len, NULL, 0) == -1) return 0ul;
if (sysctlbyname("hw.cpu_topology_ht_ids", &nvirtcoresperphys, &len, NULL, 0) == -1) return 0ul;
return nvirtcoresperphys * ncpus;
}
#else
size_t _mi_prim_numa_node(void) {
return 0;
}
size_t _mi_prim_numa_node_count(void) {
return 1;
}
#endif
// ----------------------------------------------------------------
// Clock
// ----------------------------------------------------------------
#include <time.h>
#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC)
mi_msecs_t _mi_prim_clock_now(void) {
struct timespec t;
#ifdef CLOCK_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &t);
#else
clock_gettime(CLOCK_REALTIME, &t);
#endif
return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000);
}
#else
// low resolution timer
mi_msecs_t _mi_prim_clock_now(void) {
#if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0)
return (mi_msecs_t)clock();
#elif (CLOCKS_PER_SEC < 1000)
return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC);
#else
return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000);
#endif
}
#endif
//----------------------------------------------------------------
// Process info
//----------------------------------------------------------------
#if defined(__unix__) || defined(__unix) || defined(unix) || defined(__APPLE__) || defined(__HAIKU__)
#include <stdio.h>
#include <unistd.h>
#include <sys/resource.h>
#if defined(__APPLE__)
#include <mach/mach.h>
#endif
#if defined(__HAIKU__)
#include <kernel/OS.h>
#endif
static mi_msecs_t timeval_secs(const struct timeval* tv) {
return ((mi_msecs_t)tv->tv_sec * 1000L) + ((mi_msecs_t)tv->tv_usec / 1000L);
}
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
pinfo->utime = timeval_secs(&rusage.ru_utime);
pinfo->stime = timeval_secs(&rusage.ru_stime);
#if !defined(__HAIKU__)
pinfo->page_faults = rusage.ru_majflt;
#endif
#if defined(__HAIKU__)
// Haiku does not have (yet?) a way to
// get these stats per process
thread_info tid;
area_info mem;
ssize_t c;
get_thread_info(find_thread(0), &tid);
while (get_next_area_info(tid.team, &c, &mem) == B_OK) {
pinfo->peak_rss += mem.ram_size;
}
pinfo->page_faults = 0;
#elif defined(__APPLE__)
pinfo->peak_rss = rusage.ru_maxrss; // macos reports in bytes
#ifdef MACH_TASK_BASIC_INFO
struct mach_task_basic_info info;
mach_msg_type_number_t infoCount = MACH_TASK_BASIC_INFO_COUNT;
if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) {
pinfo->current_rss = (size_t)info.resident_size;
}
#else
struct task_basic_info info;
mach_msg_type_number_t infoCount = TASK_BASIC_INFO_COUNT;
if (task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) {
pinfo->current_rss = (size_t)info.resident_size;
}
#endif
#else
pinfo->peak_rss = rusage.ru_maxrss * 1024; // Linux/BSD report in KiB
#endif
// use defaults for commit
}
#else
#ifndef __wasi__
// WebAssembly instances are not processes
#pragma message("define a way to get process info")
#endif
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
// use defaults
MI_UNUSED(pinfo);
}
#endif
//----------------------------------------------------------------
// Output
//----------------------------------------------------------------
void _mi_prim_out_stderr( const char* msg ) {
fputs(msg,stderr);
}
//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------
#if !defined(MI_USE_ENVIRON) || (MI_USE_ENVIRON!=0)
// On Posix systemsr use `environ` to access environment variables
// even before the C runtime is initialized.
#if defined(__APPLE__) && defined(__has_include) && __has_include(<crt_externs.h>)
#include <crt_externs.h>
static char** mi_get_environ(void) {
return (*_NSGetEnviron());
}
#else
extern char** environ;
static char** mi_get_environ(void) {
return environ;
}
#endif
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
if (name==NULL) return false;
const size_t len = _mi_strlen(name);
if (len == 0) return false;
char** env = mi_get_environ();
if (env == NULL) return false;
// compare up to 10000 entries
for (int i = 0; i < 10000 && env[i] != NULL; i++) {
const char* s = env[i];
if (_mi_strnicmp(name, s, len) == 0 && s[len] == '=') { // case insensitive
// found it
_mi_strlcpy(result, s + len + 1, result_size);
return true;
}
}
return false;
}
#else
// fallback: use standard C `getenv` but this cannot be used while initializing the C runtime
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
// cannot call getenv() when still initializing the C runtime.
if (_mi_preloading()) return false;
const char* s = getenv(name);
if (s == NULL) {
// we check the upper case name too.
char buf[64+1];
size_t len = _mi_strnlen(name,sizeof(buf)-1);
for (size_t i = 0; i < len; i++) {
buf[i] = _mi_toupper(name[i]);
}
buf[len] = 0;
s = getenv(buf);
}
if (s == NULL || _mi_strnlen(s,result_size) >= result_size) return false;
_mi_strlcpy(result, s, result_size);
return true;
}
#endif // !MI_USE_ENVIRON
//----------------------------------------------------------------
// Random
//----------------------------------------------------------------
#if defined(__APPLE__)
#include <AvailabilityMacros.h>
#if defined(MAC_OS_X_VERSION_10_10) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_10
#include <CommonCrypto/CommonCryptoError.h>
#include <CommonCrypto/CommonRandom.h>
#endif
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
#if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15
// We prefere CCRandomGenerateBytes as it returns an error code while arc4random_buf
// may fail silently on macOS. See PR #390, and <https://opensource.apple.com/source/Libc/Libc-1439.40.11/gen/FreeBSD/arc4random.c.auto.html>
return (CCRandomGenerateBytes(buf, buf_len) == kCCSuccess);
#else
// fall back on older macOS
arc4random_buf(buf, buf_len);
return true;
#endif
}
#elif defined(__ANDROID__) || defined(__DragonFly__) || \
defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
defined(__sun)
#include <stdlib.h>
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
arc4random_buf(buf, buf_len);
return true;
}
#elif defined(__linux__) || defined(__HAIKU__)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
// Modern Linux provides `getrandom` but different distributions either use `sys/random.h` or `linux/random.h`
// and for the latter the actual `getrandom` call is not always defined.
// (see <https://stackoverflow.com/questions/45237324/why-doesnt-getrandom-compile>)
// We therefore use a syscall directly and fall back dynamically to /dev/urandom when needed.
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_getrandom)
#ifndef GRND_NONBLOCK
#define GRND_NONBLOCK (1)
#endif
static _Atomic(uintptr_t) no_getrandom; // = 0
if (mi_atomic_load_acquire(&no_getrandom)==0) {
ssize_t ret = syscall(SYS_getrandom, buf, buf_len, GRND_NONBLOCK);
if (ret >= 0) return (buf_len == (size_t)ret);
if (errno != ENOSYS) return false;
mi_atomic_store_release(&no_getrandom, (uintptr_t)1); // don't call again, and fall back to /dev/urandom
}
#endif
int flags = O_RDONLY;
#if defined(O_CLOEXEC)
flags |= O_CLOEXEC;
#endif
int fd = mi_prim_open("/dev/urandom", flags);
if (fd < 0) return false;
size_t count = 0;
while(count < buf_len) {
ssize_t ret = mi_prim_read(fd, (char*)buf + count, buf_len - count);
if (ret<=0) {
if (errno!=EAGAIN && errno!=EINTR) break;
}
else {
count += ret;
}
}
mi_prim_close(fd);
return (count==buf_len);
}
#else
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
return false;
}
#endif
//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------
#if defined(MI_USE_PTHREADS)
// use pthread local storage keys to detect thread ending
// (and used with MI_TLS_PTHREADS for the default heap)
pthread_key_t _mi_heap_default_key = (pthread_key_t)(-1);
static void mi_pthread_done(void* value) {
if (value!=NULL) {
_mi_thread_done((mi_heap_t*)value);
}
}
void _mi_prim_thread_init_auto_done(void) {
mi_assert_internal(_mi_heap_default_key == (pthread_key_t)(-1));
pthread_key_create(&_mi_heap_default_key, &mi_pthread_done);
}
void _mi_prim_thread_done_auto_done(void) {
// nothing to do
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
if (_mi_heap_default_key != (pthread_key_t)(-1)) { // can happen during recursive invocation on freeBSD
pthread_setspecific(_mi_heap_default_key, heap);
}
}
#else
void _mi_prim_thread_init_auto_done(void) {
// nothing
}
void _mi_prim_thread_done_auto_done(void) {
// nothing
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#endif

275
3rdparty/mimalloc/src/prim/wasi/prim.c vendored Normal file
View File

@ -0,0 +1,275 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// This file is included in `src/prim/prim.c`
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
//---------------------------------------------
// Initialize
//---------------------------------------------
void _mi_prim_mem_init( mi_os_mem_config_t* config ) {
config->page_size = 64*MI_KiB; // WebAssembly has a fixed page size: 64KiB
config->alloc_granularity = 16;
config->has_overcommit = false;
config->must_free_whole = true;
config->has_virtual_reserve = false;
}
//---------------------------------------------
// Free
//---------------------------------------------
int _mi_prim_free(void* addr, size_t size ) {
MI_UNUSED(addr); MI_UNUSED(size);
// wasi heap cannot be shrunk
return 0;
}
//---------------------------------------------
// Allocation: sbrk or memory_grow
//---------------------------------------------
#if defined(MI_USE_SBRK)
static void* mi_memory_grow( size_t size ) {
void* p = sbrk(size);
if (p == (void*)(-1)) return NULL;
#if !defined(__wasi__) // on wasi this is always zero initialized already (?)
memset(p,0,size);
#endif
return p;
}
#elif defined(__wasi__)
static void* mi_memory_grow( size_t size ) {
size_t base = (size > 0 ? __builtin_wasm_memory_grow(0,_mi_divide_up(size, _mi_os_page_size()))
: __builtin_wasm_memory_size(0));
if (base == SIZE_MAX) return NULL;
return (void*)(base * _mi_os_page_size());
}
#endif
#if defined(MI_USE_PTHREADS)
static pthread_mutex_t mi_heap_grow_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif
static void* mi_prim_mem_grow(size_t size, size_t try_alignment) {
void* p = NULL;
if (try_alignment <= 1) {
// `sbrk` is not thread safe in general so try to protect it (we could skip this on WASM but leave it in for now)
#if defined(MI_USE_PTHREADS)
pthread_mutex_lock(&mi_heap_grow_mutex);
#endif
p = mi_memory_grow(size);
#if defined(MI_USE_PTHREADS)
pthread_mutex_unlock(&mi_heap_grow_mutex);
#endif
}
else {
void* base = NULL;
size_t alloc_size = 0;
// to allocate aligned use a lock to try to avoid thread interaction
// between getting the current size and actual allocation
// (also, `sbrk` is not thread safe in general)
#if defined(MI_USE_PTHREADS)
pthread_mutex_lock(&mi_heap_grow_mutex);
#endif
{
void* current = mi_memory_grow(0); // get current size
if (current != NULL) {
void* aligned_current = mi_align_up_ptr(current, try_alignment); // and align from there to minimize wasted space
alloc_size = _mi_align_up( ((uint8_t*)aligned_current - (uint8_t*)current) + size, _mi_os_page_size());
base = mi_memory_grow(alloc_size);
}
}
#if defined(MI_USE_PTHREADS)
pthread_mutex_unlock(&mi_heap_grow_mutex);
#endif
if (base != NULL) {
p = mi_align_up_ptr(base, try_alignment);
if ((uint8_t*)p + size > (uint8_t*)base + alloc_size) {
// another thread used wasm_memory_grow/sbrk in-between and we do not have enough
// space after alignment. Give up (and waste the space as we cannot shrink :-( )
// (in `mi_os_mem_alloc_aligned` this will fall back to overallocation to align)
p = NULL;
}
}
}
/*
if (p == NULL) {
_mi_warning_message("unable to allocate sbrk/wasm_memory_grow OS memory (%zu bytes, %zu alignment)\n", size, try_alignment);
errno = ENOMEM;
return NULL;
}
*/
mi_assert_internal( p == NULL || try_alignment == 0 || (uintptr_t)p % try_alignment == 0 );
return p;
}
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
MI_UNUSED(allow_large); MI_UNUSED(commit);
*is_large = false;
*is_zero = false;
*addr = mi_prim_mem_grow(size, try_alignment);
return (*addr != NULL ? 0 : ENOMEM);
}
//---------------------------------------------
// Commit/Reset/Protect
//---------------------------------------------
int _mi_prim_commit(void* addr, size_t size, bool* is_zero) {
MI_UNUSED(addr); MI_UNUSED(size);
*is_zero = false;
return 0;
}
int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) {
MI_UNUSED(addr); MI_UNUSED(size);
*needs_recommit = false;
return 0;
}
int _mi_prim_reset(void* addr, size_t size) {
MI_UNUSED(addr); MI_UNUSED(size);
return 0;
}
int _mi_prim_protect(void* addr, size_t size, bool protect) {
MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(protect);
return 0;
}
//---------------------------------------------
// Huge pages and NUMA nodes
//---------------------------------------------
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node);
*is_zero = true;
*addr = NULL;
return ENOSYS;
}
size_t _mi_prim_numa_node(void) {
return 0;
}
size_t _mi_prim_numa_node_count(void) {
return 1;
}
//----------------------------------------------------------------
// Clock
//----------------------------------------------------------------
#include <time.h>
#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC)
mi_msecs_t _mi_prim_clock_now(void) {
struct timespec t;
#ifdef CLOCK_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &t);
#else
clock_gettime(CLOCK_REALTIME, &t);
#endif
return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000);
}
#else
// low resolution timer
mi_msecs_t _mi_prim_clock_now(void) {
#if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0)
return (mi_msecs_t)clock();
#elif (CLOCKS_PER_SEC < 1000)
return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC);
#else
return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000);
#endif
}
#endif
//----------------------------------------------------------------
// Process info
//----------------------------------------------------------------
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
// use defaults
MI_UNUSED(pinfo);
}
//----------------------------------------------------------------
// Output
//----------------------------------------------------------------
void _mi_prim_out_stderr( const char* msg ) {
fputs(msg,stderr);
}
//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
// cannot call getenv() when still initializing the C runtime.
if (_mi_preloading()) return false;
const char* s = getenv(name);
if (s == NULL) {
// we check the upper case name too.
char buf[64+1];
size_t len = _mi_strnlen(name,sizeof(buf)-1);
for (size_t i = 0; i < len; i++) {
buf[i] = _mi_toupper(name[i]);
}
buf[len] = 0;
s = getenv(buf);
}
if (s == NULL || _mi_strnlen(s,result_size) >= result_size) return false;
_mi_strlcpy(result, s, result_size);
return true;
}
//----------------------------------------------------------------
// Random
//----------------------------------------------------------------
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
return false;
}
//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------
void _mi_prim_thread_init_auto_done(void) {
// nothing
}
void _mi_prim_thread_done_auto_done(void) {
// nothing
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}

View File

@ -0,0 +1,61 @@
<WindowsPerformanceRecorder Version="1.0">
<Profiles>
<SystemCollector Id="WPR_initiated_WprApp_WPR_System_Collector" Name="WPR_initiated_WprApp_WPR System Collector">
<BufferSize Value="1024" />
<Buffers Value="100" />
</SystemCollector>
<EventCollector Id="Mimalloc_Collector" Name="Mimalloc Collector">
<BufferSize Value="1024" />
<Buffers Value="100" />
</EventCollector>
<SystemProvider Id="WPR_initiated_WprApp_WPR_System_Collector_Provider">
<Keywords>
<Keyword Value="Loader" />
</Keywords>
</SystemProvider>
<EventProvider Id="MimallocEventProvider" Name="138f4dbb-ee04-4899-aa0a-572ad4475779" NonPagedMemory="true" Stack="true">
<EventFilters FilterIn="true">
<EventId Value="100" />
<EventId Value="101" />
</EventFilters>
</EventProvider>
<Profile Id="CustomHeap.Verbose.File" Name="CustomHeap" Description="RunningProfile:CustomHeap.Verbose.File" LoggingMode="File" DetailLevel="Verbose">
<ProblemCategories>
<ProblemCategory Value="Resource Analysis" />
</ProblemCategories>
<Collectors>
<SystemCollectorId Value="WPR_initiated_WprApp_WPR_System_Collector">
<SystemProviderId Value="WPR_initiated_WprApp_WPR_System_Collector_Provider" />
</SystemCollectorId>
<EventCollectorId Value="Mimalloc_Collector">
<EventProviders>
<EventProviderId Value="MimallocEventProvider" >
<Keywords>
<Keyword Value="100"/>
<Keyword Value="101"/>
</Keywords>
</EventProviderId>
</EventProviders>
</EventCollectorId>
</Collectors>
<TraceMergeProperties>
<TraceMergeProperty Id="BaseVerboseTraceMergeProperties" Name="BaseTraceMergeProperties">
<DeletePreMergedTraceFiles Value="true" />
<FileCompression Value="false" />
<InjectOnly Value="false" />
<SkipMerge Value="false" />
<CustomEvents>
<CustomEvent Value="ImageId" />
<CustomEvent Value="BuildInfo" />
<CustomEvent Value="VolumeMapping" />
<CustomEvent Value="EventMetadata" />
<CustomEvent Value="PerfTrackMetadata" />
<CustomEvent Value="WinSAT" />
<CustomEvent Value="NetworkInterface" />
</CustomEvents>
</TraceMergeProperty>
</TraceMergeProperties>
</Profile>
</Profiles>
</WindowsPerformanceRecorder>

905
3rdparty/mimalloc/src/prim/windows/etw.h vendored Normal file
View File

@ -0,0 +1,905 @@
//**********************************************************************`
//* This is an include file generated by Message Compiler. *`
//* *`
//* Copyright (c) Microsoft Corporation. All Rights Reserved. *`
//**********************************************************************`
#pragma once
//*****************************************************************************
//
// Notes on the ETW event code generated by MC:
//
// - Structures and arrays of structures are treated as an opaque binary blob.
// The caller is responsible for packing the data for the structure into a
// single region of memory, with no padding between values. The macro will
// have an extra parameter for the length of the blob.
// - Arrays of nul-terminated strings must be packed by the caller into a
// single binary blob containing the correct number of strings, with a nul
// after each string. The size of the blob is specified in characters, and
// includes the final nul.
// - Arrays of SID are treated as a single binary blob. The caller is
// responsible for packing the SID values into a single region of memory with
// no padding.
// - The length attribute on the data element in the manifest is significant
// for values with intype win:UnicodeString, win:AnsiString, or win:Binary.
// The length attribute must be specified for win:Binary, and is optional for
// win:UnicodeString and win:AnsiString (if no length is given, the strings
// are assumed to be nul-terminated). For win:UnicodeString, the length is
// measured in characters, not bytes.
// - For an array of win:UnicodeString, win:AnsiString, or win:Binary, the
// length attribute applies to every value in the array, so every value in
// the array must have the same length. The values in the array are provided
// to the macro via a single pointer -- the caller is responsible for packing
// all of the values into a single region of memory with no padding between
// values.
// - Values of type win:CountedUnicodeString, win:CountedAnsiString, and
// win:CountedBinary can be generated and collected on Vista or later.
// However, they may not decode properly without the Windows 10 2018 Fall
// Update.
// - Arrays of type win:CountedUnicodeString, win:CountedAnsiString, and
// win:CountedBinary must be packed by the caller into a single region of
// memory. The format for each item is a UINT16 byte-count followed by that
// many bytes of data. When providing the array to the generated macro, you
// must provide the total size of the packed array data, including the UINT16
// sizes for each item. In the case of win:CountedUnicodeString, the data
// size is specified in WCHAR (16-bit) units. In the case of
// win:CountedAnsiString and win:CountedBinary, the data size is specified in
// bytes.
//
//*****************************************************************************
#include <wmistr.h>
#include <evntrace.h>
#include <evntprov.h>
#ifndef ETW_INLINE
#ifdef _ETW_KM_
// In kernel mode, save stack space by never inlining templates.
#define ETW_INLINE DECLSPEC_NOINLINE __inline
#else
// In user mode, save code size by inlining templates as appropriate.
#define ETW_INLINE __inline
#endif
#endif // ETW_INLINE
#if defined(__cplusplus)
extern "C" {
#endif
//
// MCGEN_DISABLE_PROVIDER_CODE_GENERATION macro:
// Define this macro to have the compiler skip the generated functions in this
// header.
//
#ifndef MCGEN_DISABLE_PROVIDER_CODE_GENERATION
//
// MCGEN_USE_KERNEL_MODE_APIS macro:
// Controls whether the generated code uses kernel-mode or user-mode APIs.
// - Set to 0 to use Windows user-mode APIs such as EventRegister.
// - Set to 1 to use Windows kernel-mode APIs such as EtwRegister.
// Default is based on whether the _ETW_KM_ macro is defined (i.e. by wdm.h).
// Note that the APIs can also be overridden directly, e.g. by setting the
// MCGEN_EVENTWRITETRANSFER or MCGEN_EVENTREGISTER macros.
//
#ifndef MCGEN_USE_KERNEL_MODE_APIS
#ifdef _ETW_KM_
#define MCGEN_USE_KERNEL_MODE_APIS 1
#else
#define MCGEN_USE_KERNEL_MODE_APIS 0
#endif
#endif // MCGEN_USE_KERNEL_MODE_APIS
//
// MCGEN_HAVE_EVENTSETINFORMATION macro:
// Controls how McGenEventSetInformation uses the EventSetInformation API.
// - Set to 0 to disable the use of EventSetInformation
// (McGenEventSetInformation will always return an error).
// - Set to 1 to directly invoke MCGEN_EVENTSETINFORMATION.
// - Set to 2 to to locate EventSetInformation at runtime via GetProcAddress
// (user-mode) or MmGetSystemRoutineAddress (kernel-mode).
// Default is determined as follows:
// - If MCGEN_EVENTSETINFORMATION has been customized, set to 1
// (i.e. use MCGEN_EVENTSETINFORMATION).
// - Else if the target OS version has EventSetInformation, set to 1
// (i.e. use MCGEN_EVENTSETINFORMATION).
// - Else set to 2 (i.e. try to dynamically locate EventSetInformation).
// Note that an McGenEventSetInformation function will only be generated if one
// or more provider in a manifest has provider traits.
//
#ifndef MCGEN_HAVE_EVENTSETINFORMATION
#ifdef MCGEN_EVENTSETINFORMATION // if MCGEN_EVENTSETINFORMATION has been customized,
#define MCGEN_HAVE_EVENTSETINFORMATION 1 // directly invoke MCGEN_EVENTSETINFORMATION(...).
#elif MCGEN_USE_KERNEL_MODE_APIS // else if using kernel-mode APIs,
#if NTDDI_VERSION >= 0x06040000 // if target OS is Windows 10 or later,
#define MCGEN_HAVE_EVENTSETINFORMATION 1 // directly invoke MCGEN_EVENTSETINFORMATION(...).
#else // else
#define MCGEN_HAVE_EVENTSETINFORMATION 2 // find "EtwSetInformation" via MmGetSystemRoutineAddress.
#endif // else (using user-mode APIs)
#else // if target OS and SDK is Windows 8 or later,
#if WINVER >= 0x0602 && defined(EVENT_FILTER_TYPE_SCHEMATIZED)
#define MCGEN_HAVE_EVENTSETINFORMATION 1 // directly invoke MCGEN_EVENTSETINFORMATION(...).
#else // else
#define MCGEN_HAVE_EVENTSETINFORMATION 2 // find "EventSetInformation" via GetModuleHandleExW/GetProcAddress.
#endif
#endif
#endif // MCGEN_HAVE_EVENTSETINFORMATION
//
// MCGEN Override Macros
//
// The following override macros may be defined before including this header
// to control the APIs used by this header:
//
// - MCGEN_EVENTREGISTER
// - MCGEN_EVENTUNREGISTER
// - MCGEN_EVENTSETINFORMATION
// - MCGEN_EVENTWRITETRANSFER
//
// If the the macro is undefined, the MC implementation will default to the
// corresponding ETW APIs. For example, if the MCGEN_EVENTREGISTER macro is
// undefined, the EventRegister[MyProviderName] macro will use EventRegister
// in user mode and will use EtwRegister in kernel mode.
//
// To prevent issues from conflicting definitions of these macros, the value
// of the override macro will be used as a suffix in certain internal function
// names. Because of this, the override macros must follow certain rules:
//
// - The macro must be defined before any MC-generated header is included and
// must not be undefined or redefined after any MC-generated header is
// included. Different translation units (i.e. different .c or .cpp files)
// may set the macros to different values, but within a translation unit
// (within a single .c or .cpp file), the macro must be set once and not
// changed.
// - The override must be an object-like macro, not a function-like macro
// (i.e. the override macro must not have a parameter list).
// - The override macro's value must be a simple identifier, i.e. must be
// something that starts with a letter or '_' and contains only letters,
// numbers, and '_' characters.
// - If the override macro's value is the name of a second object-like macro,
// the second object-like macro must follow the same rules. (The override
// macro's value can also be the name of a function-like macro, in which
// case the function-like macro does not need to follow the same rules.)
//
// For example, the following will cause compile errors:
//
// #define MCGEN_EVENTWRITETRANSFER MyNamespace::MyClass::MyFunction // Value has non-identifier characters (colon).
// #define MCGEN_EVENTWRITETRANSFER GetEventWriteFunctionPointer(7) // Value has non-identifier characters (parentheses).
// #define MCGEN_EVENTWRITETRANSFER(h,e,a,r,c,d) EventWrite(h,e,c,d) // Override is defined as a function-like macro.
// #define MY_OBJECT_LIKE_MACRO MyNamespace::MyClass::MyEventWriteFunction
// #define MCGEN_EVENTWRITETRANSFER MY_OBJECT_LIKE_MACRO // Evaluates to something with non-identifier characters (colon).
//
// The following would be ok:
//
// #define MCGEN_EVENTWRITETRANSFER MyEventWriteFunction1 // OK, suffix will be "MyEventWriteFunction1".
// #define MY_OBJECT_LIKE_MACRO MyEventWriteFunction2
// #define MCGEN_EVENTWRITETRANSFER MY_OBJECT_LIKE_MACRO // OK, suffix will be "MyEventWriteFunction2".
// #define MY_FUNCTION_LIKE_MACRO(h,e,a,r,c,d) MyNamespace::MyClass::MyEventWriteFunction3(h,e,c,d)
// #define MCGEN_EVENTWRITETRANSFER MY_FUNCTION_LIKE_MACRO // OK, suffix will be "MY_FUNCTION_LIKE_MACRO".
//
#ifndef MCGEN_EVENTREGISTER
#if MCGEN_USE_KERNEL_MODE_APIS
#define MCGEN_EVENTREGISTER EtwRegister
#else
#define MCGEN_EVENTREGISTER EventRegister
#endif
#endif // MCGEN_EVENTREGISTER
#ifndef MCGEN_EVENTUNREGISTER
#if MCGEN_USE_KERNEL_MODE_APIS
#define MCGEN_EVENTUNREGISTER EtwUnregister
#else
#define MCGEN_EVENTUNREGISTER EventUnregister
#endif
#endif // MCGEN_EVENTUNREGISTER
#ifndef MCGEN_EVENTSETINFORMATION
#if MCGEN_USE_KERNEL_MODE_APIS
#define MCGEN_EVENTSETINFORMATION EtwSetInformation
#else
#define MCGEN_EVENTSETINFORMATION EventSetInformation
#endif
#endif // MCGEN_EVENTSETINFORMATION
#ifndef MCGEN_EVENTWRITETRANSFER
#if MCGEN_USE_KERNEL_MODE_APIS
#define MCGEN_EVENTWRITETRANSFER EtwWriteTransfer
#else
#define MCGEN_EVENTWRITETRANSFER EventWriteTransfer
#endif
#endif // MCGEN_EVENTWRITETRANSFER
//
// MCGEN_EVENT_ENABLED macro:
// Override to control how the EventWrite[EventName] macros determine whether
// an event is enabled. The default behavior is for EventWrite[EventName] to
// use the EventEnabled[EventName] macros.
//
#ifndef MCGEN_EVENT_ENABLED
#define MCGEN_EVENT_ENABLED(EventName) EventEnabled##EventName()
#endif
//
// MCGEN_EVENT_ENABLED_FORCONTEXT macro:
// Override to control how the EventWrite[EventName]_ForContext macros
// determine whether an event is enabled. The default behavior is for
// EventWrite[EventName]_ForContext to use the
// EventEnabled[EventName]_ForContext macros.
//
#ifndef MCGEN_EVENT_ENABLED_FORCONTEXT
#define MCGEN_EVENT_ENABLED_FORCONTEXT(pContext, EventName) EventEnabled##EventName##_ForContext(pContext)
#endif
//
// MCGEN_ENABLE_CHECK macro:
// Determines whether the specified event would be considered as enabled
// based on the state of the specified context. Slightly faster than calling
// McGenEventEnabled directly.
//
#ifndef MCGEN_ENABLE_CHECK
#define MCGEN_ENABLE_CHECK(Context, Descriptor) (Context.IsEnabled && McGenEventEnabled(&Context, &Descriptor))
#endif
#if !defined(MCGEN_TRACE_CONTEXT_DEF)
#define MCGEN_TRACE_CONTEXT_DEF
// This structure is for use by MC-generated code and should not be used directly.
typedef struct _MCGEN_TRACE_CONTEXT
{
TRACEHANDLE RegistrationHandle;
TRACEHANDLE Logger; // Used as pointer to provider traits.
ULONGLONG MatchAnyKeyword;
ULONGLONG MatchAllKeyword;
ULONG Flags;
ULONG IsEnabled;
UCHAR Level;
UCHAR Reserve;
USHORT EnableBitsCount;
PULONG EnableBitMask;
const ULONGLONG* EnableKeyWords;
const UCHAR* EnableLevel;
} MCGEN_TRACE_CONTEXT, *PMCGEN_TRACE_CONTEXT;
#endif // MCGEN_TRACE_CONTEXT_DEF
#if !defined(MCGEN_LEVEL_KEYWORD_ENABLED_DEF)
#define MCGEN_LEVEL_KEYWORD_ENABLED_DEF
//
// Determines whether an event with a given Level and Keyword would be
// considered as enabled based on the state of the specified context.
// Note that you may want to use MCGEN_ENABLE_CHECK instead of calling this
// function directly.
//
FORCEINLINE
BOOLEAN
McGenLevelKeywordEnabled(
_In_ PMCGEN_TRACE_CONTEXT EnableInfo,
_In_ UCHAR Level,
_In_ ULONGLONG Keyword
)
{
//
// Check if the event Level is lower than the level at which
// the channel is enabled.
// If the event Level is 0 or the channel is enabled at level 0,
// all levels are enabled.
//
if ((Level <= EnableInfo->Level) || // This also covers the case of Level == 0.
(EnableInfo->Level == 0)) {
//
// Check if Keyword is enabled
//
if ((Keyword == (ULONGLONG)0) ||
((Keyword & EnableInfo->MatchAnyKeyword) &&
((Keyword & EnableInfo->MatchAllKeyword) == EnableInfo->MatchAllKeyword))) {
return TRUE;
}
}
return FALSE;
}
#endif // MCGEN_LEVEL_KEYWORD_ENABLED_DEF
#if !defined(MCGEN_EVENT_ENABLED_DEF)
#define MCGEN_EVENT_ENABLED_DEF
//
// Determines whether the specified event would be considered as enabled based
// on the state of the specified context. Note that you may want to use
// MCGEN_ENABLE_CHECK instead of calling this function directly.
//
FORCEINLINE
BOOLEAN
McGenEventEnabled(
_In_ PMCGEN_TRACE_CONTEXT EnableInfo,
_In_ PCEVENT_DESCRIPTOR EventDescriptor
)
{
return McGenLevelKeywordEnabled(EnableInfo, EventDescriptor->Level, EventDescriptor->Keyword);
}
#endif // MCGEN_EVENT_ENABLED_DEF
#if !defined(MCGEN_CONTROL_CALLBACK)
#define MCGEN_CONTROL_CALLBACK
// This function is for use by MC-generated code and should not be used directly.
DECLSPEC_NOINLINE __inline
VOID
__stdcall
McGenControlCallbackV2(
_In_ LPCGUID SourceId,
_In_ ULONG ControlCode,
_In_ UCHAR Level,
_In_ ULONGLONG MatchAnyKeyword,
_In_ ULONGLONG MatchAllKeyword,
_In_opt_ PEVENT_FILTER_DESCRIPTOR FilterData,
_Inout_opt_ PVOID CallbackContext
)
/*++
Routine Description:
This is the notification callback for Windows Vista and later.
Arguments:
SourceId - The GUID that identifies the session that enabled the provider.
ControlCode - The parameter indicates whether the provider
is being enabled or disabled.
Level - The level at which the event is enabled.
MatchAnyKeyword - The bitmask of keywords that the provider uses to
determine the category of events that it writes.
MatchAllKeyword - This bitmask additionally restricts the category
of events that the provider writes.
FilterData - The provider-defined data.
CallbackContext - The context of the callback that is defined when the provider
called EtwRegister to register itself.
Remarks:
ETW calls this function to notify provider of enable/disable
--*/
{
PMCGEN_TRACE_CONTEXT Ctx = (PMCGEN_TRACE_CONTEXT)CallbackContext;
ULONG Ix;
#ifndef MCGEN_PRIVATE_ENABLE_CALLBACK_V2
UNREFERENCED_PARAMETER(SourceId);
UNREFERENCED_PARAMETER(FilterData);
#endif
if (Ctx == NULL) {
return;
}
switch (ControlCode) {
case EVENT_CONTROL_CODE_ENABLE_PROVIDER:
Ctx->Level = Level;
Ctx->MatchAnyKeyword = MatchAnyKeyword;
Ctx->MatchAllKeyword = MatchAllKeyword;
Ctx->IsEnabled = EVENT_CONTROL_CODE_ENABLE_PROVIDER;
for (Ix = 0; Ix < Ctx->EnableBitsCount; Ix += 1) {
if (McGenLevelKeywordEnabled(Ctx, Ctx->EnableLevel[Ix], Ctx->EnableKeyWords[Ix]) != FALSE) {
Ctx->EnableBitMask[Ix >> 5] |= (1 << (Ix % 32));
} else {
Ctx->EnableBitMask[Ix >> 5] &= ~(1 << (Ix % 32));
}
}
break;
case EVENT_CONTROL_CODE_DISABLE_PROVIDER:
Ctx->IsEnabled = EVENT_CONTROL_CODE_DISABLE_PROVIDER;
Ctx->Level = 0;
Ctx->MatchAnyKeyword = 0;
Ctx->MatchAllKeyword = 0;
if (Ctx->EnableBitsCount > 0) {
#pragma warning(suppress: 26451) // Arithmetic overflow cannot occur, no matter the value of EnableBitCount
RtlZeroMemory(Ctx->EnableBitMask, (((Ctx->EnableBitsCount - 1) / 32) + 1) * sizeof(ULONG));
}
break;
default:
break;
}
#ifdef MCGEN_PRIVATE_ENABLE_CALLBACK_V2
//
// Call user defined callback
//
MCGEN_PRIVATE_ENABLE_CALLBACK_V2(
SourceId,
ControlCode,
Level,
MatchAnyKeyword,
MatchAllKeyword,
FilterData,
CallbackContext
);
#endif // MCGEN_PRIVATE_ENABLE_CALLBACK_V2
return;
}
#endif // MCGEN_CONTROL_CALLBACK
#ifndef _mcgen_PENABLECALLBACK
#if MCGEN_USE_KERNEL_MODE_APIS
#define _mcgen_PENABLECALLBACK PETWENABLECALLBACK
#else
#define _mcgen_PENABLECALLBACK PENABLECALLBACK
#endif
#endif // _mcgen_PENABLECALLBACK
#if !defined(_mcgen_PASTE2)
// This macro is for use by MC-generated code and should not be used directly.
#define _mcgen_PASTE2(a, b) _mcgen_PASTE2_imp(a, b)
#define _mcgen_PASTE2_imp(a, b) a##b
#endif // _mcgen_PASTE2
#if !defined(_mcgen_PASTE3)
// This macro is for use by MC-generated code and should not be used directly.
#define _mcgen_PASTE3(a, b, c) _mcgen_PASTE3_imp(a, b, c)
#define _mcgen_PASTE3_imp(a, b, c) a##b##_##c
#endif // _mcgen_PASTE3
//
// Macro validation
//
// Validate MCGEN_EVENTREGISTER:
// Trigger an error if MCGEN_EVENTREGISTER is not an unqualified (simple) identifier:
struct _mcgen_PASTE2(MCGEN_EVENTREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTREGISTER);
// Trigger an error if MCGEN_EVENTREGISTER is redefined:
typedef struct _mcgen_PASTE2(MCGEN_EVENTREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTREGISTER)
MCGEN_EVENTREGISTER_must_not_be_redefined_between_headers;
// Trigger an error if MCGEN_EVENTREGISTER is defined as a function-like macro:
typedef void MCGEN_EVENTREGISTER_must_not_be_a_functionLike_macro_MCGEN_EVENTREGISTER;
typedef int _mcgen_PASTE2(MCGEN_EVENTREGISTER_must_not_be_a_functionLike_macro_, MCGEN_EVENTREGISTER);
// Validate MCGEN_EVENTUNREGISTER:
// Trigger an error if MCGEN_EVENTUNREGISTER is not an unqualified (simple) identifier:
struct _mcgen_PASTE2(MCGEN_EVENTUNREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTUNREGISTER);
// Trigger an error if MCGEN_EVENTUNREGISTER is redefined:
typedef struct _mcgen_PASTE2(MCGEN_EVENTUNREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTUNREGISTER)
MCGEN_EVENTUNREGISTER_must_not_be_redefined_between_headers;
// Trigger an error if MCGEN_EVENTUNREGISTER is defined as a function-like macro:
typedef void MCGEN_EVENTUNREGISTER_must_not_be_a_functionLike_macro_MCGEN_EVENTUNREGISTER;
typedef int _mcgen_PASTE2(MCGEN_EVENTUNREGISTER_must_not_be_a_functionLike_macro_, MCGEN_EVENTUNREGISTER);
// Validate MCGEN_EVENTSETINFORMATION:
// Trigger an error if MCGEN_EVENTSETINFORMATION is not an unqualified (simple) identifier:
struct _mcgen_PASTE2(MCGEN_EVENTSETINFORMATION_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTSETINFORMATION);
// Trigger an error if MCGEN_EVENTSETINFORMATION is redefined:
typedef struct _mcgen_PASTE2(MCGEN_EVENTSETINFORMATION_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTSETINFORMATION)
MCGEN_EVENTSETINFORMATION_must_not_be_redefined_between_headers;
// Trigger an error if MCGEN_EVENTSETINFORMATION is defined as a function-like macro:
typedef void MCGEN_EVENTSETINFORMATION_must_not_be_a_functionLike_macro_MCGEN_EVENTSETINFORMATION;
typedef int _mcgen_PASTE2(MCGEN_EVENTSETINFORMATION_must_not_be_a_functionLike_macro_, MCGEN_EVENTSETINFORMATION);
// Validate MCGEN_EVENTWRITETRANSFER:
// Trigger an error if MCGEN_EVENTWRITETRANSFER is not an unqualified (simple) identifier:
struct _mcgen_PASTE2(MCGEN_EVENTWRITETRANSFER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTWRITETRANSFER);
// Trigger an error if MCGEN_EVENTWRITETRANSFER is redefined:
typedef struct _mcgen_PASTE2(MCGEN_EVENTWRITETRANSFER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTWRITETRANSFER)
MCGEN_EVENTWRITETRANSFER_must_not_be_redefined_between_headers;;
// Trigger an error if MCGEN_EVENTWRITETRANSFER is defined as a function-like macro:
typedef void MCGEN_EVENTWRITETRANSFER_must_not_be_a_functionLike_macro_MCGEN_EVENTWRITETRANSFER;
typedef int _mcgen_PASTE2(MCGEN_EVENTWRITETRANSFER_must_not_be_a_functionLike_macro_, MCGEN_EVENTWRITETRANSFER);
#ifndef McGenEventWrite_def
#define McGenEventWrite_def
// This macro is for use by MC-generated code and should not be used directly.
#define McGenEventWrite _mcgen_PASTE2(McGenEventWrite_, MCGEN_EVENTWRITETRANSFER)
// This function is for use by MC-generated code and should not be used directly.
DECLSPEC_NOINLINE __inline
ULONG __stdcall
McGenEventWrite(
_In_ PMCGEN_TRACE_CONTEXT Context,
_In_ PCEVENT_DESCRIPTOR Descriptor,
_In_opt_ LPCGUID ActivityId,
_In_range_(1, 128) ULONG EventDataCount,
_Pre_cap_(EventDataCount) EVENT_DATA_DESCRIPTOR* EventData
)
{
const USHORT UNALIGNED* Traits;
// Some customized MCGEN_EVENTWRITETRANSFER macros might ignore ActivityId.
UNREFERENCED_PARAMETER(ActivityId);
Traits = (const USHORT UNALIGNED*)(UINT_PTR)Context->Logger;
if (Traits == NULL) {
EventData[0].Ptr = 0;
EventData[0].Size = 0;
EventData[0].Reserved = 0;
} else {
EventData[0].Ptr = (ULONG_PTR)Traits;
EventData[0].Size = *Traits;
EventData[0].Reserved = 2; // EVENT_DATA_DESCRIPTOR_TYPE_PROVIDER_METADATA
}
return MCGEN_EVENTWRITETRANSFER(
Context->RegistrationHandle,
Descriptor,
ActivityId,
NULL,
EventDataCount,
EventData);
}
#endif // McGenEventWrite_def
#if !defined(McGenEventRegisterUnregister)
#define McGenEventRegisterUnregister
// This macro is for use by MC-generated code and should not be used directly.
#define McGenEventRegister _mcgen_PASTE2(McGenEventRegister_, MCGEN_EVENTREGISTER)
#pragma warning(push)
#pragma warning(disable:6103)
// This function is for use by MC-generated code and should not be used directly.
DECLSPEC_NOINLINE __inline
ULONG __stdcall
McGenEventRegister(
_In_ LPCGUID ProviderId,
_In_opt_ _mcgen_PENABLECALLBACK EnableCallback,
_In_opt_ PVOID CallbackContext,
_Inout_ PREGHANDLE RegHandle
)
/*++
Routine Description:
This function registers the provider with ETW.
Arguments:
ProviderId - Provider ID to register with ETW.
EnableCallback - Callback to be used.
CallbackContext - Context for the callback.
RegHandle - Pointer to registration handle.
Remarks:
Should not be called if the provider is already registered (i.e. should not
be called if *RegHandle != 0). Repeatedly registering a provider is a bug
and may indicate a race condition. However, for compatibility with previous
behavior, this function will return SUCCESS in this case.
--*/
{
ULONG Error;
if (*RegHandle != 0)
{
Error = 0; // ERROR_SUCCESS
}
else
{
Error = MCGEN_EVENTREGISTER(ProviderId, EnableCallback, CallbackContext, RegHandle);
}
return Error;
}
#pragma warning(pop)
// This macro is for use by MC-generated code and should not be used directly.
#define McGenEventUnregister _mcgen_PASTE2(McGenEventUnregister_, MCGEN_EVENTUNREGISTER)
// This function is for use by MC-generated code and should not be used directly.
DECLSPEC_NOINLINE __inline
ULONG __stdcall
McGenEventUnregister(_Inout_ PREGHANDLE RegHandle)
/*++
Routine Description:
Unregister from ETW and set *RegHandle = 0.
Arguments:
RegHandle - the pointer to the provider registration handle
Remarks:
If provider has not been registered (i.e. if *RegHandle == 0),
return SUCCESS. It is safe to call McGenEventUnregister even if the
call to McGenEventRegister returned an error.
--*/
{
ULONG Error;
if(*RegHandle == 0)
{
Error = 0; // ERROR_SUCCESS
}
else
{
Error = MCGEN_EVENTUNREGISTER(*RegHandle);
*RegHandle = (REGHANDLE)0;
}
return Error;
}
#endif // McGenEventRegisterUnregister
#ifndef _mcgen_EVENT_BIT_SET
#if defined(_M_IX86) || defined(_M_X64)
// This macro is for use by MC-generated code and should not be used directly.
#define _mcgen_EVENT_BIT_SET(EnableBits, BitPosition) ((((const unsigned char*)EnableBits)[BitPosition >> 3] & (1u << (BitPosition & 7))) != 0)
#else // CPU type
// This macro is for use by MC-generated code and should not be used directly.
#define _mcgen_EVENT_BIT_SET(EnableBits, BitPosition) ((EnableBits[BitPosition >> 5] & (1u << (BitPosition & 31))) != 0)
#endif // CPU type
#endif // _mcgen_EVENT_BIT_SET
#endif // MCGEN_DISABLE_PROVIDER_CODE_GENERATION
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Provider "microsoft-windows-mimalloc" event count 2
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Provider GUID = 138f4dbb-ee04-4899-aa0a-572ad4475779
EXTERN_C __declspec(selectany) const GUID ETW_MI_Provider = {0x138f4dbb, 0xee04, 0x4899, {0xaa, 0x0a, 0x57, 0x2a, 0xd4, 0x47, 0x57, 0x79}};
#ifndef ETW_MI_Provider_Traits
#define ETW_MI_Provider_Traits NULL
#endif // ETW_MI_Provider_Traits
//
// Event Descriptors
//
EXTERN_C __declspec(selectany) const EVENT_DESCRIPTOR ETW_MI_ALLOC = {0x64, 0x1, 0x0, 0x4, 0x0, 0x0, 0x0};
#define ETW_MI_ALLOC_value 0x64
EXTERN_C __declspec(selectany) const EVENT_DESCRIPTOR ETW_MI_FREE = {0x65, 0x1, 0x0, 0x4, 0x0, 0x0, 0x0};
#define ETW_MI_FREE_value 0x65
//
// MCGEN_DISABLE_PROVIDER_CODE_GENERATION macro:
// Define this macro to have the compiler skip the generated functions in this
// header.
//
#ifndef MCGEN_DISABLE_PROVIDER_CODE_GENERATION
//
// Event Enablement Bits
// These variables are for use by MC-generated code and should not be used directly.
//
EXTERN_C __declspec(selectany) DECLSPEC_CACHEALIGN ULONG microsoft_windows_mimallocEnableBits[1];
EXTERN_C __declspec(selectany) const ULONGLONG microsoft_windows_mimallocKeywords[1] = {0x0};
EXTERN_C __declspec(selectany) const unsigned char microsoft_windows_mimallocLevels[1] = {4};
//
// Provider context
//
EXTERN_C __declspec(selectany) MCGEN_TRACE_CONTEXT ETW_MI_Provider_Context = {0, (ULONG_PTR)ETW_MI_Provider_Traits, 0, 0, 0, 0, 0, 0, 1, microsoft_windows_mimallocEnableBits, microsoft_windows_mimallocKeywords, microsoft_windows_mimallocLevels};
//
// Provider REGHANDLE
//
#define microsoft_windows_mimallocHandle (ETW_MI_Provider_Context.RegistrationHandle)
//
// This macro is set to 0, indicating that the EventWrite[Name] macros do not
// have an Activity parameter. This is controlled by the -km and -um options.
//
#define ETW_MI_Provider_EventWriteActivity 0
//
// Register with ETW using the control GUID specified in the manifest.
// Invoke this macro during module initialization (i.e. program startup,
// DLL process attach, or driver load) to initialize the provider.
// Note that if this function returns an error, the error means that
// will not work, but no action needs to be taken -- even if EventRegister
// returns an error, it is generally safe to use EventWrite and
// EventUnregister macros (they will be no-ops if EventRegister failed).
//
#ifndef EventRegistermicrosoft_windows_mimalloc
#define EventRegistermicrosoft_windows_mimalloc() McGenEventRegister(&ETW_MI_Provider, McGenControlCallbackV2, &ETW_MI_Provider_Context, &microsoft_windows_mimallocHandle)
#endif
//
// Register with ETW using a specific control GUID (i.e. a GUID other than what
// is specified in the manifest). Advanced scenarios only.
//
#ifndef EventRegisterByGuidmicrosoft_windows_mimalloc
#define EventRegisterByGuidmicrosoft_windows_mimalloc(Guid) McGenEventRegister(&(Guid), McGenControlCallbackV2, &ETW_MI_Provider_Context, &microsoft_windows_mimallocHandle)
#endif
//
// Unregister with ETW and close the provider.
// Invoke this macro during module shutdown (i.e. program exit, DLL process
// detach, or driver unload) to unregister the provider.
// Note that you MUST call EventUnregister before DLL or driver unload
// (not optional): failure to unregister a provider before DLL or driver unload
// will result in crashes.
//
#ifndef EventUnregistermicrosoft_windows_mimalloc
#define EventUnregistermicrosoft_windows_mimalloc() McGenEventUnregister(&microsoft_windows_mimallocHandle)
#endif
//
// MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION macro:
// Define this macro to enable support for caller-allocated provider context.
//
#ifdef MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION
//
// Advanced scenarios: Caller-allocated provider context.
// Use when multiple differently-configured provider handles are needed,
// e.g. for container-aware drivers, one context per container.
//
// Usage:
//
// - Caller enables the feature before including this header, e.g.
// #define MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION 1
// - Caller allocates memory, e.g. pContext = malloc(sizeof(McGenContext_microsoft_windows_mimalloc));
// - Caller registers the provider, e.g. EventRegistermicrosoft_windows_mimalloc_ForContext(pContext);
// - Caller writes events, e.g. EventWriteMyEvent_ForContext(pContext, ...);
// - Caller unregisters, e.g. EventUnregistermicrosoft_windows_mimalloc_ForContext(pContext);
// - Caller frees memory, e.g. free(pContext);
//
typedef struct tagMcGenContext_microsoft_windows_mimalloc {
// The fields of this structure are subject to change and should
// not be accessed directly. To access the provider's REGHANDLE,
// use microsoft_windows_mimallocHandle_ForContext(pContext).
MCGEN_TRACE_CONTEXT Context;
ULONG EnableBits[1];
} McGenContext_microsoft_windows_mimalloc;
#define EventRegistermicrosoft_windows_mimalloc_ForContext(pContext) _mcgen_PASTE2(_mcgen_RegisterForContext_microsoft_windows_mimalloc_, MCGEN_EVENTREGISTER)(&ETW_MI_Provider, pContext)
#define EventRegisterByGuidmicrosoft_windows_mimalloc_ForContext(Guid, pContext) _mcgen_PASTE2(_mcgen_RegisterForContext_microsoft_windows_mimalloc_, MCGEN_EVENTREGISTER)(&(Guid), pContext)
#define EventUnregistermicrosoft_windows_mimalloc_ForContext(pContext) McGenEventUnregister(&(pContext)->Context.RegistrationHandle)
//
// Provider REGHANDLE for caller-allocated context.
//
#define microsoft_windows_mimallocHandle_ForContext(pContext) ((pContext)->Context.RegistrationHandle)
// This function is for use by MC-generated code and should not be used directly.
// Initialize and register the caller-allocated context.
__inline
ULONG __stdcall
_mcgen_PASTE2(_mcgen_RegisterForContext_microsoft_windows_mimalloc_, MCGEN_EVENTREGISTER)(
_In_ LPCGUID pProviderId,
_Out_ McGenContext_microsoft_windows_mimalloc* pContext)
{
RtlZeroMemory(pContext, sizeof(*pContext));
pContext->Context.Logger = (ULONG_PTR)ETW_MI_Provider_Traits;
pContext->Context.EnableBitsCount = 1;
pContext->Context.EnableBitMask = pContext->EnableBits;
pContext->Context.EnableKeyWords = microsoft_windows_mimallocKeywords;
pContext->Context.EnableLevel = microsoft_windows_mimallocLevels;
return McGenEventRegister(
pProviderId,
McGenControlCallbackV2,
&pContext->Context,
&pContext->Context.RegistrationHandle);
}
// This function is for use by MC-generated code and should not be used directly.
// Trigger a compile error if called with the wrong parameter type.
FORCEINLINE
_Ret_ McGenContext_microsoft_windows_mimalloc*
_mcgen_CheckContextType_microsoft_windows_mimalloc(_In_ McGenContext_microsoft_windows_mimalloc* pContext)
{
return pContext;
}
#endif // MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION
//
// Enablement check macro for event "ETW_MI_ALLOC"
//
#define EventEnabledETW_MI_ALLOC() _mcgen_EVENT_BIT_SET(microsoft_windows_mimallocEnableBits, 0)
#define EventEnabledETW_MI_ALLOC_ForContext(pContext) _mcgen_EVENT_BIT_SET(_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->EnableBits, 0)
//
// Event write macros for event "ETW_MI_ALLOC"
//
#define EventWriteETW_MI_ALLOC(Address, Size) \
MCGEN_EVENT_ENABLED(ETW_MI_ALLOC) \
? _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&ETW_MI_Provider_Context, &ETW_MI_ALLOC, Address, Size) : 0
#define EventWriteETW_MI_ALLOC_AssumeEnabled(Address, Size) \
_mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&ETW_MI_Provider_Context, &ETW_MI_ALLOC, Address, Size)
#define EventWriteETW_MI_ALLOC_ForContext(pContext, Address, Size) \
MCGEN_EVENT_ENABLED_FORCONTEXT(pContext, ETW_MI_ALLOC) \
? _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&(pContext)->Context, &ETW_MI_ALLOC, Address, Size) : 0
#define EventWriteETW_MI_ALLOC_ForContextAssumeEnabled(pContext, Address, Size) \
_mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->Context, &ETW_MI_ALLOC, Address, Size)
// This macro is for use by MC-generated code and should not be used directly.
#define _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC _mcgen_PASTE2(McTemplateU0xx_, MCGEN_EVENTWRITETRANSFER)
//
// Enablement check macro for event "ETW_MI_FREE"
//
#define EventEnabledETW_MI_FREE() _mcgen_EVENT_BIT_SET(microsoft_windows_mimallocEnableBits, 0)
#define EventEnabledETW_MI_FREE_ForContext(pContext) _mcgen_EVENT_BIT_SET(_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->EnableBits, 0)
//
// Event write macros for event "ETW_MI_FREE"
//
#define EventWriteETW_MI_FREE(Address, Size) \
MCGEN_EVENT_ENABLED(ETW_MI_FREE) \
? _mcgen_TEMPLATE_FOR_ETW_MI_FREE(&ETW_MI_Provider_Context, &ETW_MI_FREE, Address, Size) : 0
#define EventWriteETW_MI_FREE_AssumeEnabled(Address, Size) \
_mcgen_TEMPLATE_FOR_ETW_MI_FREE(&ETW_MI_Provider_Context, &ETW_MI_FREE, Address, Size)
#define EventWriteETW_MI_FREE_ForContext(pContext, Address, Size) \
MCGEN_EVENT_ENABLED_FORCONTEXT(pContext, ETW_MI_FREE) \
? _mcgen_TEMPLATE_FOR_ETW_MI_FREE(&(pContext)->Context, &ETW_MI_FREE, Address, Size) : 0
#define EventWriteETW_MI_FREE_ForContextAssumeEnabled(pContext, Address, Size) \
_mcgen_TEMPLATE_FOR_ETW_MI_FREE(&_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->Context, &ETW_MI_FREE, Address, Size)
// This macro is for use by MC-generated code and should not be used directly.
#define _mcgen_TEMPLATE_FOR_ETW_MI_FREE _mcgen_PASTE2(McTemplateU0xx_, MCGEN_EVENTWRITETRANSFER)
#endif // MCGEN_DISABLE_PROVIDER_CODE_GENERATION
//
// MCGEN_DISABLE_PROVIDER_CODE_GENERATION macro:
// Define this macro to have the compiler skip the generated functions in this
// header.
//
#ifndef MCGEN_DISABLE_PROVIDER_CODE_GENERATION
//
// Template Functions
//
//
// Function for template "ETW_CUSTOM_HEAP_ALLOC_DATA" (and possibly others).
// This function is for use by MC-generated code and should not be used directly.
//
#ifndef McTemplateU0xx_def
#define McTemplateU0xx_def
ETW_INLINE
ULONG
_mcgen_PASTE2(McTemplateU0xx_, MCGEN_EVENTWRITETRANSFER)(
_In_ PMCGEN_TRACE_CONTEXT Context,
_In_ PCEVENT_DESCRIPTOR Descriptor,
_In_ const unsigned __int64 _Arg0,
_In_ const unsigned __int64 _Arg1
)
{
#define McTemplateU0xx_ARGCOUNT 2
EVENT_DATA_DESCRIPTOR EventData[McTemplateU0xx_ARGCOUNT + 1];
EventDataDescCreate(&EventData[1],&_Arg0, sizeof(const unsigned __int64) );
EventDataDescCreate(&EventData[2],&_Arg1, sizeof(const unsigned __int64) );
return McGenEventWrite(Context, Descriptor, NULL, McTemplateU0xx_ARGCOUNT + 1, EventData);
}
#endif // McTemplateU0xx_def
#endif // MCGEN_DISABLE_PROVIDER_CODE_GENERATION
#if defined(__cplusplus)
}
#endif

Binary file not shown.

View File

@ -0,0 +1,622 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// This file is included in `src/prim/prim.c`
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
#include <stdio.h> // fputs, stderr
//---------------------------------------------
// Dynamically bind Windows API points for portability
//---------------------------------------------
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility)
// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB)
// We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's.
typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E {
MiMemExtendedParameterInvalidType = 0,
MiMemExtendedParameterAddressRequirements,
MiMemExtendedParameterNumaNode,
MiMemExtendedParameterPartitionHandle,
MiMemExtendedParameterUserPhysicalHandle,
MiMemExtendedParameterAttributeFlags,
MiMemExtendedParameterMax
} MI_MEM_EXTENDED_PARAMETER_TYPE;
typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S {
struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type;
union { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg;
} MI_MEM_EXTENDED_PARAMETER;
typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S {
PVOID LowestStartingAddress;
PVOID HighestEndingAddress;
SIZE_T Alignment;
} MI_MEM_ADDRESS_REQUIREMENTS;
#define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE 0x00000010
#include <winternl.h>
typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
static PVirtualAlloc2 pVirtualAlloc2 = NULL;
static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;
// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7
typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER;
typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber);
typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber);
typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask);
typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber);
static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL;
static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL;
static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL;
static PGetNumaProcessorNode pGetNumaProcessorNode = NULL;
//---------------------------------------------
// Enable large page support dynamically (if possible)
//---------------------------------------------
static bool win_enable_large_os_pages(size_t* large_page_size)
{
static bool large_initialized = false;
if (large_initialized) return (_mi_os_large_page_size() > 0);
large_initialized = true;
// Try to see if large OS pages are supported
// To use large pages on Windows, we first need access permission
// Set "Lock pages in memory" permission in the group policy editor
// <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
unsigned long err = 0;
HANDLE token = NULL;
BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (ok) {
TOKEN_PRIVILEGES tp;
ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
if (ok) {
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
if (ok) {
err = GetLastError();
ok = (err == ERROR_SUCCESS);
if (ok && large_page_size != NULL) {
*large_page_size = GetLargePageMinimum();
}
}
}
CloseHandle(token);
}
if (!ok) {
if (err == 0) err = GetLastError();
_mi_warning_message("cannot enable large OS page support, error %lu\n", err);
}
return (ok!=0);
}
//---------------------------------------------
// Initialize
//---------------------------------------------
void _mi_prim_mem_init( mi_os_mem_config_t* config )
{
config->has_overcommit = false;
config->must_free_whole = true;
config->has_virtual_reserve = true;
// get the page size
SYSTEM_INFO si;
GetSystemInfo(&si);
if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; }
if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; }
// get the VirtualAlloc2 function
HINSTANCE hDll;
hDll = LoadLibrary(TEXT("kernelbase.dll"));
if (hDll != NULL) {
// use VirtualAlloc2FromApp if possible as it is available to Windows store apps
pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
FreeLibrary(hDll);
}
// NtAllocateVirtualMemoryEx is used for huge page allocation
hDll = LoadLibrary(TEXT("ntdll.dll"));
if (hDll != NULL) {
pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
FreeLibrary(hDll);
}
// Try to use Win7+ numa API
hDll = LoadLibrary(TEXT("kernel32.dll"));
if (hDll != NULL) {
pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx");
pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx");
pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx");
pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode");
FreeLibrary(hDll);
}
if (mi_option_is_enabled(mi_option_allow_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
win_enable_large_os_pages(&config->large_page_size);
}
}
//---------------------------------------------
// Free
//---------------------------------------------
int _mi_prim_free(void* addr, size_t size ) {
MI_UNUSED(size);
DWORD errcode = 0;
bool err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
if (err) { errcode = GetLastError(); }
if (errcode == ERROR_INVALID_ADDRESS) {
// In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside
// the memory region returned by VirtualAlloc; in that case we need to free using
// the start of the region.
MEMORY_BASIC_INFORMATION info = { 0 };
VirtualQuery(addr, &info, sizeof(info));
if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) {
errcode = 0;
err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0);
if (err) { errcode = GetLastError(); }
}
}
return (int)errcode;
}
//---------------------------------------------
// VirtualAlloc
//---------------------------------------------
static void* win_virtual_alloc_prim(void* addr, size_t size, size_t try_alignment, DWORD flags) {
#if (MI_INTPTR_SIZE >= 8)
// on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations
if (addr == NULL) {
void* hint = _mi_os_get_aligned_hint(try_alignment,size);
if (hint != NULL) {
void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE);
if (p != NULL) return p;
_mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags);
// fall through on error
}
}
#endif
// on modern Windows try use VirtualAlloc2 for aligned allocation
if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
reqs.Alignment = try_alignment;
MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
param.Type.Type = MiMemExtendedParameterAddressRequirements;
param.Arg.Pointer = &reqs;
void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, &param, 1);
if (p != NULL) return p;
_mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags);
// fall through on error
}
// last resort
return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
mi_assert_internal(!(large_only && !allow_large));
static _Atomic(size_t) large_page_try_ok; // = 0;
void* p = NULL;
// Try to allocate large OS pages (2MiB) if allowed or required.
if ((large_only || _mi_os_use_large_page(size, try_alignment))
&& allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
if (!large_only && try_ok > 0) {
// if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
// therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
}
else {
// large OS pages must always reserve and commit.
*is_large = true;
p = win_virtual_alloc_prim(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
if (large_only) return p;
// fall back to non-large page allocation on error (`p == NULL`).
if (p == NULL) {
mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations
}
}
}
// Fall back to regular page allocation
if (p == NULL) {
*is_large = ((flags&MEM_LARGE_PAGES) != 0);
p = win_virtual_alloc_prim(addr, size, try_alignment, flags);
}
//if (p == NULL) { _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large); }
return p;
}
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0);
*is_zero = true;
int flags = MEM_RESERVE;
if (commit) { flags |= MEM_COMMIT; }
*addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Commit/Reset/Protect
//---------------------------------------------
#ifdef _MSC_VER
#pragma warning(disable:6250) // suppress warning calling VirtualFree without MEM_RELEASE (for decommit)
#endif
int _mi_prim_commit(void* addr, size_t size, bool* is_zero) {
*is_zero = false;
/*
// zero'ing only happens on an initial commit... but checking upfront seems expensive..
_MEMORY_BASIC_INFORMATION meminfo; _mi_memzero_var(meminfo);
if (VirtualQuery(addr, &meminfo, size) > 0) {
if ((meminfo.State & MEM_COMMIT) == 0) {
*is_zero = true;
}
}
*/
// commit
void* p = VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
if (p == NULL) return (int)GetLastError();
return 0;
}
int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) {
BOOL ok = VirtualFree(addr, size, MEM_DECOMMIT);
*needs_recommit = true; // for safety, assume always decommitted even in the case of an error.
return (ok ? 0 : (int)GetLastError());
}
int _mi_prim_reset(void* addr, size_t size) {
void* p = VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE);
mi_assert_internal(p == addr);
#if 0
if (p != NULL) {
VirtualUnlock(addr,size); // VirtualUnlock after MEM_RESET removes the memory directly from the working set
}
#endif
return (p != NULL ? 0 : (int)GetLastError());
}
int _mi_prim_protect(void* addr, size_t size, bool protect) {
DWORD oldprotect = 0;
BOOL ok = VirtualProtect(addr, size, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect);
return (ok ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Huge page allocation
//---------------------------------------------
static void* _mi_prim_alloc_huge_os_pagesx(void* hint_addr, size_t size, int numa_node)
{
const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE;
win_enable_large_os_pages(NULL);
MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} };
// on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
static bool mi_huge_pages_available = true;
if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) {
params[0].Type.Type = MiMemExtendedParameterAttributeFlags;
params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
ULONG param_count = 1;
if (numa_node >= 0) {
param_count++;
params[1].Type.Type = MiMemExtendedParameterNumaNode;
params[1].Arg.ULong = (unsigned)numa_node;
}
SIZE_T psize = size;
void* base = hint_addr;
NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count);
if (err == 0 && base != NULL) {
return base;
}
else {
// fall back to regular large pages
mi_huge_pages_available = false; // don't try further huge pages
_mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err);
}
}
// on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
if (pVirtualAlloc2 != NULL && numa_node >= 0) {
params[0].Type.Type = MiMemExtendedParameterNumaNode;
params[0].Arg.ULong = (unsigned)numa_node;
return (*pVirtualAlloc2)(GetCurrentProcess(), hint_addr, size, flags, PAGE_READWRITE, params, 1);
}
// otherwise use regular virtual alloc on older windows
return VirtualAlloc(hint_addr, size, flags, PAGE_READWRITE);
}
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
*is_zero = true;
*addr = _mi_prim_alloc_huge_os_pagesx(hint_addr,size,numa_node);
return (*addr != NULL ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Numa nodes
//---------------------------------------------
size_t _mi_prim_numa_node(void) {
USHORT numa_node = 0;
if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) {
// Extended API is supported
MI_PROCESSOR_NUMBER pnum;
(*pGetCurrentProcessorNumberEx)(&pnum);
USHORT nnode = 0;
BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode);
if (ok) { numa_node = nnode; }
}
else if (pGetNumaProcessorNode != NULL) {
// Vista or earlier, use older API that is limited to 64 processors. Issue #277
DWORD pnum = GetCurrentProcessorNumber();
UCHAR nnode = 0;
BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode);
if (ok) { numa_node = nnode; }
}
return numa_node;
}
size_t _mi_prim_numa_node_count(void) {
ULONG numa_max = 0;
GetNumaHighestNodeNumber(&numa_max);
// find the highest node number that has actual processors assigned to it. Issue #282
while(numa_max > 0) {
if (pGetNumaNodeProcessorMaskEx != NULL) {
// Extended API is supported
GROUP_AFFINITY affinity;
if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) {
if (affinity.Mask != 0) break; // found the maximum non-empty node
}
}
else {
// Vista or earlier, use older API that is limited to 64 processors.
ULONGLONG mask;
if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) {
if (mask != 0) break; // found the maximum non-empty node
};
}
// max node was invalid or had no processor assigned, try again
numa_max--;
}
return ((size_t)numa_max + 1);
}
//----------------------------------------------------------------
// Clock
//----------------------------------------------------------------
static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) {
static LARGE_INTEGER mfreq; // = 0
if (mfreq.QuadPart == 0LL) {
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
mfreq.QuadPart = f.QuadPart/1000LL;
if (mfreq.QuadPart == 0) mfreq.QuadPart = 1;
}
return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart);
}
mi_msecs_t _mi_prim_clock_now(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return mi_to_msecs(t);
}
//----------------------------------------------------------------
// Process Info
//----------------------------------------------------------------
#include <windows.h>
#include <psapi.h>
static mi_msecs_t filetime_msecs(const FILETIME* ftime) {
ULARGE_INTEGER i;
i.LowPart = ftime->dwLowDateTime;
i.HighPart = ftime->dwHighDateTime;
mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds
return msecs;
}
typedef BOOL (WINAPI *PGetProcessMemoryInfo)(HANDLE, PPROCESS_MEMORY_COUNTERS, DWORD);
static PGetProcessMemoryInfo pGetProcessMemoryInfo = NULL;
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
FILETIME ct;
FILETIME ut;
FILETIME st;
FILETIME et;
GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut);
pinfo->utime = filetime_msecs(&ut);
pinfo->stime = filetime_msecs(&st);
// load psapi on demand
if (pGetProcessMemoryInfo == NULL) {
HINSTANCE hDll = LoadLibrary(TEXT("psapi.dll"));
if (hDll != NULL) {
pGetProcessMemoryInfo = (PGetProcessMemoryInfo)(void (*)(void))GetProcAddress(hDll, "GetProcessMemoryInfo");
}
}
// get process info
PROCESS_MEMORY_COUNTERS info;
memset(&info, 0, sizeof(info));
if (pGetProcessMemoryInfo != NULL) {
pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
}
pinfo->current_rss = (size_t)info.WorkingSetSize;
pinfo->peak_rss = (size_t)info.PeakWorkingSetSize;
pinfo->current_commit = (size_t)info.PagefileUsage;
pinfo->peak_commit = (size_t)info.PeakPagefileUsage;
pinfo->page_faults = (size_t)info.PageFaultCount;
}
//----------------------------------------------------------------
// Output
//----------------------------------------------------------------
void _mi_prim_out_stderr( const char* msg )
{
// on windows with redirection, the C runtime cannot handle locale dependent output
// after the main thread closes so we use direct console output.
if (!_mi_preloading()) {
// _cputs(msg); // _cputs cannot be used at is aborts if it fails to lock the console
static HANDLE hcon = INVALID_HANDLE_VALUE;
static bool hconIsConsole;
if (hcon == INVALID_HANDLE_VALUE) {
CONSOLE_SCREEN_BUFFER_INFO sbi;
hcon = GetStdHandle(STD_ERROR_HANDLE);
hconIsConsole = ((hcon != INVALID_HANDLE_VALUE) && GetConsoleScreenBufferInfo(hcon, &sbi));
}
const size_t len = _mi_strlen(msg);
if (len > 0 && len < UINT32_MAX) {
DWORD written = 0;
if (hconIsConsole) {
WriteConsoleA(hcon, msg, (DWORD)len, &written, NULL);
}
else if (hcon != INVALID_HANDLE_VALUE) {
// use direct write if stderr was redirected
WriteFile(hcon, msg, (DWORD)len, &written, NULL);
}
else {
// finally fall back to fputs after all
fputs(msg, stderr);
}
}
}
}
//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------
// On Windows use GetEnvironmentVariable instead of getenv to work
// reliably even when this is invoked before the C runtime is initialized.
// i.e. when `_mi_preloading() == true`.
// Note: on windows, environment names are not case sensitive.
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
result[0] = 0;
size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size);
return (len > 0 && len < result_size);
}
//----------------------------------------------------------------
// Random
//----------------------------------------------------------------
#if defined(MI_USE_RTLGENRANDOM) // || defined(__cplusplus)
// We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using
// dynamic overriding, we observed it can raise an exception when compiled with C++, and
// sometimes deadlocks when also running under the VS debugger.
// In contrast, issue #623 implies that on Windows Server 2019 we need to use BCryptGenRandom.
// To be continued..
#pragma comment (lib,"advapi32.lib")
#define RtlGenRandom SystemFunction036
mi_decl_externc BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
return (RtlGenRandom(buf, (ULONG)buf_len) != 0);
}
#else
#ifndef BCRYPT_USE_SYSTEM_PREFERRED_RNG
#define BCRYPT_USE_SYSTEM_PREFERRED_RNG 0x00000002
#endif
typedef LONG (NTAPI *PBCryptGenRandom)(HANDLE, PUCHAR, ULONG, ULONG);
static PBCryptGenRandom pBCryptGenRandom = NULL;
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
if (pBCryptGenRandom == NULL) {
HINSTANCE hDll = LoadLibrary(TEXT("bcrypt.dll"));
if (hDll != NULL) {
pBCryptGenRandom = (PBCryptGenRandom)(void (*)(void))GetProcAddress(hDll, "BCryptGenRandom");
}
if (pBCryptGenRandom == NULL) return false;
}
return (pBCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0);
}
#endif // MI_USE_RTLGENRANDOM
//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------
#if !defined(MI_SHARED_LIB)
// use thread local storage keys to detect thread ending
#include <fibersapi.h>
#if (_WIN32_WINNT < 0x600) // before Windows Vista
WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback );
WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex );
WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData );
WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex);
#endif
static DWORD mi_fls_key = (DWORD)(-1);
static void NTAPI mi_fls_done(PVOID value) {
mi_heap_t* heap = (mi_heap_t*)value;
if (heap != NULL) {
_mi_thread_done(heap);
FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672
}
}
void _mi_prim_thread_init_auto_done(void) {
mi_fls_key = FlsAlloc(&mi_fls_done);
}
void _mi_prim_thread_done_auto_done(void) {
// call thread-done on all threads (except the main thread) to prevent
// dangling callback pointer if statically linked with a DLL; Issue #208
FlsFree(mi_fls_key);
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
mi_assert_internal(mi_fls_key != (DWORD)(-1));
FlsSetValue(mi_fls_key, heap);
}
#else
// Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event.
void _mi_prim_thread_init_auto_done(void) {
}
void _mi_prim_thread_done_auto_done(void) {
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#endif

View File

@ -0,0 +1,17 @@
## Primitives:
- `prim.c` contains Windows primitives for OS allocation.
## Event Tracing for Windows (ETW)
- `etw.h` is generated from `etw.man` which contains the manifest for mimalloc events.
(100 is an allocation, 101 is for a free)
- `etw-mimalloc.wprp` is a profile for the Windows Performance Recorder (WPR).
In an admin prompt, you can use:
```
> wpr -start src\prim\windows\etw-mimalloc.wprp -filemode
> <my mimalloc program>
> wpr -stop test.etl
```
and then open `test.etl` in the Windows Performance Analyzer (WPA).

254
3rdparty/mimalloc/src/random.c vendored Normal file
View File

@ -0,0 +1,254 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/prim.h" // _mi_prim_random_buf
#include <string.h> // memset
/* ----------------------------------------------------------------------------
We use our own PRNG to keep predictable performance of random number generation
and to avoid implementations that use a lock. We only use the OS provided
random source to initialize the initial seeds. Since we do not need ultimate
performance but we do rely on the security (for secret cookies in secure mode)
we use a cryptographically secure generator (chacha20).
-----------------------------------------------------------------------------*/
#define MI_CHACHA_ROUNDS (20) // perhaps use 12 for better performance?
/* ----------------------------------------------------------------------------
Chacha20 implementation as the original algorithm with a 64-bit nonce
and counter: https://en.wikipedia.org/wiki/Salsa20
The input matrix has sixteen 32-bit values:
Position 0 to 3: constant key
Position 4 to 11: the key
Position 12 to 13: the counter.
Position 14 to 15: the nonce.
The implementation uses regular C code which compiles very well on modern compilers.
(gcc x64 has no register spills, and clang 6+ uses SSE instructions)
-----------------------------------------------------------------------------*/
static inline uint32_t rotl(uint32_t x, uint32_t shift) {
return (x << shift) | (x >> (32 - shift));
}
static inline void qround(uint32_t x[16], size_t a, size_t b, size_t c, size_t d) {
x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 16);
x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 12);
x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 8);
x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 7);
}
static void chacha_block(mi_random_ctx_t* ctx)
{
// scramble into `x`
uint32_t x[16];
for (size_t i = 0; i < 16; i++) {
x[i] = ctx->input[i];
}
for (size_t i = 0; i < MI_CHACHA_ROUNDS; i += 2) {
qround(x, 0, 4, 8, 12);
qround(x, 1, 5, 9, 13);
qround(x, 2, 6, 10, 14);
qround(x, 3, 7, 11, 15);
qround(x, 0, 5, 10, 15);
qround(x, 1, 6, 11, 12);
qround(x, 2, 7, 8, 13);
qround(x, 3, 4, 9, 14);
}
// add scrambled data to the initial state
for (size_t i = 0; i < 16; i++) {
ctx->output[i] = x[i] + ctx->input[i];
}
ctx->output_available = 16;
// increment the counter for the next round
ctx->input[12] += 1;
if (ctx->input[12] == 0) {
ctx->input[13] += 1;
if (ctx->input[13] == 0) { // and keep increasing into the nonce
ctx->input[14] += 1;
}
}
}
static uint32_t chacha_next32(mi_random_ctx_t* ctx) {
if (ctx->output_available <= 0) {
chacha_block(ctx);
ctx->output_available = 16; // (assign again to suppress static analysis warning)
}
const uint32_t x = ctx->output[16 - ctx->output_available];
ctx->output[16 - ctx->output_available] = 0; // reset once the data is handed out
ctx->output_available--;
return x;
}
static inline uint32_t read32(const uint8_t* p, size_t idx32) {
const size_t i = 4*idx32;
return ((uint32_t)p[i+0] | (uint32_t)p[i+1] << 8 | (uint32_t)p[i+2] << 16 | (uint32_t)p[i+3] << 24);
}
static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce)
{
// since we only use chacha for randomness (and not encryption) we
// do not _need_ to read 32-bit values as little endian but we do anyways
// just for being compatible :-)
memset(ctx, 0, sizeof(*ctx));
for (size_t i = 0; i < 4; i++) {
const uint8_t* sigma = (uint8_t*)"expand 32-byte k";
ctx->input[i] = read32(sigma,i);
}
for (size_t i = 0; i < 8; i++) {
ctx->input[i + 4] = read32(key,i);
}
ctx->input[12] = 0;
ctx->input[13] = 0;
ctx->input[14] = (uint32_t)nonce;
ctx->input[15] = (uint32_t)(nonce >> 32);
}
static void chacha_split(mi_random_ctx_t* ctx, uint64_t nonce, mi_random_ctx_t* ctx_new) {
memset(ctx_new, 0, sizeof(*ctx_new));
_mi_memcpy(ctx_new->input, ctx->input, sizeof(ctx_new->input));
ctx_new->input[12] = 0;
ctx_new->input[13] = 0;
ctx_new->input[14] = (uint32_t)nonce;
ctx_new->input[15] = (uint32_t)(nonce >> 32);
mi_assert_internal(ctx->input[14] != ctx_new->input[14] || ctx->input[15] != ctx_new->input[15]); // do not reuse nonces!
chacha_block(ctx_new);
}
/* ----------------------------------------------------------------------------
Random interface
-----------------------------------------------------------------------------*/
#if MI_DEBUG>1
static bool mi_random_is_initialized(mi_random_ctx_t* ctx) {
return (ctx != NULL && ctx->input[0] != 0);
}
#endif
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* ctx_new) {
mi_assert_internal(mi_random_is_initialized(ctx));
mi_assert_internal(ctx != ctx_new);
chacha_split(ctx, (uintptr_t)ctx_new /*nonce*/, ctx_new);
}
uintptr_t _mi_random_next(mi_random_ctx_t* ctx) {
mi_assert_internal(mi_random_is_initialized(ctx));
#if MI_INTPTR_SIZE <= 4
return chacha_next32(ctx);
#elif MI_INTPTR_SIZE == 8
return (((uintptr_t)chacha_next32(ctx) << 32) | chacha_next32(ctx));
#else
# error "define mi_random_next for this platform"
#endif
}
/* ----------------------------------------------------------------------------
To initialize a fresh random context.
If we cannot get good randomness, we fall back to weak randomness based on a timer and ASLR.
-----------------------------------------------------------------------------*/
uintptr_t _mi_os_random_weak(uintptr_t extra_seed) {
uintptr_t x = (uintptr_t)&_mi_os_random_weak ^ extra_seed; // ASLR makes the address random
x ^= _mi_prim_clock_now();
// and do a few randomization steps
uintptr_t max = ((x ^ (x >> 17)) & 0x0F) + 1;
for (uintptr_t i = 0; i < max; i++) {
x = _mi_random_shuffle(x);
}
mi_assert_internal(x != 0);
return x;
}
static void mi_random_init_ex(mi_random_ctx_t* ctx, bool use_weak) {
uint8_t key[32];
if (use_weak || !_mi_prim_random_buf(key, sizeof(key))) {
// if we fail to get random data from the OS, we fall back to a
// weak random source based on the current time
#if !defined(__wasi__)
if (!use_weak) { _mi_warning_message("unable to use secure randomness\n"); }
#endif
uintptr_t x = _mi_os_random_weak(0);
for (size_t i = 0; i < 8; i++) { // key is eight 32-bit words.
x = _mi_random_shuffle(x);
((uint32_t*)key)[i] = (uint32_t)x;
}
ctx->weak = true;
}
else {
ctx->weak = false;
}
chacha_init(ctx, key, (uintptr_t)ctx /*nonce*/ );
}
void _mi_random_init(mi_random_ctx_t* ctx) {
mi_random_init_ex(ctx, false);
}
void _mi_random_init_weak(mi_random_ctx_t * ctx) {
mi_random_init_ex(ctx, true);
}
void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx) {
if (ctx->weak) {
_mi_random_init(ctx);
}
}
/* --------------------------------------------------------
test vectors from <https://tools.ietf.org/html/rfc8439>
----------------------------------------------------------- */
/*
static bool array_equals(uint32_t* x, uint32_t* y, size_t n) {
for (size_t i = 0; i < n; i++) {
if (x[i] != y[i]) return false;
}
return true;
}
static void chacha_test(void)
{
uint32_t x[4] = { 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 };
uint32_t x_out[4] = { 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb };
qround(x, 0, 1, 2, 3);
mi_assert_internal(array_equals(x, x_out, 4));
uint32_t y[16] = {
0x879531e0, 0xc5ecf37d, 0x516461b1, 0xc9a62f8a,
0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0x2a5f714c,
0x53372767, 0xb00a5631, 0x974c541a, 0x359e9963,
0x5c971061, 0x3d631689, 0x2098d9d6, 0x91dbd320 };
uint32_t y_out[16] = {
0x879531e0, 0xc5ecf37d, 0xbdb886dc, 0xc9a62f8a,
0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0xcfacafd2,
0xe46bea80, 0xb00a5631, 0x974c541a, 0x359e9963,
0x5c971061, 0xccc07c79, 0x2098d9d6, 0x91dbd320 };
qround(y, 2, 7, 8, 13);
mi_assert_internal(array_equals(y, y_out, 16));
mi_random_ctx_t r = {
{ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574,
0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
0x00000001, 0x09000000, 0x4a000000, 0x00000000 },
{0},
0
};
uint32_t r_out[16] = {
0xe4e7f110, 0x15593bd1, 0x1fdd0f50, 0xc47120a3,
0xc7f4d1c7, 0x0368c033, 0x9aaa2204, 0x4e6cd4c3,
0x466482d2, 0x09aa9f07, 0x05d7c214, 0xa2028bd9,
0xd19c12b5, 0xb94e16de, 0xe883d0cb, 0x4e3c50a2 };
chacha_block(&r);
mi_assert_internal(array_equals(r.output, r_out, 16));
}
*/

153
3rdparty/mimalloc/src/segment-map.c vendored Normal file
View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* -----------------------------------------------------------
The following functions are to reliably find the segment or
block that encompasses any pointer p (or NULL if it is not
in any of our segments).
We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB)
set to 1 if it contains the segment meta data.
----------------------------------------------------------- */
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#if (MI_INTPTR_SIZE==8)
#define MI_MAX_ADDRESS ((size_t)40 << 40) // 40TB (to include huge page areas)
#else
#define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb
#endif
#define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE)
#define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8)
#define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE)
static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE + 1]; // 2KiB per TB with 64MiB segments
static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) {
mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE?
if ((uintptr_t)segment >= MI_MAX_ADDRESS) {
*bitidx = 0;
return MI_SEGMENT_MAP_WSIZE;
}
else {
const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_SIZE;
*bitidx = segindex % MI_INTPTR_BITS;
const size_t mapindex = segindex / MI_INTPTR_BITS;
mi_assert_internal(mapindex < MI_SEGMENT_MAP_WSIZE);
return mapindex;
}
}
void _mi_segment_map_allocated_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE);
if (index==MI_SEGMENT_MAP_WSIZE) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask | ((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
void _mi_segment_map_freed_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE);
if (index == MI_SEGMENT_MAP_WSIZE) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask & ~((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
// Determine the segment belonging to a pointer or NULL if it is not in a valid segment.
static mi_segment_t* _mi_segment_of(const void* p) {
if (p == NULL) return NULL;
mi_segment_t* segment = _mi_ptr_segment(p);
mi_assert_internal(segment != NULL);
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
// fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge
const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) {
return segment; // yes, allocated by us
}
if (index==MI_SEGMENT_MAP_WSIZE) return NULL;
// TODO: maintain max/min allocated range for efficiency for more efficient rejection of invalid pointers?
// search downwards for the first segment in case it is an interior pointer
// could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough
// valid huge objects
// note: we could maintain a lowest index to speed up the path for invalid pointers?
size_t lobitidx;
size_t loindex;
uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1);
if (lobits != 0) {
loindex = index;
lobitidx = mi_bsr(lobits); // lobits != 0
}
else if (index == 0) {
return NULL;
}
else {
mi_assert_internal(index > 0);
uintptr_t lomask = mask;
loindex = index;
do {
loindex--;
lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex]);
} while (lomask != 0 && loindex > 0);
if (lomask == 0) return NULL;
lobitidx = mi_bsr(lomask); // lomask != 0
}
mi_assert_internal(loindex < MI_SEGMENT_MAP_WSIZE);
// take difference as the addresses could be larger than the MAX_ADDRESS space.
size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE;
segment = (mi_segment_t*)((uint8_t*)segment - diff);
if (segment == NULL) return NULL;
mi_assert_internal((void*)segment < p);
bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(cookie_ok);
if mi_unlikely(!cookie_ok) return NULL;
if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range
mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment));
return segment;
}
// Is this a valid pointer in our heap?
static bool mi_is_valid_pointer(const void* p) {
return ((_mi_segment_of(p) != NULL) || (_mi_arena_contains(p)));
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return mi_is_valid_pointer(p);
}
/*
// Return the full segment range belonging to a pointer
static void* mi_segment_range_of(const void* p, size_t* size) {
mi_segment_t* segment = _mi_segment_of(p);
if (segment == NULL) {
if (size != NULL) *size = 0;
return NULL;
}
else {
if (size != NULL) *size = segment->segment_size;
return segment;
}
mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size);
mi_reset_delayed(tld);
mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld));
return page;
}
*/

1619
3rdparty/mimalloc/src/segment.c vendored Normal file

File diff suppressed because it is too large Load Diff

40
3rdparty/mimalloc/src/static.c vendored Normal file
View File

@ -0,0 +1,40 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE
#endif
#if defined(__sun)
// same remarks as os.c for the static's context.
#undef _XOPEN_SOURCE
#undef _POSIX_C_SOURCE
#endif
#include "mimalloc.h"
#include "mimalloc/internal.h"
// For a static override we create a single object file
// containing the whole library. If it is linked first
// it will override all the standard library allocation
// functions (on Unix's).
#include "alloc.c" // includes alloc-override.c
#include "alloc-aligned.c"
#include "alloc-posix.c"
#include "arena.c"
#include "bitmap.c"
#include "heap.c"
#include "init.c"
#include "options.c"
#include "os.c"
#include "page.c" // includes page-queue.c
#include "random.c"
#include "segment.c"
#include "segment-map.c"
#include "stats.c"
#include "prim/prim.c"
#if MI_OSX_ZONE
#include "prim/osx/alloc-override-zone.c"
#endif

467
3rdparty/mimalloc/src/stats.c vendored Normal file
View File

@ -0,0 +1,467 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
#include <stdio.h> // snprintf
#include <string.h> // memset
#if defined(_MSC_VER) && (_MSC_VER < 1920)
#pragma warning(disable:4204) // non-constant aggregate initializer
#endif
/* -----------------------------------------------------------
Statistics operations
----------------------------------------------------------- */
static bool mi_is_in_main(void* stat) {
return ((uint8_t*)stat >= (uint8_t*)&_mi_stats_main
&& (uint8_t*)stat < ((uint8_t*)&_mi_stats_main + sizeof(mi_stats_t)));
}
static void mi_stat_update(mi_stat_count_t* stat, int64_t amount) {
if (amount == 0) return;
if (mi_is_in_main(stat))
{
// add atomically (for abandoned pages)
int64_t current = mi_atomic_addi64_relaxed(&stat->current, amount);
mi_atomic_maxi64_relaxed(&stat->peak, current + amount);
if (amount > 0) {
mi_atomic_addi64_relaxed(&stat->allocated,amount);
}
else {
mi_atomic_addi64_relaxed(&stat->freed, -amount);
}
}
else {
// add thread local
stat->current += amount;
if (stat->current > stat->peak) stat->peak = stat->current;
if (amount > 0) {
stat->allocated += amount;
}
else {
stat->freed += -amount;
}
}
}
void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount) {
if (mi_is_in_main(stat)) {
mi_atomic_addi64_relaxed( &stat->count, 1 );
mi_atomic_addi64_relaxed( &stat->total, (int64_t)amount );
}
else {
stat->count++;
stat->total += amount;
}
}
void _mi_stat_increase(mi_stat_count_t* stat, size_t amount) {
mi_stat_update(stat, (int64_t)amount);
}
void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount) {
mi_stat_update(stat, -((int64_t)amount));
}
// must be thread safe as it is called from stats_merge
static void mi_stat_add(mi_stat_count_t* stat, const mi_stat_count_t* src, int64_t unit) {
if (stat==src) return;
if (src->allocated==0 && src->freed==0) return;
mi_atomic_addi64_relaxed( &stat->allocated, src->allocated * unit);
mi_atomic_addi64_relaxed( &stat->current, src->current * unit);
mi_atomic_addi64_relaxed( &stat->freed, src->freed * unit);
// peak scores do not work across threads..
mi_atomic_addi64_relaxed( &stat->peak, src->peak * unit);
}
static void mi_stat_counter_add(mi_stat_counter_t* stat, const mi_stat_counter_t* src, int64_t unit) {
if (stat==src) return;
mi_atomic_addi64_relaxed( &stat->total, src->total * unit);
mi_atomic_addi64_relaxed( &stat->count, src->count * unit);
}
// must be thread safe as it is called from stats_merge
static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) {
if (stats==src) return;
mi_stat_add(&stats->segments, &src->segments,1);
mi_stat_add(&stats->pages, &src->pages,1);
mi_stat_add(&stats->reserved, &src->reserved, 1);
mi_stat_add(&stats->committed, &src->committed, 1);
mi_stat_add(&stats->reset, &src->reset, 1);
mi_stat_add(&stats->purged, &src->purged, 1);
mi_stat_add(&stats->page_committed, &src->page_committed, 1);
mi_stat_add(&stats->pages_abandoned, &src->pages_abandoned, 1);
mi_stat_add(&stats->segments_abandoned, &src->segments_abandoned, 1);
mi_stat_add(&stats->threads, &src->threads, 1);
mi_stat_add(&stats->malloc, &src->malloc, 1);
mi_stat_add(&stats->segments_cache, &src->segments_cache, 1);
mi_stat_add(&stats->normal, &src->normal, 1);
mi_stat_add(&stats->huge, &src->huge, 1);
mi_stat_add(&stats->large, &src->large, 1);
mi_stat_counter_add(&stats->pages_extended, &src->pages_extended, 1);
mi_stat_counter_add(&stats->mmap_calls, &src->mmap_calls, 1);
mi_stat_counter_add(&stats->commit_calls, &src->commit_calls, 1);
mi_stat_counter_add(&stats->reset_calls, &src->reset_calls, 1);
mi_stat_counter_add(&stats->purge_calls, &src->purge_calls, 1);
mi_stat_counter_add(&stats->page_no_retire, &src->page_no_retire, 1);
mi_stat_counter_add(&stats->searches, &src->searches, 1);
mi_stat_counter_add(&stats->normal_count, &src->normal_count, 1);
mi_stat_counter_add(&stats->huge_count, &src->huge_count, 1);
mi_stat_counter_add(&stats->large_count, &src->large_count, 1);
#if MI_STAT>1
for (size_t i = 0; i <= MI_BIN_HUGE; i++) {
if (src->normal_bins[i].allocated > 0 || src->normal_bins[i].freed > 0) {
mi_stat_add(&stats->normal_bins[i], &src->normal_bins[i], 1);
}
}
#endif
}
/* -----------------------------------------------------------
Display statistics
----------------------------------------------------------- */
// unit > 0 : size in binary bytes
// unit == 0: count as decimal
// unit < 0 : count in binary
static void mi_printf_amount(int64_t n, int64_t unit, mi_output_fun* out, void* arg, const char* fmt) {
char buf[32]; buf[0] = 0;
int len = 32;
const char* suffix = (unit <= 0 ? " " : "B");
const int64_t base = (unit == 0 ? 1000 : 1024);
if (unit>0) n *= unit;
const int64_t pos = (n < 0 ? -n : n);
if (pos < base) {
if (n!=1 || suffix[0] != 'B') { // skip printing 1 B for the unit column
snprintf(buf, len, "%d %-3s", (int)n, (n==0 ? "" : suffix));
}
}
else {
int64_t divider = base;
const char* magnitude = "K";
if (pos >= divider*base) { divider *= base; magnitude = "M"; }
if (pos >= divider*base) { divider *= base; magnitude = "G"; }
const int64_t tens = (n / (divider/10));
const long whole = (long)(tens/10);
const long frac1 = (long)(tens%10);
char unitdesc[8];
snprintf(unitdesc, 8, "%s%s%s", magnitude, (base==1024 ? "i" : ""), suffix);
snprintf(buf, len, "%ld.%ld %-3s", whole, (frac1 < 0 ? -frac1 : frac1), unitdesc);
}
_mi_fprintf(out, arg, (fmt==NULL ? "%12s" : fmt), buf);
}
static void mi_print_amount(int64_t n, int64_t unit, mi_output_fun* out, void* arg) {
mi_printf_amount(n,unit,out,arg,NULL);
}
static void mi_print_count(int64_t n, int64_t unit, mi_output_fun* out, void* arg) {
if (unit==1) _mi_fprintf(out, arg, "%12s"," ");
else mi_print_amount(n,0,out,arg);
}
static void mi_stat_print_ex(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg, const char* notok ) {
_mi_fprintf(out, arg,"%10s:", msg);
if (unit > 0) {
mi_print_amount(stat->peak, unit, out, arg);
mi_print_amount(stat->allocated, unit, out, arg);
mi_print_amount(stat->freed, unit, out, arg);
mi_print_amount(stat->current, unit, out, arg);
mi_print_amount(unit, 1, out, arg);
mi_print_count(stat->allocated, unit, out, arg);
if (stat->allocated > stat->freed) {
_mi_fprintf(out, arg, " ");
_mi_fprintf(out, arg, (notok == NULL ? "not all freed" : notok));
_mi_fprintf(out, arg, "\n");
}
else {
_mi_fprintf(out, arg, " ok\n");
}
}
else if (unit<0) {
mi_print_amount(stat->peak, -1, out, arg);
mi_print_amount(stat->allocated, -1, out, arg);
mi_print_amount(stat->freed, -1, out, arg);
mi_print_amount(stat->current, -1, out, arg);
if (unit==-1) {
_mi_fprintf(out, arg, "%24s", "");
}
else {
mi_print_amount(-unit, 1, out, arg);
mi_print_count((stat->allocated / -unit), 0, out, arg);
}
if (stat->allocated > stat->freed)
_mi_fprintf(out, arg, " not all freed!\n");
else
_mi_fprintf(out, arg, " ok\n");
}
else {
mi_print_amount(stat->peak, 1, out, arg);
mi_print_amount(stat->allocated, 1, out, arg);
_mi_fprintf(out, arg, "%11s", " "); // no freed
mi_print_amount(stat->current, 1, out, arg);
_mi_fprintf(out, arg, "\n");
}
}
static void mi_stat_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg) {
mi_stat_print_ex(stat, msg, unit, out, arg, NULL);
}
static void mi_stat_peak_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg) {
_mi_fprintf(out, arg, "%10s:", msg);
mi_print_amount(stat->peak, unit, out, arg);
_mi_fprintf(out, arg, "\n");
}
static void mi_stat_counter_print(const mi_stat_counter_t* stat, const char* msg, mi_output_fun* out, void* arg ) {
_mi_fprintf(out, arg, "%10s:", msg);
mi_print_amount(stat->total, -1, out, arg);
_mi_fprintf(out, arg, "\n");
}
static void mi_stat_counter_print_avg(const mi_stat_counter_t* stat, const char* msg, mi_output_fun* out, void* arg) {
const int64_t avg_tens = (stat->count == 0 ? 0 : (stat->total*10 / stat->count));
const long avg_whole = (long)(avg_tens/10);
const long avg_frac1 = (long)(avg_tens%10);
_mi_fprintf(out, arg, "%10s: %5ld.%ld avg\n", msg, avg_whole, avg_frac1);
}
static void mi_print_header(mi_output_fun* out, void* arg ) {
_mi_fprintf(out, arg, "%10s: %11s %11s %11s %11s %11s %11s\n", "heap stats", "peak ", "total ", "freed ", "current ", "unit ", "count ");
}
#if MI_STAT>1
static void mi_stats_print_bins(const mi_stat_count_t* bins, size_t max, const char* fmt, mi_output_fun* out, void* arg) {
bool found = false;
char buf[64];
for (size_t i = 0; i <= max; i++) {
if (bins[i].allocated > 0) {
found = true;
int64_t unit = _mi_bin_size((uint8_t)i);
snprintf(buf, 64, "%s %3lu", fmt, (long)i);
mi_stat_print(&bins[i], buf, unit, out, arg);
}
}
if (found) {
_mi_fprintf(out, arg, "\n");
mi_print_header(out, arg);
}
}
#endif
//------------------------------------------------------------
// Use an output wrapper for line-buffered output
// (which is nice when using loggers etc.)
//------------------------------------------------------------
typedef struct buffered_s {
mi_output_fun* out; // original output function
void* arg; // and state
char* buf; // local buffer of at least size `count+1`
size_t used; // currently used chars `used <= count`
size_t count; // total chars available for output
} buffered_t;
static void mi_buffered_flush(buffered_t* buf) {
buf->buf[buf->used] = 0;
_mi_fputs(buf->out, buf->arg, NULL, buf->buf);
buf->used = 0;
}
static void mi_cdecl mi_buffered_out(const char* msg, void* arg) {
buffered_t* buf = (buffered_t*)arg;
if (msg==NULL || buf==NULL) return;
for (const char* src = msg; *src != 0; src++) {
char c = *src;
if (buf->used >= buf->count) mi_buffered_flush(buf);
mi_assert_internal(buf->used < buf->count);
buf->buf[buf->used++] = c;
if (c == '\n') mi_buffered_flush(buf);
}
}
//------------------------------------------------------------
// Print statistics
//------------------------------------------------------------
static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0) mi_attr_noexcept {
// wrap the output function to be line buffered
char buf[256];
buffered_t buffer = { out0, arg0, NULL, 0, 255 };
buffer.buf = buf;
mi_output_fun* out = &mi_buffered_out;
void* arg = &buffer;
// and print using that
mi_print_header(out,arg);
#if MI_STAT>1
mi_stats_print_bins(stats->normal_bins, MI_BIN_HUGE, "normal",out,arg);
#endif
#if MI_STAT
mi_stat_print(&stats->normal, "normal", (stats->normal_count.count == 0 ? 1 : -(stats->normal.allocated / stats->normal_count.count)), out, arg);
mi_stat_print(&stats->large, "large", (stats->large_count.count == 0 ? 1 : -(stats->large.allocated / stats->large_count.count)), out, arg);
mi_stat_print(&stats->huge, "huge", (stats->huge_count.count == 0 ? 1 : -(stats->huge.allocated / stats->huge_count.count)), out, arg);
mi_stat_count_t total = { 0,0,0,0 };
mi_stat_add(&total, &stats->normal, 1);
mi_stat_add(&total, &stats->large, 1);
mi_stat_add(&total, &stats->huge, 1);
mi_stat_print(&total, "total", 1, out, arg);
#endif
#if MI_STAT>1
mi_stat_print(&stats->malloc, "malloc req", 1, out, arg);
_mi_fprintf(out, arg, "\n");
#endif
mi_stat_print_ex(&stats->reserved, "reserved", 1, out, arg, "");
mi_stat_print_ex(&stats->committed, "committed", 1, out, arg, "");
mi_stat_peak_print(&stats->reset, "reset", 1, out, arg );
mi_stat_peak_print(&stats->purged, "purged", 1, out, arg );
mi_stat_print(&stats->page_committed, "touched", 1, out, arg);
mi_stat_print(&stats->segments, "segments", -1, out, arg);
mi_stat_print(&stats->segments_abandoned, "-abandoned", -1, out, arg);
mi_stat_print(&stats->segments_cache, "-cached", -1, out, arg);
mi_stat_print(&stats->pages, "pages", -1, out, arg);
mi_stat_print(&stats->pages_abandoned, "-abandoned", -1, out, arg);
mi_stat_counter_print(&stats->pages_extended, "-extended", out, arg);
mi_stat_counter_print(&stats->page_no_retire, "-noretire", out, arg);
mi_stat_counter_print(&stats->mmap_calls, "mmaps", out, arg);
mi_stat_counter_print(&stats->commit_calls, "commits", out, arg);
mi_stat_counter_print(&stats->reset_calls, "resets", out, arg);
mi_stat_counter_print(&stats->purge_calls, "purges", out, arg);
mi_stat_print(&stats->threads, "threads", -1, out, arg);
mi_stat_counter_print_avg(&stats->searches, "searches", out, arg);
_mi_fprintf(out, arg, "%10s: %5zu\n", "numa nodes", _mi_os_numa_node_count());
size_t elapsed;
size_t user_time;
size_t sys_time;
size_t current_rss;
size_t peak_rss;
size_t current_commit;
size_t peak_commit;
size_t page_faults;
mi_process_info(&elapsed, &user_time, &sys_time, &current_rss, &peak_rss, &current_commit, &peak_commit, &page_faults);
_mi_fprintf(out, arg, "%10s: %5ld.%03ld s\n", "elapsed", elapsed/1000, elapsed%1000);
_mi_fprintf(out, arg, "%10s: user: %ld.%03ld s, system: %ld.%03ld s, faults: %lu, rss: ", "process",
user_time/1000, user_time%1000, sys_time/1000, sys_time%1000, (unsigned long)page_faults );
mi_printf_amount((int64_t)peak_rss, 1, out, arg, "%s");
if (peak_commit > 0) {
_mi_fprintf(out, arg, ", commit: ");
mi_printf_amount((int64_t)peak_commit, 1, out, arg, "%s");
}
_mi_fprintf(out, arg, "\n");
}
static mi_msecs_t mi_process_start; // = 0
static mi_stats_t* mi_stats_get_default(void) {
mi_heap_t* heap = mi_heap_get_default();
return &heap->tld->stats;
}
static void mi_stats_merge_from(mi_stats_t* stats) {
if (stats != &_mi_stats_main) {
mi_stats_add(&_mi_stats_main, stats);
memset(stats, 0, sizeof(mi_stats_t));
}
}
void mi_stats_reset(void) mi_attr_noexcept {
mi_stats_t* stats = mi_stats_get_default();
if (stats != &_mi_stats_main) { memset(stats, 0, sizeof(mi_stats_t)); }
memset(&_mi_stats_main, 0, sizeof(mi_stats_t));
if (mi_process_start == 0) { mi_process_start = _mi_clock_start(); };
}
void mi_stats_merge(void) mi_attr_noexcept {
mi_stats_merge_from( mi_stats_get_default() );
}
void _mi_stats_done(mi_stats_t* stats) { // called from `mi_thread_done`
mi_stats_merge_from(stats);
}
void mi_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept {
mi_stats_merge_from(mi_stats_get_default());
_mi_stats_print(&_mi_stats_main, out, arg);
}
void mi_stats_print(void* out) mi_attr_noexcept {
// for compatibility there is an `out` parameter (which can be `stdout` or `stderr`)
mi_stats_print_out((mi_output_fun*)out, NULL);
}
void mi_thread_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept {
_mi_stats_print(mi_stats_get_default(), out, arg);
}
// ----------------------------------------------------------------
// Basic timer for convenience; use milli-seconds to avoid doubles
// ----------------------------------------------------------------
static mi_msecs_t mi_clock_diff;
mi_msecs_t _mi_clock_now(void) {
return _mi_prim_clock_now();
}
mi_msecs_t _mi_clock_start(void) {
if (mi_clock_diff == 0.0) {
mi_msecs_t t0 = _mi_clock_now();
mi_clock_diff = _mi_clock_now() - t0;
}
return _mi_clock_now();
}
mi_msecs_t _mi_clock_end(mi_msecs_t start) {
mi_msecs_t end = _mi_clock_now();
return (end - start - mi_clock_diff);
}
// --------------------------------------------------------
// Basic process statistics
// --------------------------------------------------------
mi_decl_export void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_msecs, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults) mi_attr_noexcept
{
mi_process_info_t pinfo;
_mi_memzero_var(pinfo);
pinfo.elapsed = _mi_clock_end(mi_process_start);
pinfo.current_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.current));
pinfo.peak_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.peak));
pinfo.current_rss = pinfo.current_commit;
pinfo.peak_rss = pinfo.peak_commit;
pinfo.utime = 0;
pinfo.stime = 0;
pinfo.page_faults = 0;
_mi_prim_process_info(&pinfo);
if (elapsed_msecs!=NULL) *elapsed_msecs = (pinfo.elapsed < 0 ? 0 : (pinfo.elapsed < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.elapsed : PTRDIFF_MAX));
if (user_msecs!=NULL) *user_msecs = (pinfo.utime < 0 ? 0 : (pinfo.utime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.utime : PTRDIFF_MAX));
if (system_msecs!=NULL) *system_msecs = (pinfo.stime < 0 ? 0 : (pinfo.stime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.stime : PTRDIFF_MAX));
if (current_rss!=NULL) *current_rss = pinfo.current_rss;
if (peak_rss!=NULL) *peak_rss = pinfo.peak_rss;
if (current_commit!=NULL) *current_commit = pinfo.current_commit;
if (peak_commit!=NULL) *peak_commit = pinfo.peak_commit;
if (page_faults!=NULL) *page_faults = pinfo.page_faults;
}

View File

@ -49,8 +49,22 @@ set(CMAKE_C_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_STANDARD_REQUIRED ON)
if(LINUX OR MSVC)
set(USE_MIMALLOC_DEFAULT ON)
else()
set(USE_MIMALLOC_DEFAULT OFF)
endif()
option(USE_MIMALLOC "Use mimalloc" ${USE_MIMALLOC_DEFAULT})
if(MSVC) if(MSVC)
list(APPEND COMPILE_OPTIONS /MP) list(APPEND COMPILE_OPTIONS /MP)
if(USE_MIMALLOC)
if(CMAKE_BUILD_TYPE MATCHES "Release" OR CMAKE_BUILD_TYPE MATCHES "release" OR CMAKE_BUILD_TYPE MATCHES "RelWithDebInfo")
list(APPEND COMPILE_OPTIONS /MD)
else()
list(APPEND COMPILE_OPTIONS /MDd)
endif()
endif()
else() else()
list(APPEND COMPILE_OPTIONS list(APPEND COMPILE_OPTIONS
$<$<COMPILE_LANGUAGE:C>:-std=c11> $<$<COMPILE_LANGUAGE:C>:-std=c11>
@ -108,6 +122,10 @@ find_package(Backtrace)
if(Backtrace_FOUND) if(Backtrace_FOUND)
set(HAVE_BACKTRACE ON) set(HAVE_BACKTRACE ON)
endif() endif()
if(USE_MIMALLOC AND MSVC)
find_package(mimalloc REQUIRED)
set(HAVE_MIMALLOC ON)
endif()
if(USE_ICU) if(USE_ICU)
find_package(ICU COMPONENTS uc i18n REQUIRED) find_package(ICU COMPONENTS uc i18n REQUIRED)
if(ICU_FOUND) if(ICU_FOUND)
@ -299,6 +317,13 @@ if(NOT TAGLIB_FOUND AND NOT TAGPARSER_FOUND)
message(FATAL_ERROR "You need either TagLib or TagParser!") message(FATAL_ERROR "You need either TagLib or TagParser!")
endif() endif()
# mimalloc
if(USE_MIMALLOC AND NOT MSVC)
set(HAVE_MIMALLOC ON)
add_subdirectory(3rdparty/mimalloc)
set(MIMALLOC_INCLUDE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/mimalloc/include)
endif()
# SingleApplication # SingleApplication
if(QT_VERSION_MAJOR EQUAL 5) if(QT_VERSION_MAJOR EQUAL 5)
set(KDSINGLEAPPLICATION_NAME "KDSingleApplication") set(KDSINGLEAPPLICATION_NAME "KDSingleApplication")

View File

@ -48,6 +48,9 @@
!define build_type "-Debug" !define build_type "-Debug"
!endif !endif
!if "@HAVE_MIMALLOC@" == "1"
!define mimalloc
!endif
!ifndef compiler !ifndef compiler
!error "Missing compiler." !error "Missing compiler."
@ -469,6 +472,10 @@ Section "Strawberry" Strawberry
File "pcre2-16.dll" File "pcre2-16.dll"
File "twolame.dll" File "twolame.dll"
File "zlib.dll" File "zlib.dll"
!ifdef mimalloc
File "mimalloc.dll"
File "mimalloc-redirect.dll"
!endif
!endif !endif
!ifdef debug !ifdef debug
File "freetyped.dll" File "freetyped.dll"
@ -480,6 +487,10 @@ Section "Strawberry" Strawberry
File "pcre2-16d.dll" File "pcre2-16d.dll"
File "twolamed.dll" File "twolamed.dll"
File "zlibd.dll" File "zlibd.dll"
!ifdef mimalloc
File "mimalloc-debug.dll"
File "mimalloc-redirect.dll"
!endif
!endif !endif
; Used by libfftw3-3.dll because fftw is compiled with MinGW. ; Used by libfftw3-3.dll because fftw is compiled with MinGW.

View File

@ -1096,6 +1096,15 @@ target_include_directories(strawberry_lib PUBLIC
${SINGLEAPPLICATION_INCLUDE_DIRS} ${SINGLEAPPLICATION_INCLUDE_DIRS}
) )
if(USE_MIMALLOC)
if(MSVC)
target_link_libraries(strawberry_lib PUBLIC mimalloc)
else()
target_include_directories(strawberry_lib PUBLIC ${MIMALLOC_INCLUDE_DIRS})
target_link_libraries(strawberry_lib PUBLIC ${CMAKE_BINARY_DIR}/3rdparty/mimalloc/mimalloc.o)
endif()
endif()
target_link_libraries(strawberry_lib PUBLIC target_link_libraries(strawberry_lib PUBLIC
${CMAKE_THREAD_LIBS_INIT} ${CMAKE_THREAD_LIBS_INIT}
${GLIB_LIBRARIES} ${GLIB_LIBRARIES}

View File

@ -6,6 +6,7 @@
#define CMAKE_EXECUTABLE_SUFFIX "${CMAKE_EXECUTABLE_SUFFIX}" #define CMAKE_EXECUTABLE_SUFFIX "${CMAKE_EXECUTABLE_SUFFIX}"
#cmakedefine HAVE_BACKTRACE #cmakedefine HAVE_BACKTRACE
#cmakedefine HAVE_MIMALLOC
#cmakedefine HAVE_GIO #cmakedefine HAVE_GIO
#cmakedefine HAVE_GIO_UNIX #cmakedefine HAVE_GIO_UNIX
#cmakedefine HAVE_DBUS #cmakedefine HAVE_DBUS

View File

@ -57,7 +57,6 @@ class LocalRedirectServer : public QTcpServer {
void ReadyRead(); void ReadyRead();
private: private:
bool GenerateCertificate();
void WriteTemplate() const; void WriteTemplate() const;
QUrl ParseUrlFromRequest(const QByteArray &request) const; QUrl ParseUrlFromRequest(const QByteArray &request) const;

View File

@ -44,6 +44,10 @@
#include <glib.h> #include <glib.h>
#ifdef HAVE_MIMALLOC
# include <mimalloc.h>
#endif
#include <QObject> #include <QObject>
#include <QApplication> #include <QApplication>
#include <QCoreApplication> #include <QCoreApplication>
@ -119,6 +123,10 @@ using std::make_shared;
int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
#ifdef HAVE_MIMALLOC
mi_version();
#endif
#ifdef Q_OS_MACOS #ifdef Q_OS_MACOS
// Do Mac specific startup to get media keys working. // Do Mac specific startup to get media keys working.
// This must go before QApplication initialization. // This must go before QApplication initialization.