diff --git a/3rdparty/mimalloc/CMakeLists.txt b/3rdparty/mimalloc/CMakeLists.txt new file mode 100644 index 00000000..e1d8881a --- /dev/null +++ b/3rdparty/mimalloc/CMakeLists.txt @@ -0,0 +1,402 @@ +cmake_minimum_required(VERSION 3.13) + +option(MI_SECURE "Use full security mitigations (like guard pages, allocation randomization, double-free mitigation, and free-list corruption detection)" OFF) +option(MI_DEBUG_FULL "Use full internal heap invariant checking in DEBUG mode (expensive)" OFF) +option(MI_PADDING "Enable padding to detect heap block overflow (always on in DEBUG or SECURE mode, or with Valgrind/ASAN)" OFF) +option(MI_OVERRIDE "Override the standard malloc interface (e.g. define entry points for malloc() etc)" ON) +option(MI_XMALLOC "Enable abort() call on memory allocation failure by default" OFF) +option(MI_SHOW_ERRORS "Show error and warning messages by default (only enabled by default in DEBUG mode)" OFF) +option(MI_TRACK_VALGRIND "Compile with Valgrind support (adds a small overhead)" OFF) +option(MI_TRACK_ASAN "Compile with address sanitizer support (adds a small overhead)" OFF) +option(MI_TRACK_ETW "Compile with Windows event tracing (ETW) support (adds a small overhead)" OFF) +option(MI_USE_CXX "Use the C++ compiler to compile the library (instead of the C compiler)" OFF) +option(MI_SEE_ASM "Generate assembly files" OFF) +option(MI_WIN_REDIRECT "Use redirection module ('mimalloc-redirect') on Windows if compiling mimalloc as a DLL" ON) +option(MI_LOCAL_DYNAMIC_TLS "Use slightly slower, dlopen-compatible TLS mechanism (Unix)" OFF) +option(MI_BUILD_STATIC "Build static library" ON) +option(MI_BUILD_OBJECT "Build object library" ON) +option(MI_DEBUG_TSAN "Build with thread sanitizer (needs clang)" OFF) +option(MI_DEBUG_UBSAN "Build with undefined-behavior sanitizer (needs clang++)" OFF) +option(MI_SKIP_COLLECT_ON_EXIT "Skip collecting memory on program exit" OFF) +option(MI_NO_PADDING "Force no use of padding even in DEBUG mode etc." OFF) + +include(CheckIncludeFiles) +include(GNUInstallDirs) + +set(mi_sources + src/alloc.c + src/alloc-aligned.c + src/alloc-posix.c + src/arena.c + src/bitmap.c + src/heap.c + src/init.c + src/options.c + src/os.c + src/page.c + src/random.c + src/segment.c + src/segment-map.c + src/stats.c + src/prim/prim.c) + +set(mi_cflags "") +set(mi_libraries "") + +# ----------------------------------------------------------------------------- +# Convenience: set default build type depending on the build directory +# ----------------------------------------------------------------------------- + +message(STATUS "") +if (NOT CMAKE_BUILD_TYPE) + if ("${CMAKE_BINARY_DIR}" MATCHES ".*(D|d)ebug$" OR MI_DEBUG_FULL) + message(STATUS "No build type selected, default to: Debug") + set(CMAKE_BUILD_TYPE "Debug") + else() + message(STATUS "No build type selected, default to: Release") + set(CMAKE_BUILD_TYPE "Release") + endif() +endif() + +if("${CMAKE_BINARY_DIR}" MATCHES ".*(S|s)ecure$") + message(STATUS "Default to secure build") + set(MI_SECURE "ON") +endif() + + +# ----------------------------------------------------------------------------- +# Process options +# ----------------------------------------------------------------------------- + +if(CMAKE_C_COMPILER_ID MATCHES "MSVC|Intel") + set(MI_USE_CXX "ON") +endif() + +if(MI_OVERRIDE) + message(STATUS "Override standard malloc (MI_OVERRIDE=ON)") +endif() + +if(WIN32) + if (MI_WIN_REDIRECT) + if (MSVC_C_ARCHITECTURE_ID MATCHES "ARM") + message(STATUS "Cannot use redirection on Windows ARM (MI_WIN_REDIRECT=OFF)") + set(MI_WIN_REDIRECT OFF) + endif() + endif() + if (NOT MI_WIN_REDIRECT) + # use a negative define for backward compatibility + list(APPEND mi_defines MI_WIN_NOREDIRECT=1) + endif() +endif() + +if(MI_SECURE) + message(STATUS "Set full secure build (MI_SECURE=ON)") + list(APPEND mi_defines MI_SECURE=4) +endif() + +if(MI_TRACK_VALGRIND) + CHECK_INCLUDE_FILES("valgrind/valgrind.h;valgrind/memcheck.h" MI_HAS_VALGRINDH) + if (NOT MI_HAS_VALGRINDH) + set(MI_TRACK_VALGRIND OFF) + message(WARNING "Cannot find the 'valgrind/valgrind.h' and 'valgrind/memcheck.h' -- install valgrind first") + message(STATUS "Compile **without** Valgrind support (MI_TRACK_VALGRIND=OFF)") + else() + message(STATUS "Compile with Valgrind support (MI_TRACK_VALGRIND=ON)") + list(APPEND mi_defines MI_TRACK_VALGRIND=1) + endif() +endif() + +if(MI_TRACK_ASAN) + if (APPLE AND MI_OVERRIDE) + set(MI_TRACK_ASAN OFF) + message(WARNING "Cannot enable address sanitizer support on macOS if MI_OVERRIDE is ON (MI_TRACK_ASAN=OFF)") + endif() + if (MI_TRACK_VALGRIND) + set(MI_TRACK_ASAN OFF) + message(WARNING "Cannot enable address sanitizer support with also Valgrind support enabled (MI_TRACK_ASAN=OFF)") + endif() + if(MI_TRACK_ASAN) + CHECK_INCLUDE_FILES("sanitizer/asan_interface.h" MI_HAS_ASANH) + if (NOT MI_HAS_ASANH) + set(MI_TRACK_ASAN OFF) + message(WARNING "Cannot find the 'sanitizer/asan_interface.h' -- install address sanitizer support first") + message(STATUS "Compile **without** address sanitizer support (MI_TRACK_ASAN=OFF)") + else() + message(STATUS "Compile with address sanitizer support (MI_TRACK_ASAN=ON)") + list(APPEND mi_defines MI_TRACK_ASAN=1) + list(APPEND mi_cflags -fsanitize=address) + list(APPEND mi_libraries -fsanitize=address) + endif() + endif() +endif() + +if(MI_TRACK_ETW) + if(NOT WIN32) + set(MI_TRACK_ETW OFF) + message(WARNING "Can only enable ETW support on Windows (MI_TRACK_ETW=OFF)") + endif() + if (MI_TRACK_VALGRIND OR MI_TRACK_ASAN) + set(MI_TRACK_ETW OFF) + message(WARNING "Cannot enable ETW support with also Valgrind or ASAN support enabled (MI_TRACK_ETW=OFF)") + endif() + if(MI_TRACK_ETW) + message(STATUS "Compile with Windows event tracing support (MI_TRACK_ETW=ON)") + list(APPEND mi_defines MI_TRACK_ETW=1) + endif() +endif() + +if(MI_SEE_ASM) + message(STATUS "Generate assembly listings (MI_SEE_ASM=ON)") + list(APPEND mi_cflags -save-temps) +endif() + +if(MI_CHECK_FULL) + message(STATUS "The MI_CHECK_FULL option is deprecated, use MI_DEBUG_FULL instead") + set(MI_DEBUG_FULL "ON") +endif() + +if (MI_SKIP_COLLECT_ON_EXIT) + message(STATUS "Skip collecting memory on program exit (MI_SKIP_COLLECT_ON_EXIT=ON)") + list(APPEND mi_defines MI_SKIP_COLLECT_ON_EXIT=1) +endif() + +if(MI_DEBUG_FULL) + message(STATUS "Set debug level to full internal invariant checking (MI_DEBUG_FULL=ON)") + list(APPEND mi_defines MI_DEBUG=3) # full invariant checking +endif() + +if(MI_NO_PADDING) + message(STATUS "Suppress any padding of heap blocks (MI_NO_PADDING=ON)") + list(APPEND mi_defines MI_PADDING=0) +else() + if(MI_PADDING) + message(STATUS "Enable explicit padding of heap blocks (MI_PADDING=ON)") + list(APPEND mi_defines MI_PADDING=1) + endif() +endif() + +if(MI_XMALLOC) + message(STATUS "Enable abort() calls on memory allocation failure (MI_XMALLOC=ON)") + list(APPEND mi_defines MI_XMALLOC=1) +endif() + +if(MI_SHOW_ERRORS) + message(STATUS "Enable printing of error and warning messages by default (MI_SHOW_ERRORS=ON)") + list(APPEND mi_defines MI_SHOW_ERRORS=1) +endif() + +if(MI_DEBUG_TSAN) + if(CMAKE_C_COMPILER_ID MATCHES "Clang") + message(STATUS "Build with thread sanitizer (MI_DEBUG_TSAN=ON)") + list(APPEND mi_defines MI_TSAN=1) + list(APPEND mi_cflags -fsanitize=thread -g -O1) + list(APPEND mi_libraries -fsanitize=thread) + else() + message(WARNING "Can only use thread sanitizer with clang (MI_DEBUG_TSAN=ON but ignored)") + endif() +endif() + +if(MI_DEBUG_UBSAN) + if(CMAKE_BUILD_TYPE MATCHES "Debug") + if(CMAKE_CXX_COMPILER_ID MATCHES "Clang") + message(STATUS "Build with undefined-behavior sanitizer (MI_DEBUG_UBSAN=ON)") + list(APPEND mi_cflags -fsanitize=undefined -g -fno-sanitize-recover=undefined) + list(APPEND mi_libraries -fsanitize=undefined) + if (NOT MI_USE_CXX) + message(STATUS "(switch to use C++ due to MI_DEBUG_UBSAN)") + set(MI_USE_CXX "ON") + endif() + else() + message(WARNING "Can only use undefined-behavior sanitizer with clang++ (MI_DEBUG_UBSAN=ON but ignored)") + endif() + else() + message(WARNING "Can only use thread sanitizer with a debug build (CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE})") + endif() +endif() + +if(MI_USE_CXX) + message(STATUS "Use the C++ compiler to compile (MI_USE_CXX=ON)") + set_source_files_properties(${mi_sources} PROPERTIES LANGUAGE CXX ) + set_source_files_properties(src/static.c test/test-api.c test/test-api-fill test/test-stress PROPERTIES LANGUAGE CXX ) + if(CMAKE_CXX_COMPILER_ID MATCHES "AppleClang|Clang") + list(APPEND mi_cflags -Wno-deprecated) + endif() + if(CMAKE_CXX_COMPILER_ID MATCHES "Intel" AND NOT CMAKE_CXX_COMPILER_ID MATCHES "IntelLLVM") + list(APPEND mi_cflags -Kc++) + endif() +endif() + +if(CMAKE_SYSTEM_NAME MATCHES "Haiku") + SET(CMAKE_INSTALL_LIBDIR ~/config/non-packaged/lib) + SET(CMAKE_INSTALL_INCLUDEDIR ~/config/non-packaged/headers) + endif() + +# Compiler flags +if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU") + list(APPEND mi_cflags -Wall -Wextra -Wno-unknown-pragmas -fvisibility=hidden) + if(NOT MI_USE_CXX) + list(APPEND mi_cflags -Wstrict-prototypes) + endif() + if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang") + list(APPEND mi_cflags -Wpedantic -Wno-static-in-inline) + endif() +endif() + +if(CMAKE_C_COMPILER_ID MATCHES "Intel") + list(APPEND mi_cflags -Wall -fvisibility=hidden) +endif() + +if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU|Intel" AND NOT CMAKE_SYSTEM_NAME MATCHES "Haiku") + if(MI_LOCAL_DYNAMIC_TLS) + list(APPEND mi_cflags -ftls-model=local-dynamic) + else() + list(APPEND mi_cflags -ftls-model=initial-exec) + endif() + if(MI_OVERRIDE) + list(APPEND mi_cflags -fno-builtin-malloc) + endif() +endif() + +if (MSVC AND MSVC_VERSION GREATER_EQUAL 1914) + list(APPEND mi_cflags /Zc:__cplusplus) +endif() + +# extra needed libraries +if(WIN32) + list(APPEND mi_libraries psapi shell32 user32 advapi32 bcrypt) + set(pc_libraries "-lpsapi -lshell32 -luser32 -ladvapi32 -lbcrypt") +else() + set(pc_libraries "") + find_library(MI_LIBPTHREAD pthread) + if (MI_LIBPTHREAD) + list(APPEND mi_libraries ${MI_LIBPTHREAD}) + set(pc_libraries "${pc_libraries} -pthread") + endif() + find_library(MI_LIBRT rt) + if(MI_LIBRT) + list(APPEND mi_libraries ${MI_LIBRT}) + set(pc_libraries "${pc_libraries} -lrt") + endif() + find_library(MI_LIBATOMIC atomic) + if (NOT MI_LIBATOMIC AND MI_USE_LIBATOMIC) + set(MI_LIBATOMIC atomic) + endif() + if (MI_LIBATOMIC) + list(APPEND mi_libraries ${MI_LIBATOMIC}) + set(pc_libraries "${pc_libraries} -latomic") + endif() +endif() + +# ----------------------------------------------------------------------------- +# Install and output names +# ----------------------------------------------------------------------------- + +# dynamic/shared library and symlinks always go to /usr/local/lib equivalent +set(mi_install_libdir "${CMAKE_INSTALL_LIBDIR}") + +# static libraries and object files, includes, and cmake config files +# are either installed at top level, or use versioned directories for side-by-side installation (default) +if (MI_INSTALL_TOPLEVEL) + set(mi_install_objdir "${CMAKE_INSTALL_LIBDIR}") + set(mi_install_incdir "${CMAKE_INSTALL_INCLUDEDIR}") + set(mi_install_cmakedir "${CMAKE_INSTALL_LIBDIR}/cmake/mimalloc") +else() + set(mi_install_objdir "${CMAKE_INSTALL_LIBDIR}/mimalloc-${mi_version}") # for static library and object files + set(mi_install_incdir "${CMAKE_INSTALL_INCLUDEDIR}/mimalloc-${mi_version}") # for includes + set(mi_install_cmakedir "${CMAKE_INSTALL_LIBDIR}/cmake/mimalloc-${mi_version}") # for cmake package info +endif() + +set(mi_basename "mimalloc") +if(MI_SECURE) + set(mi_basename "${mi_basename}-secure") +endif() +if(MI_TRACK_VALGRIND) + set(mi_basename "${mi_basename}-valgrind") +endif() +if(MI_TRACK_ASAN) + set(mi_basename "${mi_basename}-asan") +endif() + +if(MI_BUILD_STATIC) + list(APPEND mi_build_targets "static") +endif() +if(MI_BUILD_OBJECT) + list(APPEND mi_build_targets "object") +endif() + +message(STATUS "") +message(STATUS "Library base name: ${mi_basename}") +message(STATUS "Version : ${mi_version}") +if(MI_USE_CXX) + message(STATUS "C++ Compiler : ${CMAKE_CXX_COMPILER}") +else() + message(STATUS "C Compiler : ${CMAKE_C_COMPILER}") +endif() +message(STATUS "Compiler flags : ${mi_cflags}") +message(STATUS "Compiler defines : ${mi_defines}") +message(STATUS "Link libraries : ${mi_libraries}") +message(STATUS "Build targets : ${mi_build_targets}") +message(STATUS "") + +# ----------------------------------------------------------------------------- +# Main targets +# ----------------------------------------------------------------------------- + +# static library +if (MI_BUILD_STATIC) + add_library(mimalloc-static STATIC ${mi_sources}) + set_property(TARGET mimalloc-static PROPERTY POSITION_INDEPENDENT_CODE ON) + target_compile_definitions(mimalloc-static PRIVATE ${mi_defines} MI_STATIC_LIB) + target_compile_options(mimalloc-static PRIVATE ${mi_cflags}) + target_link_libraries(mimalloc-static PRIVATE ${mi_libraries}) + target_include_directories(mimalloc-static PUBLIC + $ + $ + ) + if(WIN32) + # When building both static and shared libraries on Windows, a static library should use a + # different output name to avoid the conflict with the import library of a shared one. + string(REPLACE "mimalloc" "mimalloc-static" mi_output_name ${mi_basename}) + set_target_properties(mimalloc-static PROPERTIES OUTPUT_NAME ${mi_output_name}) + else() + set_target_properties(mimalloc-static PROPERTIES OUTPUT_NAME ${mi_basename}) + endif() + +endif() + + +# single object file for more predictable static overriding +if (MI_BUILD_OBJECT) + add_library(mimalloc-obj OBJECT src/static.c) + set_property(TARGET mimalloc-obj PROPERTY POSITION_INDEPENDENT_CODE ON) + target_compile_definitions(mimalloc-obj PRIVATE ${mi_defines}) + target_compile_options(mimalloc-obj PRIVATE ${mi_cflags}) + target_include_directories(mimalloc-obj PUBLIC + $ + $ + ) + + # Copy the generated object file (`static.o`) to the output directory (as `mimalloc.o`) + if(NOT WIN32) + set(mimalloc-obj-static "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/mimalloc-obj.dir/src/static.c${CMAKE_C_OUTPUT_EXTENSION}") + set(mimalloc-obj-out "${CMAKE_CURRENT_BINARY_DIR}/${mi_basename}${CMAKE_C_OUTPUT_EXTENSION}") + add_custom_command(OUTPUT ${mimalloc-obj-out} DEPENDS mimalloc-obj COMMAND "${CMAKE_COMMAND}" -E copy "${mimalloc-obj-static}" "${mimalloc-obj-out}") + add_custom_target(mimalloc-obj-target ALL DEPENDS ${mimalloc-obj-out}) + endif() + +endif() + +# ----------------------------------------------------------------------------- +# Set override properties +# ----------------------------------------------------------------------------- +if (MI_OVERRIDE) + if(NOT WIN32) + # It is only possible to override malloc on Windows when building as a DLL. + if (MI_BUILD_STATIC) + target_compile_definitions(mimalloc-static PRIVATE MI_MALLOC_OVERRIDE) + endif() + if (MI_BUILD_OBJECT) + target_compile_definitions(mimalloc-obj PRIVATE MI_MALLOC_OVERRIDE) + endif() + endif() +endif() diff --git a/3rdparty/mimalloc/LICENSE b/3rdparty/mimalloc/LICENSE new file mode 100644 index 00000000..670b668a --- /dev/null +++ b/3rdparty/mimalloc/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/3rdparty/mimalloc/README.md b/3rdparty/mimalloc/README.md new file mode 100644 index 00000000..85d3563f --- /dev/null +++ b/3rdparty/mimalloc/README.md @@ -0,0 +1,827 @@ + + + +[](https://dev.azure.com/Daan0324/mimalloc/_build?definitionId=1&_a=summary) + +# mimalloc + +  + +mimalloc (pronounced "me-malloc") +is a general purpose allocator with excellent [performance](#performance) characteristics. +Initially developed by Daan Leijen for the runtime systems of the +[Koka](https://koka-lang.github.io) and [Lean](https://github.com/leanprover/lean) languages. + +Latest release tag: `v2.1.2` (2023-04-24). +Latest stable tag: `v1.8.2` (2023-04-24). + +mimalloc is a drop-in replacement for `malloc` and can be used in other programs +without code changes, for example, on dynamically linked ELF-based systems (Linux, BSD, etc.) you can use it as: +``` +> LD_PRELOAD=/usr/lib/libmimalloc.so myprogram +``` +It also includes a robust way to override the default allocator in [Windows](#override_on_windows). Notable aspects of the design include: + +- __small and consistent__: the library is about 8k LOC using simple and + consistent data structures. This makes it very suitable + to integrate and adapt in other projects. For runtime systems it + provides hooks for a monotonic _heartbeat_ and deferred freeing (for + bounded worst-case times with reference counting). + Partly due to its simplicity, mimalloc has been ported to many systems (Windows, macOS, + Linux, WASM, various BSD's, Haiku, MUSL, etc) and has excellent support for dynamic overriding. +- __free list sharding__: instead of one big free list (per size class) we have + many smaller lists per "mimalloc page" which reduces fragmentation and + increases locality -- + things that are allocated close in time get allocated close in memory. + (A mimalloc page contains blocks of one size class and is usually 64KiB on a 64-bit system). +- __free list multi-sharding__: the big idea! Not only do we shard the free list + per mimalloc page, but for each page we have multiple free lists. In particular, there + is one list for thread-local `free` operations, and another one for concurrent `free` + operations. Free-ing from another thread can now be a single CAS without needing + sophisticated coordination between threads. Since there will be + thousands of separate free lists, contention is naturally distributed over the heap, + and the chance of contending on a single location will be low -- this is quite + similar to randomized algorithms like skip lists where adding + a random oracle removes the need for a more complex algorithm. +- __eager page purging__: when a "page" becomes empty (with increased chance + due to free list sharding) the memory is marked to the OS as unused (reset or decommitted) + reducing (real) memory pressure and fragmentation, especially in long running + programs. +- __secure__: _mimalloc_ can be built in secure mode, adding guard pages, + randomized allocation, encrypted free lists, etc. to protect against various + heap vulnerabilities. The performance penalty is usually around 10% on average + over our benchmarks. +- __first-class heaps__: efficiently create and use multiple heaps to allocate across different regions. + A heap can be destroyed at once instead of deallocating each object separately. +- __bounded__: it does not suffer from _blowup_ \[1\], has bounded worst-case allocation + times (_wcat_) (upto OS primitives), bounded space overhead (~0.2% meta-data, with low + internal fragmentation), and has no internal points of contention using only atomic operations. +- __fast__: In our benchmarks (see [below](#performance)), + _mimalloc_ outperforms other leading allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc), + and often uses less memory. A nice property is that it does consistently well over a wide range + of benchmarks. There is also good huge OS page support for larger server programs. + +The [documentation](https://microsoft.github.io/mimalloc) gives a full overview of the API. +You can read more on the design of _mimalloc_ in the [technical report](https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action) which also has detailed benchmark results. + +Enjoy! + +### Branches + +* `master`: latest stable release (based on `dev-slice`). +* `dev`: development branch for mimalloc v1. Use this branch for submitting PR's. +* `dev-slice`: development branch for mimalloc v2. This branch is downstream of `dev`. + +### Releases + +Note: the `v2.x` version has a new algorithm for managing internal mimalloc pages that tends to reduce memory usage + and fragmentation compared to mimalloc `v1.x` (especially for large workloads). Should otherwise have similar performance + (see [below](#performance)); please report if you observe any significant performance regression. + +* 2023-04-24, `v1.8.2`, `v2.1.2`: Fixes build issues on freeBSD, musl, and C17 (UE 5.1.1). Reduce code size/complexity + by removing regions and segment-cache's and only use arenas with improved memory purging -- this may improve memory + usage as well for larger services. Renamed options for consistency. Improved Valgrind and ASAN checking. + +* 2023-04-03, `v1.8.1`, `v2.1.1`: Fixes build issues on some platforms. + +* 2023-03-29, `v1.8.0`, `v2.1.0`: Improved support dynamic overriding on Windows 11. Improved tracing precision + with [asan](#asan) and [Valgrind](#valgrind), and added Windows event tracing [ETW](#ETW) (contributed by Xinglong He). Created an OS + abstraction layer to make it easier to port and separate platform dependent code (in `src/prim`). Fixed C++ STL compilation on older Microsoft C++ compilers, and various small bug fixes. + +* 2022-12-23, `v1.7.9`, `v2.0.9`: Supports building with [asan](#asan) and improved [Valgrind](#valgrind) support. + Support abitrary large alignments (in particular for `std::pmr` pools). + Added C++ STL allocators attached to a specific heap (thanks @vmarkovtsev). + Heap walks now visit all object (including huge objects). Support Windows nano server containers (by Johannes Schindelin,@dscho). Various small bug fixes. + +* 2022-11-03, `v1.7.7`, `v2.0.7`: Initial support for [Valgrind](#valgrind) for leak testing and heap block overflow + detection. Initial + support for attaching heaps to a speficic memory area (only in v2). Fix `realloc` behavior for zero size blocks, remove restriction to integral multiple of the alignment in `alloc_align`, improved aligned allocation performance, reduced contention with many threads on few processors (thank you @dposluns!), vs2022 support, support `pkg-config`, . + +* 2022-04-14, `v1.7.6`, `v2.0.6`: fix fallback path for aligned OS allocation on Windows, improve Windows aligned allocation + even when compiling with older SDK's, fix dynamic overriding on macOS Monterey, fix MSVC C++ dynamic overriding, fix + warnings under Clang 14, improve performance if many OS threads are created and destroyed, fix statistics for large object + allocations, using MIMALLOC_VERBOSE=1 has no maximum on the number of error messages, various small fixes. + +* 2022-02-14, `v1.7.5`, `v2.0.5` (alpha): fix malloc override on + Windows 11, fix compilation with musl, potentially reduced + committed memory, add `bin/minject` for Windows, + improved wasm support, faster aligned allocation, + various small fixes. + +* [Older release notes](#older-release-notes) + +Special thanks to: + +* [David Carlier](https://devnexen.blogspot.com/) (@devnexen) for his many contributions, and making + mimalloc work better on many less common operating systems, like Haiku, Dragonfly, etc. +* Mary Feofanova (@mary3000), Evgeniy Moiseenko, and Manuel Pöter (@mpoeter) for making mimalloc TSAN checkable, and finding + memory model bugs using the [genMC] model checker. +* Weipeng Liu (@pongba), Zhuowei Li, Junhua Wang, and Jakub Szymanski, for their early support of mimalloc and deployment + at large scale services, leading to many improvements in the mimalloc algorithms for large workloads. +* Jason Gibson (@jasongibson) for exhaustive testing on large scale workloads and server environments, and finding complex bugs + in (early versions of) `mimalloc`. +* Manuel Pöter (@mpoeter) and Sam Gross(@colesbury) for finding an ABA concurrency issue in abandoned segment reclamation. Sam also created the [no GIL](https://github.com/colesbury/nogil) Python fork which + uses mimalloc internally. + + +[genMC]: https://plv.mpi-sws.org/genmc/ + +### Usage + +mimalloc is used in various large scale low-latency services and programs, for example: + + + + + + + + +# Building + +## Windows + +Open `ide/vs2019/mimalloc.sln` in Visual Studio 2019 and build. +The `mimalloc` project builds a static library (in `out/msvc-x64`), while the +`mimalloc-override` project builds a DLL for overriding malloc +in the entire program. + +## macOS, Linux, BSD, etc. + +We use [`cmake`](https://cmake.org)1 as the build system: + +``` +> mkdir -p out/release +> cd out/release +> cmake ../.. +> make +``` +This builds the library as a shared (dynamic) +library (`.so` or `.dylib`), a static library (`.a`), and +as a single object file (`.o`). + +`> sudo make install` (install the library and header files in `/usr/local/lib` and `/usr/local/include`) + +You can build the debug version which does many internal checks and +maintains detailed statistics as: + +``` +> mkdir -p out/debug +> cd out/debug +> cmake -DCMAKE_BUILD_TYPE=Debug ../.. +> make +``` +This will name the shared library as `libmimalloc-debug.so`. + +Finally, you can build a _secure_ version that uses guard pages, encrypted +free lists, etc., as: +``` +> mkdir -p out/secure +> cd out/secure +> cmake -DMI_SECURE=ON ../.. +> make +``` +This will name the shared library as `libmimalloc-secure.so`. +Use `ccmake`2 instead of `cmake` +to see and customize all the available build options. + +Notes: +1. Install CMake: `sudo apt-get install cmake` +2. Install CCMake: `sudo apt-get install cmake-curses-gui` + + +## Single source + +You can also directly build the single `src/static.c` file as part of your project without +needing `cmake` at all. Make sure to also add the mimalloc `include` directory to the include path. + + +# Using the library + +The preferred usage is including ``, linking with +the shared- or static library, and using the `mi_malloc` API exclusively for allocation. For example, +``` +> gcc -o myprogram -lmimalloc myfile.c +``` + +mimalloc uses only safe OS calls (`mmap` and `VirtualAlloc`) and can co-exist +with other allocators linked to the same program. +If you use `cmake`, you can simply use: +``` +find_package(mimalloc 1.4 REQUIRED) +``` +in your `CMakeLists.txt` to find a locally installed mimalloc. Then use either: +``` +target_link_libraries(myapp PUBLIC mimalloc) +``` +to link with the shared (dynamic) library, or: +``` +target_link_libraries(myapp PUBLIC mimalloc-static) +``` +to link with the static library. See `test\CMakeLists.txt` for an example. + +For best performance in C++ programs, it is also recommended to override the +global `new` and `delete` operators. For convience, mimalloc provides +[`mimalloc-new-delete.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-new-delete.h) which does this for you -- just include it in a single(!) source file in your project. +In C++, mimalloc also provides the `mi_stl_allocator` struct which implements the `std::allocator` +interface. + +You can pass environment variables to print verbose messages (`MIMALLOC_VERBOSE=1`) +and statistics (`MIMALLOC_SHOW_STATS=1`) (in the debug version): +``` +> env MIMALLOC_SHOW_STATS=1 ./cfrac 175451865205073170563711388363 + +175451865205073170563711388363 = 374456281610909315237213 * 468551 + +heap stats: peak total freed unit +normal 2: 16.4 kb 17.5 mb 17.5 mb 16 b ok +normal 3: 16.3 kb 15.2 mb 15.2 mb 24 b ok +normal 4: 64 b 4.6 kb 4.6 kb 32 b ok +normal 5: 80 b 118.4 kb 118.4 kb 40 b ok +normal 6: 48 b 48 b 48 b 48 b ok +normal 17: 960 b 960 b 960 b 320 b ok + +heap stats: peak total freed unit + normal: 33.9 kb 32.8 mb 32.8 mb 1 b ok + huge: 0 b 0 b 0 b 1 b ok + total: 33.9 kb 32.8 mb 32.8 mb 1 b ok +malloc requested: 32.8 mb + + committed: 58.2 kb 58.2 kb 58.2 kb 1 b ok + reserved: 2.0 mb 2.0 mb 2.0 mb 1 b ok + reset: 0 b 0 b 0 b 1 b ok + segments: 1 1 1 +-abandoned: 0 + pages: 6 6 6 +-abandoned: 0 + mmaps: 3 + mmap fast: 0 + mmap slow: 1 + threads: 0 + elapsed: 2.022s + process: user: 1.781s, system: 0.016s, faults: 756, reclaims: 0, rss: 2.7 mb +``` + +The above model of using the `mi_` prefixed API is not always possible +though in existing programs that already use the standard malloc interface, +and another option is to override the standard malloc interface +completely and redirect all calls to the _mimalloc_ library instead . + +## Environment Options + +You can set further options either programmatically (using [`mi_option_set`](https://microsoft.github.io/mimalloc/group__options.html)), or via environment variables: + +- `MIMALLOC_SHOW_STATS=1`: show statistics when the program terminates. +- `MIMALLOC_VERBOSE=1`: show verbose messages. +- `MIMALLOC_SHOW_ERRORS=1`: show error and warning messages. + +Advanced options: + +- `MIMALLOC_PURGE_DELAY=N`: the delay in `N` milli-seconds (by default `10`) after which mimalloc will purge + OS pages that are not in use. This signals to the OS that the underlying physical memory can be reused which + can reduce memory fragmentation especially in long running (server) programs. Setting `N` to `0` purges immediately when + a page becomes unused which can improve memory usage but also decreases performance. Setting `N` to a higher + value like `100` can improve performance (sometimes by a lot) at the cost of potentially using more memory at times. + Setting it to `-1` disables purging completely. +- `MIMALLOC_ARENA_EAGER_COMMIT=1`: turns on eager commit for the large arenas (usually 1GiB) from which mimalloc + allocates segments and pages. This is by default + only enabled on overcommit systems (e.g. Linux) but enabling it explicitly on other systems (like Windows or macOS) + may improve performance. Note that eager commit only increases the commit but not the actual the peak resident set + (rss) so it is generally ok to enable this. + +Further options for large workloads and services: + +- `MIMALLOC_USE_NUMA_NODES=N`: pretend there are at most `N` NUMA nodes. If not set, the actual NUMA nodes are detected + at runtime. Setting `N` to 1 may avoid problems in some virtual environments. Also, setting it to a lower number than + the actual NUMA nodes is fine and will only cause threads to potentially allocate more memory across actual NUMA + nodes (but this can happen in any case as NUMA local allocation is always a best effort but not guaranteed). +- `MIMALLOC_ALLOW_LARGE_OS_PAGES=1`: use large OS pages (2MiB) when available; for some workloads this can significantly + improve performance. Use `MIMALLOC_VERBOSE` to check if the large OS pages are enabled -- usually one needs + to explicitly allow large OS pages (as on [Windows][windows-huge] and [Linux][linux-huge]). However, sometimes + the OS is very slow to reserve contiguous physical memory for large OS pages so use with care on systems that + can have fragmented memory (for that reason, we generally recommend to use `MIMALLOC_RESERVE_HUGE_OS_PAGES` instead whenever possible). +- `MIMALLOC_RESERVE_HUGE_OS_PAGES=N`: where `N` is the number of 1GiB _huge_ OS pages. This reserves the huge pages at + startup and sometimes this can give a large (latency) performance improvement on big workloads. + Usually it is better to not use `MIMALLOC_ALLOW_LARGE_OS_PAGES=1` in combination with this setting. Just like large + OS pages, use with care as reserving + contiguous physical memory can take a long time when memory is fragmented (but reserving the huge pages is done at + startup only once). + Note that we usually need to explicitly enable huge OS pages (as on [Windows][windows-huge] and [Linux][linux-huge])). + With huge OS pages, it may be beneficial to set the setting + `MIMALLOC_EAGER_COMMIT_DELAY=N` (`N` is 1 by default) to delay the initial `N` segments (of 4MiB) + of a thread to not allocate in the huge OS pages; this prevents threads that are short lived + and allocate just a little to take up space in the huge OS page area (which cannot be purged). + The huge pages are usually allocated evenly among NUMA nodes. + We can use `MIMALLOC_RESERVE_HUGE_OS_PAGES_AT=N` where `N` is the numa node (starting at 0) to allocate all + the huge pages at a specific numa node instead. + +Use caution when using `fork` in combination with either large or huge OS pages: on a fork, the OS uses copy-on-write +for all pages in the original process including the huge OS pages. When any memory is now written in that area, the +OS will copy the entire 1GiB huge page (or 2MiB large page) which can cause the memory usage to grow in large increments. + +[linux-huge]: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/tuning_and_optimizing_red_hat_enterprise_linux_for_oracle_9i_and_10g_databases/sect-oracle_9i_and_10g_tuning_guide-large_memory_optimization_big_pages_and_huge_pages-configuring_huge_pages_in_red_hat_enterprise_linux_4_or_5 +[windows-huge]: https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-the-lock-pages-in-memory-option-windows?view=sql-server-2017 + +## Secure Mode + +_mimalloc_ can be build in secure mode by using the `-DMI_SECURE=ON` flags in `cmake`. This build enables various mitigations +to make mimalloc more robust against exploits. In particular: + +- All internal mimalloc pages are surrounded by guard pages and the heap metadata is behind a guard page as well (so a buffer overflow + exploit cannot reach into the metadata). +- All free list pointers are + [encoded](https://github.com/microsoft/mimalloc/blob/783e3377f79ee82af43a0793910a9f2d01ac7863/include/mimalloc-internal.h#L396) + with per-page keys which is used both to prevent overwrites with a known pointer, as well as to detect heap corruption. +- Double free's are detected (and ignored). +- The free lists are initialized in a random order and allocation randomly chooses between extension and reuse within a page to + mitigate against attacks that rely on a predicable allocation order. Similarly, the larger heap blocks allocated by mimalloc + from the OS are also address randomized. + +As always, evaluate with care as part of an overall security strategy as all of the above are mitigations but not guarantees. + +## Debug Mode + +When _mimalloc_ is built using debug mode, various checks are done at runtime to catch development errors. + +- Statistics are maintained in detail for each object size. They can be shown using `MIMALLOC_SHOW_STATS=1` at runtime. +- All objects have padding at the end to detect (byte precise) heap block overflows. +- Double free's, and freeing invalid heap pointers are detected. +- Corrupted free-lists and some forms of use-after-free are detected. + + +# Overriding Standard Malloc + +Overriding the standard `malloc` (and `new`) can be done either _dynamically_ or _statically_. + +## Dynamic override + +This is the recommended way to override the standard malloc interface. + +### Dynamic Override on Linux, BSD + +On these ELF-based systems we preload the mimalloc shared +library so all calls to the standard `malloc` interface are +resolved to the _mimalloc_ library. +``` +> env LD_PRELOAD=/usr/lib/libmimalloc.so myprogram +``` + +You can set extra environment variables to check that mimalloc is running, +like: +``` +> env MIMALLOC_VERBOSE=1 LD_PRELOAD=/usr/lib/libmimalloc.so myprogram +``` +or run with the debug version to get detailed statistics: +``` +> env MIMALLOC_SHOW_STATS=1 LD_PRELOAD=/usr/lib/libmimalloc-debug.so myprogram +``` + +### Dynamic Override on MacOS + +On macOS we can also preload the mimalloc shared +library so all calls to the standard `malloc` interface are +resolved to the _mimalloc_ library. +``` +> env DYLD_INSERT_LIBRARIES=/usr/lib/libmimalloc.dylib myprogram +``` + +Note that certain security restrictions may apply when doing this from +the [shell](https://stackoverflow.com/questions/43941322/dyld-insert-libraries-ignored-when-calling-application-through-bash). + + +### Dynamic Override on Windows + +Overriding on Windows is robust and has the +particular advantage to be able to redirect all malloc/free calls that go through +the (dynamic) C runtime allocator, including those from other DLL's or libraries. + +The overriding on Windows requires that you link your program explicitly with +the mimalloc DLL and use the C-runtime library as a DLL (using the `/MD` or `/MDd` switch). +Also, the `mimalloc-redirect.dll` (or `mimalloc-redirect32.dll`) must be put +in the same folder as the main `mimalloc-override.dll` at runtime (as it is a dependency). +The redirection DLL ensures that all calls to the C runtime malloc API get redirected to +mimalloc (in `mimalloc-override.dll`). + +To ensure the mimalloc DLL is loaded at run-time it is easiest to insert some +call to the mimalloc API in the `main` function, like `mi_version()` +(or use the `/INCLUDE:mi_version` switch on the linker). See the `mimalloc-override-test` project +for an example on how to use this. For best performance on Windows with C++, it +is also recommended to also override the `new`/`delete` operations (by including +[`mimalloc-new-delete.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-new-delete.h) a single(!) source file in your project). + +The environment variable `MIMALLOC_DISABLE_REDIRECT=1` can be used to disable dynamic +overriding at run-time. Use `MIMALLOC_VERBOSE=1` to check if mimalloc was successfully redirected. + +(Note: in principle, it is possible to even patch existing executables without any recompilation +if they are linked with the dynamic C runtime (`ucrtbase.dll`) -- just put the `mimalloc-override.dll` +into the import table (and put `mimalloc-redirect.dll` in the same folder) +Such patching can be done for example with [CFF Explorer](https://ntcore.com/?page_id=388)). + + +## Static override + +On Unix-like systems, you can also statically link with _mimalloc_ to override the standard +malloc interface. The recommended way is to link the final program with the +_mimalloc_ single object file (`mimalloc.o`). We use +an object file instead of a library file as linkers give preference to +that over archives to resolve symbols. To ensure that the standard +malloc interface resolves to the _mimalloc_ library, link it as the first +object file. For example: +``` +> gcc -o myprogram mimalloc.o myfile1.c ... +``` + +Another way to override statically that works on all platforms, is to +link statically to mimalloc (as shown in the introduction) and include a +header file in each source file that re-defines `malloc` etc. to `mi_malloc`. +This is provided by [`mimalloc-override.h`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc-override.h). This only works reliably though if all sources are +under your control or otherwise mixing of pointers from different heaps may occur! + + +## Tools + +Generally, we recommend using the standard allocator with memory tracking tools, but mimalloc +can also be build to support the [address sanitizer][asan] or the excellent [Valgrind] tool. +Moreover, it can be build to support Windows event tracing ([ETW]). +This has a small performance overhead but does allow detecting memory leaks and byte-precise +buffer overflows directly on final executables. See also the `test/test-wrong.c` file to test with various tools. + +### Valgrind + +To build with [valgrind] support, use the `MI_TRACK_VALGRIND=ON` cmake option: + +``` +> cmake ../.. -DMI_TRACK_VALGRIND=ON +``` + +This can also be combined with secure mode or debug mode. +You can then run your programs directly under valgrind: + +``` +> valgrind +``` + +If you rely on overriding `malloc`/`free` by mimalloc (instead of using the `mi_malloc`/`mi_free` API directly), +you also need to tell `valgrind` to not intercept those calls itself, and use: + +``` +> MIMALLOC_SHOW_STATS=1 valgrind --soname-synonyms=somalloc=*mimalloc* -- +``` + +By setting the `MIMALLOC_SHOW_STATS` environment variable you can check that mimalloc is indeed +used and not the standard allocator. Even though the [Valgrind option][valgrind-soname] +is called `--soname-synonyms`, this also +works when overriding with a static library or object file. Unfortunately, it is not possible to +dynamically override mimalloc using `LD_PRELOAD` together with `valgrind`. +See also the `test/test-wrong.c` file to test with `valgrind`. + +Valgrind support is in its initial development -- please report any issues. + +[Valgrind]: https://valgrind.org/ +[valgrind-soname]: https://valgrind.org/docs/manual/manual-core.html#opt.soname-synonyms + +### ASAN + +To build with the address sanitizer, use the `-DMI_TRACK_ASAN=ON` cmake option: + +``` +> cmake ../.. -DMI_TRACK_ASAN=ON +``` + +This can also be combined with secure mode or debug mode. +You can then run your programs as:' + +``` +> ASAN_OPTIONS=verbosity=1 +``` + +When you link a program with an address sanitizer build of mimalloc, you should +generally compile that program too with the address sanitizer enabled. +For example, assuming you build mimalloc in `out/debug`: + +``` +clang -g -o test-wrong -Iinclude test/test-wrong.c out/debug/libmimalloc-asan-debug.a -lpthread -fsanitize=address -fsanitize-recover=address +``` + +Since the address sanitizer redirects the standard allocation functions, on some platforms (macOSX for example) +it is required to compile mimalloc with `-DMI_OVERRIDE=OFF`. +Adress sanitizer support is in its initial development -- please report any issues. + +[asan]: https://github.com/google/sanitizers/wiki/AddressSanitizer + +### ETW + +Event tracing for Windows ([ETW]) provides a high performance way to capture all allocations though +mimalloc and analyze them later. To build with ETW support, use the `-DMI_TRACK_ETW=ON` cmake option. + +You can then capture an allocation trace using the Windows performance recorder (WPR), using the +`src/prim/windows/etw-mimalloc.wprp` profile. In an admin prompt, you can use: +``` +> wpr -start src\prim\windows\etw-mimalloc.wprp -filemode +> +> wpr -stop .etl +``` +and then open `.etl` in the Windows Performance Analyzer (WPA), or +use a tool like [TraceControl] that is specialized for analyzing mimalloc traces. + +[ETW]: https://learn.microsoft.com/en-us/windows-hardware/test/wpt/event-tracing-for-windows +[TraceControl]: https://github.com/xinglonghe/TraceControl + + +# Performance + +Last update: 2021-01-30 + +We tested _mimalloc_ against many other top allocators over a wide +range of benchmarks, ranging from various real world programs to +synthetic benchmarks that see how the allocator behaves under more +extreme circumstances. In our benchmark suite, _mimalloc_ outperforms other leading +allocators (_jemalloc_, _tcmalloc_, _Hoard_, etc), and has a similar memory footprint. A nice property is that it +does consistently well over the wide range of benchmarks. + +General memory allocators are interesting as there exists no algorithm that is +optimal -- for a given allocator one can usually construct a workload +where it does not do so well. The goal is thus to find an allocation +strategy that performs well over a wide range of benchmarks without +suffering from (too much) underperformance in less common situations. + +As always, interpret these results with care since some benchmarks test synthetic +or uncommon situations that may never apply to your workloads. For example, most +allocators do not do well on `xmalloc-testN` but that includes even the best +industrial allocators like _jemalloc_ and _tcmalloc_ that are used in some of +the world's largest systems (like Chrome or FreeBSD). + +Also, the benchmarks here do not measure the behaviour on very large and long-running server workloads, +or worst-case latencies of allocation. Much work has gone into `mimalloc` to work well on such +workloads (for example, to reduce virtual memory fragmentation on long-running services) +but such optimizations are not always reflected in the current benchmark suite. + +We show here only an overview -- for +more specific details and further benchmarks we refer to the +[technical report](https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action). +The benchmark suite is automated and available separately +as [mimalloc-bench](https://github.com/daanx/mimalloc-bench). + + +## Benchmark Results on a 16-core AMD 5950x (Zen3) + +Testing on the 16-core AMD 5950x processor at 3.4Ghz (4.9Ghz boost), with +with 32GiB memory at 3600Mhz, running Ubuntu 20.04 with glibc 2.31 and GCC 9.3.0. + +We measure three versions of _mimalloc_: the main version `mi` (tag:v1.7.0), +the new v2.0 beta version as `xmi` (tag:v2.0.0), and the main version in secure mode as `smi` (tag:v1.7.0). + +The other allocators are +Google's [_tcmalloc_](https://github.com/gperftools/gperftools) (`tc`, tag:gperftools-2.8.1) used in Chrome, +Facebook's [_jemalloc_](https://github.com/jemalloc/jemalloc) (`je`, tag:5.2.1) by Jason Evans used in Firefox and FreeBSD, +the Intel thread building blocks [allocator](https://github.com/intel/tbb) (`tbb`, tag:v2020.3), +[rpmalloc](https://github.com/mjansson/rpmalloc) (`rp`,tag:1.4.1) by Mattias Jansson, +the original scalable [_Hoard_](https://github.com/emeryberger/Hoard) (git:d880f72) allocator by Emery Berger \[1], +the memory compacting [_Mesh_](https://github.com/plasma-umass/Mesh) (git:67ff31a) allocator by +Bobby Powers _et al_ \[8], +and finally the default system allocator (`glibc`, 2.31) (based on _PtMalloc2_). + + + + +Any benchmarks ending in `N` run on all 32 logical cores in parallel. +Results are averaged over 10 runs and reported relative +to mimalloc (where 1.2 means it took 1.2× longer to run). +The legend also contains the _overall relative score_ between the +allocators where 100 points is the maximum if an allocator is fastest on +all benchmarks. + +The single threaded _cfrac_ benchmark by Dave Barrett is an implementation of +continued fraction factorization which uses many small short-lived allocations. +All allocators do well on such common usage, where _mimalloc_ is just a tad +faster than _tcmalloc_ and +_jemalloc_. + +The _leanN_ program is interesting as a large realistic and +concurrent workload of the [Lean](https://github.com/leanprover/lean) +theorem prover compiling its own standard library, and there is a 13% +speedup over _tcmalloc_. This is +quite significant: if Lean spends 20% of its time in the +allocator that means that _mimalloc_ is 1.6× faster than _tcmalloc_ +here. (This is surprising as that is not measured in a pure +allocation benchmark like _alloc-test_. We conjecture that we see this +outsized improvement here because _mimalloc_ has better locality in +the allocation which improves performance for the *other* computations +in a program as well). + +The single threaded _redis_ benchmark again show that most allocators do well on such workloads. + +The _larsonN_ server benchmark by Larson and Krishnan \[2] allocates and frees between threads. They observed this +behavior (which they call _bleeding_) in actual server applications, and the benchmark simulates this. +Here, _mimalloc_ is quite a bit faster than _tcmalloc_ and _jemalloc_ probably due to the object migration between different threads. + +The _mstressN_ workload performs many allocations and re-allocations, +and migrates objects between threads (as in _larsonN_). However, it also +creates and destroys the _N_ worker threads a few times keeping some objects +alive beyond the life time of the allocating thread. We observed this +behavior in many larger server applications. + +The [_rptestN_](https://github.com/mjansson/rpmalloc-benchmark) benchmark +by Mattias Jansson is a allocator test originally designed +for _rpmalloc_, and tries to simulate realistic allocation patterns over +multiple threads. Here the differences between allocators become more apparent. + +The second benchmark set tests specific aspects of the allocators and +shows even more extreme differences between them. + +The _alloc-test_, by +[OLogN Technologies AG](http://ithare.com/testing-memory-allocators-ptmalloc2-tcmalloc-hoard-jemalloc-while-trying-to-simulate-real-world-loads/), is a very allocation intensive benchmark doing millions of +allocations in various size classes. The test is scaled such that when an +allocator performs almost identically on _alloc-test1_ as _alloc-testN_ it +means that it scales linearly. + +The _sh6bench_ and _sh8bench_ benchmarks are +developed by [MicroQuill](http://www.microquill.com/) as part of SmartHeap. +In _sh6bench_ _mimalloc_ does much +better than the others (more than 2.5× faster than _jemalloc_). +We cannot explain this well but believe it is +caused in part by the "reverse" free-ing pattern in _sh6bench_. +The _sh8bench_ is a variation with object migration +between threads; whereas _tcmalloc_ did well on _sh6bench_, the addition of object migration causes it to be 10× slower than before. + +The _xmalloc-testN_ benchmark by Lever and Boreham \[5] and Christian Eder, simulates an asymmetric workload where +some threads only allocate, and others only free -- they observed this pattern in +larger server applications. Here we see that +the _mimalloc_ technique of having non-contended sharded thread free +lists pays off as it outperforms others by a very large margin. Only _rpmalloc_, _tbb_, and _glibc_ also scale well on this benchmark. + +The _cache-scratch_ benchmark by Emery Berger \[1], and introduced with +the Hoard allocator to test for _passive-false_ sharing of cache lines. +With a single thread they all +perform the same, but when running with multiple threads the potential allocator +induced false sharing of the cache lines can cause large run-time differences. +Crundal \[6] describes in detail why the false cache line sharing occurs in the _tcmalloc_ design, and also discusses how this +can be avoided with some small implementation changes. +Only the _tbb_, _rpmalloc_ and _mesh_ allocators also avoid the +cache line sharing completely, while _Hoard_ and _glibc_ seem to mitigate +the effects. Kukanov and Voss \[7] describe in detail +how the design of _tbb_ avoids the false cache line sharing. + + +## On a 36-core Intel Xeon + +For completeness, here are the results on a big Amazon +[c5.18xlarge](https://aws.amazon.com/ec2/instance-types/#Compute_Optimized) instance +consisting of a 2×18-core Intel Xeon (Cascade Lake) at 3.4GHz (boost 3.5GHz) +with 144GiB ECC memory, running Ubuntu 20.04 with glibc 2.31, GCC 9.3.0, and +Clang 10.0.0. This time, the mimalloc allocators (mi, xmi, and smi) were +compiled with the Clang compiler instead of GCC. +The results are similar to the AMD results but it is interesting to +see the differences in the _larsonN_, _mstressN_, and _xmalloc-testN_ benchmarks. + + + + + +## Peak Working Set + +The following figure shows the peak working set (rss) of the allocators +on the benchmarks (on the c5.18xlarge instance). + + + + +Note that the _xmalloc-testN_ memory usage should be disregarded as it +allocates more the faster the program runs. Similarly, memory usage of +_larsonN_, _mstressN_, _rptestN_ and _sh8bench_ can vary depending on scheduling and +speed. Nevertheless, we hope to improve the memory usage on _mstressN_ +and _rptestN_ (just as _cfrac_, _larsonN_ and _sh8bench_ have a small working set which skews the results). + + + + +# References + +- \[1] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. + _Hoard: A Scalable Memory Allocator for Multithreaded Applications_ + the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA, November 2000. + [pdf](http://www.cs.utexas.edu/users/mckinley/papers/asplos-2000.pdf) + +- \[2] P. Larson and M. Krishnan. _Memory allocation for long-running server applications_. + In ISMM, Vancouver, B.C., Canada, 1998. [pdf](http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.45.1947&rep=rep1&type=pdf) + +- \[3] D. Grunwald, B. Zorn, and R. Henderson. + _Improving the cache locality of memory allocation_. In R. Cartwright, editor, + Proceedings of the Conference on Programming Language Design and Implementation, pages 177–186, New York, NY, USA, June 1993. [pdf](http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.43.6621&rep=rep1&type=pdf) + +- \[4] J. Barnes and P. Hut. _A hierarchical O(n*log(n)) force-calculation algorithm_. Nature, 324:446-449, 1986. + +- \[5] C. Lever, and D. Boreham. _Malloc() Performance in a Multithreaded Linux Environment._ + In USENIX Annual Technical Conference, Freenix Session. San Diego, CA. Jun. 2000. + Available at + +- \[6] Timothy Crundal. _Reducing Active-False Sharing in TCMalloc_. 2016. CS16S1 project at the Australian National University. [pdf](http://courses.cecs.anu.edu.au/courses/CSPROJECTS/16S1/Reports/Timothy_Crundal_Report.pdf) + +- \[7] Alexey Kukanov, and Michael J Voss. + _The Foundations for Scalable Multi-Core Software in Intel Threading Building Blocks._ + Intel Technology Journal 11 (4). 2007 + +- \[8] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor. + _Mesh: Compacting Memory Management for C/C++_ + In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'19), June 2019, pages 333-–346. + + + +# Contributing + +This project welcomes contributions and suggestions. Most contributions require you to agree to a +Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us +the rights to use your contribution. For details, visit https://cla.microsoft.com. + +When you submit a pull request, a CLA-bot will automatically determine whether you need to provide +a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions +provided by the bot. You will only need to do this once across all repos using our CLA. + + +# Older Release Notes + +* 2021-11-14, `v1.7.3`, `v2.0.3` (beta): improved WASM support, improved macOS support and performance (including + M1), improved performance for v2 for large objects, Python integration improvements, more standard + installation directories, various small fixes. +* 2021-06-17, `v1.7.2`, `v2.0.2` (beta): support M1, better installation layout on Linux, fix + thread_id on Android, prefer 2-6TiB area for aligned allocation to work better on pre-windows 8, various small fixes. +* 2021-04-06, `v1.7.1`, `v2.0.1` (beta): fix bug in arena allocation for huge pages, improved aslr on large allocations, initial M1 support (still experimental). +* 2021-01-31, `v2.0.0`: beta release 2.0: new slice algorithm for managing internal mimalloc pages. +* 2021-01-31, `v1.7.0`: stable release 1.7: support explicit user provided memory regions, more precise statistics, + improve macOS overriding, initial support for Apple M1, improved DragonFly support, faster memcpy on Windows, various small fixes. + +* 2020-09-24, `v1.6.7`: stable release 1.6: using standard C atomics, passing tsan testing, improved + handling of failing to commit on Windows, add [`mi_process_info`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc.h#L156) api call. +* 2020-08-06, `v1.6.4`: stable release 1.6: improved error recovery in low-memory situations, + support for IllumOS and Haiku, NUMA support for Vista/XP, improved NUMA detection for AMD Ryzen, ubsan support. +* 2020-05-05, `v1.6.3`: stable release 1.6: improved behavior in out-of-memory situations, improved malloc zones on macOS, + build PIC static libraries by default, add option to abort on out-of-memory, line buffered statistics. +* 2020-04-20, `v1.6.2`: stable release 1.6: fix compilation on Android, MingW, Raspberry, and Conda, + stability fix for Windows 7, fix multiple mimalloc instances in one executable, fix `strnlen` overload, + fix aligned debug padding. +* 2020-02-17, `v1.6.1`: stable release 1.6: minor updates (build with clang-cl, fix alignment issue for small objects). +* 2020-02-09, `v1.6.0`: stable release 1.6: fixed potential memory leak, improved overriding + and thread local support on FreeBSD, NetBSD, DragonFly, and macOSX. New byte-precise + heap block overflow detection in debug mode (besides the double-free detection and free-list + corruption detection). Add `nodiscard` attribute to most allocation functions. + Enable `MIMALLOC_PAGE_RESET` by default. New reclamation strategy for abandoned heap pages + for better memory footprint. +* 2020-02-09, `v1.5.0`: stable release 1.5: improved free performance, small bug fixes. +* 2020-01-22, `v1.4.0`: stable release 1.4: improved performance for delayed OS page reset, +more eager concurrent free, addition of STL allocator, fixed potential memory leak. +* 2020-01-15, `v1.3.0`: stable release 1.3: bug fixes, improved randomness and [stronger +free list encoding](https://github.com/microsoft/mimalloc/blob/783e3377f79ee82af43a0793910a9f2d01ac7863/include/mimalloc-internal.h#L396) in secure mode. + +* 2019-12-22, `v1.2.2`: stable release 1.2: minor updates. +* 2019-11-22, `v1.2.0`: stable release 1.2: bug fixes, improved secure mode (free list corruption checks, double free mitigation). Improved dynamic overriding on Windows. +* 2019-10-07, `v1.1.0`: stable release 1.1. +* 2019-09-01, `v1.0.8`: pre-release 8: more robust windows dynamic overriding, initial huge page support. +* 2019-08-10, `v1.0.6`: pre-release 6: various performance improvements. diff --git a/3rdparty/mimalloc/SECURITY.md b/3rdparty/mimalloc/SECURITY.md new file mode 100644 index 00000000..e138ec5d --- /dev/null +++ b/3rdparty/mimalloc/SECURITY.md @@ -0,0 +1,41 @@ + + +## Security + +Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/). + +If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below. + +## Reporting Security Issues + +**Please do not report security vulnerabilities through public GitHub issues.** + +Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report). + +If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey). + +You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc). + +Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue: + + * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.) + * Full paths of source file(s) related to the manifestation of the issue + * The location of the affected source code (tag/branch/commit or direct URL) + * Any special configuration required to reproduce the issue + * Step-by-step instructions to reproduce the issue + * Proof-of-concept or exploit code (if possible) + * Impact of the issue, including how an attacker might exploit the issue + +This information will help us triage your report more quickly. + +If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs. + +## Preferred Languages + +We prefer all communications to be in English. + +## Policy + +Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd). + + diff --git a/3rdparty/mimalloc/include/mimalloc-new-delete.h b/3rdparty/mimalloc/include/mimalloc-new-delete.h new file mode 100644 index 00000000..c16f4a66 --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc-new-delete.h @@ -0,0 +1,66 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2020 Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_NEW_DELETE_H +#define MIMALLOC_NEW_DELETE_H + +// ---------------------------------------------------------------------------- +// This header provides convenient overrides for the new and +// delete operations in C++. +// +// This header should be included in only one source file! +// +// On Windows, or when linking dynamically with mimalloc, these +// can be more performant than the standard new-delete operations. +// See +// --------------------------------------------------------------------------- +#if defined(__cplusplus) + #include + #include + + #if defined(_MSC_VER) && defined(_Ret_notnull_) && defined(_Post_writable_byte_size_) + // stay consistent with VCRT definitions + #define mi_decl_new(n) mi_decl_nodiscard mi_decl_restrict _Ret_notnull_ _Post_writable_byte_size_(n) + #define mi_decl_new_nothrow(n) mi_decl_nodiscard mi_decl_restrict _Ret_maybenull_ _Success_(return != NULL) _Post_writable_byte_size_(n) + #else + #define mi_decl_new(n) mi_decl_nodiscard mi_decl_restrict + #define mi_decl_new_nothrow(n) mi_decl_nodiscard mi_decl_restrict + #endif + + void operator delete(void* p) noexcept { mi_free(p); }; + void operator delete[](void* p) noexcept { mi_free(p); }; + + void operator delete (void* p, const std::nothrow_t&) noexcept { mi_free(p); } + void operator delete[](void* p, const std::nothrow_t&) noexcept { mi_free(p); } + + mi_decl_new(n) void* operator new(std::size_t n) noexcept(false) { return mi_new(n); } + mi_decl_new(n) void* operator new[](std::size_t n) noexcept(false) { return mi_new(n); } + + mi_decl_new_nothrow(n) void* operator new (std::size_t n, const std::nothrow_t& tag) noexcept { (void)(tag); return mi_new_nothrow(n); } + mi_decl_new_nothrow(n) void* operator new[](std::size_t n, const std::nothrow_t& tag) noexcept { (void)(tag); return mi_new_nothrow(n); } + + #if (__cplusplus >= 201402L || _MSC_VER >= 1916) + void operator delete (void* p, std::size_t n) noexcept { mi_free_size(p,n); }; + void operator delete[](void* p, std::size_t n) noexcept { mi_free_size(p,n); }; + #endif + + #if (__cplusplus > 201402L || defined(__cpp_aligned_new)) + void operator delete (void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast(al)); } + void operator delete[](void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast(al)); } + void operator delete (void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast(al)); }; + void operator delete[](void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast(al)); }; + void operator delete (void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast(al)); } + void operator delete[](void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast(al)); } + + void* operator new (std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast(al)); } + void* operator new[](std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast(al)); } + void* operator new (std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast(al)); } + void* operator new[](std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast(al)); } + #endif +#endif + +#endif // MIMALLOC_NEW_DELETE_H diff --git a/3rdparty/mimalloc/include/mimalloc-override.h b/3rdparty/mimalloc/include/mimalloc-override.h new file mode 100644 index 00000000..c63b0b91 --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc-override.h @@ -0,0 +1,67 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2020 Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_OVERRIDE_H +#define MIMALLOC_OVERRIDE_H + +/* ---------------------------------------------------------------------------- +This header can be used to statically redirect malloc/free and new/delete +to the mimalloc variants. This can be useful if one can include this file on +each source file in a project (but be careful when using external code to +not accidentally mix pointers from different allocators). +-----------------------------------------------------------------------------*/ + +#include + +// Standard C allocation +#define malloc(n) mi_malloc(n) +#define calloc(n,c) mi_calloc(n,c) +#define realloc(p,n) mi_realloc(p,n) +#define free(p) mi_free(p) + +#define strdup(s) mi_strdup(s) +#define strndup(s,n) mi_strndup(s,n) +#define realpath(f,n) mi_realpath(f,n) + +// Microsoft extensions +#define _expand(p,n) mi_expand(p,n) +#define _msize(p) mi_usable_size(p) +#define _recalloc(p,n,c) mi_recalloc(p,n,c) + +#define _strdup(s) mi_strdup(s) +#define _strndup(s,n) mi_strndup(s,n) +#define _wcsdup(s) (wchar_t*)mi_wcsdup((const unsigned short*)(s)) +#define _mbsdup(s) mi_mbsdup(s) +#define _dupenv_s(b,n,v) mi_dupenv_s(b,n,v) +#define _wdupenv_s(b,n,v) mi_wdupenv_s((unsigned short*)(b),n,(const unsigned short*)(v)) + +// Various Posix and Unix variants +#define reallocf(p,n) mi_reallocf(p,n) +#define malloc_size(p) mi_usable_size(p) +#define malloc_usable_size(p) mi_usable_size(p) +#define cfree(p) mi_free(p) + +#define valloc(n) mi_valloc(n) +#define pvalloc(n) mi_pvalloc(n) +#define reallocarray(p,s,n) mi_reallocarray(p,s,n) +#define reallocarr(p,s,n) mi_reallocarr(p,s,n) +#define memalign(a,n) mi_memalign(a,n) +#define aligned_alloc(a,n) mi_aligned_alloc(a,n) +#define posix_memalign(p,a,n) mi_posix_memalign(p,a,n) +#define _posix_memalign(p,a,n) mi_posix_memalign(p,a,n) + +// Microsoft aligned variants +#define _aligned_malloc(n,a) mi_malloc_aligned(n,a) +#define _aligned_realloc(p,n,a) mi_realloc_aligned(p,n,a) +#define _aligned_recalloc(p,s,n,a) mi_aligned_recalloc(p,s,n,a) +#define _aligned_msize(p,a,o) mi_usable_size(p) +#define _aligned_free(p) mi_free(p) +#define _aligned_offset_malloc(n,a,o) mi_malloc_aligned_at(n,a,o) +#define _aligned_offset_realloc(p,n,a,o) mi_realloc_aligned_at(p,n,a,o) +#define _aligned_offset_recalloc(p,s,n,a,o) mi_recalloc_aligned_at(p,s,n,a,o) + +#endif // MIMALLOC_OVERRIDE_H diff --git a/3rdparty/mimalloc/include/mimalloc.h b/3rdparty/mimalloc/include/mimalloc.h new file mode 100644 index 00000000..f77c2ea1 --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc.h @@ -0,0 +1,565 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_H +#define MIMALLOC_H + +#define MI_MALLOC_VERSION 212 // major + 2 digits minor + +// ------------------------------------------------------ +// Compiler specific attributes +// ------------------------------------------------------ + +#ifdef __cplusplus + #if (__cplusplus >= 201103L) || (_MSC_VER > 1900) // C++11 + #define mi_attr_noexcept noexcept + #else + #define mi_attr_noexcept throw() + #endif +#else + #define mi_attr_noexcept +#endif + +#if defined(__cplusplus) && (__cplusplus >= 201703) + #define mi_decl_nodiscard [[nodiscard]] +#elif (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__) // includes clang, icc, and clang-cl + #define mi_decl_nodiscard __attribute__((warn_unused_result)) +#elif defined(_HAS_NODISCARD) + #define mi_decl_nodiscard _NODISCARD +#elif (_MSC_VER >= 1700) + #define mi_decl_nodiscard _Check_return_ +#else + #define mi_decl_nodiscard +#endif + +#if defined(_MSC_VER) || defined(__MINGW32__) + #if !defined(MI_SHARED_LIB) + #define mi_decl_export + #elif defined(MI_SHARED_LIB_EXPORT) + #define mi_decl_export __declspec(dllexport) + #else + #define mi_decl_export __declspec(dllimport) + #endif + #if defined(__MINGW32__) + #define mi_decl_restrict + #define mi_attr_malloc __attribute__((malloc)) + #else + #if (_MSC_VER >= 1900) && !defined(__EDG__) + #define mi_decl_restrict __declspec(allocator) __declspec(restrict) + #else + #define mi_decl_restrict __declspec(restrict) + #endif + #define mi_attr_malloc + #endif + #define mi_cdecl __cdecl + #define mi_attr_alloc_size(s) + #define mi_attr_alloc_size2(s1,s2) + #define mi_attr_alloc_align(p) +#elif defined(__GNUC__) // includes clang and icc + #if defined(MI_SHARED_LIB) && defined(MI_SHARED_LIB_EXPORT) + #define mi_decl_export __attribute__((visibility("default"))) + #else + #define mi_decl_export + #endif + #define mi_cdecl // leads to warnings... __attribute__((cdecl)) + #define mi_decl_restrict + #define mi_attr_malloc __attribute__((malloc)) + #if (defined(__clang_major__) && (__clang_major__ < 4)) || (__GNUC__ < 5) + #define mi_attr_alloc_size(s) + #define mi_attr_alloc_size2(s1,s2) + #define mi_attr_alloc_align(p) + #elif defined(__INTEL_COMPILER) + #define mi_attr_alloc_size(s) __attribute__((alloc_size(s))) + #define mi_attr_alloc_size2(s1,s2) __attribute__((alloc_size(s1,s2))) + #define mi_attr_alloc_align(p) + #else + #define mi_attr_alloc_size(s) __attribute__((alloc_size(s))) + #define mi_attr_alloc_size2(s1,s2) __attribute__((alloc_size(s1,s2))) + #define mi_attr_alloc_align(p) __attribute__((alloc_align(p))) + #endif +#else + #define mi_cdecl + #define mi_decl_export + #define mi_decl_restrict + #define mi_attr_malloc + #define mi_attr_alloc_size(s) + #define mi_attr_alloc_size2(s1,s2) + #define mi_attr_alloc_align(p) +#endif + +// ------------------------------------------------------ +// Includes +// ------------------------------------------------------ + +#include // size_t +#include // bool +#include // INTPTR_MAX + +#ifdef __cplusplus +extern "C" { +#endif + +// ------------------------------------------------------ +// Standard malloc interface +// ------------------------------------------------------ + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2); +mi_decl_nodiscard mi_decl_export void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2); +mi_decl_export void* mi_expand(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2); + +mi_decl_export void mi_free(void* p) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept mi_attr_malloc; +mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept mi_attr_malloc; +mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept mi_attr_malloc; + +// ------------------------------------------------------ +// Extended functionality +// ------------------------------------------------------ +#define MI_SMALL_WSIZE_MAX (128) +#define MI_SMALL_SIZE_MAX (MI_SMALL_WSIZE_MAX*sizeof(void*)) + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2); +mi_decl_nodiscard mi_decl_export void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept mi_attr_alloc_size2(2,3); +mi_decl_nodiscard mi_decl_export void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2); + +mi_decl_nodiscard mi_decl_export size_t mi_usable_size(const void* p) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export size_t mi_good_size(size_t size) mi_attr_noexcept; + + +// ------------------------------------------------------ +// Internals +// ------------------------------------------------------ + +typedef void (mi_cdecl mi_deferred_free_fun)(bool force, unsigned long long heartbeat, void* arg); +mi_decl_export void mi_register_deferred_free(mi_deferred_free_fun* deferred_free, void* arg) mi_attr_noexcept; + +typedef void (mi_cdecl mi_output_fun)(const char* msg, void* arg); +mi_decl_export void mi_register_output(mi_output_fun* out, void* arg) mi_attr_noexcept; + +typedef void (mi_cdecl mi_error_fun)(int err, void* arg); +mi_decl_export void mi_register_error(mi_error_fun* fun, void* arg); + +mi_decl_export void mi_collect(bool force) mi_attr_noexcept; +mi_decl_export int mi_version(void) mi_attr_noexcept; +mi_decl_export void mi_stats_reset(void) mi_attr_noexcept; +mi_decl_export void mi_stats_merge(void) mi_attr_noexcept; +mi_decl_export void mi_stats_print(void* out) mi_attr_noexcept; // backward compatibility: `out` is ignored and should be NULL +mi_decl_export void mi_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept; + +mi_decl_export void mi_process_init(void) mi_attr_noexcept; +mi_decl_export void mi_thread_init(void) mi_attr_noexcept; +mi_decl_export void mi_thread_done(void) mi_attr_noexcept; +mi_decl_export void mi_thread_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept; + +mi_decl_export void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_msecs, + size_t* current_rss, size_t* peak_rss, + size_t* current_commit, size_t* peak_commit, size_t* page_faults) mi_attr_noexcept; + +// ------------------------------------------------------------------------------------- +// Aligned allocation +// Note that `alignment` always follows `size` for consistency with unaligned +// allocation, but unfortunately this differs from `posix_memalign` and `aligned_alloc`. +// ------------------------------------------------------------------------------------- + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2) mi_attr_alloc_align(3); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(1,2); +mi_decl_nodiscard mi_decl_export void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(2) mi_attr_alloc_align(3); +mi_decl_nodiscard mi_decl_export void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(2); + + +// ------------------------------------------------------------------------------------- +// Heaps: first-class, but can only allocate from the same thread that created it. +// ------------------------------------------------------------------------------------- + +struct mi_heap_s; +typedef struct mi_heap_s mi_heap_t; + +mi_decl_nodiscard mi_decl_export mi_heap_t* mi_heap_new(void); +mi_decl_export void mi_heap_delete(mi_heap_t* heap); +mi_decl_export void mi_heap_destroy(mi_heap_t* heap); +mi_decl_export mi_heap_t* mi_heap_set_default(mi_heap_t* heap); +mi_decl_export mi_heap_t* mi_heap_get_default(void); +mi_decl_export mi_heap_t* mi_heap_get_backing(void); +mi_decl_export void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept; + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2); + +mi_decl_nodiscard mi_decl_export void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(3); +mi_decl_nodiscard mi_decl_export void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept mi_attr_alloc_size2(3,4); +mi_decl_nodiscard mi_decl_export void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(3); + +mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept mi_attr_malloc; +mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept mi_attr_malloc; +mi_decl_nodiscard mi_decl_export mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept mi_attr_malloc; + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(3); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(3); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3) mi_attr_alloc_align(4); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size2(2, 3); +mi_decl_nodiscard mi_decl_export void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(3) mi_attr_alloc_align(4); +mi_decl_nodiscard mi_decl_export void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(3); + + +// -------------------------------------------------------------------------------- +// Zero initialized re-allocation. +// Only valid on memory that was originally allocated with zero initialization too. +// e.g. `mi_calloc`, `mi_zalloc`, `mi_zalloc_aligned` etc. +// see +// -------------------------------------------------------------------------------- + +mi_decl_nodiscard mi_decl_export void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export void* mi_recalloc(void* p, size_t newcount, size_t size) mi_attr_noexcept mi_attr_alloc_size2(2,3); + +mi_decl_nodiscard mi_decl_export void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(2) mi_attr_alloc_align(3); +mi_decl_nodiscard mi_decl_export void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept mi_attr_alloc_size2(2,3) mi_attr_alloc_align(4); +mi_decl_nodiscard mi_decl_export void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size2(2,3); + +mi_decl_nodiscard mi_decl_export void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept mi_attr_alloc_size(3); +mi_decl_nodiscard mi_decl_export void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t newcount, size_t size) mi_attr_noexcept mi_attr_alloc_size2(3,4); + +mi_decl_nodiscard mi_decl_export void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept mi_attr_alloc_size(3) mi_attr_alloc_align(4); +mi_decl_nodiscard mi_decl_export void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size(3); +mi_decl_nodiscard mi_decl_export void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept mi_attr_alloc_size2(3,4) mi_attr_alloc_align(5); +mi_decl_nodiscard mi_decl_export void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept mi_attr_alloc_size2(3,4); + + +// ------------------------------------------------------ +// Analysis +// ------------------------------------------------------ + +mi_decl_export bool mi_heap_contains_block(mi_heap_t* heap, const void* p); +mi_decl_export bool mi_heap_check_owned(mi_heap_t* heap, const void* p); +mi_decl_export bool mi_check_owned(const void* p); + +// An area of heap space contains blocks of a single size. +typedef struct mi_heap_area_s { + void* blocks; // start of the area containing heap blocks + size_t reserved; // bytes reserved for this area (virtual) + size_t committed; // current available bytes for this area + size_t used; // number of allocated blocks + size_t block_size; // size in bytes of each block + size_t full_block_size; // size in bytes of a full block including padding and metadata. +} mi_heap_area_t; + +typedef bool (mi_cdecl mi_block_visit_fun)(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg); + +mi_decl_export bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_all_blocks, mi_block_visit_fun* visitor, void* arg); + +// Experimental +mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export bool mi_is_redirected(void) mi_attr_noexcept; + +mi_decl_export int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept; +mi_decl_export int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept; + +mi_decl_export int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept; +mi_decl_export bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept; + +mi_decl_export void mi_debug_show_arenas(void) mi_attr_noexcept; + +// Experimental: heaps associated with specific memory arena's +typedef int mi_arena_id_t; +mi_decl_export void* mi_arena_area(mi_arena_id_t arena_id, size_t* size); +mi_decl_export int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept; +mi_decl_export int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept; +mi_decl_export bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept; + +#if MI_MALLOC_VERSION >= 182 +// Create a heap that only allocates in the specified arena +mi_decl_nodiscard mi_decl_export mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id); +#endif + +// deprecated +mi_decl_export int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept; + + +// ------------------------------------------------------ +// Convenience +// ------------------------------------------------------ + +#define mi_malloc_tp(tp) ((tp*)mi_malloc(sizeof(tp))) +#define mi_zalloc_tp(tp) ((tp*)mi_zalloc(sizeof(tp))) +#define mi_calloc_tp(tp,n) ((tp*)mi_calloc(n,sizeof(tp))) +#define mi_mallocn_tp(tp,n) ((tp*)mi_mallocn(n,sizeof(tp))) +#define mi_reallocn_tp(p,tp,n) ((tp*)mi_reallocn(p,n,sizeof(tp))) +#define mi_recalloc_tp(p,tp,n) ((tp*)mi_recalloc(p,n,sizeof(tp))) + +#define mi_heap_malloc_tp(hp,tp) ((tp*)mi_heap_malloc(hp,sizeof(tp))) +#define mi_heap_zalloc_tp(hp,tp) ((tp*)mi_heap_zalloc(hp,sizeof(tp))) +#define mi_heap_calloc_tp(hp,tp,n) ((tp*)mi_heap_calloc(hp,n,sizeof(tp))) +#define mi_heap_mallocn_tp(hp,tp,n) ((tp*)mi_heap_mallocn(hp,n,sizeof(tp))) +#define mi_heap_reallocn_tp(hp,p,tp,n) ((tp*)mi_heap_reallocn(hp,p,n,sizeof(tp))) +#define mi_heap_recalloc_tp(hp,p,tp,n) ((tp*)mi_heap_recalloc(hp,p,n,sizeof(tp))) + + +// ------------------------------------------------------ +// Options +// ------------------------------------------------------ + +typedef enum mi_option_e { + // stable options + mi_option_show_errors, // print error messages + mi_option_show_stats, // print statistics on termination + mi_option_verbose, // print verbose messages + // the following options are experimental (see src/options.h) + mi_option_eager_commit, // eager commit segments? (after `eager_commit_delay` segments) (=1) + mi_option_arena_eager_commit, // eager commit arenas? Use 2 to enable just on overcommit systems (=2) + mi_option_purge_decommits, // should a memory purge decommit (or only reset) (=1) + mi_option_allow_large_os_pages, // allow large (2MiB) OS pages, implies eager commit + mi_option_reserve_huge_os_pages, // reserve N huge OS pages (1GiB/page) at startup + mi_option_reserve_huge_os_pages_at, // reserve huge OS pages at a specific NUMA node + mi_option_reserve_os_memory, // reserve specified amount of OS memory in an arena at startup + mi_option_deprecated_segment_cache, + mi_option_deprecated_page_reset, + mi_option_abandoned_page_purge, // immediately purge delayed purges on thread termination + mi_option_deprecated_segment_reset, + mi_option_eager_commit_delay, + mi_option_purge_delay, // memory purging is delayed by N milli seconds; use 0 for immediate purging or -1 for no purging at all. + mi_option_use_numa_nodes, // 0 = use all available numa nodes, otherwise use at most N nodes. + mi_option_limit_os_alloc, // 1 = do not use OS memory for allocation (but only programmatically reserved arenas) + mi_option_os_tag, // tag used for OS logging (macOS only for now) + mi_option_max_errors, // issue at most N error messages + mi_option_max_warnings, // issue at most N warning messages + mi_option_max_segment_reclaim, + mi_option_destroy_on_exit, // if set, release all memory on exit; sometimes used for dynamic unloading but can be unsafe. + mi_option_arena_reserve, // initial memory size in KiB for arena reservation (1GiB on 64-bit) + mi_option_arena_purge_mult, + mi_option_purge_extend_delay, + _mi_option_last, + // legacy option names + mi_option_large_os_pages = mi_option_allow_large_os_pages, + mi_option_eager_region_commit = mi_option_arena_eager_commit, + mi_option_reset_decommits = mi_option_purge_decommits, + mi_option_reset_delay = mi_option_purge_delay, + mi_option_abandoned_page_reset = mi_option_abandoned_page_purge +} mi_option_t; + + +mi_decl_nodiscard mi_decl_export bool mi_option_is_enabled(mi_option_t option); +mi_decl_export void mi_option_enable(mi_option_t option); +mi_decl_export void mi_option_disable(mi_option_t option); +mi_decl_export void mi_option_set_enabled(mi_option_t option, bool enable); +mi_decl_export void mi_option_set_enabled_default(mi_option_t option, bool enable); + +mi_decl_nodiscard mi_decl_export long mi_option_get(mi_option_t option); +mi_decl_nodiscard mi_decl_export long mi_option_get_clamp(mi_option_t option, long min, long max); +mi_decl_nodiscard mi_decl_export size_t mi_option_get_size(mi_option_t option); +mi_decl_export void mi_option_set(mi_option_t option, long value); +mi_decl_export void mi_option_set_default(mi_option_t option, long value); + + +// ------------------------------------------------------------------------------------------------------- +// "mi" prefixed implementations of various posix, Unix, Windows, and C++ allocation functions. +// (This can be convenient when providing overrides of these functions as done in `mimalloc-override.h`.) +// note: we use `mi_cfree` as "checked free" and it checks if the pointer is in our heap before free-ing. +// ------------------------------------------------------------------------------------------------------- + +mi_decl_export void mi_cfree(void* p) mi_attr_noexcept; +mi_decl_export void* mi__expand(void* p, size_t newsize) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export size_t mi_malloc_size(const void* p) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export size_t mi_malloc_good_size(size_t size) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export size_t mi_malloc_usable_size(const void *p) mi_attr_noexcept; + +mi_decl_export int mi_posix_memalign(void** p, size_t alignment, size_t size) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_valloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(2) mi_attr_alloc_align(1); + +mi_decl_nodiscard mi_decl_export void* mi_reallocarray(void* p, size_t count, size_t size) mi_attr_noexcept mi_attr_alloc_size2(2,3); +mi_decl_nodiscard mi_decl_export int mi_reallocarr(void* p, size_t count, size_t size) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export void* mi_aligned_recalloc(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept; +mi_decl_nodiscard mi_decl_export void* mi_aligned_offset_recalloc(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept; + +mi_decl_nodiscard mi_decl_export mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noexcept mi_attr_malloc; +mi_decl_nodiscard mi_decl_export mi_decl_restrict unsigned char* mi_mbsdup(const unsigned char* s) mi_attr_noexcept mi_attr_malloc; +mi_decl_export int mi_dupenv_s(char** buf, size_t* size, const char* name) mi_attr_noexcept; +mi_decl_export int mi_wdupenv_s(unsigned short** buf, size_t* size, const unsigned short* name) mi_attr_noexcept; + +mi_decl_export void mi_free_size(void* p, size_t size) mi_attr_noexcept; +mi_decl_export void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept; +mi_decl_export void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept; + +// The `mi_new` wrappers implement C++ semantics on out-of-memory instead of directly returning `NULL`. +// (and call `std::get_new_handler` and potentially raise a `std::bad_alloc` exception). +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new(size_t size) mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept mi_attr_malloc mi_attr_alloc_size(1) mi_attr_alloc_align(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_new_n(size_t count, size_t size) mi_attr_malloc mi_attr_alloc_size2(1, 2); +mi_decl_nodiscard mi_decl_export void* mi_new_realloc(void* p, size_t newsize) mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export void* mi_new_reallocn(void* p, size_t newcount, size_t size) mi_attr_alloc_size2(2, 3); + +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) mi_attr_malloc mi_attr_alloc_size(2); +mi_decl_nodiscard mi_decl_export mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) mi_attr_malloc mi_attr_alloc_size2(2, 3); + +#ifdef __cplusplus +} +#endif + +// --------------------------------------------------------------------------------------------- +// Implement the C++ std::allocator interface for use in STL containers. +// (note: see `mimalloc-new-delete.h` for overriding the new/delete operators globally) +// --------------------------------------------------------------------------------------------- +#ifdef __cplusplus + +#include // std::size_t +#include // PTRDIFF_MAX +#if (__cplusplus >= 201103L) || (_MSC_VER > 1900) // C++11 +#include // std::true_type +#include // std::forward +#endif + +template struct _mi_stl_allocator_common { + typedef T value_type; + typedef std::size_t size_type; + typedef std::ptrdiff_t difference_type; + typedef value_type& reference; + typedef value_type const& const_reference; + typedef value_type* pointer; + typedef value_type const* const_pointer; + + #if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11 + using propagate_on_container_copy_assignment = std::true_type; + using propagate_on_container_move_assignment = std::true_type; + using propagate_on_container_swap = std::true_type; + template void construct(U* p, Args&& ...args) { ::new(p) U(std::forward(args)...); } + template void destroy(U* p) mi_attr_noexcept { p->~U(); } + #else + void construct(pointer p, value_type const& val) { ::new(p) value_type(val); } + void destroy(pointer p) { p->~value_type(); } + #endif + + size_type max_size() const mi_attr_noexcept { return (PTRDIFF_MAX/sizeof(value_type)); } + pointer address(reference x) const { return &x; } + const_pointer address(const_reference x) const { return &x; } +}; + +template struct mi_stl_allocator : public _mi_stl_allocator_common { + using typename _mi_stl_allocator_common::size_type; + using typename _mi_stl_allocator_common::value_type; + using typename _mi_stl_allocator_common::pointer; + template struct rebind { typedef mi_stl_allocator other; }; + + mi_stl_allocator() mi_attr_noexcept = default; + mi_stl_allocator(const mi_stl_allocator&) mi_attr_noexcept = default; + template mi_stl_allocator(const mi_stl_allocator&) mi_attr_noexcept { } + mi_stl_allocator select_on_container_copy_construction() const { return *this; } + void deallocate(T* p, size_type) { mi_free(p); } + + #if (__cplusplus >= 201703L) // C++17 + mi_decl_nodiscard T* allocate(size_type count) { return static_cast(mi_new_n(count, sizeof(T))); } + mi_decl_nodiscard T* allocate(size_type count, const void*) { return allocate(count); } + #else + mi_decl_nodiscard pointer allocate(size_type count, const void* = 0) { return static_cast(mi_new_n(count, sizeof(value_type))); } + #endif + + #if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11 + using is_always_equal = std::true_type; + #endif +}; + +template bool operator==(const mi_stl_allocator& , const mi_stl_allocator& ) mi_attr_noexcept { return true; } +template bool operator!=(const mi_stl_allocator& , const mi_stl_allocator& ) mi_attr_noexcept { return false; } + + +#if (__cplusplus >= 201103L) || (_MSC_VER >= 1900) // C++11 +#define MI_HAS_HEAP_STL_ALLOCATOR 1 + +#include // std::shared_ptr + +// Common base class for STL allocators in a specific heap +template struct _mi_heap_stl_allocator_common : public _mi_stl_allocator_common { + using typename _mi_stl_allocator_common::size_type; + using typename _mi_stl_allocator_common::value_type; + using typename _mi_stl_allocator_common::pointer; + + _mi_heap_stl_allocator_common(mi_heap_t* hp) : heap(hp) { } /* will not delete nor destroy the passed in heap */ + + #if (__cplusplus >= 201703L) // C++17 + mi_decl_nodiscard T* allocate(size_type count) { return static_cast(mi_heap_alloc_new_n(this->heap.get(), count, sizeof(T))); } + mi_decl_nodiscard T* allocate(size_type count, const void*) { return allocate(count); } + #else + mi_decl_nodiscard pointer allocate(size_type count, const void* = 0) { return static_cast(mi_heap_alloc_new_n(this->heap.get(), count, sizeof(value_type))); } + #endif + + #if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11 + using is_always_equal = std::false_type; + #endif + + void collect(bool force) { mi_heap_collect(this->heap.get(), force); } + template bool is_equal(const _mi_heap_stl_allocator_common& x) const { return (this->heap == x.heap); } + +protected: + std::shared_ptr heap; + template friend struct _mi_heap_stl_allocator_common; + + _mi_heap_stl_allocator_common() { + mi_heap_t* hp = mi_heap_new(); + this->heap.reset(hp, (_mi_destroy ? &heap_destroy : &heap_delete)); /* calls heap_delete/destroy when the refcount drops to zero */ + } + _mi_heap_stl_allocator_common(const _mi_heap_stl_allocator_common& x) mi_attr_noexcept : heap(x.heap) { } + template _mi_heap_stl_allocator_common(const _mi_heap_stl_allocator_common& x) mi_attr_noexcept : heap(x.heap) { } + +private: + static void heap_delete(mi_heap_t* hp) { if (hp != NULL) { mi_heap_delete(hp); } } + static void heap_destroy(mi_heap_t* hp) { if (hp != NULL) { mi_heap_destroy(hp); } } +}; + +// STL allocator allocation in a specific heap +template struct mi_heap_stl_allocator : public _mi_heap_stl_allocator_common { + using typename _mi_heap_stl_allocator_common::size_type; + mi_heap_stl_allocator() : _mi_heap_stl_allocator_common() { } // creates fresh heap that is deleted when the destructor is called + mi_heap_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common(hp) { } // no delete nor destroy on the passed in heap + template mi_heap_stl_allocator(const mi_heap_stl_allocator& x) mi_attr_noexcept : _mi_heap_stl_allocator_common(x) { } + + mi_heap_stl_allocator select_on_container_copy_construction() const { return *this; } + void deallocate(T* p, size_type) { mi_free(p); } + template struct rebind { typedef mi_heap_stl_allocator other; }; +}; + +template bool operator==(const mi_heap_stl_allocator& x, const mi_heap_stl_allocator& y) mi_attr_noexcept { return (x.is_equal(y)); } +template bool operator!=(const mi_heap_stl_allocator& x, const mi_heap_stl_allocator& y) mi_attr_noexcept { return (!x.is_equal(y)); } + + +// STL allocator allocation in a specific heap, where `free` does nothing and +// the heap is destroyed in one go on destruction -- use with care! +template struct mi_heap_destroy_stl_allocator : public _mi_heap_stl_allocator_common { + using typename _mi_heap_stl_allocator_common::size_type; + mi_heap_destroy_stl_allocator() : _mi_heap_stl_allocator_common() { } // creates fresh heap that is destroyed when the destructor is called + mi_heap_destroy_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common(hp) { } // no delete nor destroy on the passed in heap + template mi_heap_destroy_stl_allocator(const mi_heap_destroy_stl_allocator& x) mi_attr_noexcept : _mi_heap_stl_allocator_common(x) { } + + mi_heap_destroy_stl_allocator select_on_container_copy_construction() const { return *this; } + void deallocate(T*, size_type) { /* do nothing as we destroy the heap on destruct. */ } + template struct rebind { typedef mi_heap_destroy_stl_allocator other; }; +}; + +template bool operator==(const mi_heap_destroy_stl_allocator& x, const mi_heap_destroy_stl_allocator& y) mi_attr_noexcept { return (x.is_equal(y)); } +template bool operator!=(const mi_heap_destroy_stl_allocator& x, const mi_heap_destroy_stl_allocator& y) mi_attr_noexcept { return (!x.is_equal(y)); } + +#endif // C++11 + +#endif // __cplusplus + +#endif diff --git a/3rdparty/mimalloc/include/mimalloc/atomic.h b/3rdparty/mimalloc/include/mimalloc/atomic.h new file mode 100644 index 00000000..fe418fab --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc/atomic.h @@ -0,0 +1,385 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023 Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_ATOMIC_H +#define MIMALLOC_ATOMIC_H + +// -------------------------------------------------------------------------------------------- +// Atomics +// We need to be portable between C, C++, and MSVC. +// We base the primitives on the C/C++ atomics and create a mimimal wrapper for MSVC in C compilation mode. +// This is why we try to use only `uintptr_t` and `*` as atomic types. +// To gain better insight in the range of used atomics, we use explicitly named memory order operations +// instead of passing the memory order as a parameter. +// ----------------------------------------------------------------------------------------------- + +#if defined(__cplusplus) +// Use C++ atomics +#include +#define _Atomic(tp) std::atomic +#define mi_atomic(name) std::atomic_##name +#define mi_memory_order(name) std::memory_order_##name +#if !defined(ATOMIC_VAR_INIT) || (__cplusplus >= 202002L) // c++20, see issue #571 + #define MI_ATOMIC_VAR_INIT(x) x +#else + #define MI_ATOMIC_VAR_INIT(x) ATOMIC_VAR_INIT(x) +#endif +#elif defined(_MSC_VER) +// Use MSVC C wrapper for C11 atomics +#define _Atomic(tp) tp +#define MI_ATOMIC_VAR_INIT(x) x +#define mi_atomic(name) mi_atomic_##name +#define mi_memory_order(name) mi_memory_order_##name +#else +// Use C11 atomics +#include +#define mi_atomic(name) atomic_##name +#define mi_memory_order(name) memory_order_##name +#if !defined(ATOMIC_VAR_INIT) || (__STDC_VERSION__ >= 201710L) // c17, see issue #735 + #define MI_ATOMIC_VAR_INIT(x) x +#else + #define MI_ATOMIC_VAR_INIT(x) ATOMIC_VAR_INIT(x) +#endif +#endif + +// Various defines for all used memory orders in mimalloc +#define mi_atomic_cas_weak(p,expected,desired,mem_success,mem_fail) \ + mi_atomic(compare_exchange_weak_explicit)(p,expected,desired,mem_success,mem_fail) + +#define mi_atomic_cas_strong(p,expected,desired,mem_success,mem_fail) \ + mi_atomic(compare_exchange_strong_explicit)(p,expected,desired,mem_success,mem_fail) + +#define mi_atomic_load_acquire(p) mi_atomic(load_explicit)(p,mi_memory_order(acquire)) +#define mi_atomic_load_relaxed(p) mi_atomic(load_explicit)(p,mi_memory_order(relaxed)) +#define mi_atomic_store_release(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(release)) +#define mi_atomic_store_relaxed(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(relaxed)) +#define mi_atomic_exchange_release(p,x) mi_atomic(exchange_explicit)(p,x,mi_memory_order(release)) +#define mi_atomic_exchange_acq_rel(p,x) mi_atomic(exchange_explicit)(p,x,mi_memory_order(acq_rel)) +#define mi_atomic_cas_weak_release(p,exp,des) mi_atomic_cas_weak(p,exp,des,mi_memory_order(release),mi_memory_order(relaxed)) +#define mi_atomic_cas_weak_acq_rel(p,exp,des) mi_atomic_cas_weak(p,exp,des,mi_memory_order(acq_rel),mi_memory_order(acquire)) +#define mi_atomic_cas_strong_release(p,exp,des) mi_atomic_cas_strong(p,exp,des,mi_memory_order(release),mi_memory_order(relaxed)) +#define mi_atomic_cas_strong_acq_rel(p,exp,des) mi_atomic_cas_strong(p,exp,des,mi_memory_order(acq_rel),mi_memory_order(acquire)) + +#define mi_atomic_add_relaxed(p,x) mi_atomic(fetch_add_explicit)(p,x,mi_memory_order(relaxed)) +#define mi_atomic_sub_relaxed(p,x) mi_atomic(fetch_sub_explicit)(p,x,mi_memory_order(relaxed)) +#define mi_atomic_add_acq_rel(p,x) mi_atomic(fetch_add_explicit)(p,x,mi_memory_order(acq_rel)) +#define mi_atomic_sub_acq_rel(p,x) mi_atomic(fetch_sub_explicit)(p,x,mi_memory_order(acq_rel)) +#define mi_atomic_and_acq_rel(p,x) mi_atomic(fetch_and_explicit)(p,x,mi_memory_order(acq_rel)) +#define mi_atomic_or_acq_rel(p,x) mi_atomic(fetch_or_explicit)(p,x,mi_memory_order(acq_rel)) + +#define mi_atomic_increment_relaxed(p) mi_atomic_add_relaxed(p,(uintptr_t)1) +#define mi_atomic_decrement_relaxed(p) mi_atomic_sub_relaxed(p,(uintptr_t)1) +#define mi_atomic_increment_acq_rel(p) mi_atomic_add_acq_rel(p,(uintptr_t)1) +#define mi_atomic_decrement_acq_rel(p) mi_atomic_sub_acq_rel(p,(uintptr_t)1) + +static inline void mi_atomic_yield(void); +static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)*p, intptr_t add); +static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)*p, intptr_t sub); + + +#if defined(__cplusplus) || !defined(_MSC_VER) + +// In C++/C11 atomics we have polymorphic atomics so can use the typed `ptr` variants (where `tp` is the type of atomic value) +// We use these macros so we can provide a typed wrapper in MSVC in C compilation mode as well +#define mi_atomic_load_ptr_acquire(tp,p) mi_atomic_load_acquire(p) +#define mi_atomic_load_ptr_relaxed(tp,p) mi_atomic_load_relaxed(p) + +// In C++ we need to add casts to help resolve templates if NULL is passed +#if defined(__cplusplus) +#define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release(p,(tp*)x) +#define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed(p,(tp*)x) +#define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release(p,exp,(tp*)des) +#define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel(p,exp,(tp*)des) +#define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release(p,exp,(tp*)des) +#define mi_atomic_exchange_ptr_release(tp,p,x) mi_atomic_exchange_release(p,(tp*)x) +#define mi_atomic_exchange_ptr_acq_rel(tp,p,x) mi_atomic_exchange_acq_rel(p,(tp*)x) +#else +#define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release(p,x) +#define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed(p,x) +#define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release(p,exp,des) +#define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel(p,exp,des) +#define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release(p,exp,des) +#define mi_atomic_exchange_ptr_release(tp,p,x) mi_atomic_exchange_release(p,x) +#define mi_atomic_exchange_ptr_acq_rel(tp,p,x) mi_atomic_exchange_acq_rel(p,x) +#endif + +// These are used by the statistics +static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add) { + return mi_atomic(fetch_add_explicit)((_Atomic(int64_t)*)p, add, mi_memory_order(relaxed)); +} +static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x) { + int64_t current = mi_atomic_load_relaxed((_Atomic(int64_t)*)p); + while (current < x && !mi_atomic_cas_weak_release((_Atomic(int64_t)*)p, ¤t, x)) { /* nothing */ }; +} + +// Used by timers +#define mi_atomic_loadi64_acquire(p) mi_atomic(load_explicit)(p,mi_memory_order(acquire)) +#define mi_atomic_loadi64_relaxed(p) mi_atomic(load_explicit)(p,mi_memory_order(relaxed)) +#define mi_atomic_storei64_release(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(release)) +#define mi_atomic_storei64_relaxed(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(relaxed)) + +#define mi_atomic_casi64_strong_acq_rel(p,e,d) mi_atomic_cas_strong_acq_rel(p,e,d) +#define mi_atomic_addi64_acq_rel(p,i) mi_atomic_add_acq_rel(p,i) + + +#elif defined(_MSC_VER) + +// MSVC C compilation wrapper that uses Interlocked operations to model C11 atomics. +#define WIN32_LEAN_AND_MEAN +#include +#include +#ifdef _WIN64 +typedef LONG64 msc_intptr_t; +#define MI_64(f) f##64 +#else +typedef LONG msc_intptr_t; +#define MI_64(f) f +#endif + +typedef enum mi_memory_order_e { + mi_memory_order_relaxed, + mi_memory_order_consume, + mi_memory_order_acquire, + mi_memory_order_release, + mi_memory_order_acq_rel, + mi_memory_order_seq_cst +} mi_memory_order; + +static inline uintptr_t mi_atomic_fetch_add_explicit(_Atomic(uintptr_t)*p, uintptr_t add, mi_memory_order mo) { + (void)(mo); + return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add); +} +static inline uintptr_t mi_atomic_fetch_sub_explicit(_Atomic(uintptr_t)*p, uintptr_t sub, mi_memory_order mo) { + (void)(mo); + return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, -((msc_intptr_t)sub)); +} +static inline uintptr_t mi_atomic_fetch_and_explicit(_Atomic(uintptr_t)*p, uintptr_t x, mi_memory_order mo) { + (void)(mo); + return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x); +} +static inline uintptr_t mi_atomic_fetch_or_explicit(_Atomic(uintptr_t)*p, uintptr_t x, mi_memory_order mo) { + (void)(mo); + return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x); +} +static inline bool mi_atomic_compare_exchange_strong_explicit(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired, mi_memory_order mo1, mi_memory_order mo2) { + (void)(mo1); (void)(mo2); + uintptr_t read = (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)(*expected)); + if (read == *expected) { + return true; + } + else { + *expected = read; + return false; + } +} +static inline bool mi_atomic_compare_exchange_weak_explicit(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired, mi_memory_order mo1, mi_memory_order mo2) { + return mi_atomic_compare_exchange_strong_explicit(p, expected, desired, mo1, mo2); +} +static inline uintptr_t mi_atomic_exchange_explicit(_Atomic(uintptr_t)*p, uintptr_t exchange, mi_memory_order mo) { + (void)(mo); + return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange); +} +static inline void mi_atomic_thread_fence(mi_memory_order mo) { + (void)(mo); + _Atomic(uintptr_t) x = 0; + mi_atomic_exchange_explicit(&x, 1, mo); +} +static inline uintptr_t mi_atomic_load_explicit(_Atomic(uintptr_t) const* p, mi_memory_order mo) { + (void)(mo); +#if defined(_M_IX86) || defined(_M_X64) + return *p; +#else + uintptr_t x = *p; + if (mo > mi_memory_order_relaxed) { + while (!mi_atomic_compare_exchange_weak_explicit(p, &x, x, mo, mi_memory_order_relaxed)) { /* nothing */ }; + } + return x; +#endif +} +static inline void mi_atomic_store_explicit(_Atomic(uintptr_t)*p, uintptr_t x, mi_memory_order mo) { + (void)(mo); +#if defined(_M_IX86) || defined(_M_X64) + *p = x; +#else + mi_atomic_exchange_explicit(p, x, mo); +#endif +} +static inline int64_t mi_atomic_loadi64_explicit(_Atomic(int64_t)*p, mi_memory_order mo) { + (void)(mo); +#if defined(_M_X64) + return *p; +#else + int64_t old = *p; + int64_t x = old; + while ((old = InterlockedCompareExchange64(p, x, old)) != x) { + x = old; + } + return x; +#endif +} +static inline void mi_atomic_storei64_explicit(_Atomic(int64_t)*p, int64_t x, mi_memory_order mo) { + (void)(mo); +#if defined(x_M_IX86) || defined(_M_X64) + *p = x; +#else + InterlockedExchange64(p, x); +#endif +} + +// These are used by the statistics +static inline int64_t mi_atomic_addi64_relaxed(volatile _Atomic(int64_t)*p, int64_t add) { +#ifdef _WIN64 + return (int64_t)mi_atomic_addi((int64_t*)p, add); +#else + int64_t current; + int64_t sum; + do { + current = *p; + sum = current + add; + } while (_InterlockedCompareExchange64(p, sum, current) != current); + return current; +#endif +} +static inline void mi_atomic_maxi64_relaxed(volatile _Atomic(int64_t)*p, int64_t x) { + int64_t current; + do { + current = *p; + } while (current < x && _InterlockedCompareExchange64(p, x, current) != current); +} + +static inline void mi_atomic_addi64_acq_rel(volatile _Atomic(int64_t*)p, int64_t i) { + mi_atomic_addi64_relaxed(p, i); +} + +static inline bool mi_atomic_casi64_strong_acq_rel(volatile _Atomic(int64_t*)p, int64_t* exp, int64_t des) { + int64_t read = _InterlockedCompareExchange64(p, des, *exp); + if (read == *exp) { + return true; + } + else { + *exp = read; + return false; + } +} + +// The pointer macros cast to `uintptr_t`. +#define mi_atomic_load_ptr_acquire(tp,p) (tp*)mi_atomic_load_acquire((_Atomic(uintptr_t)*)(p)) +#define mi_atomic_load_ptr_relaxed(tp,p) (tp*)mi_atomic_load_relaxed((_Atomic(uintptr_t)*)(p)) +#define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release((_Atomic(uintptr_t)*)(p),(uintptr_t)(x)) +#define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed((_Atomic(uintptr_t)*)(p),(uintptr_t)(x)) +#define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des) +#define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des) +#define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des) +#define mi_atomic_exchange_ptr_release(tp,p,x) (tp*)mi_atomic_exchange_release((_Atomic(uintptr_t)*)(p),(uintptr_t)x) +#define mi_atomic_exchange_ptr_acq_rel(tp,p,x) (tp*)mi_atomic_exchange_acq_rel((_Atomic(uintptr_t)*)(p),(uintptr_t)x) + +#define mi_atomic_loadi64_acquire(p) mi_atomic(loadi64_explicit)(p,mi_memory_order(acquire)) +#define mi_atomic_loadi64_relaxed(p) mi_atomic(loadi64_explicit)(p,mi_memory_order(relaxed)) +#define mi_atomic_storei64_release(p,x) mi_atomic(storei64_explicit)(p,x,mi_memory_order(release)) +#define mi_atomic_storei64_relaxed(p,x) mi_atomic(storei64_explicit)(p,x,mi_memory_order(relaxed)) + + +#endif + + +// Atomically add a signed value; returns the previous value. +static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)*p, intptr_t add) { + return (intptr_t)mi_atomic_add_acq_rel((_Atomic(uintptr_t)*)p, (uintptr_t)add); +} + +// Atomically subtract a signed value; returns the previous value. +static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)*p, intptr_t sub) { + return (intptr_t)mi_atomic_addi(p, -sub); +} + +typedef _Atomic(uintptr_t) mi_atomic_once_t; + +// Returns true only on the first invocation +static inline bool mi_atomic_once( mi_atomic_once_t* once ) { + if (mi_atomic_load_relaxed(once) != 0) return false; // quick test + uintptr_t expected = 0; + return mi_atomic_cas_strong_acq_rel(once, &expected, (uintptr_t)1); // try to set to 1 +} + +typedef _Atomic(uintptr_t) mi_atomic_guard_t; + +// Allows only one thread to execute at a time +#define mi_atomic_guard(guard) \ + uintptr_t _mi_guard_expected = 0; \ + for(bool _mi_guard_once = true; \ + _mi_guard_once && mi_atomic_cas_strong_acq_rel(guard,&_mi_guard_expected,(uintptr_t)1); \ + (mi_atomic_store_release(guard,(uintptr_t)0), _mi_guard_once = false) ) + + + +// Yield +#if defined(__cplusplus) +#include +static inline void mi_atomic_yield(void) { + std::this_thread::yield(); +} +#elif defined(_WIN32) +#define WIN32_LEAN_AND_MEAN +#include +static inline void mi_atomic_yield(void) { + YieldProcessor(); +} +#elif defined(__SSE2__) +#include +static inline void mi_atomic_yield(void) { + _mm_pause(); +} +#elif (defined(__GNUC__) || defined(__clang__)) && \ + (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__armel__) || defined(__ARMEL__) || \ + defined(__aarch64__) || defined(__powerpc__) || defined(__ppc__) || defined(__PPC__)) || defined(__POWERPC__) +#if defined(__x86_64__) || defined(__i386__) +static inline void mi_atomic_yield(void) { + __asm__ volatile ("pause" ::: "memory"); +} +#elif defined(__aarch64__) +static inline void mi_atomic_yield(void) { + __asm__ volatile("wfe"); +} +#elif (defined(__arm__) && __ARM_ARCH__ >= 7) +static inline void mi_atomic_yield(void) { + __asm__ volatile("yield" ::: "memory"); +} +#elif defined(__powerpc__) || defined(__ppc__) || defined(__PPC__) || defined(__POWERPC__) +#ifdef __APPLE__ +static inline void mi_atomic_yield(void) { + __asm__ volatile ("or r27,r27,r27" ::: "memory"); +} +#else +static inline void mi_atomic_yield(void) { + __asm__ __volatile__ ("or 27,27,27" ::: "memory"); +} +#endif +#elif defined(__armel__) || defined(__ARMEL__) +static inline void mi_atomic_yield(void) { + __asm__ volatile ("nop" ::: "memory"); +} +#endif +#elif defined(__sun) +// Fallback for other archs +#include +static inline void mi_atomic_yield(void) { + smt_pause(); +} +#elif defined(__wasi__) +#include +static inline void mi_atomic_yield(void) { + sched_yield(); +} +#else +#include +static inline void mi_atomic_yield(void) { + sleep(0); +} +#endif + + +#endif // __MIMALLOC_ATOMIC_H diff --git a/3rdparty/mimalloc/include/mimalloc/internal.h b/3rdparty/mimalloc/include/mimalloc/internal.h new file mode 100644 index 00000000..00d26260 --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc/internal.h @@ -0,0 +1,979 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_INTERNAL_H +#define MIMALLOC_INTERNAL_H + + +// -------------------------------------------------------------------------- +// This file contains the interal API's of mimalloc and various utility +// functions and macros. +// -------------------------------------------------------------------------- + +#include "mimalloc/types.h" +#include "mimalloc/track.h" + +#if (MI_DEBUG>0) +#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__) +#else +#define mi_trace_message(...) +#endif + +#define MI_CACHE_LINE 64 +#if defined(_MSC_VER) +#pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths) +#pragma warning(disable:26812) // unscoped enum warning +#define mi_decl_noinline __declspec(noinline) +#define mi_decl_thread __declspec(thread) +#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE)) +#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc +#define mi_decl_noinline __attribute__((noinline)) +#define mi_decl_thread __thread +#define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE))) +#else +#define mi_decl_noinline +#define mi_decl_thread __thread // hope for the best :-) +#define mi_decl_cache_align +#endif + +#if defined(__EMSCRIPTEN__) && !defined(__wasi__) +#define __wasi__ +#endif + +#if defined(__cplusplus) +#define mi_decl_externc extern "C" +#else +#define mi_decl_externc +#endif + +// pthreads +#if !defined(_WIN32) && !defined(__wasi__) +#define MI_USE_PTHREADS +#include +#endif + +// "options.c" +void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message); +void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...); +void _mi_warning_message(const char* fmt, ...); +void _mi_verbose_message(const char* fmt, ...); +void _mi_trace_message(const char* fmt, ...); +void _mi_options_init(void); +void _mi_error_message(int err, const char* fmt, ...); + +// random.c +void _mi_random_init(mi_random_ctx_t* ctx); +void _mi_random_init_weak(mi_random_ctx_t* ctx); +void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx); +void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx); +uintptr_t _mi_random_next(mi_random_ctx_t* ctx); +uintptr_t _mi_heap_random_next(mi_heap_t* heap); +uintptr_t _mi_os_random_weak(uintptr_t extra_seed); +static inline uintptr_t _mi_random_shuffle(uintptr_t x); + +// init.c +extern mi_decl_cache_align mi_stats_t _mi_stats_main; +extern mi_decl_cache_align const mi_page_t _mi_page_empty; +bool _mi_is_main_thread(void); +size_t _mi_current_thread_count(void); +bool _mi_preloading(void); // true while the C runtime is not initialized yet +mi_threadid_t _mi_thread_id(void) mi_attr_noexcept; +mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap +void _mi_thread_done(mi_heap_t* heap); +void _mi_thread_data_collect(void); + +// os.c +void _mi_os_init(void); // called from process init +void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* stats); +void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* stats); +void _mi_os_free_ex(void* p, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* stats); + +size_t _mi_os_page_size(void); +size_t _mi_os_good_alloc_size(size_t size); +bool _mi_os_has_overcommit(void); +bool _mi_os_has_virtual_reserve(void); + +bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats); +bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats); +bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats); +bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); +bool _mi_os_protect(void* addr, size_t size); +bool _mi_os_unprotect(void* addr, size_t size); +bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats); +bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats); + +void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats); +void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats); + +void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size); +bool _mi_os_use_large_page(size_t size, size_t alignment); +size_t _mi_os_large_page_size(void); + +void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_secs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid); + +// arena.c +mi_arena_id_t _mi_arena_id_none(void); +void _mi_arena_free(void* p, size_t size, size_t still_committed_size, mi_memid_t memid, mi_stats_t* stats); +void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld); +void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld); +bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id); +bool _mi_arena_contains(const void* p); +void _mi_arena_collect(bool force_purge, mi_stats_t* stats); +void _mi_arena_unsafe_destroy_all(mi_stats_t* stats); + +// "segment-map.c" +void _mi_segment_map_allocated_at(const mi_segment_t* segment); +void _mi_segment_map_freed_at(const mi_segment_t* segment); + +// "segment.c" +mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld); +void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld); +void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld); +bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld); +void _mi_segment_thread_collect(mi_segments_tld_t* tld); + +#if MI_HUGE_PAGE_ABANDON +void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); +#else +void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); +#endif + +uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size); // page start for any page +void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld); +void _mi_abandoned_await_readers(void); +void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld); + +// "page.c" +void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc; + +void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks +void _mi_page_unfull(mi_page_t* page); +void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page +void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread... +void _mi_heap_delayed_free_all(mi_heap_t* heap); +bool _mi_heap_delayed_free_partial(mi_heap_t* heap); +void _mi_heap_collect_retired(mi_heap_t* heap, bool force); + +void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); +bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); +size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append); +void _mi_deferred_free(mi_heap_t* heap, bool force); + +void _mi_page_free_collect(mi_page_t* page,bool force); +void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments + +size_t _mi_bin_size(uint8_t bin); // for stats +uint8_t _mi_bin(size_t size); // for stats + +// "heap.c" +void _mi_heap_destroy_pages(mi_heap_t* heap); +void _mi_heap_collect_abandon(mi_heap_t* heap); +void _mi_heap_set_default_direct(mi_heap_t* heap); +bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid); +void _mi_heap_unsafe_destroy_all(void); + +// "stats.c" +void _mi_stats_done(mi_stats_t* stats); +mi_msecs_t _mi_clock_now(void); +mi_msecs_t _mi_clock_end(mi_msecs_t start); +mi_msecs_t _mi_clock_start(void); + +// "alloc.c" +void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic` +void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept; +void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned` +void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept; +mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p); +bool _mi_free_delayed_block(mi_block_t* block); +void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration +void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size); + +// option.c, c primitives +char _mi_toupper(char c); +int _mi_strnicmp(const char* s, const char* t, size_t n); +void _mi_strlcpy(char* dest, const char* src, size_t dest_size); +void _mi_strlcat(char* dest, const char* src, size_t dest_size); +size_t _mi_strlen(const char* s); +size_t _mi_strnlen(const char* s, size_t max_len); + + +#if MI_DEBUG>1 +bool _mi_page_is_valid(mi_page_t* page); +#endif + + +// ------------------------------------------------------ +// Branches +// ------------------------------------------------------ + +#if defined(__GNUC__) || defined(__clang__) +#define mi_unlikely(x) (__builtin_expect(!!(x),false)) +#define mi_likely(x) (__builtin_expect(!!(x),true)) +#elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L) +#define mi_unlikely(x) (x) [[unlikely]] +#define mi_likely(x) (x) [[likely]] +#else +#define mi_unlikely(x) (x) +#define mi_likely(x) (x) +#endif + +#ifndef __has_builtin +#define __has_builtin(x) 0 +#endif + + +/* ----------------------------------------------------------- + Error codes passed to `_mi_fatal_error` + All are recoverable but EFAULT is a serious error and aborts by default in secure mode. + For portability define undefined error codes using common Unix codes: + +----------------------------------------------------------- */ +#include +#ifndef EAGAIN // double free +#define EAGAIN (11) +#endif +#ifndef ENOMEM // out of memory +#define ENOMEM (12) +#endif +#ifndef EFAULT // corrupted free-list or meta-data +#define EFAULT (14) +#endif +#ifndef EINVAL // trying to free an invalid pointer +#define EINVAL (22) +#endif +#ifndef EOVERFLOW // count*size overflow +#define EOVERFLOW (75) +#endif + + +/* ----------------------------------------------------------- + Inlined definitions +----------------------------------------------------------- */ +#define MI_UNUSED(x) (void)(x) +#if (MI_DEBUG>0) +#define MI_UNUSED_RELEASE(x) +#else +#define MI_UNUSED_RELEASE(x) MI_UNUSED(x) +#endif + +#define MI_INIT4(x) x(),x(),x(),x() +#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x) +#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x) +#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x) +#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x) +#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x) +#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x) + + +#include +// initialize a local variable to zero; use memset as compilers optimize constant sized memset's +#define _mi_memzero_var(x) memset(&x,0,sizeof(x)) + +// Is `x` a power of two? (0 is considered a power of two) +static inline bool _mi_is_power_of_two(uintptr_t x) { + return ((x & (x - 1)) == 0); +} + +// Is a pointer aligned? +static inline bool _mi_is_aligned(void* p, size_t alignment) { + mi_assert_internal(alignment != 0); + return (((uintptr_t)p % alignment) == 0); +} + +// Align upwards +static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) { + mi_assert_internal(alignment != 0); + uintptr_t mask = alignment - 1; + if ((alignment & mask) == 0) { // power of two? + return ((sz + mask) & ~mask); + } + else { + return (((sz + mask)/alignment)*alignment); + } +} + +// Align downwards +static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { + mi_assert_internal(alignment != 0); + uintptr_t mask = alignment - 1; + if ((alignment & mask) == 0) { // power of two? + return (sz & ~mask); + } + else { + return ((sz / alignment) * alignment); + } +} + +// Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`. +static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) { + mi_assert_internal(divider != 0); + return (divider == 0 ? size : ((size + divider - 1) / divider)); +} + +// Is memory zero initialized? +static inline bool mi_mem_is_zero(const void* p, size_t size) { + for (size_t i = 0; i < size; i++) { + if (((uint8_t*)p)[i] != 0) return false; + } + return true; +} + + +// Align a byte size to a size in _machine words_, +// i.e. byte size == `wsize*sizeof(void*)`. +static inline size_t _mi_wsize_from_size(size_t size) { + mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t)); + return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t); +} + +// Overflow detecting multiply +#if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5)) +#include // UINT_MAX, ULONG_MAX +#if defined(_CLOCK_T) // for Illumos +#undef _CLOCK_T +#endif +static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { + #if (SIZE_MAX == ULONG_MAX) + return __builtin_umull_overflow(count, size, (unsigned long *)total); + #elif (SIZE_MAX == UINT_MAX) + return __builtin_umul_overflow(count, size, (unsigned int *)total); + #else + return __builtin_umulll_overflow(count, size, (unsigned long long *)total); + #endif +} +#else /* __builtin_umul_overflow is unavailable */ +static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { + #define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX) + *total = count * size; + // note: gcc/clang optimize this to directly check the overflow flag + return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count); +} +#endif + +// Safe multiply `count*size` into `total`; return `true` on overflow. +static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) { + if (count==1) { // quick check for the case where count is one (common for C++ allocators) + *total = size; + return false; + } + else if mi_unlikely(mi_mul_overflow(count, size, total)) { + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size); + #endif + *total = SIZE_MAX; + return true; + } + else return false; +} + + +/*---------------------------------------------------------------------------------------- + Heap functions +------------------------------------------------------------------------------------------- */ + +extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap + +static inline bool mi_heap_is_backing(const mi_heap_t* heap) { + return (heap->tld->heap_backing == heap); +} + +static inline bool mi_heap_is_initialized(mi_heap_t* heap) { + mi_assert_internal(heap != NULL); + return (heap != &_mi_heap_empty); +} + +static inline uintptr_t _mi_ptr_cookie(const void* p) { + extern mi_heap_t _mi_heap_main; + mi_assert_internal(_mi_heap_main.cookie != 0); + return ((uintptr_t)p ^ _mi_heap_main.cookie); +} + +/* ----------------------------------------------------------- + Pages +----------------------------------------------------------- */ + +static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) { + mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE)); + const size_t idx = _mi_wsize_from_size(size); + mi_assert_internal(idx < MI_PAGES_DIRECT); + return heap->pages_free_direct[idx]; +} + +// Segment that contains the pointer +// Large aligned blocks may be aligned at N*MI_SEGMENT_SIZE (inside a huge segment > MI_SEGMENT_SIZE), +// and we need align "down" to the segment info which is `MI_SEGMENT_SIZE` bytes before it; +// therefore we align one byte before `p`. +static inline mi_segment_t* _mi_ptr_segment(const void* p) { + mi_assert_internal(p != NULL); + return (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK); +} + +static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) { + mi_assert_internal(s->slice_offset== 0 && s->slice_count > 0); + return (mi_page_t*)(s); +} + +static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) { + mi_assert_internal(p->slice_offset== 0 && p->slice_count > 0); + return (mi_slice_t*)(p); +} + +// Segment belonging to a page +static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) { + mi_segment_t* segment = _mi_ptr_segment(page); + mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries)); + return segment; +} + +static inline mi_slice_t* mi_slice_first(const mi_slice_t* slice) { + mi_slice_t* start = (mi_slice_t*)((uint8_t*)slice - slice->slice_offset); + mi_assert_internal(start >= _mi_ptr_segment(slice)->slices); + mi_assert_internal(start->slice_offset == 0); + mi_assert_internal(start + start->slice_count > slice); + return start; +} + +// Get the page containing the pointer (performance critical as it is called in mi_free) +static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) { + mi_assert_internal(p > (void*)segment); + ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment; + mi_assert_internal(diff > 0 && diff <= (ptrdiff_t)MI_SEGMENT_SIZE); + size_t idx = (size_t)diff >> MI_SEGMENT_SLICE_SHIFT; + mi_assert_internal(idx <= segment->slice_entries); + mi_slice_t* slice0 = (mi_slice_t*)&segment->slices[idx]; + mi_slice_t* slice = mi_slice_first(slice0); // adjust to the block that holds the page data + mi_assert_internal(slice->slice_offset == 0); + mi_assert_internal(slice >= segment->slices && slice < segment->slices + segment->slice_entries); + return mi_slice_to_page(slice); +} + +// Quick page start for initialized pages +static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { + return _mi_segment_page_start(segment, page, page_size); +} + +// Get the page containing the pointer +static inline mi_page_t* _mi_ptr_page(void* p) { + return _mi_segment_page_of(_mi_ptr_segment(p), p); +} + +// Get the block size of a page (special case for huge objects) +static inline size_t mi_page_block_size(const mi_page_t* page) { + const size_t bsize = page->xblock_size; + mi_assert_internal(bsize > 0); + if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) { + return bsize; + } + else { + size_t psize; + _mi_segment_page_start(_mi_page_segment(page), page, &psize); + return psize; + } +} + +static inline bool mi_page_is_huge(const mi_page_t* page) { + return (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE); +} + +// Get the usable block size of a page without fixed padding. +// This may still include internal padding due to alignment and rounding up size classes. +static inline size_t mi_page_usable_block_size(const mi_page_t* page) { + return mi_page_block_size(page) - MI_PADDING_SIZE; +} + +// size of a segment +static inline size_t mi_segment_size(mi_segment_t* segment) { + return segment->segment_slices * MI_SEGMENT_SLICE_SIZE; +} + +static inline uint8_t* mi_segment_end(mi_segment_t* segment) { + return (uint8_t*)segment + mi_segment_size(segment); +} + +// Thread free access +static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) { + return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3); +} + +static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) { + return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3); +} + +// Heap access +static inline mi_heap_t* mi_page_heap(const mi_page_t* page) { + return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap)); +} + +static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) { + mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING); + mi_atomic_store_release(&page->xheap,(uintptr_t)heap); +} + +// Thread free flag helpers +static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) { + return (mi_block_t*)(tf & ~0x03); +} +static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) { + return (mi_delayed_t)(tf & 0x03); +} +static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) { + return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed); +} +static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) { + return mi_tf_make(mi_tf_block(tf),delayed); +} +static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) { + return mi_tf_make(block, mi_tf_delayed(tf)); +} + +// are all blocks in a page freed? +// note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`. +static inline bool mi_page_all_free(const mi_page_t* page) { + mi_assert_internal(page != NULL); + return (page->used == 0); +} + +// are there any available blocks? +static inline bool mi_page_has_any_available(const mi_page_t* page) { + mi_assert_internal(page != NULL && page->reserved > 0); + return (page->used < page->reserved || (mi_page_thread_free(page) != NULL)); +} + +// are there immediately available blocks, i.e. blocks available on the free list. +static inline bool mi_page_immediate_available(const mi_page_t* page) { + mi_assert_internal(page != NULL); + return (page->free != NULL); +} + +// is more than 7/8th of a page in use? +static inline bool mi_page_mostly_used(const mi_page_t* page) { + if (page==NULL) return true; + uint16_t frac = page->reserved / 8U; + return (page->reserved - page->used <= frac); +} + +static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) { + return &((mi_heap_t*)heap)->pages[_mi_bin(size)]; +} + + + +//----------------------------------------------------------- +// Page flags +//----------------------------------------------------------- +static inline bool mi_page_is_in_full(const mi_page_t* page) { + return page->flags.x.in_full; +} + +static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) { + page->flags.x.in_full = in_full; +} + +static inline bool mi_page_has_aligned(const mi_page_t* page) { + return page->flags.x.has_aligned; +} + +static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) { + page->flags.x.has_aligned = has_aligned; +} + + +/* ------------------------------------------------------------------- +Encoding/Decoding the free list next pointers + +This is to protect against buffer overflow exploits where the +free list is mutated. Many hardened allocators xor the next pointer `p` +with a secret key `k1`, as `p^k1`. This prevents overwriting with known +values but might be still too weak: if the attacker can guess +the pointer `p` this can reveal `k1` (since `p^k1^p == k1`). +Moreover, if multiple blocks can be read as well, the attacker can +xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot +about the pointers (and subsequently `k1`). + +Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<> (MI_INTPTR_BITS - shift)))); +} +static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) { + shift %= MI_INTPTR_BITS; + return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift)))); +} + +static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) { + void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]); + return (p==null ? NULL : p); +} + +static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) { + uintptr_t x = (uintptr_t)(p==NULL ? null : p); + return mi_rotl(x ^ keys[1], keys[0]) + keys[0]; +} + +static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) { + mi_track_mem_defined(block,sizeof(mi_block_t)); + mi_block_t* next; + #ifdef MI_ENCODE_FREELIST + next = (mi_block_t*)mi_ptr_decode(null, block->next, keys); + #else + MI_UNUSED(keys); MI_UNUSED(null); + next = (mi_block_t*)block->next; + #endif + mi_track_mem_noaccess(block,sizeof(mi_block_t)); + return next; +} + +static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) { + mi_track_mem_undefined(block,sizeof(mi_block_t)); + #ifdef MI_ENCODE_FREELIST + block->next = mi_ptr_encode(null, next, keys); + #else + MI_UNUSED(keys); MI_UNUSED(null); + block->next = (mi_encoded_t)next; + #endif + mi_track_mem_noaccess(block,sizeof(mi_block_t)); +} + +static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) { + #ifdef MI_ENCODE_FREELIST + mi_block_t* next = mi_block_nextx(page,block,page->keys); + // check for free list corruption: is `next` at least in the same page? + // TODO: check if `next` is `page->block_size` aligned? + if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) { + _mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next); + next = NULL; + } + return next; + #else + MI_UNUSED(page); + return mi_block_nextx(page,block,NULL); + #endif +} + +static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) { + #ifdef MI_ENCODE_FREELIST + mi_block_set_nextx(page,block,next, page->keys); + #else + MI_UNUSED(page); + mi_block_set_nextx(page,block,next,NULL); + #endif +} + + +// ------------------------------------------------------------------- +// commit mask +// ------------------------------------------------------------------- + +static inline void mi_commit_mask_create_empty(mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + cm->mask[i] = 0; + } +} + +static inline void mi_commit_mask_create_full(mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + cm->mask[i] = ~((size_t)0); + } +} + +static inline bool mi_commit_mask_is_empty(const mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + if (cm->mask[i] != 0) return false; + } + return true; +} + +static inline bool mi_commit_mask_is_full(const mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + if (cm->mask[i] != ~((size_t)0)) return false; + } + return true; +} + +// defined in `segment.c`: +size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total); +size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx); + +#define mi_commit_mask_foreach(cm,idx,count) \ + idx = 0; \ + while ((count = _mi_commit_mask_next_run(cm,&idx)) > 0) { + +#define mi_commit_mask_foreach_end() \ + idx += count; \ + } + + + +/* ----------------------------------------------------------- + memory id's +----------------------------------------------------------- */ + +static inline mi_memid_t _mi_memid_create(mi_memkind_t memkind) { + mi_memid_t memid; + _mi_memzero_var(memid); + memid.memkind = memkind; + return memid; +} + +static inline mi_memid_t _mi_memid_none(void) { + return _mi_memid_create(MI_MEM_NONE); +} + +static inline mi_memid_t _mi_memid_create_os(bool committed, bool is_zero, bool is_large) { + mi_memid_t memid = _mi_memid_create(MI_MEM_OS); + memid.initially_committed = committed; + memid.initially_zero = is_zero; + memid.is_pinned = is_large; + return memid; +} + + +// ------------------------------------------------------------------- +// Fast "random" shuffle +// ------------------------------------------------------------------- + +static inline uintptr_t _mi_random_shuffle(uintptr_t x) { + if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros +#if (MI_INTPTR_SIZE==8) + // by Sebastiano Vigna, see: + x ^= x >> 30; + x *= 0xbf58476d1ce4e5b9UL; + x ^= x >> 27; + x *= 0x94d049bb133111ebUL; + x ^= x >> 31; +#elif (MI_INTPTR_SIZE==4) + // by Chris Wellons, see: + x ^= x >> 16; + x *= 0x7feb352dUL; + x ^= x >> 15; + x *= 0x846ca68bUL; + x ^= x >> 16; +#endif + return x; +} + +// ------------------------------------------------------------------- +// Optimize numa node access for the common case (= one node) +// ------------------------------------------------------------------- + +int _mi_os_numa_node_get(mi_os_tld_t* tld); +size_t _mi_os_numa_node_count_get(void); + +extern _Atomic(size_t) _mi_numa_node_count; +static inline int _mi_os_numa_node(mi_os_tld_t* tld) { + if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; } + else return _mi_os_numa_node_get(tld); +} +static inline size_t _mi_os_numa_node_count(void) { + const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count); + if mi_likely(count > 0) { return count; } + else return _mi_os_numa_node_count_get(); +} + + + +// ----------------------------------------------------------------------- +// Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero) +// ----------------------------------------------------------------------- + +#if defined(__GNUC__) + +#include // LONG_MAX +#define MI_HAVE_FAST_BITSCAN +static inline size_t mi_clz(uintptr_t x) { + if (x==0) return MI_INTPTR_BITS; +#if (INTPTR_MAX == LONG_MAX) + return __builtin_clzl(x); +#else + return __builtin_clzll(x); +#endif +} +static inline size_t mi_ctz(uintptr_t x) { + if (x==0) return MI_INTPTR_BITS; +#if (INTPTR_MAX == LONG_MAX) + return __builtin_ctzl(x); +#else + return __builtin_ctzll(x); +#endif +} + +#elif defined(_MSC_VER) + +#include // LONG_MAX +#include // BitScanReverse64 +#define MI_HAVE_FAST_BITSCAN +static inline size_t mi_clz(uintptr_t x) { + if (x==0) return MI_INTPTR_BITS; + unsigned long idx; +#if (INTPTR_MAX == LONG_MAX) + _BitScanReverse(&idx, x); +#else + _BitScanReverse64(&idx, x); +#endif + return ((MI_INTPTR_BITS - 1) - idx); +} +static inline size_t mi_ctz(uintptr_t x) { + if (x==0) return MI_INTPTR_BITS; + unsigned long idx; +#if (INTPTR_MAX == LONG_MAX) + _BitScanForward(&idx, x); +#else + _BitScanForward64(&idx, x); +#endif + return idx; +} + +#else +static inline size_t mi_ctz32(uint32_t x) { + // de Bruijn multiplication, see + static const unsigned char debruijn[32] = { + 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, + 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 + }; + if (x==0) return 32; + return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27]; +} +static inline size_t mi_clz32(uint32_t x) { + // de Bruijn multiplication, see + static const uint8_t debruijn[32] = { + 31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1, + 23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0 + }; + if (x==0) return 32; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; + return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27]; +} + +static inline size_t mi_clz(uintptr_t x) { + if (x==0) return MI_INTPTR_BITS; +#if (MI_INTPTR_BITS <= 32) + return mi_clz32((uint32_t)x); +#else + size_t count = mi_clz32((uint32_t)(x >> 32)); + if (count < 32) return count; + return (32 + mi_clz32((uint32_t)x)); +#endif +} +static inline size_t mi_ctz(uintptr_t x) { + if (x==0) return MI_INTPTR_BITS; +#if (MI_INTPTR_BITS <= 32) + return mi_ctz32((uint32_t)x); +#else + size_t count = mi_ctz32((uint32_t)x); + if (count < 32) return count; + return (32 + mi_ctz32((uint32_t)(x>>32))); +#endif +} + +#endif + +// "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero) +static inline size_t mi_bsr(uintptr_t x) { + return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x)); +} + + +// --------------------------------------------------------------------------------- +// Provide our own `_mi_memcpy` for potential performance optimizations. +// +// For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if +// we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support +// (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253. +// --------------------------------------------------------------------------------- + +#if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64)) +#include +extern bool _mi_cpu_has_fsrm; +static inline void _mi_memcpy(void* dst, const void* src, size_t n) { + if (_mi_cpu_has_fsrm) { + __movsb((unsigned char*)dst, (const unsigned char*)src, n); + } + else { + memcpy(dst, src, n); + } +} +static inline void _mi_memzero(void* dst, size_t n) { + if (_mi_cpu_has_fsrm) { + __stosb((unsigned char*)dst, 0, n); + } + else { + memset(dst, 0, n); + } +} +#else +static inline void _mi_memcpy(void* dst, const void* src, size_t n) { + memcpy(dst, src, n); +} +static inline void _mi_memzero(void* dst, size_t n) { + memset(dst, 0, n); +} +#endif + +// ------------------------------------------------------------------------------- +// The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned +// This is used for example in `mi_realloc`. +// ------------------------------------------------------------------------------- + +#if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__) +// On GCC/CLang we provide a hint that the pointers are word aligned. +static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { + mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); + void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); + const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE); + _mi_memcpy(adst, asrc, n); +} + +static inline void _mi_memzero_aligned(void* dst, size_t n) { + mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0); + void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); + _mi_memzero(adst, n); +} +#else +// Default fallback on `_mi_memcpy` +static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { + mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); + _mi_memcpy(dst, src, n); +} + +static inline void _mi_memzero_aligned(void* dst, size_t n) { + mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0); + _mi_memzero(dst, n); +} +#endif + + +#endif diff --git a/3rdparty/mimalloc/include/mimalloc/prim.h b/3rdparty/mimalloc/include/mimalloc/prim.h new file mode 100644 index 00000000..9e560696 --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc/prim.h @@ -0,0 +1,323 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_PRIM_H +#define MIMALLOC_PRIM_H + + +// -------------------------------------------------------------------------- +// This file specifies the primitive portability API. +// Each OS/host needs to implement these primitives, see `src/prim` +// for implementations on Window, macOS, WASI, and Linux/Unix. +// +// note: on all primitive functions, we always have result parameters != NUL, and: +// addr != NULL and page aligned +// size > 0 and page aligned +// return value is an error code an int where 0 is success. +// -------------------------------------------------------------------------- + +// OS memory configuration +typedef struct mi_os_mem_config_s { + size_t page_size; // 4KiB + size_t large_page_size; // 2MiB + size_t alloc_granularity; // smallest allocation size (on Windows 64KiB) + bool has_overcommit; // can we reserve more memory than can be actually committed? + bool must_free_whole; // must allocated blocks be freed as a whole (false for mmap, true for VirtualAlloc) + bool has_virtual_reserve; // supports virtual address space reservation? (if true we can reserve virtual address space without using commit or physical memory) +} mi_os_mem_config_t; + +// Initialize +void _mi_prim_mem_init( mi_os_mem_config_t* config ); + +// Free OS memory +int _mi_prim_free(void* addr, size_t size ); + +// Allocate OS memory. Return NULL on error. +// The `try_alignment` is just a hint and the returned pointer does not have to be aligned. +// If `commit` is false, the virtual memory range only needs to be reserved (with no access) +// which will later be committed explicitly using `_mi_prim_commit`. +// `is_zero` is set to true if the memory was zero initialized (as on most OS's) +// pre: !commit => !allow_large +// try_alignment >= _mi_os_page_size() and a power of 2 +int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr); + +// Commit memory. Returns error code or 0 on success. +// For example, on Linux this would make the memory PROT_READ|PROT_WRITE. +// `is_zero` is set to true if the memory was zero initialized (e.g. on Windows) +int _mi_prim_commit(void* addr, size_t size, bool* is_zero); + +// Decommit memory. Returns error code or 0 on success. The `needs_recommit` result is true +// if the memory would need to be re-committed. For example, on Windows this is always true, +// but on Linux we could use MADV_DONTNEED to decommit which does not need a recommit. +// pre: needs_recommit != NULL +int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit); + +// Reset memory. The range keeps being accessible but the content might be reset. +// Returns error code or 0 on success. +int _mi_prim_reset(void* addr, size_t size); + +// Protect memory. Returns error code or 0 on success. +int _mi_prim_protect(void* addr, size_t size, bool protect); + +// Allocate huge (1GiB) pages possibly associated with a NUMA node. +// `is_zero` is set to true if the memory was zero initialized (as on most OS's) +// pre: size > 0 and a multiple of 1GiB. +// numa_node is either negative (don't care), or a numa node number. +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr); + +// Return the current NUMA node +size_t _mi_prim_numa_node(void); + +// Return the number of logical NUMA nodes +size_t _mi_prim_numa_node_count(void); + +// Clock ticks +mi_msecs_t _mi_prim_clock_now(void); + +// Return process information (only for statistics) +typedef struct mi_process_info_s { + mi_msecs_t elapsed; + mi_msecs_t utime; + mi_msecs_t stime; + size_t current_rss; + size_t peak_rss; + size_t current_commit; + size_t peak_commit; + size_t page_faults; +} mi_process_info_t; + +void _mi_prim_process_info(mi_process_info_t* pinfo); + +// Default stderr output. (only for warnings etc. with verbose enabled) +// msg != NULL && _mi_strlen(msg) > 0 +void _mi_prim_out_stderr( const char* msg ); + +// Get an environment variable. (only for options) +// name != NULL, result != NULL, result_size >= 64 +bool _mi_prim_getenv(const char* name, char* result, size_t result_size); + + +// Fill a buffer with strong randomness; return `false` on error or if +// there is no strong randomization available. +bool _mi_prim_random_buf(void* buf, size_t buf_len); + +// Called on the first thread start, and should ensure `_mi_thread_done` is called on thread termination. +void _mi_prim_thread_init_auto_done(void); + +// Called on process exit and may take action to clean up resources associated with the thread auto done. +void _mi_prim_thread_done_auto_done(void); + +// Called when the default heap for a thread changes +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap); + + +//------------------------------------------------------------------- +// Thread id: `_mi_prim_thread_id()` +// +// Getting the thread id should be performant as it is called in the +// fast path of `_mi_free` and we specialize for various platforms as +// inlined definitions. Regular code should call `init.c:_mi_thread_id()`. +// We only require _mi_prim_thread_id() to return a unique id +// for each thread (unequal to zero). +//------------------------------------------------------------------- + +// defined in `init.c`; do not use these directly +extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from +extern bool _mi_process_is_initialized; // has mi_process_init been called? + +static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept; + +#if defined(_WIN32) + +#define WIN32_LEAN_AND_MEAN +#include +static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept { + // Windows: works on Intel and ARM in both 32- and 64-bit + return (uintptr_t)NtCurrentTeb(); +} + +// We use assembly for a fast thread id on the main platforms. The TLS layout depends on +// both the OS and libc implementation so we use specific tests for each main platform. +// If you test on another platform and it works please send a PR :-) +// see also https://akkadia.org/drepper/tls.pdf for more info on the TLS register. +#elif defined(__GNUC__) && ( \ + (defined(__GLIBC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \ + || (defined(__APPLE__) && (defined(__x86_64__) || defined(__aarch64__))) \ + || (defined(__BIONIC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \ + || (defined(__FreeBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \ + || (defined(__OpenBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \ + ) + +static inline void* mi_prim_tls_slot(size_t slot) mi_attr_noexcept { + void* res; + const size_t ofs = (slot*sizeof(void*)); + #if defined(__i386__) + __asm__("movl %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86 32-bit always uses GS + #elif defined(__APPLE__) && defined(__x86_64__) + __asm__("movq %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 macOSX uses GS + #elif defined(__x86_64__) && (MI_INTPTR_SIZE==4) + __asm__("movl %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x32 ABI + #elif defined(__x86_64__) + __asm__("movq %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 Linux, BSD uses FS + #elif defined(__arm__) + void** tcb; MI_UNUSED(ofs); + __asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb)); + res = tcb[slot]; + #elif defined(__aarch64__) + void** tcb; MI_UNUSED(ofs); + #if defined(__APPLE__) // M1, issue #343 + __asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb)); + #else + __asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb)); + #endif + res = tcb[slot]; + #endif + return res; +} + +// setting a tls slot is only used on macOS for now +static inline void mi_prim_tls_slot_set(size_t slot, void* value) mi_attr_noexcept { + const size_t ofs = (slot*sizeof(void*)); + #if defined(__i386__) + __asm__("movl %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // 32-bit always uses GS + #elif defined(__APPLE__) && defined(__x86_64__) + __asm__("movq %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 macOS uses GS + #elif defined(__x86_64__) && (MI_INTPTR_SIZE==4) + __asm__("movl %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x32 ABI + #elif defined(__x86_64__) + __asm__("movq %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 Linux, BSD uses FS + #elif defined(__arm__) + void** tcb; MI_UNUSED(ofs); + __asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb)); + tcb[slot] = value; + #elif defined(__aarch64__) + void** tcb; MI_UNUSED(ofs); + #if defined(__APPLE__) // M1, issue #343 + __asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb)); + #else + __asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb)); + #endif + tcb[slot] = value; + #endif +} + +static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept { + #if defined(__BIONIC__) + // issue #384, #495: on the Bionic libc (Android), slot 1 is the thread id + // see: https://github.com/aosp-mirror/platform_bionic/blob/c44b1d0676ded732df4b3b21c5f798eacae93228/libc/platform/bionic/tls_defines.h#L86 + return (uintptr_t)mi_prim_tls_slot(1); + #else + // in all our other targets, slot 0 is the thread id + // glibc: https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/x86_64/nptl/tls.h + // apple: https://github.com/apple/darwin-xnu/blob/main/libsyscall/os/tsd.h#L36 + return (uintptr_t)mi_prim_tls_slot(0); + #endif +} + +#else + +// otherwise use portable C, taking the address of a thread local variable (this is still very fast on most platforms). +static inline mi_threadid_t _mi_prim_thread_id(void) mi_attr_noexcept { + return (uintptr_t)&_mi_heap_default; +} + +#endif + + + +/* ---------------------------------------------------------------------------------------- +The thread local default heap: `_mi_prim_get_default_heap()` +This is inlined here as it is on the fast path for allocation functions. + +On most platforms (Windows, Linux, FreeBSD, NetBSD, etc), this just returns a +__thread local variable (`_mi_heap_default`). With the initial-exec TLS model this ensures +that the storage will always be available (allocated on the thread stacks). + +On some platforms though we cannot use that when overriding `malloc` since the underlying +TLS implementation (or the loader) will call itself `malloc` on a first access and recurse. +We try to circumvent this in an efficient way: +- macOSX : we use an unused TLS slot from the OS allocated slots (MI_TLS_SLOT). On OSX, the + loader itself calls `malloc` even before the modules are initialized. +- OpenBSD: we use an unused slot from the pthread block (MI_TLS_PTHREAD_SLOT_OFS). +- DragonFly: defaults are working but seem slow compared to freeBSD (see PR #323) +------------------------------------------------------------------------------------------- */ + +static inline mi_heap_t* mi_prim_get_default_heap(void); + +#if defined(MI_MALLOC_OVERRIDE) +#if defined(__APPLE__) // macOS + #define MI_TLS_SLOT 89 // seems unused? + // #define MI_TLS_RECURSE_GUARD 1 + // other possible unused ones are 9, 29, __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY4 (94), __PTK_FRAMEWORK_GC_KEY9 (112) and __PTK_FRAMEWORK_OLDGC_KEY9 (89) + // see +#elif defined(__OpenBSD__) + // use end bytes of a name; goes wrong if anyone uses names > 23 characters (ptrhread specifies 16) + // see + #define MI_TLS_PTHREAD_SLOT_OFS (6*sizeof(int) + 4*sizeof(void*) + 24) + // #elif defined(__DragonFly__) + // #warning "mimalloc is not working correctly on DragonFly yet." + // #define MI_TLS_PTHREAD_SLOT_OFS (4 + 1*sizeof(void*)) // offset `uniqueid` (also used by gdb?) +#elif defined(__ANDROID__) + // See issue #381 + #define MI_TLS_PTHREAD +#endif +#endif + + +#if defined(MI_TLS_SLOT) + +static inline mi_heap_t* mi_prim_get_default_heap(void) { + mi_heap_t* heap = (mi_heap_t*)mi_prim_tls_slot(MI_TLS_SLOT); + if mi_unlikely(heap == NULL) { + #ifdef __GNUC__ + __asm(""); // prevent conditional load of the address of _mi_heap_empty + #endif + heap = (mi_heap_t*)&_mi_heap_empty; + } + return heap; +} + +#elif defined(MI_TLS_PTHREAD_SLOT_OFS) + +static inline mi_heap_t** mi_prim_tls_pthread_heap_slot(void) { + pthread_t self = pthread_self(); + #if defined(__DragonFly__) + if (self==NULL) return NULL; + #endif + return (mi_heap_t**)((uint8_t*)self + MI_TLS_PTHREAD_SLOT_OFS); +} + +static inline mi_heap_t* mi_prim_get_default_heap(void) { + mi_heap_t** pheap = mi_prim_tls_pthread_heap_slot(); + if mi_unlikely(pheap == NULL) return _mi_heap_main_get(); + mi_heap_t* heap = *pheap; + if mi_unlikely(heap == NULL) return (mi_heap_t*)&_mi_heap_empty; + return heap; +} + +#elif defined(MI_TLS_PTHREAD) + +extern pthread_key_t _mi_heap_default_key; +static inline mi_heap_t* mi_prim_get_default_heap(void) { + mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? _mi_heap_main_get() : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key)); + return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap); +} + +#else // default using a thread local variable; used on most platforms. + +static inline mi_heap_t* mi_prim_get_default_heap(void) { + #if defined(MI_TLS_RECURSE_GUARD) + if (mi_unlikely(!_mi_process_is_initialized)) return _mi_heap_main_get(); + #endif + return _mi_heap_default; +} + +#endif // mi_prim_get_default_heap() + + + +#endif // MIMALLOC_PRIM_H diff --git a/3rdparty/mimalloc/include/mimalloc/track.h b/3rdparty/mimalloc/include/mimalloc/track.h new file mode 100644 index 00000000..9545f750 --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc/track.h @@ -0,0 +1,147 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_TRACK_H +#define MIMALLOC_TRACK_H + +/* ------------------------------------------------------------------------------------------------------ +Track memory ranges with macros for tools like Valgrind address sanitizer, or other memory checkers. +These can be defined for tracking allocation: + + #define mi_track_malloc_size(p,reqsize,size,zero) + #define mi_track_free_size(p,_size) + +The macros are set up such that the size passed to `mi_track_free_size` +always matches the size of `mi_track_malloc_size`. (currently, `size == mi_usable_size(p)`). +The `reqsize` is what the user requested, and `size >= reqsize`. +The `size` is either byte precise (and `size==reqsize`) if `MI_PADDING` is enabled, +or otherwise it is the usable block size which may be larger than the original request. +Use `_mi_block_size_of(void* p)` to get the full block size that was allocated (including padding etc). +The `zero` parameter is `true` if the allocated block is zero initialized. + +Optional: + + #define mi_track_align(p,alignedp,offset,size) + #define mi_track_resize(p,oldsize,newsize) + #define mi_track_init() + +The `mi_track_align` is called right after a `mi_track_malloc` for aligned pointers in a block. +The corresponding `mi_track_free` still uses the block start pointer and original size (corresponding to the `mi_track_malloc`). +The `mi_track_resize` is currently unused but could be called on reallocations within a block. +`mi_track_init` is called at program start. + +The following macros are for tools like asan and valgrind to track whether memory is +defined, undefined, or not accessible at all: + + #define mi_track_mem_defined(p,size) + #define mi_track_mem_undefined(p,size) + #define mi_track_mem_noaccess(p,size) + +-------------------------------------------------------------------------------------------------------*/ + +#if MI_TRACK_VALGRIND +// valgrind tool + +#define MI_TRACK_ENABLED 1 +#define MI_TRACK_HEAP_DESTROY 1 // track free of individual blocks on heap_destroy +#define MI_TRACK_TOOL "valgrind" + +#include +#include + +#define mi_track_malloc_size(p,reqsize,size,zero) VALGRIND_MALLOCLIKE_BLOCK(p,size,MI_PADDING_SIZE /*red zone*/,zero) +#define mi_track_free_size(p,_size) VALGRIND_FREELIKE_BLOCK(p,MI_PADDING_SIZE /*red zone*/) +#define mi_track_resize(p,oldsize,newsize) VALGRIND_RESIZEINPLACE_BLOCK(p,oldsize,newsize,MI_PADDING_SIZE /*red zone*/) +#define mi_track_mem_defined(p,size) VALGRIND_MAKE_MEM_DEFINED(p,size) +#define mi_track_mem_undefined(p,size) VALGRIND_MAKE_MEM_UNDEFINED(p,size) +#define mi_track_mem_noaccess(p,size) VALGRIND_MAKE_MEM_NOACCESS(p,size) + +#elif MI_TRACK_ASAN +// address sanitizer + +#define MI_TRACK_ENABLED 1 +#define MI_TRACK_HEAP_DESTROY 0 +#define MI_TRACK_TOOL "asan" + +#include + +#define mi_track_malloc_size(p,reqsize,size,zero) ASAN_UNPOISON_MEMORY_REGION(p,size) +#define mi_track_free_size(p,size) ASAN_POISON_MEMORY_REGION(p,size) +#define mi_track_mem_defined(p,size) ASAN_UNPOISON_MEMORY_REGION(p,size) +#define mi_track_mem_undefined(p,size) ASAN_UNPOISON_MEMORY_REGION(p,size) +#define mi_track_mem_noaccess(p,size) ASAN_POISON_MEMORY_REGION(p,size) + +#elif MI_TRACK_ETW +// windows event tracing + +#define MI_TRACK_ENABLED 1 +#define MI_TRACK_HEAP_DESTROY 1 +#define MI_TRACK_TOOL "ETW" + +#define WIN32_LEAN_AND_MEAN +#include +#include "../src/prim/windows/etw.h" + +#define mi_track_init() EventRegistermicrosoft_windows_mimalloc(); +#define mi_track_malloc_size(p,reqsize,size,zero) EventWriteETW_MI_ALLOC((UINT64)(p), size) +#define mi_track_free_size(p,size) EventWriteETW_MI_FREE((UINT64)(p), size) + +#else +// no tracking + +#define MI_TRACK_ENABLED 0 +#define MI_TRACK_HEAP_DESTROY 0 +#define MI_TRACK_TOOL "none" + +#define mi_track_malloc_size(p,reqsize,size,zero) +#define mi_track_free_size(p,_size) + +#endif + +// ------------------- +// Utility definitions + +#ifndef mi_track_resize +#define mi_track_resize(p,oldsize,newsize) mi_track_free_size(p,oldsize); mi_track_malloc(p,newsize,false) +#endif + +#ifndef mi_track_align +#define mi_track_align(p,alignedp,offset,size) mi_track_mem_noaccess(p,offset) +#endif + +#ifndef mi_track_init +#define mi_track_init() +#endif + +#ifndef mi_track_mem_defined +#define mi_track_mem_defined(p,size) +#endif + +#ifndef mi_track_mem_undefined +#define mi_track_mem_undefined(p,size) +#endif + +#ifndef mi_track_mem_noaccess +#define mi_track_mem_noaccess(p,size) +#endif + + +#if MI_PADDING +#define mi_track_malloc(p,reqsize,zero) \ + if ((p)!=NULL) { \ + mi_assert_internal(mi_usable_size(p)==(reqsize)); \ + mi_track_malloc_size(p,reqsize,reqsize,zero); \ + } +#else +#define mi_track_malloc(p,reqsize,zero) \ + if ((p)!=NULL) { \ + mi_assert_internal(mi_usable_size(p)>=(reqsize)); \ + mi_track_malloc_size(p,reqsize,mi_usable_size(p),zero); \ + } +#endif + +#endif diff --git a/3rdparty/mimalloc/include/mimalloc/types.h b/3rdparty/mimalloc/include/mimalloc/types.h new file mode 100644 index 00000000..2005238a --- /dev/null +++ b/3rdparty/mimalloc/include/mimalloc/types.h @@ -0,0 +1,670 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#pragma once +#ifndef MIMALLOC_TYPES_H +#define MIMALLOC_TYPES_H + +// -------------------------------------------------------------------------- +// This file contains the main type definitions for mimalloc: +// mi_heap_t : all data for a thread-local heap, contains +// lists of all managed heap pages. +// mi_segment_t : a larger chunk of memory (32GiB) from where pages +// are allocated. +// mi_page_t : a mimalloc page (usually 64KiB or 512KiB) from +// where objects are allocated. +// -------------------------------------------------------------------------- + + +#include // ptrdiff_t +#include // uintptr_t, uint16_t, etc +#include "mimalloc/atomic.h" // _Atomic + +#ifdef _MSC_VER +#pragma warning(disable:4214) // bitfield is not int +#endif + +// Minimal alignment necessary. On most platforms 16 bytes are needed +// due to SSE registers for example. This must be at least `sizeof(void*)` +#ifndef MI_MAX_ALIGN_SIZE +#define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t) +#endif + +// ------------------------------------------------------ +// Variants +// ------------------------------------------------------ + +// Define NDEBUG in the release version to disable assertions. +// #define NDEBUG + +// Define MI_TRACK_ to enable tracking support +// #define MI_TRACK_VALGRIND 1 +// #define MI_TRACK_ASAN 1 +// #define MI_TRACK_ETW 1 + +// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance). +// #define MI_STAT 1 + +// Define MI_SECURE to enable security mitigations +// #define MI_SECURE 1 // guard page around metadata +// #define MI_SECURE 2 // guard page around each mimalloc page +// #define MI_SECURE 3 // encode free lists (detect corrupted free list (buffer overflow), and invalid pointer free) +// #define MI_SECURE 4 // checks for double free. (may be more expensive) + +#if !defined(MI_SECURE) +#define MI_SECURE 0 +#endif + +// Define MI_DEBUG for debug mode +// #define MI_DEBUG 1 // basic assertion checks and statistics, check double free, corrupted free list, and invalid pointer free. +// #define MI_DEBUG 2 // + internal assertion checks +// #define MI_DEBUG 3 // + extensive internal invariant checking (cmake -DMI_DEBUG_FULL=ON) +#if !defined(MI_DEBUG) +#if !defined(NDEBUG) || defined(_DEBUG) +#define MI_DEBUG 2 +#else +#define MI_DEBUG 0 +#endif +#endif + +// Reserve extra padding at the end of each block to be more resilient against heap block overflows. +// The padding can detect buffer overflow on free. +#if !defined(MI_PADDING) && (MI_SECURE>=3 || MI_DEBUG>=1 || (MI_TRACK_VALGRIND || MI_TRACK_ASAN || MI_TRACK_ETW)) +#define MI_PADDING 1 +#endif + +// Check padding bytes; allows byte-precise buffer overflow detection +#if !defined(MI_PADDING_CHECK) && MI_PADDING && (MI_SECURE>=3 || MI_DEBUG>=1) +#define MI_PADDING_CHECK 1 +#endif + + +// Encoded free lists allow detection of corrupted free lists +// and can detect buffer overflows, modify after free, and double `free`s. +#if (MI_SECURE>=3 || MI_DEBUG>=1) +#define MI_ENCODE_FREELIST 1 +#endif + + +// We used to abandon huge pages but to eagerly deallocate if freed from another thread, +// but that makes it not possible to visit them during a heap walk or include them in a +// `mi_heap_destroy`. We therefore instead reset/decommit the huge blocks if freed from +// another thread so most memory is available until it gets properly freed by the owning thread. +// #define MI_HUGE_PAGE_ABANDON 1 + + +// ------------------------------------------------------ +// Platform specific values +// ------------------------------------------------------ + +// ------------------------------------------------------ +// Size of a pointer. +// We assume that `sizeof(void*)==sizeof(intptr_t)` +// and it holds for all platforms we know of. +// +// However, the C standard only requires that: +// p == (void*)((intptr_t)p)) +// but we also need: +// i == (intptr_t)((void*)i) +// or otherwise one might define an intptr_t type that is larger than a pointer... +// ------------------------------------------------------ + +#if INTPTR_MAX > INT64_MAX +# define MI_INTPTR_SHIFT (4) // assume 128-bit (as on arm CHERI for example) +#elif INTPTR_MAX == INT64_MAX +# define MI_INTPTR_SHIFT (3) +#elif INTPTR_MAX == INT32_MAX +# define MI_INTPTR_SHIFT (2) +#else +#error platform pointers must be 32, 64, or 128 bits +#endif + +#if SIZE_MAX == UINT64_MAX +# define MI_SIZE_SHIFT (3) +typedef int64_t mi_ssize_t; +#elif SIZE_MAX == UINT32_MAX +# define MI_SIZE_SHIFT (2) +typedef int32_t mi_ssize_t; +#else +#error platform objects must be 32 or 64 bits +#endif + +#if (SIZE_MAX/2) > LONG_MAX +# define MI_ZU(x) x##ULL +# define MI_ZI(x) x##LL +#else +# define MI_ZU(x) x##UL +# define MI_ZI(x) x##L +#endif + +#define MI_INTPTR_SIZE (1< 4 +#define MI_SEGMENT_SHIFT ( 9 + MI_SEGMENT_SLICE_SHIFT) // 32MiB +#else +#define MI_SEGMENT_SHIFT ( 7 + MI_SEGMENT_SLICE_SHIFT) // 4MiB on 32-bit +#endif + +#define MI_SMALL_PAGE_SHIFT (MI_SEGMENT_SLICE_SHIFT) // 64KiB +#define MI_MEDIUM_PAGE_SHIFT ( 3 + MI_SMALL_PAGE_SHIFT) // 512KiB + + +// Derived constants +#define MI_SEGMENT_SIZE (MI_ZU(1)<= 655360) +#error "mimalloc internal: define more bins" +#endif + +// Maximum slice offset (15) +#define MI_MAX_SLICE_OFFSET ((MI_ALIGNMENT_MAX / MI_SEGMENT_SLICE_SIZE) - 1) + +// Used as a special value to encode block sizes in 32 bits. +#define MI_HUGE_BLOCK_SIZE ((uint32_t)(2*MI_GiB)) + +// blocks up to this size are always allocated aligned +#define MI_MAX_ALIGN_GUARANTEE (8*MI_MAX_ALIGN_SIZE) + +// Alignments over MI_ALIGNMENT_MAX are allocated in dedicated huge page segments +#define MI_ALIGNMENT_MAX (MI_SEGMENT_SIZE >> 1) + + +// ------------------------------------------------------ +// Mimalloc pages contain allocated blocks +// ------------------------------------------------------ + +// The free lists use encoded next fields +// (Only actually encodes when MI_ENCODED_FREELIST is defined.) +typedef uintptr_t mi_encoded_t; + +// thread id's +typedef size_t mi_threadid_t; + +// free lists contain blocks +typedef struct mi_block_s { + mi_encoded_t next; +} mi_block_t; + + +// The delayed flags are used for efficient multi-threaded free-ing +typedef enum mi_delayed_e { + MI_USE_DELAYED_FREE = 0, // push on the owning heap thread delayed list + MI_DELAYED_FREEING = 1, // temporary: another thread is accessing the owning heap + MI_NO_DELAYED_FREE = 2, // optimize: push on page local thread free queue if another block is already in the heap thread delayed free list + MI_NEVER_DELAYED_FREE = 3 // sticky, only resets on page reclaim +} mi_delayed_t; + + +// The `in_full` and `has_aligned` page flags are put in a union to efficiently +// test if both are false (`full_aligned == 0`) in the `mi_free` routine. +#if !MI_TSAN +typedef union mi_page_flags_s { + uint8_t full_aligned; + struct { + uint8_t in_full : 1; + uint8_t has_aligned : 1; + } x; +} mi_page_flags_t; +#else +// under thread sanitizer, use a byte for each flag to suppress warning, issue #130 +typedef union mi_page_flags_s { + uint16_t full_aligned; + struct { + uint8_t in_full; + uint8_t has_aligned; + } x; +} mi_page_flags_t; +#endif + +// Thread free list. +// We use the bottom 2 bits of the pointer for mi_delayed_t flags +typedef uintptr_t mi_thread_free_t; + +// A page contains blocks of one specific size (`block_size`). +// Each page has three list of free blocks: +// `free` for blocks that can be allocated, +// `local_free` for freed blocks that are not yet available to `mi_malloc` +// `thread_free` for freed blocks by other threads +// The `local_free` and `thread_free` lists are migrated to the `free` list +// when it is exhausted. The separate `local_free` list is necessary to +// implement a monotonic heartbeat. The `thread_free` list is needed for +// avoiding atomic operations in the common case. +// +// +// `used - |thread_free|` == actual blocks that are in use (alive) +// `used - |thread_free| + |free| + |local_free| == capacity` +// +// We don't count `freed` (as |free|) but use `used` to reduce +// the number of memory accesses in the `mi_page_all_free` function(s). +// +// Notes: +// - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`) +// - Using `uint16_t` does not seem to slow things down +// - The size is 8 words on 64-bit which helps the page index calculations +// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10 +// and 12 are still good for address calculation) +// - To limit the structure size, the `xblock_size` is 32-bits only; for +// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size +// - `thread_free` uses the bottom bits as a delayed-free flags to optimize +// concurrent frees where only the first concurrent free adds to the owning +// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`). +// The invariant is that no-delayed-free is only set if there is +// at least one block that will be added, or as already been added, to +// the owning heap `thread_delayed_free` list. This guarantees that pages +// will be freed correctly even if only other threads free blocks. +typedef struct mi_page_s { + // "owned" by the segment + uint32_t slice_count; // slices in this page (0 if not a page) + uint32_t slice_offset; // distance from the actual page data slice (0 if a page) + uint8_t is_committed : 1; // `true` if the page virtual memory is committed + uint8_t is_zero_init : 1; // `true` if the page was initially zero initialized + + // layout like this to optimize access in `mi_malloc` and `mi_free` + uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear` + uint16_t reserved; // number of blocks reserved in memory + mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits) + uint8_t free_is_zero : 1; // `true` if the blocks in the free list are zero initialized + uint8_t retire_expire : 7; // expiration count for retired blocks + + mi_block_t* free; // list of available free blocks (`malloc` allocates from this list) + uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`) + uint32_t xblock_size; // size available in each block (always `>0`) + mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`) + + #if (MI_ENCODE_FREELIST || MI_PADDING) + uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary + #endif + + _Atomic(mi_thread_free_t) xthread_free; // list of deferred free blocks freed by other threads + _Atomic(uintptr_t) xheap; + + struct mi_page_s* next; // next page owned by this thread with the same `block_size` + struct mi_page_s* prev; // previous page owned by this thread with the same `block_size` + + // 64-bit 9 words, 32-bit 12 words, (+2 for secure) + #if MI_INTPTR_SIZE==8 + uintptr_t padding[1]; + #endif +} mi_page_t; + + + +// ------------------------------------------------------ +// Mimalloc segments contain mimalloc pages +// ------------------------------------------------------ + +typedef enum mi_page_kind_e { + MI_PAGE_SMALL, // small blocks go into 64KiB pages inside a segment + MI_PAGE_MEDIUM, // medium blocks go into medium pages inside a segment + MI_PAGE_LARGE, // larger blocks go into a page of just one block + MI_PAGE_HUGE, // huge blocks (> 16 MiB) are put into a single page in a single segment. +} mi_page_kind_t; + +typedef enum mi_segment_kind_e { + MI_SEGMENT_NORMAL, // MI_SEGMENT_SIZE size with pages inside. + MI_SEGMENT_HUGE, // > MI_LARGE_SIZE_MAX segment with just one huge page inside. +} mi_segment_kind_t; + +// ------------------------------------------------------ +// A segment holds a commit mask where a bit is set if +// the corresponding MI_COMMIT_SIZE area is committed. +// The MI_COMMIT_SIZE must be a multiple of the slice +// size. If it is equal we have the most fine grained +// decommit (but setting it higher can be more efficient). +// The MI_MINIMAL_COMMIT_SIZE is the minimal amount that will +// be committed in one go which can be set higher than +// MI_COMMIT_SIZE for efficiency (while the decommit mask +// is still tracked in fine-grained MI_COMMIT_SIZE chunks) +// ------------------------------------------------------ + +#define MI_MINIMAL_COMMIT_SIZE (1*MI_SEGMENT_SLICE_SIZE) +#define MI_COMMIT_SIZE (MI_SEGMENT_SLICE_SIZE) // 64KiB +#define MI_COMMIT_MASK_BITS (MI_SEGMENT_SIZE / MI_COMMIT_SIZE) +#define MI_COMMIT_MASK_FIELD_BITS MI_SIZE_BITS +#define MI_COMMIT_MASK_FIELD_COUNT (MI_COMMIT_MASK_BITS / MI_COMMIT_MASK_FIELD_BITS) + +#if (MI_COMMIT_MASK_BITS != (MI_COMMIT_MASK_FIELD_COUNT * MI_COMMIT_MASK_FIELD_BITS)) +#error "the segment size must be exactly divisible by the (commit size * size_t bits)" +#endif + +typedef struct mi_commit_mask_s { + size_t mask[MI_COMMIT_MASK_FIELD_COUNT]; +} mi_commit_mask_t; + +typedef mi_page_t mi_slice_t; +typedef int64_t mi_msecs_t; + + +// Memory can reside in arena's, direct OS allocated, or statically allocated. The memid keeps track of this. +typedef enum mi_memkind_e { + MI_MEM_NONE, // not allocated + MI_MEM_EXTERNAL, // not owned by mimalloc but provided externally (via `mi_manage_os_memory` for example) + MI_MEM_STATIC, // allocated in a static area and should not be freed (for arena meta data for example) + MI_MEM_OS, // allocated from the OS + MI_MEM_OS_HUGE, // allocated as huge os pages + MI_MEM_OS_REMAP, // allocated in a remapable area (i.e. using `mremap`) + MI_MEM_ARENA // allocated from an arena (the usual case) +} mi_memkind_t; + +static inline bool mi_memkind_is_os(mi_memkind_t memkind) { + return (memkind >= MI_MEM_OS && memkind <= MI_MEM_OS_REMAP); +} + +typedef struct mi_memid_os_info { + void* base; // actual base address of the block (used for offset aligned allocations) + size_t alignment; // alignment at allocation +} mi_memid_os_info_t; + +typedef struct mi_memid_arena_info { + size_t block_index; // index in the arena + mi_arena_id_t id; // arena id (>= 1) + bool is_exclusive; // the arena can only be used for specific arena allocations +} mi_memid_arena_info_t; + +typedef struct mi_memid_s { + union { + mi_memid_os_info_t os; // only used for MI_MEM_OS + mi_memid_arena_info_t arena; // only used for MI_MEM_ARENA + } mem; + bool is_pinned; // `true` if we cannot decommit/reset/protect in this memory (e.g. when allocated using large OS pages) + bool initially_committed;// `true` if the memory was originally allocated as committed + bool initially_zero; // `true` if the memory was originally zero initialized + mi_memkind_t memkind; +} mi_memid_t; + + +// Segments are large allocated memory blocks (8mb on 64 bit) from +// the OS. Inside segments we allocated fixed size _pages_ that +// contain blocks. +typedef struct mi_segment_s { + // constant fields + mi_memid_t memid; // memory id for arena allocation + bool allow_decommit; + bool allow_purge; + size_t segment_size; + + // segment fields + mi_msecs_t purge_expire; + mi_commit_mask_t purge_mask; + mi_commit_mask_t commit_mask; + + _Atomic(struct mi_segment_s*) abandoned_next; + + // from here is zero initialized + struct mi_segment_s* next; // the list of freed segments in the cache (must be first field, see `segment.c:mi_segment_init`) + + size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`) + size_t abandoned_visits; // count how often this segment is visited in the abandoned list (to force reclaim it it is too long) + size_t used; // count of pages in use + uintptr_t cookie; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie` + + size_t segment_slices; // for huge segments this may be different from `MI_SLICES_PER_SEGMENT` + size_t segment_info_slices; // initial slices we are using segment info and possible guard pages. + + // layout like this to optimize access in `mi_free` + mi_segment_kind_t kind; + size_t slice_entries; // entries in the `slices` array, at most `MI_SLICES_PER_SEGMENT` + _Atomic(mi_threadid_t) thread_id; // unique id of the thread owning this segment + + mi_slice_t slices[MI_SLICES_PER_SEGMENT+1]; // one more for huge blocks with large alignment +} mi_segment_t; + + +// ------------------------------------------------------ +// Heaps +// Provide first-class heaps to allocate from. +// A heap just owns a set of pages for allocation and +// can only be allocate/reallocate from the thread that created it. +// Freeing blocks can be done from any thread though. +// Per thread, the segments are shared among its heaps. +// Per thread, there is always a default heap that is +// used for allocation; it is initialized to statically +// point to an empty heap to avoid initialization checks +// in the fast path. +// ------------------------------------------------------ + +// Thread local data +typedef struct mi_tld_s mi_tld_t; + +// Pages of a certain block size are held in a queue. +typedef struct mi_page_queue_s { + mi_page_t* first; + mi_page_t* last; + size_t block_size; +} mi_page_queue_t; + +#define MI_BIN_FULL (MI_BIN_HUGE+1) + +// Random context +typedef struct mi_random_cxt_s { + uint32_t input[16]; + uint32_t output[16]; + int output_available; + bool weak; +} mi_random_ctx_t; + + +// In debug mode there is a padding structure at the end of the blocks to check for buffer overflows +#if (MI_PADDING) +typedef struct mi_padding_s { + uint32_t canary; // encoded block value to check validity of the padding (in case of overflow) + uint32_t delta; // padding bytes before the block. (mi_usable_size(p) - delta == exact allocated bytes) +} mi_padding_t; +#define MI_PADDING_SIZE (sizeof(mi_padding_t)) +#define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE) +#else +#define MI_PADDING_SIZE 0 +#define MI_PADDING_WSIZE 0 +#endif + +#define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1) + + +// A heap owns a set of pages. +struct mi_heap_s { + mi_tld_t* tld; + mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size. + mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin") + _Atomic(mi_block_t*) thread_delayed_free; + mi_threadid_t thread_id; // thread this heap belongs too + mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0) + uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`) + uintptr_t keys[2]; // two random keys used to encode the `thread_delayed_free` list + mi_random_ctx_t random; // random number context used for secure allocation + size_t page_count; // total number of pages in the `pages` queues. + size_t page_retired_min; // smallest retired index (retired pages are fully free, but still in the page queues) + size_t page_retired_max; // largest retired index into the `pages` array. + mi_heap_t* next; // list of heaps per thread + bool no_reclaim; // `true` if this heap should not reclaim abandoned pages +}; + + + +// ------------------------------------------------------ +// Debug +// ------------------------------------------------------ + +#if !defined(MI_DEBUG_UNINIT) +#define MI_DEBUG_UNINIT (0xD0) +#endif +#if !defined(MI_DEBUG_FREED) +#define MI_DEBUG_FREED (0xDF) +#endif +#if !defined(MI_DEBUG_PADDING) +#define MI_DEBUG_PADDING (0xDE) +#endif + +#if (MI_DEBUG) +// use our own assertion to print without memory allocation +void _mi_assert_fail(const char* assertion, const char* fname, unsigned int line, const char* func ); +#define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__)) +#else +#define mi_assert(x) +#endif + +#if (MI_DEBUG>1) +#define mi_assert_internal mi_assert +#else +#define mi_assert_internal(x) +#endif + +#if (MI_DEBUG>2) +#define mi_assert_expensive mi_assert +#else +#define mi_assert_expensive(x) +#endif + +// ------------------------------------------------------ +// Statistics +// ------------------------------------------------------ + +#ifndef MI_STAT +#if (MI_DEBUG>0) +#define MI_STAT 2 +#else +#define MI_STAT 0 +#endif +#endif + +typedef struct mi_stat_count_s { + int64_t allocated; + int64_t freed; + int64_t peak; + int64_t current; +} mi_stat_count_t; + +typedef struct mi_stat_counter_s { + int64_t total; + int64_t count; +} mi_stat_counter_t; + +typedef struct mi_stats_s { + mi_stat_count_t segments; + mi_stat_count_t pages; + mi_stat_count_t reserved; + mi_stat_count_t committed; + mi_stat_count_t reset; + mi_stat_count_t purged; + mi_stat_count_t page_committed; + mi_stat_count_t segments_abandoned; + mi_stat_count_t pages_abandoned; + mi_stat_count_t threads; + mi_stat_count_t normal; + mi_stat_count_t huge; + mi_stat_count_t large; + mi_stat_count_t malloc; + mi_stat_count_t segments_cache; + mi_stat_counter_t pages_extended; + mi_stat_counter_t mmap_calls; + mi_stat_counter_t commit_calls; + mi_stat_counter_t reset_calls; + mi_stat_counter_t purge_calls; + mi_stat_counter_t page_no_retire; + mi_stat_counter_t searches; + mi_stat_counter_t normal_count; + mi_stat_counter_t huge_count; + mi_stat_counter_t large_count; +#if MI_STAT>1 + mi_stat_count_t normal_bins[MI_BIN_HUGE+1]; +#endif +} mi_stats_t; + + +void _mi_stat_increase(mi_stat_count_t* stat, size_t amount); +void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount); +void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount); + +#if (MI_STAT) +#define mi_stat_increase(stat,amount) _mi_stat_increase( &(stat), amount) +#define mi_stat_decrease(stat,amount) _mi_stat_decrease( &(stat), amount) +#define mi_stat_counter_increase(stat,amount) _mi_stat_counter_increase( &(stat), amount) +#else +#define mi_stat_increase(stat,amount) (void)0 +#define mi_stat_decrease(stat,amount) (void)0 +#define mi_stat_counter_increase(stat,amount) (void)0 +#endif + +#define mi_heap_stat_counter_increase(heap,stat,amount) mi_stat_counter_increase( (heap)->tld->stats.stat, amount) +#define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount) +#define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount) + +// ------------------------------------------------------ +// Thread Local data +// ------------------------------------------------------ + +// A "span" is is an available range of slices. The span queues keep +// track of slice spans of at most the given `slice_count` (but more than the previous size class). +typedef struct mi_span_queue_s { + mi_slice_t* first; + mi_slice_t* last; + size_t slice_count; +} mi_span_queue_t; + +#define MI_SEGMENT_BIN_MAX (35) // 35 == mi_segment_bin(MI_SLICES_PER_SEGMENT) + +// OS thread local data +typedef struct mi_os_tld_s { + size_t region_idx; // start point for next allocation + mi_stats_t* stats; // points to tld stats +} mi_os_tld_t; + + +// Segments thread local data +typedef struct mi_segments_tld_s { + mi_span_queue_t spans[MI_SEGMENT_BIN_MAX+1]; // free slice spans inside segments + size_t count; // current number of segments; + size_t peak_count; // peak number of segments + size_t current_size; // current size of all segments + size_t peak_size; // peak size of all segments + mi_stats_t* stats; // points to tld stats + mi_os_tld_t* os; // points to os stats +} mi_segments_tld_t; + +// Thread local data +struct mi_tld_s { + unsigned long long heartbeat; // monotonic heartbeat count + bool recurse; // true if deferred was called; used to prevent infinite recursion. + mi_heap_t* heap_backing; // backing heap of this thread (cannot be deleted) + mi_heap_t* heaps; // list of heaps in this thread (so we can abandon all when the thread terminates) + mi_segments_tld_t segments; // segment tld + mi_os_tld_t os; // os tld + mi_stats_t stats; // statistics +}; + +#endif diff --git a/3rdparty/mimalloc/src/alloc-aligned.c b/3rdparty/mimalloc/src/alloc-aligned.c new file mode 100644 index 00000000..1cd809f1 --- /dev/null +++ b/3rdparty/mimalloc/src/alloc-aligned.c @@ -0,0 +1,298 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" // mi_prim_get_default_heap + +#include // memset + +// ------------------------------------------------------ +// Aligned Allocation +// ------------------------------------------------------ + +// Fallback primitive aligned allocation -- split out for better codegen +static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept +{ + mi_assert_internal(size <= PTRDIFF_MAX); + mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment)); + + const uintptr_t align_mask = alignment - 1; // for any x, `(x & align_mask) == (x % alignment)` + const size_t padsize = size + MI_PADDING_SIZE; + + // use regular allocation if it is guaranteed to fit the alignment constraints + if (offset==0 && alignment<=padsize && padsize<=MI_MAX_ALIGN_GUARANTEE && (padsize&align_mask)==0) { + void* p = _mi_heap_malloc_zero(heap, size, zero); + mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0); + return p; + } + + void* p; + size_t oversize; + if mi_unlikely(alignment > MI_ALIGNMENT_MAX) { + // use OS allocation for very large alignment and allocate inside a huge page (dedicated segment with 1 page) + // This can support alignments >= MI_SEGMENT_SIZE by ensuring the object can be aligned at a point in the + // first (and single) page such that the segment info is `MI_SEGMENT_SIZE` bytes before it (so it can be found by aligning the pointer down) + if mi_unlikely(offset != 0) { + // todo: cannot support offset alignment for very large alignments yet + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "aligned allocation with a very large alignment cannot be used with an alignment offset (size %zu, alignment %zu, offset %zu)\n", size, alignment, offset); + #endif + return NULL; + } + oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size); + p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block + // zero afterwards as only the area from the aligned_p may be committed! + if (p == NULL) return NULL; + } + else { + // otherwise over-allocate + oversize = size + alignment - 1; + p = _mi_heap_malloc_zero(heap, oversize, zero); + if (p == NULL) return NULL; + } + + // .. and align within the allocation + const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask; + const uintptr_t adjust = (poffset == 0 ? 0 : alignment - poffset); + mi_assert_internal(adjust < alignment); + void* aligned_p = (void*)((uintptr_t)p + adjust); + if (aligned_p != p) { + mi_page_t* page = _mi_ptr_page(p); + mi_page_set_has_aligned(page, true); + _mi_padding_shrink(page, (mi_block_t*)p, adjust + size); + } + // todo: expand padding if overallocated ? + + mi_assert_internal(mi_page_usable_block_size(_mi_ptr_page(p)) >= adjust + size); + mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p)); + mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); + mi_assert_internal(mi_usable_size(aligned_p)>=size); + mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust); + + // now zero the block if needed + if (alignment > MI_ALIGNMENT_MAX) { + // for the tracker, on huge aligned allocations only from the start of the large block is defined + mi_track_mem_undefined(aligned_p, size); + if (zero) { + _mi_memzero_aligned(aligned_p, mi_usable_size(aligned_p)); + } + } + + if (p != aligned_p) { + mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p)); + } + return aligned_p; +} + +// Primitive aligned allocation +static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept +{ + // note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size. + if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) { // require power-of-two (see ) + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment); + #endif + return NULL; + } + + if mi_unlikely(size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see ) + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment); + #endif + return NULL; + } + const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` + const size_t padsize = size + MI_PADDING_SIZE; // note: cannot overflow due to earlier size > PTRDIFF_MAX check + + // try first if there happens to be a small block available with just the right alignment + if mi_likely(padsize <= MI_SMALL_SIZE_MAX && alignment <= padsize) { + mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize); + const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0; + if mi_likely(page->free != NULL && is_aligned) + { + #if MI_STAT>1 + mi_heap_stat_increase(heap, malloc, size); + #endif + void* p = _mi_page_malloc(heap, page, padsize, zero); // TODO: inline _mi_page_malloc + mi_assert_internal(p != NULL); + mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); + mi_track_malloc(p,size,zero); + return p; + } + } + // fallback + return mi_heap_malloc_zero_aligned_at_fallback(heap, size, alignment, offset, zero); +} + + +// ------------------------------------------------------ +// Optimized mi_heap_malloc_aligned / mi_malloc_aligned +// ------------------------------------------------------ + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { + if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) return NULL; + #if !MI_PADDING + // without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`) + if mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX) + #else + // with padding, we can only guarantee this for fixed alignments + if mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2))) + && size <= MI_SMALL_SIZE_MAX) + #endif + { + // fast path for common alignment and size + return mi_heap_malloc_small(heap, size); + } + else { + return mi_heap_malloc_aligned_at(heap, size, alignment, 0); + } +} + +// ensure a definition is emitted +#if defined(__cplusplus) +static void* _mi_heap_malloc_aligned = (void*)&mi_heap_malloc_aligned; +#endif + +// ------------------------------------------------------ +// Aligned Allocation +// ------------------------------------------------------ + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_zalloc_aligned_at(heap, size, alignment, 0); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(count, size, &total)) return NULL; + return mi_heap_zalloc_aligned_at(heap, total, alignment, offset); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_calloc_aligned_at(heap,count,size,alignment,0); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_malloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_malloc_aligned(mi_prim_get_default_heap(), size, alignment); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_zalloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_zalloc_aligned(mi_prim_get_default_heap(), size, alignment); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_calloc_aligned_at(mi_prim_get_default_heap(), count, size, alignment, offset); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_calloc_aligned(mi_prim_get_default_heap(), count, size, alignment); +} + + +// ------------------------------------------------------ +// Aligned re-allocation +// ------------------------------------------------------ + +static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { + mi_assert(alignment > 0); + if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); + if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero); + size_t size = mi_usable_size(p); + if (newsize <= size && newsize >= (size - (size / 2)) + && (((uintptr_t)p + offset) % alignment) == 0) { + return p; // reallocation still fits, is aligned and not more than 50% waste + } + else { + // note: we don't zero allocate upfront so we only zero initialize the expanded part + void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset); + if (newp != NULL) { + if (zero && newsize > size) { + // also set last word in the previous allocation to zero to ensure any padding is zero-initialized + size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); + _mi_memzero((uint8_t*)newp + start, newsize - start); + } + _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize)); + mi_free(p); // only free if successful + } + return newp; + } +} + +static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept { + mi_assert(alignment > 0); + if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); + size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL) + return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero); +} + +mi_decl_nodiscard void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false); +} + +mi_decl_nodiscard void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { + return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false); +} + +mi_decl_nodiscard void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true); +} + +mi_decl_nodiscard void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { + return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true); +} + +mi_decl_nodiscard void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(newcount, size, &total)) return NULL; + return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset); +} + +mi_decl_nodiscard void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(newcount, size, &total)) return NULL; + return mi_heap_rezalloc_aligned(heap, p, total, alignment); +} + +mi_decl_nodiscard void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_realloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset); +} + +mi_decl_nodiscard void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { + return mi_heap_realloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment); +} + +mi_decl_nodiscard void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_rezalloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset); +} + +mi_decl_nodiscard void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { + return mi_heap_rezalloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment); +} + +mi_decl_nodiscard void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_recalloc_aligned_at(mi_prim_get_default_heap(), p, newcount, size, alignment, offset); +} + +mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment); +} diff --git a/3rdparty/mimalloc/src/alloc-override.c b/3rdparty/mimalloc/src/alloc-override.c new file mode 100644 index 00000000..873065dc --- /dev/null +++ b/3rdparty/mimalloc/src/alloc-override.c @@ -0,0 +1,297 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +#if !defined(MI_IN_ALLOC_C) +#error "this file should be included from 'alloc.c' (so aliases can work)" +#endif + +#if defined(MI_MALLOC_OVERRIDE) && defined(_WIN32) && !(defined(MI_SHARED_LIB) && defined(_DLL)) +#error "It is only possible to override "malloc" on Windows when building as a DLL (and linking the C runtime as a DLL)" +#endif + +#if defined(MI_MALLOC_OVERRIDE) && !(defined(_WIN32)) + +#if defined(__APPLE__) +#include +mi_decl_externc void vfree(void* p); +mi_decl_externc size_t malloc_size(const void* p); +mi_decl_externc size_t malloc_good_size(size_t size); +#endif + +// helper definition for C override of C++ new +typedef struct mi_nothrow_s { int _tag; } mi_nothrow_t; + +// ------------------------------------------------------ +// Override system malloc +// ------------------------------------------------------ + +#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) && !MI_TRACK_ENABLED + // gcc, clang: use aliasing to alias the exported function to one of our `mi_` functions + #if (defined(__GNUC__) && __GNUC__ >= 9) + #pragma GCC diagnostic ignored "-Wattributes" // or we get warnings that nodiscard is ignored on a forward + #define MI_FORWARD(fun) __attribute__((alias(#fun), used, visibility("default"), copy(fun))); + #else + #define MI_FORWARD(fun) __attribute__((alias(#fun), used, visibility("default"))); + #endif + #define MI_FORWARD1(fun,x) MI_FORWARD(fun) + #define MI_FORWARD2(fun,x,y) MI_FORWARD(fun) + #define MI_FORWARD3(fun,x,y,z) MI_FORWARD(fun) + #define MI_FORWARD0(fun,x) MI_FORWARD(fun) + #define MI_FORWARD02(fun,x,y) MI_FORWARD(fun) +#else + // otherwise use forwarding by calling our `mi_` function + #define MI_FORWARD1(fun,x) { return fun(x); } + #define MI_FORWARD2(fun,x,y) { return fun(x,y); } + #define MI_FORWARD3(fun,x,y,z) { return fun(x,y,z); } + #define MI_FORWARD0(fun,x) { fun(x); } + #define MI_FORWARD02(fun,x,y) { fun(x,y); } +#endif + + +#if defined(__APPLE__) && defined(MI_SHARED_LIB_EXPORT) && defined(MI_OSX_INTERPOSE) + // define MI_OSX_IS_INTERPOSED as we should not provide forwarding definitions for + // functions that are interposed (or the interposing does not work) + #define MI_OSX_IS_INTERPOSED + + mi_decl_externc size_t mi_malloc_size_checked(void *p) { + if (!mi_is_in_heap_region(p)) return 0; + return mi_usable_size(p); + } + + // use interposing so `DYLD_INSERT_LIBRARIES` works without `DYLD_FORCE_FLAT_NAMESPACE=1` + // See: + struct mi_interpose_s { + const void* replacement; + const void* target; + }; + #define MI_INTERPOSE_FUN(oldfun,newfun) { (const void*)&newfun, (const void*)&oldfun } + #define MI_INTERPOSE_MI(fun) MI_INTERPOSE_FUN(fun,mi_##fun) + + __attribute__((used)) static struct mi_interpose_s _mi_interposes[] __attribute__((section("__DATA, __interpose"))) = + { + MI_INTERPOSE_MI(malloc), + MI_INTERPOSE_MI(calloc), + MI_INTERPOSE_MI(realloc), + MI_INTERPOSE_MI(strdup), + MI_INTERPOSE_MI(strndup), + MI_INTERPOSE_MI(realpath), + MI_INTERPOSE_MI(posix_memalign), + MI_INTERPOSE_MI(reallocf), + MI_INTERPOSE_MI(valloc), + MI_INTERPOSE_FUN(malloc_size,mi_malloc_size_checked), + MI_INTERPOSE_MI(malloc_good_size), + #if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15 + MI_INTERPOSE_MI(aligned_alloc), + #endif + #ifdef MI_OSX_ZONE + // we interpose malloc_default_zone in alloc-override-osx.c so we can use mi_free safely + MI_INTERPOSE_MI(free), + MI_INTERPOSE_FUN(vfree,mi_free), + #else + // sometimes code allocates from default zone but deallocates using plain free :-( (like NxHashResizeToCapacity ) + MI_INTERPOSE_FUN(free,mi_cfree), // use safe free that checks if pointers are from us + MI_INTERPOSE_FUN(vfree,mi_cfree), + #endif + }; + + #ifdef __cplusplus + extern "C" { + #endif + void _ZdlPv(void* p); // delete + void _ZdaPv(void* p); // delete[] + void _ZdlPvm(void* p, size_t n); // delete + void _ZdaPvm(void* p, size_t n); // delete[] + void* _Znwm(size_t n); // new + void* _Znam(size_t n); // new[] + void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag); // new nothrow + void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag); // new[] nothrow + #ifdef __cplusplus + } + #endif + __attribute__((used)) static struct mi_interpose_s _mi_cxx_interposes[] __attribute__((section("__DATA, __interpose"))) = + { + MI_INTERPOSE_FUN(_ZdlPv,mi_free), + MI_INTERPOSE_FUN(_ZdaPv,mi_free), + MI_INTERPOSE_FUN(_ZdlPvm,mi_free_size), + MI_INTERPOSE_FUN(_ZdaPvm,mi_free_size), + MI_INTERPOSE_FUN(_Znwm,mi_new), + MI_INTERPOSE_FUN(_Znam,mi_new), + MI_INTERPOSE_FUN(_ZnwmRKSt9nothrow_t,mi_new_nothrow), + MI_INTERPOSE_FUN(_ZnamRKSt9nothrow_t,mi_new_nothrow), + }; + +#elif defined(_MSC_VER) + // cannot override malloc unless using a dll. + // we just override new/delete which does work in a static library. +#else + // On all other systems forward to our API + mi_decl_export void* malloc(size_t size) MI_FORWARD1(mi_malloc, size) + mi_decl_export void* calloc(size_t size, size_t n) MI_FORWARD2(mi_calloc, size, n) + mi_decl_export void* realloc(void* p, size_t newsize) MI_FORWARD2(mi_realloc, p, newsize) + mi_decl_export void free(void* p) MI_FORWARD0(mi_free, p) +#endif + +#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) +#pragma GCC visibility push(default) +#endif + +// ------------------------------------------------------ +// Override new/delete +// This is not really necessary as they usually call +// malloc/free anyway, but it improves performance. +// ------------------------------------------------------ +#ifdef __cplusplus + // ------------------------------------------------------ + // With a C++ compiler we override the new/delete operators. + // see + // ------------------------------------------------------ + #include + + #ifndef MI_OSX_IS_INTERPOSED + void operator delete(void* p) noexcept MI_FORWARD0(mi_free,p) + void operator delete[](void* p) noexcept MI_FORWARD0(mi_free,p) + + void* operator new(std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n) + void* operator new[](std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n) + + void* operator new (std::size_t n, const std::nothrow_t& tag) noexcept { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* operator new[](std::size_t n, const std::nothrow_t& tag) noexcept { MI_UNUSED(tag); return mi_new_nothrow(n); } + + #if (__cplusplus >= 201402L || _MSC_VER >= 1916) + void operator delete (void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n) + void operator delete[](void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n) + #endif + #endif + + #if (__cplusplus > 201402L && defined(__cpp_aligned_new)) && (!defined(__GNUC__) || (__GNUC__ > 5)) + void operator delete (void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast(al)); } + void operator delete[](void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast(al)); } + void operator delete (void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast(al)); }; + void operator delete[](void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast(al)); }; + void operator delete (void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast(al)); } + void operator delete[](void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast(al)); } + + void* operator new( std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast(al)); } + void* operator new[]( std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast(al)); } + void* operator new (std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast(al)); } + void* operator new[](std::size_t n, std::align_val_t al, const std::nothrow_t&) noexcept { return mi_new_aligned_nothrow(n, static_cast(al)); } + #endif + +#elif (defined(__GNUC__) || defined(__clang__)) + // ------------------------------------------------------ + // Override by defining the mangled C++ names of the operators (as + // used by GCC and CLang). + // See + // ------------------------------------------------------ + + void _ZdlPv(void* p) MI_FORWARD0(mi_free,p) // delete + void _ZdaPv(void* p) MI_FORWARD0(mi_free,p) // delete[] + void _ZdlPvm(void* p, size_t n) MI_FORWARD02(mi_free_size,p,n) + void _ZdaPvm(void* p, size_t n) MI_FORWARD02(mi_free_size,p,n) + void _ZdlPvSt11align_val_t(void* p, size_t al) { mi_free_aligned(p,al); } + void _ZdaPvSt11align_val_t(void* p, size_t al) { mi_free_aligned(p,al); } + void _ZdlPvmSt11align_val_t(void* p, size_t n, size_t al) { mi_free_size_aligned(p,n,al); } + void _ZdaPvmSt11align_val_t(void* p, size_t n, size_t al) { mi_free_size_aligned(p,n,al); } + + #if (MI_INTPTR_SIZE==8) + void* _Znwm(size_t n) MI_FORWARD1(mi_new,n) // new 64-bit + void* _Znam(size_t n) MI_FORWARD1(mi_new,n) // new[] 64-bit + void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* _ZnwmSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) + void* _ZnamSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) + void* _ZnwmSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + void* _ZnamSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + #elif (MI_INTPTR_SIZE==4) + void* _Znwj(size_t n) MI_FORWARD1(mi_new,n) // new 64-bit + void* _Znaj(size_t n) MI_FORWARD1(mi_new,n) // new[] 64-bit + void* _ZnwjRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* _ZnajRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* _ZnwjSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) + void* _ZnajSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) + void* _ZnwjSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + void* _ZnajSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + #else + #error "define overloads for new/delete for this platform (just for performance, can be skipped)" + #endif +#endif // __cplusplus + +// ------------------------------------------------------ +// Further Posix & Unix functions definitions +// ------------------------------------------------------ + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef MI_OSX_IS_INTERPOSED + // Forward Posix/Unix calls as well + void* reallocf(void* p, size_t newsize) MI_FORWARD2(mi_reallocf,p,newsize) + size_t malloc_size(const void* p) MI_FORWARD1(mi_usable_size,p) + #if !defined(__ANDROID__) && !defined(__FreeBSD__) + size_t malloc_usable_size(void *p) MI_FORWARD1(mi_usable_size,p) + #else + size_t malloc_usable_size(const void *p) MI_FORWARD1(mi_usable_size,p) + #endif + + // No forwarding here due to aliasing/name mangling issues + void* valloc(size_t size) { return mi_valloc(size); } + void vfree(void* p) { mi_free(p); } + size_t malloc_good_size(size_t size) { return mi_malloc_good_size(size); } + int posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p, alignment, size); } + + // `aligned_alloc` is only available when __USE_ISOC11 is defined. + // Note: it seems __USE_ISOC11 is not defined in musl (and perhaps other libc's) so we only check + // for it if using glibc. + // Note: Conda has a custom glibc where `aligned_alloc` is declared `static inline` and we cannot + // override it, but both _ISOC11_SOURCE and __USE_ISOC11 are undefined in Conda GCC7 or GCC9. + // Fortunately, in the case where `aligned_alloc` is declared as `static inline` it + // uses internally `memalign`, `posix_memalign`, or `_aligned_malloc` so we can avoid overriding it ourselves. + #if !defined(__GLIBC__) || __USE_ISOC11 + void* aligned_alloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); } + #endif +#endif + +// no forwarding here due to aliasing/name mangling issues +void cfree(void* p) { mi_free(p); } +void* pvalloc(size_t size) { return mi_pvalloc(size); } +void* reallocarray(void* p, size_t count, size_t size) { return mi_reallocarray(p, count, size); } +int reallocarr(void* p, size_t count, size_t size) { return mi_reallocarr(p, count, size); } +void* memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); } +void* _aligned_malloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); } + +#if defined(__wasi__) + // forward __libc interface (see PR #667) + void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc, size) + void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc, count, size) + void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc, p, size) + void __libc_free(void* p) MI_FORWARD0(mi_free, p) + void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); } + +#elif defined(__GLIBC__) && defined(__linux__) + // forward __libc interface (needed for glibc-based Linux distributions) + void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc,size) + void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc,count,size) + void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc,p,size) + void __libc_free(void* p) MI_FORWARD0(mi_free,p) + void __libc_cfree(void* p) MI_FORWARD0(mi_free,p) + + void* __libc_valloc(size_t size) { return mi_valloc(size); } + void* __libc_pvalloc(size_t size) { return mi_pvalloc(size); } + void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment,size); } + int __posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p,alignment,size); } +#endif + +#ifdef __cplusplus +} +#endif + +#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) +#pragma GCC visibility pop +#endif + +#endif // MI_MALLOC_OVERRIDE && !_WIN32 diff --git a/3rdparty/mimalloc/src/alloc-posix.c b/3rdparty/mimalloc/src/alloc-posix.c new file mode 100644 index 00000000..225752fd --- /dev/null +++ b/3rdparty/mimalloc/src/alloc-posix.c @@ -0,0 +1,185 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// ------------------------------------------------------------------------ +// mi prefixed publi definitions of various Posix, Unix, and C++ functions +// for convenience and used when overriding these functions. +// ------------------------------------------------------------------------ +#include "mimalloc.h" +#include "mimalloc/internal.h" + +// ------------------------------------------------------ +// Posix & Unix functions definitions +// ------------------------------------------------------ + +#include +#include // memset +#include // getenv + +#ifdef _MSC_VER +#pragma warning(disable:4996) // getenv _wgetenv +#endif + +#ifndef EINVAL +#define EINVAL 22 +#endif +#ifndef ENOMEM +#define ENOMEM 12 +#endif + + +mi_decl_nodiscard size_t mi_malloc_size(const void* p) mi_attr_noexcept { + // if (!mi_is_in_heap_region(p)) return 0; + return mi_usable_size(p); +} + +mi_decl_nodiscard size_t mi_malloc_usable_size(const void *p) mi_attr_noexcept { + // if (!mi_is_in_heap_region(p)) return 0; + return mi_usable_size(p); +} + +mi_decl_nodiscard size_t mi_malloc_good_size(size_t size) mi_attr_noexcept { + return mi_good_size(size); +} + +void mi_cfree(void* p) mi_attr_noexcept { + if (mi_is_in_heap_region(p)) { + mi_free(p); + } +} + +int mi_posix_memalign(void** p, size_t alignment, size_t size) mi_attr_noexcept { + // Note: The spec dictates we should not modify `*p` on an error. (issue#27) + // + if (p == NULL) return EINVAL; + if ((alignment % sizeof(void*)) != 0) return EINVAL; // natural alignment + // it is also required that alignment is a power of 2 and > 0; this is checked in `mi_malloc_aligned` + if (alignment==0 || !_mi_is_power_of_two(alignment)) return EINVAL; // not a power of 2 + void* q = mi_malloc_aligned(size, alignment); + if (q==NULL && size != 0) return ENOMEM; + mi_assert_internal(((uintptr_t)q % alignment) == 0); + *p = q; + return 0; +} + +mi_decl_nodiscard mi_decl_restrict void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept { + void* p = mi_malloc_aligned(size, alignment); + mi_assert_internal(((uintptr_t)p % alignment) == 0); + return p; +} + +mi_decl_nodiscard mi_decl_restrict void* mi_valloc(size_t size) mi_attr_noexcept { + return mi_memalign( _mi_os_page_size(), size ); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcept { + size_t psize = _mi_os_page_size(); + if (size >= SIZE_MAX - psize) return NULL; // overflow + size_t asize = _mi_align_up(size, psize); + return mi_malloc_aligned(asize, psize); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept { + // C11 requires the size to be an integral multiple of the alignment, see . + // unfortunately, it turns out quite some programs pass a size that is not an integral multiple so skip this check.. + /* if mi_unlikely((size & (alignment - 1)) != 0) { // C11 requires alignment>0 && integral multiple, see + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "(mi_)aligned_alloc requires the size to be an integral multiple of the alignment (size %zu, alignment %zu)\n", size, alignment); + #endif + return NULL; + } + */ + // C11 also requires alignment to be a power-of-two (and > 0) which is checked in mi_malloc_aligned + void* p = mi_malloc_aligned(size, alignment); + mi_assert_internal(((uintptr_t)p % alignment) == 0); + return p; +} + +mi_decl_nodiscard void* mi_reallocarray( void* p, size_t count, size_t size ) mi_attr_noexcept { // BSD + void* newp = mi_reallocn(p,count,size); + if (newp==NULL) { errno = ENOMEM; } + return newp; +} + +mi_decl_nodiscard int mi_reallocarr( void* p, size_t count, size_t size ) mi_attr_noexcept { // NetBSD + mi_assert(p != NULL); + if (p == NULL) { + errno = EINVAL; + return EINVAL; + } + void** op = (void**)p; + void* newp = mi_reallocarray(*op, count, size); + if mi_unlikely(newp == NULL) { return errno; } + *op = newp; + return 0; +} + +void* mi__expand(void* p, size_t newsize) mi_attr_noexcept { // Microsoft + void* res = mi_expand(p, newsize); + if (res == NULL) { errno = ENOMEM; } + return res; +} + +mi_decl_nodiscard mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noexcept { + if (s==NULL) return NULL; + size_t len; + for(len = 0; s[len] != 0; len++) { } + size_t size = (len+1)*sizeof(unsigned short); + unsigned short* p = (unsigned short*)mi_malloc(size); + if (p != NULL) { + _mi_memcpy(p,s,size); + } + return p; +} + +mi_decl_nodiscard mi_decl_restrict unsigned char* mi_mbsdup(const unsigned char* s) mi_attr_noexcept { + return (unsigned char*)mi_strdup((const char*)s); +} + +int mi_dupenv_s(char** buf, size_t* size, const char* name) mi_attr_noexcept { + if (buf==NULL || name==NULL) return EINVAL; + if (size != NULL) *size = 0; + char* p = getenv(name); // mscver warning 4996 + if (p==NULL) { + *buf = NULL; + } + else { + *buf = mi_strdup(p); + if (*buf==NULL) return ENOMEM; + if (size != NULL) *size = _mi_strlen(p); + } + return 0; +} + +int mi_wdupenv_s(unsigned short** buf, size_t* size, const unsigned short* name) mi_attr_noexcept { + if (buf==NULL || name==NULL) return EINVAL; + if (size != NULL) *size = 0; +#if !defined(_WIN32) || (defined(WINAPI_FAMILY) && (WINAPI_FAMILY != WINAPI_FAMILY_DESKTOP_APP)) + // not supported + *buf = NULL; + return EINVAL; +#else + unsigned short* p = (unsigned short*)_wgetenv((const wchar_t*)name); // msvc warning 4996 + if (p==NULL) { + *buf = NULL; + } + else { + *buf = mi_wcsdup(p); + if (*buf==NULL) return ENOMEM; + if (size != NULL) *size = wcslen((const wchar_t*)p); + } + return 0; +#endif +} + +mi_decl_nodiscard void* mi_aligned_offset_recalloc(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { // Microsoft + return mi_recalloc_aligned_at(p, newcount, size, alignment, offset); +} + +mi_decl_nodiscard void* mi_aligned_recalloc(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { // Microsoft + return mi_recalloc_aligned(p, newcount, size, alignment); +} diff --git a/3rdparty/mimalloc/src/alloc.c b/3rdparty/mimalloc/src/alloc.c new file mode 100644 index 00000000..ffc1747d --- /dev/null +++ b/3rdparty/mimalloc/src/alloc.c @@ -0,0 +1,1060 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2022, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#ifndef _DEFAULT_SOURCE +#define _DEFAULT_SOURCE // for realpath() on Linux +#endif + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // _mi_prim_thread_id() + +#include // memset, strlen (for mi_strdup) +#include // malloc, abort + +#define MI_IN_ALLOC_C +#include "alloc-override.c" +#undef MI_IN_ALLOC_C + +// ------------------------------------------------------ +// Allocation +// ------------------------------------------------------ + +// Fast allocation in a page: just pop from the free list. +// Fall back to generic allocation only if the list is empty. +extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept { + mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size); + mi_block_t* const block = page->free; + if mi_unlikely(block == NULL) { + return _mi_malloc_generic(heap, size, zero, 0); + } + mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); + // pop from the free list + page->used++; + page->free = mi_block_next(page, block); + mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); + #if MI_DEBUG>3 + if (page->free_is_zero) { + mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block))); + } + #endif + + // allow use of the block internally + // note: when tracking we need to avoid ever touching the MI_PADDING since + // that is tracked by valgrind etc. as non-accessible (through the red-zone, see `mimalloc/track.h`) + mi_track_mem_undefined(block, mi_page_usable_block_size(page)); + + // zero the block? note: we need to zero the full block size (issue #63) + if mi_unlikely(zero) { + mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic) + mi_assert_internal(page->xblock_size >= MI_PADDING_SIZE); + if (page->free_is_zero) { + block->next = 0; + mi_track_mem_defined(block, page->xblock_size - MI_PADDING_SIZE); + } + else { + _mi_memzero_aligned(block, page->xblock_size - MI_PADDING_SIZE); + } + } + +#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN + if (!zero && !mi_page_is_huge(page)) { + memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page)); + } +#elif (MI_SECURE!=0) + if (!zero) { block->next = 0; } // don't leak internal data +#endif + +#if (MI_STAT>0) + const size_t bsize = mi_page_usable_block_size(page); + if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) { + mi_heap_stat_increase(heap, normal, bsize); + mi_heap_stat_counter_increase(heap, normal_count, 1); +#if (MI_STAT>1) + const size_t bin = _mi_bin(bsize); + mi_heap_stat_increase(heap, normal_bins[bin], 1); +#endif + } +#endif + +#if MI_PADDING // && !MI_TRACK_ENABLED + mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page)); + ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE)); + #if (MI_DEBUG>=2) + mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); + #endif + mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess + padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); + padding->delta = (uint32_t)(delta); + #if MI_PADDING_CHECK + if (!mi_page_is_huge(page)) { + uint8_t* fill = (uint8_t*)padding - delta; + const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes + for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; } + } + #endif +#endif + + return block; +} + +static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { + mi_assert(heap != NULL); + #if MI_DEBUG + const uintptr_t tid = _mi_thread_id(); + mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local + #endif + mi_assert(size <= MI_SMALL_SIZE_MAX); + #if (MI_PADDING) + if (size == 0) { size = sizeof(void*); } + #endif + mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE); + void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero); + mi_track_malloc(p,size,zero); + #if MI_STAT>1 + if (p != NULL) { + if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } + mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); + } + #endif + #if MI_DEBUG>3 + if (p != NULL && zero) { + mi_assert_expensive(mi_mem_is_zero(p, size)); + } + #endif + return p; +} + +// allocate a small block +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept { + return mi_heap_malloc_small_zero(heap, size, false); +} + +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept { + return mi_heap_malloc_small(mi_prim_get_default_heap(), size); +} + +// The main allocation function +extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept { + if mi_likely(size <= MI_SMALL_SIZE_MAX) { + mi_assert_internal(huge_alignment == 0); + return mi_heap_malloc_small_zero(heap, size, zero); + } + else { + mi_assert(heap!=NULL); + mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local + void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment); // note: size can overflow but it is detected in malloc_generic + mi_track_malloc(p,size,zero); + #if MI_STAT>1 + if (p != NULL) { + if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } + mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); + } + #endif + #if MI_DEBUG>3 + if (p != NULL && zero) { + mi_assert_expensive(mi_mem_is_zero(p, size)); + } + #endif + return p; + } +} + +extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { + return _mi_heap_malloc_zero_ex(heap, size, zero, 0); +} + +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { + return _mi_heap_malloc_zero(heap, size, false); +} + +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept { + return mi_heap_malloc(mi_prim_get_default_heap(), size); +} + +// zero initialized small block +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept { + return mi_heap_malloc_small_zero(mi_prim_get_default_heap(), size, true); +} + +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { + return _mi_heap_malloc_zero(heap, size, true); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept { + return mi_heap_zalloc(mi_prim_get_default_heap(),size); +} + + +// ------------------------------------------------------ +// Check for double free in secure and debug mode +// This is somewhat expensive so only enabled for secure mode 4 +// ------------------------------------------------------ + +#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0)) +// linear check if the free list contains a specific element +static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) { + while (list != NULL) { + if (elem==list) return true; + list = mi_block_next(page, list); + } + return false; +} + +static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) { + // The decoded value is in the same page (or NULL). + // Walk the free lists to verify positively if it is already freed + if (mi_list_contains(page, page->free, block) || + mi_list_contains(page, page->local_free, block) || + mi_list_contains(page, mi_page_thread_free(page), block)) + { + _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page)); + return true; + } + return false; +} + +#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); } + +static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { + bool is_double_free = false; + mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field + if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? + (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? + { + // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free? + // (continue in separate function to improve code generation) + is_double_free = mi_check_is_double_freex(page, block); + } + return is_double_free; +} +#else +static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(page); + MI_UNUSED(block); + return false; +} +#endif + +// --------------------------------------------------------------------------- +// Check for heap block overflow by setting up padding at the end of the block +// --------------------------------------------------------------------------- + +#if MI_PADDING // && !MI_TRACK_ENABLED +static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) { + *bsize = mi_page_usable_block_size(page); + const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize); + mi_track_mem_defined(padding,sizeof(mi_padding_t)); + *delta = padding->delta; + uint32_t canary = padding->canary; + uintptr_t keys[2]; + keys[0] = page->keys[0]; + keys[1] = page->keys[1]; + bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize); + mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); + return ok; +} + +// Return the exact usable size of a block. +static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { + size_t bsize; + size_t delta; + bool ok = mi_page_decode_padding(page, block, &delta, &bsize); + mi_assert_internal(ok); mi_assert_internal(delta <= bsize); + return (ok ? bsize - delta : 0); +} + +// When a non-thread-local block is freed, it becomes part of the thread delayed free +// list that is freed later by the owning heap. If the exact usable size is too small to +// contain the pointer for the delayed list, then shrink the padding (by decreasing delta) +// so it will later not trigger an overflow error in `mi_free_block`. +void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { + size_t bsize; + size_t delta; + bool ok = mi_page_decode_padding(page, block, &delta, &bsize); + mi_assert_internal(ok); + if (!ok || (bsize - delta) >= min_size) return; // usually already enough space + mi_assert_internal(bsize >= min_size); + if (bsize < min_size) return; // should never happen + size_t new_delta = (bsize - min_size); + mi_assert_internal(new_delta < bsize); + mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize); + mi_track_mem_defined(padding,sizeof(mi_padding_t)); + padding->delta = (uint32_t)new_delta; + mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); +} +#else +static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(block); + return mi_page_usable_block_size(page); +} + +void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { + MI_UNUSED(page); + MI_UNUSED(block); + MI_UNUSED(min_size); +} +#endif + +#if MI_PADDING && MI_PADDING_CHECK + +static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) { + size_t bsize; + size_t delta; + bool ok = mi_page_decode_padding(page, block, &delta, &bsize); + *size = *wrong = bsize; + if (!ok) return false; + mi_assert_internal(bsize >= delta); + *size = bsize - delta; + if (!mi_page_is_huge(page)) { + uint8_t* fill = (uint8_t*)block + bsize - delta; + const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes + mi_track_mem_defined(fill, maxpad); + for (size_t i = 0; i < maxpad; i++) { + if (fill[i] != MI_DEBUG_PADDING) { + *wrong = bsize - delta + i; + ok = false; + break; + } + } + mi_track_mem_noaccess(fill, maxpad); + } + return ok; +} + +static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { + size_t size; + size_t wrong; + if (!mi_verify_padding(page,block,&size,&wrong)) { + _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong ); + } +} + +#else + +static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(page); + MI_UNUSED(block); +} + +#endif + +// only maintain stats for smaller objects if requested +#if (MI_STAT>0) +static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { + #if (MI_STAT < 2) + MI_UNUSED(block); + #endif + mi_heap_t* const heap = mi_heap_get_default(); + const size_t bsize = mi_page_usable_block_size(page); + #if (MI_STAT>1) + const size_t usize = mi_page_usable_size_of(page, block); + mi_heap_stat_decrease(heap, malloc, usize); + #endif + if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) { + mi_heap_stat_decrease(heap, normal, bsize); + #if (MI_STAT > 1) + mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1); + #endif + } + else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { + mi_heap_stat_decrease(heap, large, bsize); + } + else { + mi_heap_stat_decrease(heap, huge, bsize); + } +} +#else +static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(page); MI_UNUSED(block); +} +#endif + +#if MI_HUGE_PAGE_ABANDON +#if (MI_STAT>0) +// maintain stats for huge objects +static void mi_stat_huge_free(const mi_page_t* page) { + mi_heap_t* const heap = mi_heap_get_default(); + const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc` + if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { + mi_heap_stat_decrease(heap, large, bsize); + } + else { + mi_heap_stat_decrease(heap, huge, bsize); + } +} +#else +static void mi_stat_huge_free(const mi_page_t* page) { + MI_UNUSED(page); +} +#endif +#endif + +// ------------------------------------------------------ +// Free +// ------------------------------------------------------ + +// multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON) +static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block) +{ + // The padding check may access the non-thread-owned page for the key values. + // that is safe as these are constant and the page won't be freed (as the block is not freed yet). + mi_check_padding(page, block); + _mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection + + // huge page segments are always abandoned and can be freed immediately + mi_segment_t* segment = _mi_page_segment(page); + if (segment->kind == MI_SEGMENT_HUGE) { + #if MI_HUGE_PAGE_ABANDON + // huge page segments are always abandoned and can be freed immediately + mi_stat_huge_free(page); + _mi_segment_huge_page_free(segment, page, block); + return; + #else + // huge pages are special as they occupy the entire segment + // as these are large we reset the memory occupied by the page so it is available to other threads + // (as the owning thread needs to actually free the memory later). + _mi_segment_huge_page_reset(segment, page, block); + #endif + } + + #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading + if (segment->kind != MI_SEGMENT_HUGE) { // not for huge segments as we just reset the content + memset(block, MI_DEBUG_FREED, mi_usable_size(block)); + } + #endif + + // Try to put the block on either the page-local thread free list, or the heap delayed free list. + mi_thread_free_t tfreex; + bool use_delayed; + mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); + do { + use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); + if mi_unlikely(use_delayed) { + // unlikely: this only happens on the first concurrent free in a page that is in the full list + tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); + } + else { + // usual: directly add to page thread_free list + mi_block_set_next(page, block, mi_tf_block(tfree)); + tfreex = mi_tf_set_block(tfree,block); + } + } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); + + if mi_unlikely(use_delayed) { + // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) + mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); + mi_assert_internal(heap != NULL); + if (heap != NULL) { + // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) + mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); + do { + mi_block_set_nextx(heap,block,dfree, heap->keys); + } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); + } + + // and reset the MI_DELAYED_FREEING flag + tfree = mi_atomic_load_relaxed(&page->xthread_free); + do { + tfreex = tfree; + mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING); + tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE); + } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); + } +} + +// regular free +static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block) +{ + // and push it on the free list + //const size_t bsize = mi_page_block_size(page); + if mi_likely(local) { + // owning thread can free a block directly + if mi_unlikely(mi_check_is_double_free(page, block)) return; + mi_check_padding(page, block); + #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN + if (!mi_page_is_huge(page)) { // huge page content may be already decommitted + memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); + } + #endif + mi_block_set_next(page, block, page->local_free); + page->local_free = block; + page->used--; + if mi_unlikely(mi_page_all_free(page)) { + _mi_page_retire(page); + } + else if mi_unlikely(mi_page_is_in_full(page)) { + _mi_page_unfull(page); + } + } + else { + _mi_free_block_mt(page,block); + } +} + + +// Adjust a block that was allocated aligned, to the actual start of the block in the page. +mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) { + mi_assert_internal(page!=NULL && p!=NULL); + const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL); + const size_t adjust = (diff % mi_page_block_size(page)); + return (mi_block_t*)((uintptr_t)p - adjust); +} + + +void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept { + mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p); + mi_stat_free(page, block); // stat_free may access the padding + mi_track_free_size(block, mi_page_usable_size_of(page,block)); + _mi_free_block(page, is_local, block); +} + +// Get the segment data belonging to a pointer +// This is just a single `and` in assembly but does further checks in debug mode +// (and secure mode) if this was a valid pointer. +static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) +{ + MI_UNUSED(msg); + mi_assert(p != NULL); + +#if (MI_DEBUG>0) + if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) { + _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); + return NULL; + } +#endif + + mi_segment_t* const segment = _mi_ptr_segment(p); + mi_assert_internal(segment != NULL); + +#if (MI_DEBUG>0) + if mi_unlikely(!mi_is_in_heap_region(p)) { + #if (MI_INTPTR_SIZE == 8 && defined(__linux__)) + if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640) + #else + { + #endif + _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" + "(this may still be a valid very large allocation (over 64MiB))\n", msg, p); + if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) { + _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); + } + } + } +#endif +#if (MI_DEBUG>0 || MI_SECURE>=4) + if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) { + _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p); + return NULL; + } +#endif + + return segment; +} + +// Free a block +// fast path written carefully to prevent spilling on the stack +void mi_free(void* p) mi_attr_noexcept +{ + if mi_unlikely(p == NULL) return; + mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); + const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id)); + mi_page_t* const page = _mi_segment_page_of(segment, p); + + if mi_likely(is_local) { // thread-local free? + if mi_likely(page->flags.full_aligned == 0) // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned) + { + mi_block_t* const block = (mi_block_t*)p; + if mi_unlikely(mi_check_is_double_free(page, block)) return; + mi_check_padding(page, block); + mi_stat_free(page, block); + #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN + memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); + #endif + mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned + mi_block_set_next(page, block, page->local_free); + page->local_free = block; + if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page)) + _mi_page_retire(page); + } + } + else { + // page is full or contains (inner) aligned blocks; use generic path + _mi_free_generic(segment, page, true, p); + } + } + else { + // not thread-local; use generic path + _mi_free_generic(segment, page, false, p); + } +} + +// return true if successful +bool _mi_free_delayed_block(mi_block_t* block) { + // get segment and page + const mi_segment_t* const segment = _mi_ptr_segment(block); + mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); + mi_assert_internal(_mi_thread_id() == segment->thread_id); + mi_page_t* const page = _mi_segment_page_of(segment, block); + + // Clear the no-delayed flag so delayed freeing is used again for this page. + // This must be done before collecting the free lists on this page -- otherwise + // some blocks may end up in the page `thread_free` list with no blocks in the + // heap `thread_delayed_free` list which may cause the page to be never freed! + // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`) + if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) { + return false; + } + + // collect all other non-local frees to ensure up-to-date `used` count + _mi_page_free_collect(page, false); + + // and free the block (possibly freeing the page as well since used is updated) + _mi_free_block(page, true, block); + return true; +} + +// Bytes available in a block +mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept { + const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p); + const size_t size = mi_page_usable_size_of(page, block); + const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block; + mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); + return (size - adjust); +} + +static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { + if (p == NULL) return 0; + const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg); + const mi_page_t* const page = _mi_segment_page_of(segment, p); + if mi_likely(!mi_page_has_aligned(page)) { + const mi_block_t* block = (const mi_block_t*)p; + return mi_page_usable_size_of(page, block); + } + else { + // split out to separate routine for improved code generation + return mi_page_usable_aligned_size_of(segment, page, p); + } +} + +mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept { + return _mi_usable_size(p, "mi_usable_size"); +} + + +// ------------------------------------------------------ +// Allocation extensions +// ------------------------------------------------------ + +void mi_free_size(void* p, size_t size) mi_attr_noexcept { + MI_UNUSED_RELEASE(size); + mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size")); + mi_free(p); +} + +void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept { + MI_UNUSED_RELEASE(alignment); + mi_assert(((uintptr_t)p % alignment) == 0); + mi_free_size(p,size); +} + +void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept { + MI_UNUSED_RELEASE(alignment); + mi_assert(((uintptr_t)p % alignment) == 0); + mi_free(p); +} + +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(count,size,&total)) return NULL; + return mi_heap_zalloc(heap,total); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept { + return mi_heap_calloc(mi_prim_get_default_heap(),count,size); +} + +// Uninitialized `calloc` +mi_decl_nodiscard extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(count, size, &total)) return NULL; + return mi_heap_malloc(heap, total); +} + +mi_decl_nodiscard mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept { + return mi_heap_mallocn(mi_prim_get_default_heap(),count,size); +} + +// Expand (or shrink) in place (or fail) +void* mi_expand(void* p, size_t newsize) mi_attr_noexcept { + #if MI_PADDING + // we do not shrink/expand with padding enabled + MI_UNUSED(p); MI_UNUSED(newsize); + return NULL; + #else + if (p == NULL) return NULL; + const size_t size = _mi_usable_size(p,"mi_expand"); + if (newsize > size) return NULL; + return p; // it fits + #endif +} + +void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept { + // if p == NULL then behave as malloc. + // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)). + // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.) + const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0) + if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) { // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0) + mi_assert_internal(p!=NULL); + // todo: do not track as the usable size is still the same in the free; adjust potential padding? + // mi_track_resize(p,size,newsize) + // if (newsize < size) { mi_track_mem_noaccess((uint8_t*)p + newsize, size - newsize); } + return p; // reallocation still fits and not more than 50% waste + } + void* newp = mi_heap_malloc(heap,newsize); + if mi_likely(newp != NULL) { + if (zero && newsize > size) { + // also set last word in the previous allocation to zero to ensure any padding is zero-initialized + const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); + _mi_memzero((uint8_t*)newp + start, newsize - start); + } + else if (newsize == 0) { + ((uint8_t*)newp)[0] = 0; // work around for applications that expect zero-reallocation to be zero initialized (issue #725) + } + if mi_likely(p != NULL) { + const size_t copysize = (newsize > size ? size : newsize); + mi_track_mem_defined(p,copysize); // _mi_useable_size may be too large for byte precise memory tracking.. + _mi_memcpy(newp, p, copysize); + mi_free(p); // only free the original pointer if successful + } + } + return newp; +} + +mi_decl_nodiscard void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { + return _mi_heap_realloc_zero(heap, p, newsize, false); +} + +mi_decl_nodiscard void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(count, size, &total)) return NULL; + return mi_heap_realloc(heap, p, total); +} + + +// Reallocate but free `p` on errors +mi_decl_nodiscard void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { + void* newp = mi_heap_realloc(heap, p, newsize); + if (newp==NULL && p!=NULL) mi_free(p); + return newp; +} + +mi_decl_nodiscard void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { + return _mi_heap_realloc_zero(heap, p, newsize, true); +} + +mi_decl_nodiscard void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { + size_t total; + if (mi_count_size_overflow(count, size, &total)) return NULL; + return mi_heap_rezalloc(heap, p, total); +} + + +mi_decl_nodiscard void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept { + return mi_heap_realloc(mi_prim_get_default_heap(),p,newsize); +} + +mi_decl_nodiscard void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept { + return mi_heap_reallocn(mi_prim_get_default_heap(),p,count,size); +} + +// Reallocate but free `p` on errors +mi_decl_nodiscard void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept { + return mi_heap_reallocf(mi_prim_get_default_heap(),p,newsize); +} + +mi_decl_nodiscard void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept { + return mi_heap_rezalloc(mi_prim_get_default_heap(), p, newsize); +} + +mi_decl_nodiscard void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept { + return mi_heap_recalloc(mi_prim_get_default_heap(), p, count, size); +} + + + +// ------------------------------------------------------ +// strdup, strndup, and realpath +// ------------------------------------------------------ + +// `strdup` using mi_malloc +mi_decl_nodiscard mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept { + if (s == NULL) return NULL; + size_t n = strlen(s); + char* t = (char*)mi_heap_malloc(heap,n+1); + if (t == NULL) return NULL; + _mi_memcpy(t, s, n); + t[n] = 0; + return t; +} + +mi_decl_nodiscard mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept { + return mi_heap_strdup(mi_prim_get_default_heap(), s); +} + +// `strndup` using mi_malloc +mi_decl_nodiscard mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept { + if (s == NULL) return NULL; + const char* end = (const char*)memchr(s, 0, n); // find end of string in the first `n` characters (returns NULL if not found) + const size_t m = (end != NULL ? (size_t)(end - s) : n); // `m` is the minimum of `n` or the end-of-string + mi_assert_internal(m <= n); + char* t = (char*)mi_heap_malloc(heap, m+1); + if (t == NULL) return NULL; + _mi_memcpy(t, s, m); + t[m] = 0; + return t; +} + +mi_decl_nodiscard mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept { + return mi_heap_strndup(mi_prim_get_default_heap(),s,n); +} + +#ifndef __wasi__ +// `realpath` using mi_malloc +#ifdef _WIN32 +#ifndef PATH_MAX +#define PATH_MAX MAX_PATH +#endif +#include +mi_decl_nodiscard mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { + // todo: use GetFullPathNameW to allow longer file names + char buf[PATH_MAX]; + DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL); + if (res == 0) { + errno = GetLastError(); return NULL; + } + else if (res > PATH_MAX) { + errno = EINVAL; return NULL; + } + else if (resolved_name != NULL) { + return resolved_name; + } + else { + return mi_heap_strndup(heap, buf, PATH_MAX); + } +} +#else +/* +#include // pathconf +static size_t mi_path_max(void) { + static size_t path_max = 0; + if (path_max <= 0) { + long m = pathconf("/",_PC_PATH_MAX); + if (m <= 0) path_max = 4096; // guess + else if (m < 256) path_max = 256; // at least 256 + else path_max = m; + } + return path_max; +} +*/ +char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { + if (resolved_name != NULL) { + return realpath(fname,resolved_name); + } + else { + char* rname = realpath(fname, NULL); + if (rname == NULL) return NULL; + char* result = mi_heap_strdup(heap, rname); + free(rname); // use regular free! (which may be redirected to our free but that's ok) + return result; + } + /* + const size_t n = mi_path_max(); + char* buf = (char*)mi_malloc(n+1); + if (buf == NULL) { + errno = ENOMEM; + return NULL; + } + char* rname = realpath(fname,buf); + char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL` + mi_free(buf); + return result; + } + */ +} +#endif + +mi_decl_nodiscard mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept { + return mi_heap_realpath(mi_prim_get_default_heap(),fname,resolved_name); +} +#endif + +/*------------------------------------------------------- +C++ new and new_aligned +The standard requires calling into `get_new_handler` and +throwing the bad_alloc exception on failure. If we compile +with a C++ compiler we can implement this precisely. If we +use a C compiler we cannot throw a `bad_alloc` exception +but we call `exit` instead (i.e. not returning). +-------------------------------------------------------*/ + +#ifdef __cplusplus +#include +static bool mi_try_new_handler(bool nothrow) { + #if defined(_MSC_VER) || (__cplusplus >= 201103L) + std::new_handler h = std::get_new_handler(); + #else + std::new_handler h = std::set_new_handler(); + std::set_new_handler(h); + #endif + if (h==NULL) { + _mi_error_message(ENOMEM, "out of memory in 'new'"); + if (!nothrow) { + throw std::bad_alloc(); + } + return false; + } + else { + h(); + return true; + } +} +#else +typedef void (*std_new_handler_t)(void); + +#if (defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER))) // exclude clang-cl, see issue #631 +std_new_handler_t __attribute__((weak)) _ZSt15get_new_handlerv(void) { + return NULL; +} +static std_new_handler_t mi_get_new_handler(void) { + return _ZSt15get_new_handlerv(); +} +#else +// note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`. +static std_new_handler_t mi_get_new_handler() { + return NULL; +} +#endif + +static bool mi_try_new_handler(bool nothrow) { + std_new_handler_t h = mi_get_new_handler(); + if (h==NULL) { + _mi_error_message(ENOMEM, "out of memory in 'new'"); + if (!nothrow) { + abort(); // cannot throw in plain C, use abort + } + return false; + } + else { + h(); + return true; + } +} +#endif + +mi_decl_export mi_decl_noinline void* mi_heap_try_new(mi_heap_t* heap, size_t size, bool nothrow ) { + void* p = NULL; + while(p == NULL && mi_try_new_handler(nothrow)) { + p = mi_heap_malloc(heap,size); + } + return p; +} + +static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow) { + return mi_heap_try_new(mi_prim_get_default_heap(), size, nothrow); +} + + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) { + void* p = mi_heap_malloc(heap,size); + if mi_unlikely(p == NULL) return mi_heap_try_new(heap, size, false); + return p; +} + +mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) { + return mi_heap_alloc_new(mi_prim_get_default_heap(), size); +} + + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) { + size_t total; + if mi_unlikely(mi_count_size_overflow(count, size, &total)) { + mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc + return NULL; + } + else { + return mi_heap_alloc_new(heap,total); + } +} + +mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) { + return mi_heap_alloc_new_n(mi_prim_get_default_heap(), size, count); +} + + +mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept { + void* p = mi_malloc(size); + if mi_unlikely(p == NULL) return mi_try_new(size, true); + return p; +} + +mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) { + void* p; + do { + p = mi_malloc_aligned(size, alignment); + } + while(p == NULL && mi_try_new_handler(false)); + return p; +} + +mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept { + void* p; + do { + p = mi_malloc_aligned(size, alignment); + } + while(p == NULL && mi_try_new_handler(true)); + return p; +} + +mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) { + void* q; + do { + q = mi_realloc(p, newsize); + } while (q == NULL && mi_try_new_handler(false)); + return q; +} + +mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) { + size_t total; + if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) { + mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc + return NULL; + } + else { + return mi_new_realloc(p, total); + } +} + +// ------------------------------------------------------ +// ensure explicit external inline definitions are emitted! +// ------------------------------------------------------ + +#ifdef __cplusplus +void* _mi_externs[] = { + (void*)&_mi_page_malloc, + (void*)&_mi_heap_malloc_zero, + (void*)&_mi_heap_malloc_zero_ex, + (void*)&mi_malloc, + (void*)&mi_malloc_small, + (void*)&mi_zalloc_small, + (void*)&mi_heap_malloc, + (void*)&mi_heap_zalloc, + (void*)&mi_heap_malloc_small, + // (void*)&mi_heap_alloc_new, + // (void*)&mi_heap_alloc_new_n +}; +#endif diff --git a/3rdparty/mimalloc/src/arena.c b/3rdparty/mimalloc/src/arena.c new file mode 100644 index 00000000..a04a04c8 --- /dev/null +++ b/3rdparty/mimalloc/src/arena.c @@ -0,0 +1,936 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2019-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ---------------------------------------------------------------------------- +"Arenas" are fixed area's of OS memory from which we can allocate +large blocks (>= MI_ARENA_MIN_BLOCK_SIZE, 4MiB). +In contrast to the rest of mimalloc, the arenas are shared between +threads and need to be accessed using atomic operations. + +Arenas are used to for huge OS page (1GiB) reservations or for reserving +OS memory upfront which can be improve performance or is sometimes needed +on embedded devices. We can also employ this with WASI or `sbrk` systems +to reserve large arenas upfront and be able to reuse the memory more effectively. + +The arena allocation needs to be thread safe and we use an atomic bitmap to allocate. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" + +#include // memset +#include // ENOMEM + +#include "bitmap.h" // atomic bitmap + +/* ----------------------------------------------------------- + Arena allocation +----------------------------------------------------------- */ + +// Block info: bit 0 contains the `in_use` bit, the upper bits the +// size in count of arena blocks. +typedef uintptr_t mi_block_info_t; +#define MI_ARENA_BLOCK_SIZE (MI_SEGMENT_SIZE) // 64MiB (must be at least MI_SEGMENT_ALIGN) +#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_BLOCK_SIZE/2) // 32MiB +#define MI_MAX_ARENAS (112) // not more than 126 (since we use 7 bits in the memid and an arena index + 1) + +// A memory arena descriptor +typedef struct mi_arena_s { + mi_arena_id_t id; // arena id; 0 for non-specific + mi_memid_t memid; // memid of the memory area + _Atomic(uint8_t*) start; // the start of the memory area + size_t block_count; // size of the area in arena blocks (of `MI_ARENA_BLOCK_SIZE`) + size_t field_count; // number of bitmap fields (where `field_count * MI_BITMAP_FIELD_BITS >= block_count`) + size_t meta_size; // size of the arena structure itself (including its bitmaps) + mi_memid_t meta_memid; // memid of the arena structure itself (OS or static allocation) + int numa_node; // associated NUMA node + bool exclusive; // only allow allocations if specifically for this arena + bool is_large; // memory area consists of large- or huge OS pages (always committed) + _Atomic(size_t) search_idx; // optimization to start the search for free blocks + _Atomic(mi_msecs_t) purge_expire; // expiration time when blocks should be decommitted from `blocks_decommit`. + mi_bitmap_field_t* blocks_dirty; // are the blocks potentially non-zero? + mi_bitmap_field_t* blocks_committed; // are the blocks committed? (can be NULL for memory that cannot be decommitted) + mi_bitmap_field_t* blocks_purge; // blocks that can be (reset) decommitted. (can be NULL for memory that cannot be (reset) decommitted) + mi_bitmap_field_t blocks_inuse[1]; // in-place bitmap of in-use blocks (of size `field_count`) +} mi_arena_t; + + +// The available arenas +static mi_decl_cache_align _Atomic(mi_arena_t*) mi_arenas[MI_MAX_ARENAS]; +static mi_decl_cache_align _Atomic(size_t) mi_arena_count; // = 0 + + +//static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept; + +/* ----------------------------------------------------------- + Arena id's + id = arena_index + 1 +----------------------------------------------------------- */ + +static size_t mi_arena_id_index(mi_arena_id_t id) { + return (size_t)(id <= 0 ? MI_MAX_ARENAS : id - 1); +} + +static mi_arena_id_t mi_arena_id_create(size_t arena_index) { + mi_assert_internal(arena_index < MI_MAX_ARENAS); + return (int)arena_index + 1; +} + +mi_arena_id_t _mi_arena_id_none(void) { + return 0; +} + +static bool mi_arena_id_is_suitable(mi_arena_id_t arena_id, bool arena_is_exclusive, mi_arena_id_t req_arena_id) { + return ((!arena_is_exclusive && req_arena_id == _mi_arena_id_none()) || + (arena_id == req_arena_id)); +} + +bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id) { + if (memid.memkind == MI_MEM_ARENA) { + return mi_arena_id_is_suitable(memid.mem.arena.id, memid.mem.arena.is_exclusive, request_arena_id); + } + else { + return mi_arena_id_is_suitable(0, false, request_arena_id); + } +} + +bool _mi_arena_memid_is_os_allocated(mi_memid_t memid) { + return (memid.memkind == MI_MEM_OS); +} + +/* ----------------------------------------------------------- + Arena allocations get a (currently) 16-bit memory id where the + lower 8 bits are the arena id, and the upper bits the block index. +----------------------------------------------------------- */ + +static size_t mi_block_count_of_size(size_t size) { + return _mi_divide_up(size, MI_ARENA_BLOCK_SIZE); +} + +static size_t mi_arena_block_size(size_t bcount) { + return (bcount * MI_ARENA_BLOCK_SIZE); +} + +static size_t mi_arena_size(mi_arena_t* arena) { + return mi_arena_block_size(arena->block_count); +} + +static mi_memid_t mi_memid_create_arena(mi_arena_id_t id, bool is_exclusive, mi_bitmap_index_t bitmap_index) { + mi_memid_t memid = _mi_memid_create(MI_MEM_ARENA); + memid.mem.arena.id = id; + memid.mem.arena.block_index = bitmap_index; + memid.mem.arena.is_exclusive = is_exclusive; + return memid; +} + +static bool mi_arena_memid_indices(mi_memid_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index) { + mi_assert_internal(memid.memkind == MI_MEM_ARENA); + *arena_index = mi_arena_id_index(memid.mem.arena.id); + *bitmap_index = memid.mem.arena.block_index; + return memid.mem.arena.is_exclusive; +} + + + +/* ----------------------------------------------------------- + Special static area for mimalloc internal structures + to avoid OS calls (for example, for the arena metadata) +----------------------------------------------------------- */ + +#define MI_ARENA_STATIC_MAX (MI_INTPTR_SIZE*MI_KiB) // 8 KiB on 64-bit + +static uint8_t mi_arena_static[MI_ARENA_STATIC_MAX]; +static _Atomic(size_t) mi_arena_static_top; + +static void* mi_arena_static_zalloc(size_t size, size_t alignment, mi_memid_t* memid) { + *memid = _mi_memid_none(); + if (size == 0 || size > MI_ARENA_STATIC_MAX) return NULL; + if ((mi_atomic_load_relaxed(&mi_arena_static_top) + size) > MI_ARENA_STATIC_MAX) return NULL; + + // try to claim space + if (alignment == 0) { alignment = 1; } + const size_t oversize = size + alignment - 1; + if (oversize > MI_ARENA_STATIC_MAX) return NULL; + const size_t oldtop = mi_atomic_add_acq_rel(&mi_arena_static_top, oversize); + size_t top = oldtop + oversize; + if (top > MI_ARENA_STATIC_MAX) { + // try to roll back, ok if this fails + mi_atomic_cas_strong_acq_rel(&mi_arena_static_top, &top, oldtop); + return NULL; + } + + // success + *memid = _mi_memid_create(MI_MEM_STATIC); + const size_t start = _mi_align_up(oldtop, alignment); + uint8_t* const p = &mi_arena_static[start]; + _mi_memzero(p, size); + return p; +} + +static void* mi_arena_meta_zalloc(size_t size, mi_memid_t* memid, mi_stats_t* stats) { + *memid = _mi_memid_none(); + + // try static + void* p = mi_arena_static_zalloc(size, MI_ALIGNMENT_MAX, memid); + if (p != NULL) return p; + + // or fall back to the OS + return _mi_os_alloc(size, memid, stats); +} + +static void mi_arena_meta_free(void* p, mi_memid_t memid, size_t size, mi_stats_t* stats) { + if (mi_memkind_is_os(memid.memkind)) { + _mi_os_free(p, size, memid, stats); + } + else { + mi_assert(memid.memkind == MI_MEM_STATIC); + } +} + +static void* mi_arena_block_start(mi_arena_t* arena, mi_bitmap_index_t bindex) { + return (arena->start + mi_arena_block_size(mi_bitmap_index_bit(bindex))); +} + + +/* ----------------------------------------------------------- + Thread safe allocation in an arena +----------------------------------------------------------- */ + +// claim the `blocks_inuse` bits +static bool mi_arena_try_claim(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* bitmap_idx) +{ + size_t idx = 0; // mi_atomic_load_relaxed(&arena->search_idx); // start from last search; ok to be relaxed as the exact start does not matter + if (_mi_bitmap_try_find_from_claim_across(arena->blocks_inuse, arena->field_count, idx, blocks, bitmap_idx)) { + mi_atomic_store_relaxed(&arena->search_idx, mi_bitmap_index_field(*bitmap_idx)); // start search from found location next time around + return true; + }; + return false; +} + + +/* ----------------------------------------------------------- + Arena Allocation +----------------------------------------------------------- */ + +static mi_decl_noinline void* mi_arena_try_alloc_at(mi_arena_t* arena, size_t arena_index, size_t needed_bcount, + bool commit, mi_memid_t* memid, mi_os_tld_t* tld) +{ + MI_UNUSED(arena_index); + mi_assert_internal(mi_arena_id_index(arena->id) == arena_index); + + mi_bitmap_index_t bitmap_index; + if (!mi_arena_try_claim(arena, needed_bcount, &bitmap_index)) return NULL; + + // claimed it! + void* p = mi_arena_block_start(arena, bitmap_index); + *memid = mi_memid_create_arena(arena->id, arena->exclusive, bitmap_index); + memid->is_pinned = arena->memid.is_pinned; + + // none of the claimed blocks should be scheduled for a decommit + if (arena->blocks_purge != NULL) { + // this is thread safe as a potential purge only decommits parts that are not yet claimed as used (in `blocks_inuse`). + _mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, needed_bcount, bitmap_index); + } + + // set the dirty bits (todo: no need for an atomic op here?) + if (arena->memid.initially_zero && arena->blocks_dirty != NULL) { + memid->initially_zero = _mi_bitmap_claim_across(arena->blocks_dirty, arena->field_count, needed_bcount, bitmap_index, NULL); + } + + // set commit state + if (arena->blocks_committed == NULL) { + // always committed + memid->initially_committed = true; + } + else if (commit) { + // commit requested, but the range may not be committed as a whole: ensure it is committed now + memid->initially_committed = true; + bool any_uncommitted; + _mi_bitmap_claim_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index, &any_uncommitted); + if (any_uncommitted) { + bool commit_zero = false; + if (!_mi_os_commit(p, mi_arena_block_size(needed_bcount), &commit_zero, tld->stats)) { + memid->initially_committed = false; + } + else { + if (commit_zero) { memid->initially_zero = true; } + } + } + } + else { + // no need to commit, but check if already fully committed + memid->initially_committed = _mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index); + } + + return p; +} + +// allocate in a speficic arena +static void* mi_arena_try_alloc_at_id(mi_arena_id_t arena_id, bool match_numa_node, int numa_node, size_t size, size_t alignment, + bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld ) +{ + MI_UNUSED_RELEASE(alignment); + mi_assert_internal(alignment <= MI_SEGMENT_ALIGN); + const size_t bcount = mi_block_count_of_size(size); + const size_t arena_index = mi_arena_id_index(arena_id); + mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count)); + mi_assert_internal(size <= mi_arena_block_size(bcount)); + + // Check arena suitability + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]); + if (arena == NULL) return NULL; + if (!allow_large && arena->is_large) return NULL; + if (!mi_arena_id_is_suitable(arena->id, arena->exclusive, req_arena_id)) return NULL; + if (req_arena_id == _mi_arena_id_none()) { // in not specific, check numa affinity + const bool numa_suitable = (numa_node < 0 || arena->numa_node < 0 || arena->numa_node == numa_node); + if (match_numa_node) { if (!numa_suitable) return NULL; } + else { if (numa_suitable) return NULL; } + } + + // try to allocate + void* p = mi_arena_try_alloc_at(arena, arena_index, bcount, commit, memid, tld); + mi_assert_internal(p == NULL || _mi_is_aligned(p, alignment)); + return p; +} + + +// allocate from an arena with fallback to the OS +static mi_decl_noinline void* mi_arena_try_alloc(int numa_node, size_t size, size_t alignment, + bool commit, bool allow_large, + mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld ) +{ + MI_UNUSED(alignment); + mi_assert_internal(alignment <= MI_SEGMENT_ALIGN); + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + if mi_likely(max_arena == 0) return NULL; + + if (req_arena_id != _mi_arena_id_none()) { + // try a specific arena if requested + if (mi_arena_id_index(req_arena_id) < max_arena) { + void* p = mi_arena_try_alloc_at_id(req_arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + } + } + else { + // try numa affine allocation + for (size_t i = 0; i < max_arena; i++) { + void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + } + + // try from another numa node instead.. + if (numa_node >= 0) { // if numa_node was < 0 (no specific affinity requested), all arena's have been tried already + for (size_t i = 0; i < max_arena; i++) { + void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), false /* only proceed if not numa local */, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + } + } + } + return NULL; +} + +// try to reserve a fresh arena space +static bool mi_arena_reserve(size_t req_size, bool allow_large, mi_arena_id_t req_arena_id, mi_arena_id_t *arena_id) +{ + if (_mi_preloading()) return false; // use OS only while pre loading + if (req_arena_id != _mi_arena_id_none()) return false; + + const size_t arena_count = mi_atomic_load_acquire(&mi_arena_count); + if (arena_count > (MI_MAX_ARENAS - 4)) return false; + + size_t arena_reserve = mi_option_get_size(mi_option_arena_reserve); + if (arena_reserve == 0) return false; + + if (!_mi_os_has_virtual_reserve()) { + arena_reserve = arena_reserve/4; // be conservative if virtual reserve is not supported (for some embedded systems for example) + } + arena_reserve = _mi_align_up(arena_reserve, MI_ARENA_BLOCK_SIZE); + if (arena_count >= 8 && arena_count <= 128) { + arena_reserve = ((size_t)1<<(arena_count/8)) * arena_reserve; // scale up the arena sizes exponentially + } + if (arena_reserve < req_size) return false; // should be able to at least handle the current allocation size + + // commit eagerly? + bool arena_commit = false; + if (mi_option_get(mi_option_arena_eager_commit) == 2) { arena_commit = _mi_os_has_overcommit(); } + else if (mi_option_get(mi_option_arena_eager_commit) == 1) { arena_commit = true; } + + return (mi_reserve_os_memory_ex(arena_reserve, arena_commit, allow_large, false /* exclusive */, arena_id) == 0); +} + + +void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, + mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld) +{ + mi_assert_internal(memid != NULL && tld != NULL); + mi_assert_internal(size > 0); + *memid = _mi_memid_none(); + + const int numa_node = _mi_os_numa_node(tld); // current numa node + + // try to allocate in an arena if the alignment is small enough and the object is not too small (as for heap meta data) + if (size >= MI_ARENA_MIN_OBJ_SIZE && alignment <= MI_SEGMENT_ALIGN && align_offset == 0) { + void* p = mi_arena_try_alloc(numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + + // otherwise, try to first eagerly reserve a new arena + if (req_arena_id == _mi_arena_id_none()) { + mi_arena_id_t arena_id = 0; + if (mi_arena_reserve(size, allow_large, req_arena_id, &arena_id)) { + // and try allocate in there + mi_assert_internal(req_arena_id == _mi_arena_id_none()); + p = mi_arena_try_alloc_at_id(arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + } + } + } + + // if we cannot use OS allocation, return NULL + if (mi_option_is_enabled(mi_option_limit_os_alloc) || req_arena_id != _mi_arena_id_none()) { + errno = ENOMEM; + return NULL; + } + + // finally, fall back to the OS + if (align_offset > 0) { + return _mi_os_alloc_aligned_at_offset(size, alignment, align_offset, commit, allow_large, memid, tld->stats); + } + else { + return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld->stats); + } +} + +void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld) +{ + return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, 0, commit, allow_large, req_arena_id, memid, tld); +} + + +void* mi_arena_area(mi_arena_id_t arena_id, size_t* size) { + if (size != NULL) *size = 0; + size_t arena_index = mi_arena_id_index(arena_id); + if (arena_index >= MI_MAX_ARENAS) return NULL; + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]); + if (arena == NULL) return NULL; + if (size != NULL) { *size = mi_arena_block_size(arena->block_count); } + return arena->start; +} + + +/* ----------------------------------------------------------- + Arena purge +----------------------------------------------------------- */ + +static long mi_arena_purge_delay(void) { + // <0 = no purging allowed, 0=immediate purging, >0=milli-second delay + return (mi_option_get(mi_option_purge_delay) * mi_option_get(mi_option_arena_purge_mult)); +} + +// reset or decommit in an arena and update the committed/decommit bitmaps +// assumes we own the area (i.e. blocks_in_use is claimed by us) +static void mi_arena_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) { + mi_assert_internal(arena->blocks_committed != NULL); + mi_assert_internal(arena->blocks_purge != NULL); + mi_assert_internal(!arena->memid.is_pinned); + const size_t size = mi_arena_block_size(blocks); + void* const p = mi_arena_block_start(arena, bitmap_idx); + bool needs_recommit; + if (_mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx)) { + // all blocks are committed, we can purge freely + needs_recommit = _mi_os_purge(p, size, stats); + } + else { + // some blocks are not committed -- this can happen when a partially committed block is freed + // in `_mi_arena_free` and it is conservatively marked as uncommitted but still scheduled for a purge + // we need to ensure we do not try to reset (as that may be invalid for uncommitted memory), + // and also undo the decommit stats (as it was already adjusted) + mi_assert_internal(mi_option_is_enabled(mi_option_purge_decommits)); + needs_recommit = _mi_os_purge_ex(p, size, false /* allow reset? */, stats); + _mi_stat_increase(&stats->committed, size); + } + + // clear the purged blocks + _mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx); + // update committed bitmap + if (needs_recommit) { + _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx); + } +} + +// Schedule a purge. This is usually delayed to avoid repeated decommit/commit calls. +// Note: assumes we (still) own the area as we may purge immediately +static void mi_arena_schedule_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) { + mi_assert_internal(arena->blocks_purge != NULL); + const long delay = mi_arena_purge_delay(); + if (delay < 0) return; // is purging allowed at all? + + if (_mi_preloading() || delay == 0) { + // decommit directly + mi_arena_purge(arena, bitmap_idx, blocks, stats); + } + else { + // schedule decommit + mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire); + if (expire != 0) { + mi_atomic_addi64_acq_rel(&arena->purge_expire, delay/10); // add smallish extra delay + } + else { + mi_atomic_storei64_release(&arena->purge_expire, _mi_clock_now() + delay); + } + _mi_bitmap_claim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx, NULL); + } +} + +// purge a range of blocks +// return true if the full range was purged. +// assumes we own the area (i.e. blocks_in_use is claimed by us) +static bool mi_arena_purge_range(mi_arena_t* arena, size_t idx, size_t startidx, size_t bitlen, size_t purge, mi_stats_t* stats) { + const size_t endidx = startidx + bitlen; + size_t bitidx = startidx; + bool all_purged = false; + while (bitidx < endidx) { + // count consequetive ones in the purge mask + size_t count = 0; + while (bitidx + count < endidx && (purge & ((size_t)1 << (bitidx + count))) != 0) { + count++; + } + if (count > 0) { + // found range to be purged + const mi_bitmap_index_t range_idx = mi_bitmap_index_create(idx, bitidx); + mi_arena_purge(arena, range_idx, count, stats); + if (count == bitlen) { + all_purged = true; + } + } + bitidx += (count+1); // +1 to skip the zero bit (or end) + } + return all_purged; +} + +// returns true if anything was purged +static bool mi_arena_try_purge(mi_arena_t* arena, mi_msecs_t now, bool force, mi_stats_t* stats) +{ + if (arena->memid.is_pinned || arena->blocks_purge == NULL) return false; + mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire); + if (expire == 0) return false; + if (!force && expire > now) return false; + + // reset expire (if not already set concurrently) + mi_atomic_casi64_strong_acq_rel(&arena->purge_expire, &expire, 0); + + // potential purges scheduled, walk through the bitmap + bool any_purged = false; + bool full_purge = true; + for (size_t i = 0; i < arena->field_count; i++) { + size_t purge = mi_atomic_load_relaxed(&arena->blocks_purge[i]); + if (purge != 0) { + size_t bitidx = 0; + while (bitidx < MI_BITMAP_FIELD_BITS) { + // find consequetive range of ones in the purge mask + size_t bitlen = 0; + while (bitidx + bitlen < MI_BITMAP_FIELD_BITS && (purge & ((size_t)1 << (bitidx + bitlen))) != 0) { + bitlen++; + } + // try to claim the longest range of corresponding in_use bits + const mi_bitmap_index_t bitmap_index = mi_bitmap_index_create(i, bitidx); + while( bitlen > 0 ) { + if (_mi_bitmap_try_claim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index)) { + break; + } + bitlen--; + } + // actual claimed bits at `in_use` + if (bitlen > 0) { + // read purge again now that we have the in_use bits + purge = mi_atomic_load_acquire(&arena->blocks_purge[i]); + if (!mi_arena_purge_range(arena, i, bitidx, bitlen, purge, stats)) { + full_purge = false; + } + any_purged = true; + // release the claimed `in_use` bits again + _mi_bitmap_unclaim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index); + } + bitidx += (bitlen+1); // +1 to skip the zero (or end) + } // while bitidx + } // purge != 0 + } + // if not fully purged, make sure to purge again in the future + if (!full_purge) { + const long delay = mi_arena_purge_delay(); + mi_msecs_t expected = 0; + mi_atomic_casi64_strong_acq_rel(&arena->purge_expire,&expected,_mi_clock_now() + delay); + } + return any_purged; +} + +static void mi_arenas_try_purge( bool force, bool visit_all, mi_stats_t* stats ) { + if (_mi_preloading() || mi_arena_purge_delay() <= 0) return; // nothing will be scheduled + + const size_t max_arena = mi_atomic_load_acquire(&mi_arena_count); + if (max_arena == 0) return; + + // allow only one thread to purge at a time + static mi_atomic_guard_t purge_guard; + mi_atomic_guard(&purge_guard) + { + mi_msecs_t now = _mi_clock_now(); + size_t max_purge_count = (visit_all ? max_arena : 1); + for (size_t i = 0; i < max_arena; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]); + if (arena != NULL) { + if (mi_arena_try_purge(arena, now, force, stats)) { + if (max_purge_count <= 1) break; + max_purge_count--; + } + } + } + } +} + + +/* ----------------------------------------------------------- + Arena free +----------------------------------------------------------- */ + +void _mi_arena_free(void* p, size_t size, size_t committed_size, mi_memid_t memid, mi_stats_t* stats) { + mi_assert_internal(size > 0 && stats != NULL); + mi_assert_internal(committed_size <= size); + if (p==NULL) return; + if (size==0) return; + const bool all_committed = (committed_size == size); + + if (mi_memkind_is_os(memid.memkind)) { + // was a direct OS allocation, pass through + if (!all_committed && committed_size > 0) { + // if partially committed, adjust the committed stats (as `_mi_os_free` will increase decommit by the full size) + _mi_stat_decrease(&stats->committed, committed_size); + } + _mi_os_free(p, size, memid, stats); + } + else if (memid.memkind == MI_MEM_ARENA) { + // allocated in an arena + size_t arena_idx; + size_t bitmap_idx; + mi_arena_memid_indices(memid, &arena_idx, &bitmap_idx); + mi_assert_internal(arena_idx < MI_MAX_ARENAS); + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t,&mi_arenas[arena_idx]); + mi_assert_internal(arena != NULL); + const size_t blocks = mi_block_count_of_size(size); + + // checks + if (arena == NULL) { + _mi_error_message(EINVAL, "trying to free from non-existent arena: %p, size %zu, memid: 0x%zx\n", p, size, memid); + return; + } + mi_assert_internal(arena->field_count > mi_bitmap_index_field(bitmap_idx)); + if (arena->field_count <= mi_bitmap_index_field(bitmap_idx)) { + _mi_error_message(EINVAL, "trying to free from non-existent arena block: %p, size %zu, memid: 0x%zx\n", p, size, memid); + return; + } + + // need to set all memory to undefined as some parts may still be marked as no_access (like padding etc.) + mi_track_mem_undefined(p,size); + + // potentially decommit + if (arena->memid.is_pinned || arena->blocks_committed == NULL) { + mi_assert_internal(all_committed); + } + else { + mi_assert_internal(arena->blocks_committed != NULL); + mi_assert_internal(arena->blocks_purge != NULL); + + if (!all_committed) { + // mark the entire range as no longer committed (so we recommit the full range when re-using) + _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx); + mi_track_mem_noaccess(p,size); + if (committed_size > 0) { + // if partially committed, adjust the committed stats (is it will be recommitted when re-using) + // in the delayed purge, we now need to not count a decommit if the range is not marked as committed. + _mi_stat_decrease(&stats->committed, committed_size); + } + // note: if not all committed, it may be that the purge will reset/decommit the entire range + // that contains already decommitted parts. Since purge consistently uses reset or decommit that + // works (as we should never reset decommitted parts). + } + // (delay) purge the entire range + mi_arena_schedule_purge(arena, bitmap_idx, blocks, stats); + } + + // and make it available to others again + bool all_inuse = _mi_bitmap_unclaim_across(arena->blocks_inuse, arena->field_count, blocks, bitmap_idx); + if (!all_inuse) { + _mi_error_message(EAGAIN, "trying to free an already freed arena block: %p, size %zu\n", p, size); + return; + }; + } + else { + // arena was none, external, or static; nothing to do + mi_assert_internal(memid.memkind < MI_MEM_OS); + } + + // purge expired decommits + mi_arenas_try_purge(false, false, stats); +} + +// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit` +// for dynamic libraries that are unloaded and need to release all their allocated memory. +static void mi_arenas_unsafe_destroy(void) { + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + size_t new_max_arena = 0; + for (size_t i = 0; i < max_arena; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]); + if (arena != NULL) { + if (arena->start != NULL && mi_memkind_is_os(arena->memid.memkind)) { + mi_atomic_store_ptr_release(mi_arena_t, &mi_arenas[i], NULL); + _mi_os_free(arena->start, mi_arena_size(arena), arena->memid, &_mi_stats_main); + } + else { + new_max_arena = i; + } + mi_arena_meta_free(arena, arena->meta_memid, arena->meta_size, &_mi_stats_main); + } + } + + // try to lower the max arena. + size_t expected = max_arena; + mi_atomic_cas_strong_acq_rel(&mi_arena_count, &expected, new_max_arena); +} + +// Purge the arenas; if `force_purge` is true, amenable parts are purged even if not yet expired +void _mi_arena_collect(bool force_purge, mi_stats_t* stats) { + mi_arenas_try_purge(force_purge, true /* visit all */, stats); +} + +// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit` +// for dynamic libraries that are unloaded and need to release all their allocated memory. +void _mi_arena_unsafe_destroy_all(mi_stats_t* stats) { + mi_arenas_unsafe_destroy(); + _mi_arena_collect(true /* force purge */, stats); // purge non-owned arenas +} + +// Is a pointer inside any of our arenas? +bool _mi_arena_contains(const void* p) { + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + for (size_t i = 0; i < max_arena; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]); + if (arena != NULL && arena->start <= (const uint8_t*)p && arena->start + mi_arena_block_size(arena->block_count) > (const uint8_t*)p) { + return true; + } + } + return false; +} + + +/* ----------------------------------------------------------- + Add an arena. +----------------------------------------------------------- */ + +static bool mi_arena_add(mi_arena_t* arena, mi_arena_id_t* arena_id) { + mi_assert_internal(arena != NULL); + mi_assert_internal((uintptr_t)mi_atomic_load_ptr_relaxed(uint8_t,&arena->start) % MI_SEGMENT_ALIGN == 0); + mi_assert_internal(arena->block_count > 0); + if (arena_id != NULL) { *arena_id = -1; } + + size_t i = mi_atomic_increment_acq_rel(&mi_arena_count); + if (i >= MI_MAX_ARENAS) { + mi_atomic_decrement_acq_rel(&mi_arena_count); + return false; + } + arena->id = mi_arena_id_create(i); + mi_atomic_store_ptr_release(mi_arena_t,&mi_arenas[i], arena); + if (arena_id != NULL) { *arena_id = arena->id; } + return true; +} + +static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept +{ + if (arena_id != NULL) *arena_id = _mi_arena_id_none(); + if (size < MI_ARENA_BLOCK_SIZE) return false; + + if (is_large) { + mi_assert_internal(memid.initially_committed && memid.is_pinned); + } + + const size_t bcount = size / MI_ARENA_BLOCK_SIZE; + const size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS); + const size_t bitmaps = (memid.is_pinned ? 2 : 4); + const size_t asize = sizeof(mi_arena_t) + (bitmaps*fields*sizeof(mi_bitmap_field_t)); + mi_memid_t meta_memid; + mi_arena_t* arena = (mi_arena_t*)mi_arena_meta_zalloc(asize, &meta_memid, &_mi_stats_main); // TODO: can we avoid allocating from the OS? + if (arena == NULL) return false; + + // already zero'd due to os_alloc + // _mi_memzero(arena, asize); + arena->id = _mi_arena_id_none(); + arena->memid = memid; + arena->exclusive = exclusive; + arena->meta_size = asize; + arena->meta_memid = meta_memid; + arena->block_count = bcount; + arena->field_count = fields; + arena->start = (uint8_t*)start; + arena->numa_node = numa_node; // TODO: or get the current numa node if -1? (now it allows anyone to allocate on -1) + arena->is_large = is_large; + arena->purge_expire = 0; + arena->search_idx = 0; + arena->blocks_dirty = &arena->blocks_inuse[fields]; // just after inuse bitmap + arena->blocks_committed = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[2*fields]); // just after dirty bitmap + arena->blocks_purge = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[3*fields]); // just after committed bitmap + // initialize committed bitmap? + if (arena->blocks_committed != NULL && arena->memid.initially_committed) { + memset((void*)arena->blocks_committed, 0xFF, fields*sizeof(mi_bitmap_field_t)); // cast to void* to avoid atomic warning + } + + // and claim leftover blocks if needed (so we never allocate there) + ptrdiff_t post = (fields * MI_BITMAP_FIELD_BITS) - bcount; + mi_assert_internal(post >= 0); + if (post > 0) { + // don't use leftover bits at the end + mi_bitmap_index_t postidx = mi_bitmap_index_create(fields - 1, MI_BITMAP_FIELD_BITS - post); + _mi_bitmap_claim(arena->blocks_inuse, fields, post, postidx, NULL); + } + return mi_arena_add(arena, arena_id); + +} + +bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept { + mi_memid_t memid = _mi_memid_create(MI_MEM_EXTERNAL); + memid.initially_committed = is_committed; + memid.initially_zero = is_zero; + memid.is_pinned = is_large; + return mi_manage_os_memory_ex2(start,size,is_large,numa_node,exclusive,memid, arena_id); +} + +// Reserve a range of regular OS memory +int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept { + if (arena_id != NULL) *arena_id = _mi_arena_id_none(); + size = _mi_align_up(size, MI_ARENA_BLOCK_SIZE); // at least one block + mi_memid_t memid; + void* start = _mi_os_alloc_aligned(size, MI_SEGMENT_ALIGN, commit, allow_large, &memid, &_mi_stats_main); + if (start == NULL) return ENOMEM; + const bool is_large = memid.is_pinned; // todo: use separate is_large field? + if (!mi_manage_os_memory_ex2(start, size, is_large, -1 /* numa node */, exclusive, memid, arena_id)) { + _mi_os_free_ex(start, size, commit, memid, &_mi_stats_main); + _mi_verbose_message("failed to reserve %zu k memory\n", _mi_divide_up(size, 1024)); + return ENOMEM; + } + _mi_verbose_message("reserved %zu KiB memory%s\n", _mi_divide_up(size, 1024), is_large ? " (in large os pages)" : ""); + return 0; +} + + +// Manage a range of regular OS memory +bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept { + return mi_manage_os_memory_ex(start, size, is_committed, is_large, is_zero, numa_node, false /* exclusive? */, NULL); +} + +// Reserve a range of regular OS memory +int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept { + return mi_reserve_os_memory_ex(size, commit, allow_large, false, NULL); +} + + +/* ----------------------------------------------------------- + Debugging +----------------------------------------------------------- */ + +static size_t mi_debug_show_bitmap(const char* prefix, mi_bitmap_field_t* fields, size_t field_count ) { + size_t inuse_count = 0; + for (size_t i = 0; i < field_count; i++) { + char buf[MI_BITMAP_FIELD_BITS + 1]; + uintptr_t field = mi_atomic_load_relaxed(&fields[i]); + for (size_t bit = 0; bit < MI_BITMAP_FIELD_BITS; bit++) { + bool inuse = ((((uintptr_t)1 << bit) & field) != 0); + if (inuse) inuse_count++; + buf[MI_BITMAP_FIELD_BITS - 1 - bit] = (inuse ? 'x' : '.'); + } + buf[MI_BITMAP_FIELD_BITS] = 0; + _mi_verbose_message("%s%s\n", prefix, buf); + } + return inuse_count; +} + +void mi_debug_show_arenas(void) mi_attr_noexcept { + size_t max_arenas = mi_atomic_load_relaxed(&mi_arena_count); + for (size_t i = 0; i < max_arenas; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]); + if (arena == NULL) break; + size_t inuse_count = 0; + _mi_verbose_message("arena %zu: %zu blocks with %zu fields\n", i, arena->block_count, arena->field_count); + inuse_count += mi_debug_show_bitmap(" ", arena->blocks_inuse, arena->field_count); + _mi_verbose_message(" blocks in use ('x'): %zu\n", inuse_count); + } +} + + +/* ----------------------------------------------------------- + Reserve a huge page arena. +----------------------------------------------------------- */ +// reserve at a specific numa node +int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept { + if (arena_id != NULL) *arena_id = -1; + if (pages==0) return 0; + if (numa_node < -1) numa_node = -1; + if (numa_node >= 0) numa_node = numa_node % _mi_os_numa_node_count(); + size_t hsize = 0; + size_t pages_reserved = 0; + mi_memid_t memid; + void* p = _mi_os_alloc_huge_os_pages(pages, numa_node, timeout_msecs, &pages_reserved, &hsize, &memid); + if (p==NULL || pages_reserved==0) { + _mi_warning_message("failed to reserve %zu GiB huge pages\n", pages); + return ENOMEM; + } + _mi_verbose_message("numa node %i: reserved %zu GiB huge pages (of the %zu GiB requested)\n", numa_node, pages_reserved, pages); + + if (!mi_manage_os_memory_ex2(p, hsize, true, numa_node, exclusive, memid, arena_id)) { + _mi_os_free(p, hsize, memid, &_mi_stats_main); + return ENOMEM; + } + return 0; +} + +int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept { + return mi_reserve_huge_os_pages_at_ex(pages, numa_node, timeout_msecs, false, NULL); +} + +// reserve huge pages evenly among the given number of numa nodes (or use the available ones as detected) +int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept { + if (pages == 0) return 0; + + // pages per numa node + size_t numa_count = (numa_nodes > 0 ? numa_nodes : _mi_os_numa_node_count()); + if (numa_count <= 0) numa_count = 1; + const size_t pages_per = pages / numa_count; + const size_t pages_mod = pages % numa_count; + const size_t timeout_per = (timeout_msecs==0 ? 0 : (timeout_msecs / numa_count) + 50); + + // reserve evenly among numa nodes + for (size_t numa_node = 0; numa_node < numa_count && pages > 0; numa_node++) { + size_t node_pages = pages_per; // can be 0 + if (numa_node < pages_mod) node_pages++; + int err = mi_reserve_huge_os_pages_at(node_pages, (int)numa_node, timeout_per); + if (err) return err; + if (pages < node_pages) { + pages = 0; + } + else { + pages -= node_pages; + } + } + + return 0; +} + +int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept { + MI_UNUSED(max_secs); + _mi_warning_message("mi_reserve_huge_os_pages is deprecated: use mi_reserve_huge_os_pages_interleave/at instead\n"); + if (pages_reserved != NULL) *pages_reserved = 0; + int err = mi_reserve_huge_os_pages_interleave(pages, 0, (size_t)(max_secs * 1000.0)); + if (err==0 && pages_reserved!=NULL) *pages_reserved = pages; + return err; +} + diff --git a/3rdparty/mimalloc/src/bitmap.c b/3rdparty/mimalloc/src/bitmap.c new file mode 100644 index 00000000..a13dbe15 --- /dev/null +++ b/3rdparty/mimalloc/src/bitmap.c @@ -0,0 +1,432 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2019-2023 Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ---------------------------------------------------------------------------- +Concurrent bitmap that can set/reset sequences of bits atomically, +represeted as an array of fields where each field is a machine word (`size_t`) + +There are two api's; the standard one cannot have sequences that cross +between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS). + +The `_across` postfixed functions do allow sequences that can cross over +between the fields. (This is used in arena allocation) +---------------------------------------------------------------------------- */ + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "bitmap.h" + +/* ----------------------------------------------------------- + Bitmap definition +----------------------------------------------------------- */ + +// The bit mask for a given number of blocks at a specified bit index. +static inline size_t mi_bitmap_mask_(size_t count, size_t bitidx) { + mi_assert_internal(count + bitidx <= MI_BITMAP_FIELD_BITS); + mi_assert_internal(count > 0); + if (count >= MI_BITMAP_FIELD_BITS) return MI_BITMAP_FIELD_FULL; + if (count == 0) return 0; + return ((((size_t)1 << count) - 1) << bitidx); +} + + +/* ----------------------------------------------------------- + Claim a bit sequence atomically +----------------------------------------------------------- */ + +// Try to atomically claim a sequence of `count` bits in a single +// field at `idx` in `bitmap`. Returns `true` on success. +inline bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx) +{ + mi_assert_internal(bitmap_idx != NULL); + mi_assert_internal(count <= MI_BITMAP_FIELD_BITS); + mi_assert_internal(count > 0); + mi_bitmap_field_t* field = &bitmap[idx]; + size_t map = mi_atomic_load_relaxed(field); + if (map==MI_BITMAP_FIELD_FULL) return false; // short cut + + // search for 0-bit sequence of length count + const size_t mask = mi_bitmap_mask_(count, 0); + const size_t bitidx_max = MI_BITMAP_FIELD_BITS - count; + +#ifdef MI_HAVE_FAST_BITSCAN + size_t bitidx = mi_ctz(~map); // quickly find the first zero bit if possible +#else + size_t bitidx = 0; // otherwise start at 0 +#endif + size_t m = (mask << bitidx); // invariant: m == mask shifted by bitidx + + // scan linearly for a free range of zero bits + while (bitidx <= bitidx_max) { + const size_t mapm = (map & m); + if (mapm == 0) { // are the mask bits free at bitidx? + mi_assert_internal((m >> bitidx) == mask); // no overflow? + const size_t newmap = (map | m); + mi_assert_internal((newmap^map) >> bitidx == mask); + if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { // TODO: use weak cas here? + // no success, another thread claimed concurrently.. keep going (with updated `map`) + continue; + } + else { + // success, we claimed the bits! + *bitmap_idx = mi_bitmap_index_create(idx, bitidx); + return true; + } + } + else { + // on to the next bit range +#ifdef MI_HAVE_FAST_BITSCAN + mi_assert_internal(mapm != 0); + const size_t shift = (count == 1 ? 1 : (MI_INTPTR_BITS - mi_clz(mapm) - bitidx)); + mi_assert_internal(shift > 0 && shift <= count); +#else + const size_t shift = 1; +#endif + bitidx += shift; + m <<= shift; + } + } + // no bits found + return false; +} + +// Find `count` bits of 0 and set them to 1 atomically; returns `true` on success. +// Starts at idx, and wraps around to search in all `bitmap_fields` fields. +// `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields. +bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { + size_t idx = start_field_idx; + for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { + if (idx >= bitmap_fields) { idx = 0; } // wrap + if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { + return true; + } + } + return false; +} + +// Like _mi_bitmap_try_find_from_claim but with an extra predicate that must be fullfilled +bool _mi_bitmap_try_find_from_claim_pred(mi_bitmap_t bitmap, const size_t bitmap_fields, + const size_t start_field_idx, const size_t count, + mi_bitmap_pred_fun_t pred_fun, void* pred_arg, + mi_bitmap_index_t* bitmap_idx) { + size_t idx = start_field_idx; + for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { + if (idx >= bitmap_fields) idx = 0; // wrap + if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { + if (pred_fun == NULL || pred_fun(*bitmap_idx, pred_arg)) { + return true; + } + // predicate returned false, unclaim and look further + _mi_bitmap_unclaim(bitmap, bitmap_fields, count, *bitmap_idx); + } + } + return false; +} + +// Set `count` bits at `bitmap_idx` to 0 atomically +// Returns `true` if all `count` bits were 1 previously. +bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + const size_t idx = mi_bitmap_index_field(bitmap_idx); + const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); + // mi_assert_internal((bitmap[idx] & mask) == mask); + const size_t prev = mi_atomic_and_acq_rel(&bitmap[idx], ~mask); + return ((prev & mask) == mask); +} + + +// Set `count` bits at `bitmap_idx` to 1 atomically +// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. +bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero) { + const size_t idx = mi_bitmap_index_field(bitmap_idx); + const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); + //mi_assert_internal(any_zero != NULL || (bitmap[idx] & mask) == 0); + size_t prev = mi_atomic_or_acq_rel(&bitmap[idx], mask); + if (any_zero != NULL) { *any_zero = ((prev & mask) != mask); } + return ((prev & mask) == 0); +} + +// Returns `true` if all `count` bits were 1. `any_ones` is `true` if there was at least one bit set to one. +static bool mi_bitmap_is_claimedx(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_ones) { + const size_t idx = mi_bitmap_index_field(bitmap_idx); + const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); + const size_t field = mi_atomic_load_relaxed(&bitmap[idx]); + if (any_ones != NULL) { *any_ones = ((field & mask) != 0); } + return ((field & mask) == mask); +} + +// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically. +// Returns `true` if successful when all previous `count` bits were 0. +bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + const size_t idx = mi_bitmap_index_field(bitmap_idx); + const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); + size_t expected = mi_atomic_load_relaxed(&bitmap[idx]); + do { + if ((expected & mask) != 0) return false; + } + while (!mi_atomic_cas_strong_acq_rel(&bitmap[idx], &expected, expected | mask)); + mi_assert_internal((expected & mask) == 0); + return true; +} + + +bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + return mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, NULL); +} + +bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + bool any_ones; + mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, &any_ones); + return any_ones; +} + + +//-------------------------------------------------------------------------- +// the `_across` functions work on bitmaps where sequences can cross over +// between the fields. This is used in arena allocation +//-------------------------------------------------------------------------- + +// Try to atomically claim a sequence of `count` bits starting from the field +// at `idx` in `bitmap` and crossing into subsequent fields. Returns `true` on success. +// Only needs to consider crossing into the next fields (see `mi_bitmap_try_find_from_claim_across`) +static bool mi_bitmap_try_find_claim_field_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t idx, const size_t count, const size_t retries, mi_bitmap_index_t* bitmap_idx) +{ + mi_assert_internal(bitmap_idx != NULL); + + // check initial trailing zeros + mi_bitmap_field_t* field = &bitmap[idx]; + size_t map = mi_atomic_load_relaxed(field); + const size_t initial = mi_clz(map); // count of initial zeros starting at idx + mi_assert_internal(initial <= MI_BITMAP_FIELD_BITS); + if (initial == 0) return false; + if (initial >= count) return _mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx); // no need to cross fields (this case won't happen for us) + if (_mi_divide_up(count - initial, MI_BITMAP_FIELD_BITS) >= (bitmap_fields - idx)) return false; // not enough entries + + // scan ahead + size_t found = initial; + size_t mask = 0; // mask bits for the final field + while(found < count) { + field++; + map = mi_atomic_load_relaxed(field); + const size_t mask_bits = (found + MI_BITMAP_FIELD_BITS <= count ? MI_BITMAP_FIELD_BITS : (count - found)); + mi_assert_internal(mask_bits > 0 && mask_bits <= MI_BITMAP_FIELD_BITS); + mask = mi_bitmap_mask_(mask_bits, 0); + if ((map & mask) != 0) return false; // some part is already claimed + found += mask_bits; + } + mi_assert_internal(field < &bitmap[bitmap_fields]); + + // we found a range of contiguous zeros up to the final field; mask contains mask in the final field + // now try to claim the range atomically + mi_bitmap_field_t* const final_field = field; + const size_t final_mask = mask; + mi_bitmap_field_t* const initial_field = &bitmap[idx]; + const size_t initial_idx = MI_BITMAP_FIELD_BITS - initial; + const size_t initial_mask = mi_bitmap_mask_(initial, initial_idx); + + // initial field + size_t newmap; + field = initial_field; + map = mi_atomic_load_relaxed(field); + do { + newmap = (map | initial_mask); + if ((map & initial_mask) != 0) { goto rollback; }; + } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); + + // intermediate fields + while (++field < final_field) { + newmap = MI_BITMAP_FIELD_FULL; + map = 0; + if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { goto rollback; } + } + + // final field + mi_assert_internal(field == final_field); + map = mi_atomic_load_relaxed(field); + do { + newmap = (map | final_mask); + if ((map & final_mask) != 0) { goto rollback; } + } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); + + // claimed! + *bitmap_idx = mi_bitmap_index_create(idx, initial_idx); + return true; + +rollback: + // roll back intermediate fields + // (we just failed to claim `field` so decrement first) + while (--field > initial_field) { + newmap = 0; + map = MI_BITMAP_FIELD_FULL; + mi_assert_internal(mi_atomic_load_relaxed(field) == map); + mi_atomic_store_release(field, newmap); + } + if (field == initial_field) { // (if we failed on the initial field, `field + 1 == initial_field`) + map = mi_atomic_load_relaxed(field); + do { + mi_assert_internal((map & initial_mask) == initial_mask); + newmap = (map & ~initial_mask); + } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); + } + // retry? (we make a recursive call instead of goto to be able to use const declarations) + if (retries <= 2) { + return mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, retries+1, bitmap_idx); + } + else { + return false; + } +} + + +// Find `count` bits of zeros and set them to 1 atomically; returns `true` on success. +// Starts at idx, and wraps around to search in all `bitmap_fields` fields. +bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { + mi_assert_internal(count > 0); + if (count <= 2) { + // we don't bother with crossover fields for small counts + return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, start_field_idx, count, bitmap_idx); + } + + // visit the fields + size_t idx = start_field_idx; + for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { + if (idx >= bitmap_fields) { idx = 0; } // wrap + // first try to claim inside a field + if (count <= MI_BITMAP_FIELD_BITS) { + if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { + return true; + } + } + // if that fails, then try to claim across fields + if (mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, 0, bitmap_idx)) { + return true; + } + } + return false; +} + +// Helper for masks across fields; returns the mid count, post_mask may be 0 +static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) { + MI_UNUSED(bitmap_fields); + const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); + if mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS) { + *pre_mask = mi_bitmap_mask_(count, bitidx); + *mid_mask = 0; + *post_mask = 0; + mi_assert_internal(mi_bitmap_index_field(bitmap_idx) < bitmap_fields); + return 0; + } + else { + const size_t pre_bits = MI_BITMAP_FIELD_BITS - bitidx; + mi_assert_internal(pre_bits < count); + *pre_mask = mi_bitmap_mask_(pre_bits, bitidx); + count -= pre_bits; + const size_t mid_count = (count / MI_BITMAP_FIELD_BITS); + *mid_mask = MI_BITMAP_FIELD_FULL; + count %= MI_BITMAP_FIELD_BITS; + *post_mask = (count==0 ? 0 : mi_bitmap_mask_(count, 0)); + mi_assert_internal(mi_bitmap_index_field(bitmap_idx) + mid_count + (count==0 ? 0 : 1) < bitmap_fields); + return mid_count; + } +} + +// Set `count` bits at `bitmap_idx` to 0 atomically +// Returns `true` if all `count` bits were 1 previously. +bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + size_t idx = mi_bitmap_index_field(bitmap_idx); + size_t pre_mask; + size_t mid_mask; + size_t post_mask; + size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); + bool all_one = true; + mi_bitmap_field_t* field = &bitmap[idx]; + size_t prev = mi_atomic_and_acq_rel(field++, ~pre_mask); // clear first part + if ((prev & pre_mask) != pre_mask) all_one = false; + while(mid_count-- > 0) { + prev = mi_atomic_and_acq_rel(field++, ~mid_mask); // clear mid part + if ((prev & mid_mask) != mid_mask) all_one = false; + } + if (post_mask!=0) { + prev = mi_atomic_and_acq_rel(field, ~post_mask); // clear end part + if ((prev & post_mask) != post_mask) all_one = false; + } + return all_one; +} + +// Set `count` bits at `bitmap_idx` to 1 atomically +// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. +bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero) { + size_t idx = mi_bitmap_index_field(bitmap_idx); + size_t pre_mask; + size_t mid_mask; + size_t post_mask; + size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); + bool all_zero = true; + bool any_zero = false; + _Atomic(size_t)*field = &bitmap[idx]; + size_t prev = mi_atomic_or_acq_rel(field++, pre_mask); + if ((prev & pre_mask) != 0) all_zero = false; + if ((prev & pre_mask) != pre_mask) any_zero = true; + while (mid_count-- > 0) { + prev = mi_atomic_or_acq_rel(field++, mid_mask); + if ((prev & mid_mask) != 0) all_zero = false; + if ((prev & mid_mask) != mid_mask) any_zero = true; + } + if (post_mask!=0) { + prev = mi_atomic_or_acq_rel(field, post_mask); + if ((prev & post_mask) != 0) all_zero = false; + if ((prev & post_mask) != post_mask) any_zero = true; + } + if (pany_zero != NULL) { *pany_zero = any_zero; } + return all_zero; +} + + +// Returns `true` if all `count` bits were 1. +// `any_ones` is `true` if there was at least one bit set to one. +static bool mi_bitmap_is_claimedx_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_ones) { + size_t idx = mi_bitmap_index_field(bitmap_idx); + size_t pre_mask; + size_t mid_mask; + size_t post_mask; + size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); + bool all_ones = true; + bool any_ones = false; + mi_bitmap_field_t* field = &bitmap[idx]; + size_t prev = mi_atomic_load_relaxed(field++); + if ((prev & pre_mask) != pre_mask) all_ones = false; + if ((prev & pre_mask) != 0) any_ones = true; + while (mid_count-- > 0) { + prev = mi_atomic_load_relaxed(field++); + if ((prev & mid_mask) != mid_mask) all_ones = false; + if ((prev & mid_mask) != 0) any_ones = true; + } + if (post_mask!=0) { + prev = mi_atomic_load_relaxed(field); + if ((prev & post_mask) != post_mask) all_ones = false; + if ((prev & post_mask) != 0) any_ones = true; + } + if (pany_ones != NULL) { *pany_ones = any_ones; } + return all_ones; +} + +bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + return mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, NULL); +} + +bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + bool any_ones; + mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, &any_ones); + return any_ones; +} diff --git a/3rdparty/mimalloc/src/bitmap.h b/3rdparty/mimalloc/src/bitmap.h new file mode 100644 index 00000000..0a765c71 --- /dev/null +++ b/3rdparty/mimalloc/src/bitmap.h @@ -0,0 +1,115 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2019-2023 Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ---------------------------------------------------------------------------- +Concurrent bitmap that can set/reset sequences of bits atomically, +represeted as an array of fields where each field is a machine word (`size_t`) + +There are two api's; the standard one cannot have sequences that cross +between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS). +(this is used in region allocation) + +The `_across` postfixed functions do allow sequences that can cross over +between the fields. (This is used in arena allocation) +---------------------------------------------------------------------------- */ +#pragma once +#ifndef MI_BITMAP_H +#define MI_BITMAP_H + +/* ----------------------------------------------------------- + Bitmap definition +----------------------------------------------------------- */ + +#define MI_BITMAP_FIELD_BITS (8*MI_SIZE_SIZE) +#define MI_BITMAP_FIELD_FULL (~((size_t)0)) // all bits set + +// An atomic bitmap of `size_t` fields +typedef _Atomic(size_t) mi_bitmap_field_t; +typedef mi_bitmap_field_t* mi_bitmap_t; + +// A bitmap index is the index of the bit in a bitmap. +typedef size_t mi_bitmap_index_t; + +// Create a bit index. +static inline mi_bitmap_index_t mi_bitmap_index_create(size_t idx, size_t bitidx) { + mi_assert_internal(bitidx < MI_BITMAP_FIELD_BITS); + return (idx*MI_BITMAP_FIELD_BITS) + bitidx; +} + +// Create a bit index. +static inline mi_bitmap_index_t mi_bitmap_index_create_from_bit(size_t full_bitidx) { + return mi_bitmap_index_create(full_bitidx / MI_BITMAP_FIELD_BITS, full_bitidx % MI_BITMAP_FIELD_BITS); +} + +// Get the field index from a bit index. +static inline size_t mi_bitmap_index_field(mi_bitmap_index_t bitmap_idx) { + return (bitmap_idx / MI_BITMAP_FIELD_BITS); +} + +// Get the bit index in a bitmap field +static inline size_t mi_bitmap_index_bit_in_field(mi_bitmap_index_t bitmap_idx) { + return (bitmap_idx % MI_BITMAP_FIELD_BITS); +} + +// Get the full bit index +static inline size_t mi_bitmap_index_bit(mi_bitmap_index_t bitmap_idx) { + return bitmap_idx; +} + +/* ----------------------------------------------------------- + Claim a bit sequence atomically +----------------------------------------------------------- */ + +// Try to atomically claim a sequence of `count` bits in a single +// field at `idx` in `bitmap`. Returns `true` on success. +bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx); + +// Starts at idx, and wraps around to search in all `bitmap_fields` fields. +// For now, `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields. +bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx); + +// Like _mi_bitmap_try_find_from_claim but with an extra predicate that must be fullfilled +typedef bool (mi_cdecl *mi_bitmap_pred_fun_t)(mi_bitmap_index_t bitmap_idx, void* pred_arg); +bool _mi_bitmap_try_find_from_claim_pred(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_pred_fun_t pred_fun, void* pred_arg, mi_bitmap_index_t* bitmap_idx); + +// Set `count` bits at `bitmap_idx` to 0 atomically +// Returns `true` if all `count` bits were 1 previously. +bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); + +// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically. +// Returns `true` if successful when all previous `count` bits were 0. +bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); + +// Set `count` bits at `bitmap_idx` to 1 atomically +// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. +bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero); + +bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); +bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); + + +//-------------------------------------------------------------------------- +// the `_across` functions work on bitmaps where sequences can cross over +// between the fields. This is used in arena allocation +//-------------------------------------------------------------------------- + +// Find `count` bits of zeros and set them to 1 atomically; returns `true` on success. +// Starts at idx, and wraps around to search in all `bitmap_fields` fields. +bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx); + +// Set `count` bits at `bitmap_idx` to 0 atomically +// Returns `true` if all `count` bits were 1 previously. +bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); + +// Set `count` bits at `bitmap_idx` to 1 atomically +// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. +bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero); + +bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); +bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); + +#endif diff --git a/3rdparty/mimalloc/src/heap.c b/3rdparty/mimalloc/src/heap.c new file mode 100644 index 00000000..58520ddf --- /dev/null +++ b/3rdparty/mimalloc/src/heap.c @@ -0,0 +1,626 @@ +/*---------------------------------------------------------------------------- +Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // mi_prim_get_default_heap + +#include // memset, memcpy + +#if defined(_MSC_VER) && (_MSC_VER < 1920) +#pragma warning(disable:4204) // non-constant aggregate initializer +#endif + +/* ----------------------------------------------------------- + Helpers +----------------------------------------------------------- */ + +// return `true` if ok, `false` to break +typedef bool (heap_page_visitor_fun)(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2); + +// Visit all pages in a heap; returns `false` if break was called. +static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void* arg1, void* arg2) +{ + if (heap==NULL || heap->page_count==0) return 0; + + // visit all pages + #if MI_DEBUG>1 + size_t total = heap->page_count; + size_t count = 0; + #endif + + for (size_t i = 0; i <= MI_BIN_FULL; i++) { + mi_page_queue_t* pq = &heap->pages[i]; + mi_page_t* page = pq->first; + while(page != NULL) { + mi_page_t* next = page->next; // save next in case the page gets removed from the queue + mi_assert_internal(mi_page_heap(page) == heap); + #if MI_DEBUG>1 + count++; + #endif + if (!fn(heap, pq, page, arg1, arg2)) return false; + page = next; // and continue + } + } + mi_assert_internal(count == total); + return true; +} + + +#if MI_DEBUG>=2 +static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { + MI_UNUSED(arg1); + MI_UNUSED(arg2); + MI_UNUSED(pq); + mi_assert_internal(mi_page_heap(page) == heap); + mi_segment_t* segment = _mi_page_segment(page); + mi_assert_internal(segment->thread_id == heap->thread_id); + mi_assert_expensive(_mi_page_is_valid(page)); + return true; +} +#endif +#if MI_DEBUG>=3 +static bool mi_heap_is_valid(mi_heap_t* heap) { + mi_assert_internal(heap!=NULL); + mi_heap_visit_pages(heap, &mi_heap_page_is_valid, NULL, NULL); + return true; +} +#endif + + + + +/* ----------------------------------------------------------- + "Collect" pages by migrating `local_free` and `thread_free` + lists and freeing empty pages. This is done when a thread + stops (and in that case abandons pages if there are still + blocks alive) +----------------------------------------------------------- */ + +typedef enum mi_collect_e { + MI_NORMAL, + MI_FORCE, + MI_ABANDON +} mi_collect_t; + + +static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) { + MI_UNUSED(arg2); + MI_UNUSED(heap); + mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL)); + mi_collect_t collect = *((mi_collect_t*)arg_collect); + _mi_page_free_collect(page, collect >= MI_FORCE); + if (mi_page_all_free(page)) { + // no more used blocks, free the page. + // note: this will free retired pages as well. + _mi_page_free(page, pq, collect >= MI_FORCE); + } + else if (collect == MI_ABANDON) { + // still used blocks but the thread is done; abandon the page + _mi_page_abandon(page, pq); + } + return true; // don't break +} + +static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { + MI_UNUSED(arg1); + MI_UNUSED(arg2); + MI_UNUSED(heap); + MI_UNUSED(pq); + _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false); + return true; // don't break +} + +static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect) +{ + if (heap==NULL || !mi_heap_is_initialized(heap)) return; + + const bool force = collect >= MI_FORCE; + _mi_deferred_free(heap, force); + + // note: never reclaim on collect but leave it to threads that need storage to reclaim + const bool force_main = + #ifdef NDEBUG + collect == MI_FORCE + #else + collect >= MI_FORCE + #endif + && _mi_is_main_thread() && mi_heap_is_backing(heap) && !heap->no_reclaim; + + if (force_main) { + // the main thread is abandoned (end-of-program), try to reclaim all abandoned segments. + // if all memory is freed by now, all segments should be freed. + _mi_abandoned_reclaim_all(heap, &heap->tld->segments); + } + + // if abandoning, mark all pages to no longer add to delayed_free + if (collect == MI_ABANDON) { + mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL); + } + + // free all current thread delayed blocks. + // (if abandoning, after this there are no more thread-delayed references into the pages.) + _mi_heap_delayed_free_all(heap); + + // collect retired pages + _mi_heap_collect_retired(heap, force); + + // collect all pages owned by this thread + mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL); + mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL ); + + // collect abandoned segments (in particular, purge expired parts of segments in the abandoned segment list) + // note: forced purge can be quite expensive if many threads are created/destroyed so we do not force on abandonment + _mi_abandoned_collect(heap, collect == MI_FORCE /* force? */, &heap->tld->segments); + + // collect segment local caches + if (force) { + _mi_segment_thread_collect(&heap->tld->segments); + } + + // collect regions on program-exit (or shared library unload) + if (force && _mi_is_main_thread() && mi_heap_is_backing(heap)) { + _mi_thread_data_collect(); // collect thread data cache + _mi_arena_collect(true /* force purge */, &heap->tld->stats); + } +} + +void _mi_heap_collect_abandon(mi_heap_t* heap) { + mi_heap_collect_ex(heap, MI_ABANDON); +} + +void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept { + mi_heap_collect_ex(heap, (force ? MI_FORCE : MI_NORMAL)); +} + +void mi_collect(bool force) mi_attr_noexcept { + mi_heap_collect(mi_prim_get_default_heap(), force); +} + + +/* ----------------------------------------------------------- + Heap new +----------------------------------------------------------- */ + +mi_heap_t* mi_heap_get_default(void) { + mi_thread_init(); + return mi_prim_get_default_heap(); +} + +static bool mi_heap_is_default(const mi_heap_t* heap) { + return (heap == mi_prim_get_default_heap()); +} + + +mi_heap_t* mi_heap_get_backing(void) { + mi_heap_t* heap = mi_heap_get_default(); + mi_assert_internal(heap!=NULL); + mi_heap_t* bheap = heap->tld->heap_backing; + mi_assert_internal(bheap!=NULL); + mi_assert_internal(bheap->thread_id == _mi_thread_id()); + return bheap; +} + +mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id) { + mi_heap_t* bheap = mi_heap_get_backing(); + mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t); // todo: OS allocate in secure mode? + if (heap == NULL) return NULL; + _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t)); + heap->tld = bheap->tld; + heap->thread_id = _mi_thread_id(); + heap->arena_id = arena_id; + _mi_random_split(&bheap->random, &heap->random); + heap->cookie = _mi_heap_random_next(heap) | 1; + heap->keys[0] = _mi_heap_random_next(heap); + heap->keys[1] = _mi_heap_random_next(heap); + heap->no_reclaim = true; // don't reclaim abandoned pages or otherwise destroy is unsafe + // push on the thread local heaps list + heap->next = heap->tld->heaps; + heap->tld->heaps = heap; + return heap; +} + +mi_decl_nodiscard mi_heap_t* mi_heap_new(void) { + return mi_heap_new_in_arena(_mi_arena_id_none()); +} + +bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid) { + return _mi_arena_memid_is_suitable(memid, heap->arena_id); +} + +uintptr_t _mi_heap_random_next(mi_heap_t* heap) { + return _mi_random_next(&heap->random); +} + +// zero out the page queues +static void mi_heap_reset_pages(mi_heap_t* heap) { + mi_assert_internal(heap != NULL); + mi_assert_internal(mi_heap_is_initialized(heap)); + // TODO: copy full empty heap instead? + memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct)); + _mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages)); + heap->thread_delayed_free = NULL; + heap->page_count = 0; +} + +// called from `mi_heap_destroy` and `mi_heap_delete` to free the internal heap resources. +static void mi_heap_free(mi_heap_t* heap) { + mi_assert(heap != NULL); + mi_assert_internal(mi_heap_is_initialized(heap)); + if (heap==NULL || !mi_heap_is_initialized(heap)) return; + if (mi_heap_is_backing(heap)) return; // dont free the backing heap + + // reset default + if (mi_heap_is_default(heap)) { + _mi_heap_set_default_direct(heap->tld->heap_backing); + } + + // remove ourselves from the thread local heaps list + // linear search but we expect the number of heaps to be relatively small + mi_heap_t* prev = NULL; + mi_heap_t* curr = heap->tld->heaps; + while (curr != heap && curr != NULL) { + prev = curr; + curr = curr->next; + } + mi_assert_internal(curr == heap); + if (curr == heap) { + if (prev != NULL) { prev->next = heap->next; } + else { heap->tld->heaps = heap->next; } + } + mi_assert_internal(heap->tld->heaps != NULL); + + // and free the used memory + mi_free(heap); +} + + +/* ----------------------------------------------------------- + Heap destroy +----------------------------------------------------------- */ + +static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { + MI_UNUSED(arg1); + MI_UNUSED(arg2); + MI_UNUSED(heap); + MI_UNUSED(pq); + + // ensure no more thread_delayed_free will be added + _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false); + + // stats + const size_t bsize = mi_page_block_size(page); + if (bsize > MI_MEDIUM_OBJ_SIZE_MAX) { + if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { + mi_heap_stat_decrease(heap, large, bsize); + } + else { + mi_heap_stat_decrease(heap, huge, bsize); + } + } +#if (MI_STAT) + _mi_page_free_collect(page, false); // update used count + const size_t inuse = page->used; + if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { + mi_heap_stat_decrease(heap, normal, bsize * inuse); +#if (MI_STAT>1) + mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], inuse); +#endif + } + mi_heap_stat_decrease(heap, malloc, bsize * inuse); // todo: off for aligned blocks... +#endif + + /// pretend it is all free now + mi_assert_internal(mi_page_thread_free(page) == NULL); + page->used = 0; + + // and free the page + // mi_page_free(page,false); + page->next = NULL; + page->prev = NULL; + _mi_segment_page_free(page,false /* no force? */, &heap->tld->segments); + + return true; // keep going +} + +void _mi_heap_destroy_pages(mi_heap_t* heap) { + mi_heap_visit_pages(heap, &_mi_heap_page_destroy, NULL, NULL); + mi_heap_reset_pages(heap); +} + +#if MI_TRACK_HEAP_DESTROY +static bool mi_cdecl mi_heap_track_block_free(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) { + MI_UNUSED(heap); MI_UNUSED(area); MI_UNUSED(arg); MI_UNUSED(block_size); + mi_track_free_size(block,mi_usable_size(block)); + return true; +} +#endif + +void mi_heap_destroy(mi_heap_t* heap) { + mi_assert(heap != NULL); + mi_assert(mi_heap_is_initialized(heap)); + mi_assert(heap->no_reclaim); + mi_assert_expensive(mi_heap_is_valid(heap)); + if (heap==NULL || !mi_heap_is_initialized(heap)) return; + if (!heap->no_reclaim) { + // don't free in case it may contain reclaimed pages + mi_heap_delete(heap); + } + else { + // track all blocks as freed + #if MI_TRACK_HEAP_DESTROY + mi_heap_visit_blocks(heap, true, mi_heap_track_block_free, NULL); + #endif + // free all pages + _mi_heap_destroy_pages(heap); + mi_heap_free(heap); + } +} + +// forcefully destroy all heaps in the current thread +void _mi_heap_unsafe_destroy_all(void) { + mi_heap_t* bheap = mi_heap_get_backing(); + mi_heap_t* curr = bheap->tld->heaps; + while (curr != NULL) { + mi_heap_t* next = curr->next; + if (curr->no_reclaim) { + mi_heap_destroy(curr); + } + else { + _mi_heap_destroy_pages(curr); + } + curr = next; + } +} + +/* ----------------------------------------------------------- + Safe Heap delete +----------------------------------------------------------- */ + +// Transfer the pages from one heap to the other +static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) { + mi_assert_internal(heap!=NULL); + if (from==NULL || from->page_count == 0) return; + + // reduce the size of the delayed frees + _mi_heap_delayed_free_partial(from); + + // transfer all pages by appending the queues; this will set a new heap field + // so threads may do delayed frees in either heap for a while. + // note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state + // so after this only the new heap will get delayed frees + for (size_t i = 0; i <= MI_BIN_FULL; i++) { + mi_page_queue_t* pq = &heap->pages[i]; + mi_page_queue_t* append = &from->pages[i]; + size_t pcount = _mi_page_queue_append(heap, pq, append); + heap->page_count += pcount; + from->page_count -= pcount; + } + mi_assert_internal(from->page_count == 0); + + // and do outstanding delayed frees in the `from` heap + // note: be careful here as the `heap` field in all those pages no longer point to `from`, + // turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a + // the regular `_mi_free_delayed_block` which is safe. + _mi_heap_delayed_free_all(from); + #if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353 + mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL); + #endif + + // and reset the `from` heap + mi_heap_reset_pages(from); +} + +// Safe delete a heap without freeing any still allocated blocks in that heap. +void mi_heap_delete(mi_heap_t* heap) +{ + mi_assert(heap != NULL); + mi_assert(mi_heap_is_initialized(heap)); + mi_assert_expensive(mi_heap_is_valid(heap)); + if (heap==NULL || !mi_heap_is_initialized(heap)) return; + + if (!mi_heap_is_backing(heap)) { + // tranfer still used pages to the backing heap + mi_heap_absorb(heap->tld->heap_backing, heap); + } + else { + // the backing heap abandons its pages + _mi_heap_collect_abandon(heap); + } + mi_assert_internal(heap->page_count==0); + mi_heap_free(heap); +} + +mi_heap_t* mi_heap_set_default(mi_heap_t* heap) { + mi_assert(heap != NULL); + mi_assert(mi_heap_is_initialized(heap)); + if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL; + mi_assert_expensive(mi_heap_is_valid(heap)); + mi_heap_t* old = mi_prim_get_default_heap(); + _mi_heap_set_default_direct(heap); + return old; +} + + + + +/* ----------------------------------------------------------- + Analysis +----------------------------------------------------------- */ + +// static since it is not thread safe to access heaps from other threads. +static mi_heap_t* mi_heap_of_block(const void* p) { + if (p == NULL) return NULL; + mi_segment_t* segment = _mi_ptr_segment(p); + bool valid = (_mi_ptr_cookie(segment) == segment->cookie); + mi_assert_internal(valid); + if mi_unlikely(!valid) return NULL; + return mi_page_heap(_mi_segment_page_of(segment,p)); +} + +bool mi_heap_contains_block(mi_heap_t* heap, const void* p) { + mi_assert(heap != NULL); + if (heap==NULL || !mi_heap_is_initialized(heap)) return false; + return (heap == mi_heap_of_block(p)); +} + + +static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) { + MI_UNUSED(heap); + MI_UNUSED(pq); + bool* found = (bool*)vfound; + mi_segment_t* segment = _mi_page_segment(page); + void* start = _mi_page_start(segment, page, NULL); + void* end = (uint8_t*)start + (page->capacity * mi_page_block_size(page)); + *found = (p >= start && p < end); + return (!*found); // continue if not found +} + +bool mi_heap_check_owned(mi_heap_t* heap, const void* p) { + mi_assert(heap != NULL); + if (heap==NULL || !mi_heap_is_initialized(heap)) return false; + if (((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) return false; // only aligned pointers + bool found = false; + mi_heap_visit_pages(heap, &mi_heap_page_check_owned, (void*)p, &found); + return found; +} + +bool mi_check_owned(const void* p) { + return mi_heap_check_owned(mi_prim_get_default_heap(), p); +} + +/* ----------------------------------------------------------- + Visit all heap blocks and areas + Todo: enable visiting abandoned pages, and + enable visiting all blocks of all heaps across threads +----------------------------------------------------------- */ + +// Separate struct to keep `mi_page_t` out of the public interface +typedef struct mi_heap_area_ex_s { + mi_heap_area_t area; + mi_page_t* page; +} mi_heap_area_ex_t; + +static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_visit_fun* visitor, void* arg) { + mi_assert(xarea != NULL); + if (xarea==NULL) return true; + const mi_heap_area_t* area = &xarea->area; + mi_page_t* page = xarea->page; + mi_assert(page != NULL); + if (page == NULL) return true; + + _mi_page_free_collect(page,true); + mi_assert_internal(page->local_free == NULL); + if (page->used == 0) return true; + + const size_t bsize = mi_page_block_size(page); + const size_t ubsize = mi_page_usable_block_size(page); // without padding + size_t psize; + uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize); + + if (page->capacity == 1) { + // optimize page with one block + mi_assert_internal(page->used == 1 && page->free == NULL); + return visitor(mi_page_heap(page), area, pstart, ubsize, arg); + } + + // create a bitmap of free blocks. + #define MI_MAX_BLOCKS (MI_SMALL_PAGE_SIZE / sizeof(void*)) + uintptr_t free_map[MI_MAX_BLOCKS / sizeof(uintptr_t)]; + memset(free_map, 0, sizeof(free_map)); + + #if MI_DEBUG>1 + size_t free_count = 0; + #endif + for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) { + #if MI_DEBUG>1 + free_count++; + #endif + mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize)); + size_t offset = (uint8_t*)block - pstart; + mi_assert_internal(offset % bsize == 0); + size_t blockidx = offset / bsize; // Todo: avoid division? + mi_assert_internal( blockidx < MI_MAX_BLOCKS); + size_t bitidx = (blockidx / sizeof(uintptr_t)); + size_t bit = blockidx - (bitidx * sizeof(uintptr_t)); + free_map[bitidx] |= ((uintptr_t)1 << bit); + } + mi_assert_internal(page->capacity == (free_count + page->used)); + + // walk through all blocks skipping the free ones + #if MI_DEBUG>1 + size_t used_count = 0; + #endif + for (size_t i = 0; i < page->capacity; i++) { + size_t bitidx = (i / sizeof(uintptr_t)); + size_t bit = i - (bitidx * sizeof(uintptr_t)); + uintptr_t m = free_map[bitidx]; + if (bit == 0 && m == UINTPTR_MAX) { + i += (sizeof(uintptr_t) - 1); // skip a run of free blocks + } + else if ((m & ((uintptr_t)1 << bit)) == 0) { + #if MI_DEBUG>1 + used_count++; + #endif + uint8_t* block = pstart + (i * bsize); + if (!visitor(mi_page_heap(page), area, block, ubsize, arg)) return false; + } + } + mi_assert_internal(page->used == used_count); + return true; +} + +typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ex_t* area, void* arg); + + +static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) { + MI_UNUSED(heap); + MI_UNUSED(pq); + mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun; + mi_heap_area_ex_t xarea; + const size_t bsize = mi_page_block_size(page); + const size_t ubsize = mi_page_usable_block_size(page); + xarea.page = page; + xarea.area.reserved = page->reserved * bsize; + xarea.area.committed = page->capacity * bsize; + xarea.area.blocks = _mi_page_start(_mi_page_segment(page), page, NULL); + xarea.area.used = page->used; // number of blocks in use (#553) + xarea.area.block_size = ubsize; + xarea.area.full_block_size = bsize; + return fun(heap, &xarea, arg); +} + +// Visit all heap pages as areas +static bool mi_heap_visit_areas(const mi_heap_t* heap, mi_heap_area_visit_fun* visitor, void* arg) { + if (visitor == NULL) return false; + return mi_heap_visit_pages((mi_heap_t*)heap, &mi_heap_visit_areas_page, (void*)(visitor), arg); // note: function pointer to void* :-{ +} + +// Just to pass arguments +typedef struct mi_visit_blocks_args_s { + bool visit_blocks; + mi_block_visit_fun* visitor; + void* arg; +} mi_visit_blocks_args_t; + +static bool mi_heap_area_visitor(const mi_heap_t* heap, const mi_heap_area_ex_t* xarea, void* arg) { + mi_visit_blocks_args_t* args = (mi_visit_blocks_args_t*)arg; + if (!args->visitor(heap, &xarea->area, NULL, xarea->area.block_size, args->arg)) return false; + if (args->visit_blocks) { + return mi_heap_area_visit_blocks(xarea, args->visitor, args->arg); + } + else { + return true; + } +} + +// Visit all blocks in a heap +bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) { + mi_visit_blocks_args_t args = { visit_blocks, visitor, arg }; + return mi_heap_visit_areas(heap, &mi_heap_area_visitor, &args); +} diff --git a/3rdparty/mimalloc/src/init.c b/3rdparty/mimalloc/src/init.c new file mode 100644 index 00000000..b1db14c5 --- /dev/null +++ b/3rdparty/mimalloc/src/init.c @@ -0,0 +1,709 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2022, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" + +#include // memcpy, memset +#include // atexit + + +// Empty page used to initialize the small free pages array +const mi_page_t _mi_page_empty = { + 0, false, false, false, + 0, // capacity + 0, // reserved capacity + { 0 }, // flags + false, // is_zero + 0, // retire_expire + NULL, // free + 0, // used + 0, // xblock_size + NULL, // local_free + #if (MI_PADDING || MI_ENCODE_FREELIST) + { 0, 0 }, + #endif + MI_ATOMIC_VAR_INIT(0), // xthread_free + MI_ATOMIC_VAR_INIT(0), // xheap + NULL, NULL + #if MI_INTPTR_SIZE==8 + , { 0 } // padding + #endif +}; + +#define MI_PAGE_EMPTY() ((mi_page_t*)&_mi_page_empty) + +#if (MI_SMALL_WSIZE_MAX==128) +#if (MI_PADDING>0) && (MI_INTPTR_SIZE >= 8) +#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() } +#elif (MI_PADDING>0) +#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() } +#else +#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY() } +#endif +#else +#error "define right initialization sizes corresponding to MI_SMALL_WSIZE_MAX" +#endif + +// Empty page queues for every bin +#define QNULL(sz) { NULL, NULL, (sz)*sizeof(uintptr_t) } +#define MI_PAGE_QUEUES_EMPTY \ + { QNULL(1), \ + QNULL( 1), QNULL( 2), QNULL( 3), QNULL( 4), QNULL( 5), QNULL( 6), QNULL( 7), QNULL( 8), /* 8 */ \ + QNULL( 10), QNULL( 12), QNULL( 14), QNULL( 16), QNULL( 20), QNULL( 24), QNULL( 28), QNULL( 32), /* 16 */ \ + QNULL( 40), QNULL( 48), QNULL( 56), QNULL( 64), QNULL( 80), QNULL( 96), QNULL( 112), QNULL( 128), /* 24 */ \ + QNULL( 160), QNULL( 192), QNULL( 224), QNULL( 256), QNULL( 320), QNULL( 384), QNULL( 448), QNULL( 512), /* 32 */ \ + QNULL( 640), QNULL( 768), QNULL( 896), QNULL( 1024), QNULL( 1280), QNULL( 1536), QNULL( 1792), QNULL( 2048), /* 40 */ \ + QNULL( 2560), QNULL( 3072), QNULL( 3584), QNULL( 4096), QNULL( 5120), QNULL( 6144), QNULL( 7168), QNULL( 8192), /* 48 */ \ + QNULL( 10240), QNULL( 12288), QNULL( 14336), QNULL( 16384), QNULL( 20480), QNULL( 24576), QNULL( 28672), QNULL( 32768), /* 56 */ \ + QNULL( 40960), QNULL( 49152), QNULL( 57344), QNULL( 65536), QNULL( 81920), QNULL( 98304), QNULL(114688), QNULL(131072), /* 64 */ \ + QNULL(163840), QNULL(196608), QNULL(229376), QNULL(262144), QNULL(327680), QNULL(393216), QNULL(458752), QNULL(524288), /* 72 */ \ + QNULL(MI_MEDIUM_OBJ_WSIZE_MAX + 1 /* 655360, Huge queue */), \ + QNULL(MI_MEDIUM_OBJ_WSIZE_MAX + 2) /* Full queue */ } + +#define MI_STAT_COUNT_NULL() {0,0,0,0} + +// Empty statistics +#if MI_STAT>1 +#define MI_STAT_COUNT_END_NULL() , { MI_STAT_COUNT_NULL(), MI_INIT32(MI_STAT_COUNT_NULL) } +#else +#define MI_STAT_COUNT_END_NULL() +#endif + +#define MI_STATS_NULL \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ + MI_STAT_COUNT_NULL(), \ + { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \ + { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } \ + MI_STAT_COUNT_END_NULL() + + +// Empty slice span queues for every bin +#define SQNULL(sz) { NULL, NULL, sz } +#define MI_SEGMENT_SPAN_QUEUES_EMPTY \ + { SQNULL(1), \ + SQNULL( 1), SQNULL( 2), SQNULL( 3), SQNULL( 4), SQNULL( 5), SQNULL( 6), SQNULL( 7), SQNULL( 10), /* 8 */ \ + SQNULL( 12), SQNULL( 14), SQNULL( 16), SQNULL( 20), SQNULL( 24), SQNULL( 28), SQNULL( 32), SQNULL( 40), /* 16 */ \ + SQNULL( 48), SQNULL( 56), SQNULL( 64), SQNULL( 80), SQNULL( 96), SQNULL( 112), SQNULL( 128), SQNULL( 160), /* 24 */ \ + SQNULL( 192), SQNULL( 224), SQNULL( 256), SQNULL( 320), SQNULL( 384), SQNULL( 448), SQNULL( 512), SQNULL( 640), /* 32 */ \ + SQNULL( 768), SQNULL( 896), SQNULL( 1024) /* 35 */ } + + +// -------------------------------------------------------- +// Statically allocate an empty heap as the initial +// thread local value for the default heap, +// and statically allocate the backing heap for the main +// thread so it can function without doing any allocation +// itself (as accessing a thread local for the first time +// may lead to allocation itself on some platforms) +// -------------------------------------------------------- + +mi_decl_cache_align const mi_heap_t _mi_heap_empty = { + NULL, + MI_SMALL_PAGES_EMPTY, + MI_PAGE_QUEUES_EMPTY, + MI_ATOMIC_VAR_INIT(NULL), + 0, // tid + 0, // cookie + 0, // arena id + { 0, 0 }, // keys + { {0}, {0}, 0, true }, // random + 0, // page count + MI_BIN_FULL, 0, // page retired min/max + NULL, // next + false +}; + +#define tld_empty_stats ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats))) +#define tld_empty_os ((mi_os_tld_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,os))) + +mi_decl_cache_align static const mi_tld_t tld_empty = { + 0, + false, + NULL, NULL, + { MI_SEGMENT_SPAN_QUEUES_EMPTY, 0, 0, 0, 0, tld_empty_stats, tld_empty_os }, // segments + { 0, tld_empty_stats }, // os + { MI_STATS_NULL } // stats +}; + +mi_threadid_t _mi_thread_id(void) mi_attr_noexcept { + return _mi_prim_thread_id(); +} + +// the thread-local default heap for allocation +mi_decl_thread mi_heap_t* _mi_heap_default = (mi_heap_t*)&_mi_heap_empty; + +extern mi_heap_t _mi_heap_main; + +static mi_tld_t tld_main = { + 0, false, + &_mi_heap_main, & _mi_heap_main, + { MI_SEGMENT_SPAN_QUEUES_EMPTY, 0, 0, 0, 0, &tld_main.stats, &tld_main.os }, // segments + { 0, &tld_main.stats }, // os + { MI_STATS_NULL } // stats +}; + +mi_heap_t _mi_heap_main = { + &tld_main, + MI_SMALL_PAGES_EMPTY, + MI_PAGE_QUEUES_EMPTY, + MI_ATOMIC_VAR_INIT(NULL), + 0, // thread id + 0, // initial cookie + 0, // arena id + { 0, 0 }, // the key of the main heap can be fixed (unlike page keys that need to be secure!) + { {0x846ca68b}, {0}, 0, true }, // random + 0, // page count + MI_BIN_FULL, 0, // page retired min/max + NULL, // next heap + false // can reclaim +}; + +bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`. + +mi_stats_t _mi_stats_main = { MI_STATS_NULL }; + + +static void mi_heap_main_init(void) { + if (_mi_heap_main.cookie == 0) { + _mi_heap_main.thread_id = _mi_thread_id(); + _mi_heap_main.cookie = 1; + #if defined(_WIN32) && !defined(MI_SHARED_LIB) + _mi_random_init_weak(&_mi_heap_main.random); // prevent allocation failure during bcrypt dll initialization with static linking + #else + _mi_random_init(&_mi_heap_main.random); + #endif + _mi_heap_main.cookie = _mi_heap_random_next(&_mi_heap_main); + _mi_heap_main.keys[0] = _mi_heap_random_next(&_mi_heap_main); + _mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main); + } +} + +mi_heap_t* _mi_heap_main_get(void) { + mi_heap_main_init(); + return &_mi_heap_main; +} + + +/* ----------------------------------------------------------- + Initialization and freeing of the thread local heaps +----------------------------------------------------------- */ + +// note: in x64 in release build `sizeof(mi_thread_data_t)` is under 4KiB (= OS page size). +typedef struct mi_thread_data_s { + mi_heap_t heap; // must come first due to cast in `_mi_heap_done` + mi_tld_t tld; + mi_memid_t memid; +} mi_thread_data_t; + + +// Thread meta-data is allocated directly from the OS. For +// some programs that do not use thread pools and allocate and +// destroy many OS threads, this may causes too much overhead +// per thread so we maintain a small cache of recently freed metadata. + +#define TD_CACHE_SIZE (16) +static _Atomic(mi_thread_data_t*) td_cache[TD_CACHE_SIZE]; + +static mi_thread_data_t* mi_thread_data_zalloc(void) { + // try to find thread metadata in the cache + bool is_zero = false; + mi_thread_data_t* td = NULL; + for (int i = 0; i < TD_CACHE_SIZE; i++) { + td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]); + if (td != NULL) { + // found cached allocation, try use it + td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL); + if (td != NULL) { + break; + } + } + } + + // if that fails, allocate as meta data + if (td == NULL) { + mi_memid_t memid; + td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main); + if (td == NULL) { + // if this fails, try once more. (issue #257) + td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main); + if (td == NULL) { + // really out of memory + _mi_error_message(ENOMEM, "unable to allocate thread local heap metadata (%zu bytes)\n", sizeof(mi_thread_data_t)); + } + } + if (td != NULL) { + td->memid = memid; + is_zero = memid.initially_zero; + } + } + + if (td != NULL && !is_zero) { + _mi_memzero_aligned(td, sizeof(*td)); + } + return td; +} + +static void mi_thread_data_free( mi_thread_data_t* tdfree ) { + // try to add the thread metadata to the cache + for (int i = 0; i < TD_CACHE_SIZE; i++) { + mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]); + if (td == NULL) { + mi_thread_data_t* expected = NULL; + if (mi_atomic_cas_ptr_weak_acq_rel(mi_thread_data_t, &td_cache[i], &expected, tdfree)) { + return; + } + } + } + // if that fails, just free it directly + _mi_os_free(tdfree, sizeof(mi_thread_data_t), tdfree->memid, &_mi_stats_main); +} + +void _mi_thread_data_collect(void) { + // free all thread metadata from the cache + for (int i = 0; i < TD_CACHE_SIZE; i++) { + mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]); + if (td != NULL) { + td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL); + if (td != NULL) { + _mi_os_free(td, sizeof(mi_thread_data_t), td->memid, &_mi_stats_main); + } + } + } +} + +// Initialize the thread local default heap, called from `mi_thread_init` +static bool _mi_heap_init(void) { + if (mi_heap_is_initialized(mi_prim_get_default_heap())) return true; + if (_mi_is_main_thread()) { + // mi_assert_internal(_mi_heap_main.thread_id != 0); // can happen on freeBSD where alloc is called before any initialization + // the main heap is statically allocated + mi_heap_main_init(); + _mi_heap_set_default_direct(&_mi_heap_main); + //mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_prim_get_default_heap()); + } + else { + // use `_mi_os_alloc` to allocate directly from the OS + mi_thread_data_t* td = mi_thread_data_zalloc(); + if (td == NULL) return false; + + mi_tld_t* tld = &td->tld; + mi_heap_t* heap = &td->heap; + _mi_memcpy_aligned(tld, &tld_empty, sizeof(*tld)); + _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(*heap)); + heap->thread_id = _mi_thread_id(); + _mi_random_init(&heap->random); + heap->cookie = _mi_heap_random_next(heap) | 1; + heap->keys[0] = _mi_heap_random_next(heap); + heap->keys[1] = _mi_heap_random_next(heap); + heap->tld = tld; + tld->heap_backing = heap; + tld->heaps = heap; + tld->segments.stats = &tld->stats; + tld->segments.os = &tld->os; + tld->os.stats = &tld->stats; + _mi_heap_set_default_direct(heap); + } + return false; +} + +// Free the thread local default heap (called from `mi_thread_done`) +static bool _mi_heap_done(mi_heap_t* heap) { + if (!mi_heap_is_initialized(heap)) return true; + + // reset default heap + _mi_heap_set_default_direct(_mi_is_main_thread() ? &_mi_heap_main : (mi_heap_t*)&_mi_heap_empty); + + // switch to backing heap + heap = heap->tld->heap_backing; + if (!mi_heap_is_initialized(heap)) return false; + + // delete all non-backing heaps in this thread + mi_heap_t* curr = heap->tld->heaps; + while (curr != NULL) { + mi_heap_t* next = curr->next; // save `next` as `curr` will be freed + if (curr != heap) { + mi_assert_internal(!mi_heap_is_backing(curr)); + mi_heap_delete(curr); + } + curr = next; + } + mi_assert_internal(heap->tld->heaps == heap && heap->next == NULL); + mi_assert_internal(mi_heap_is_backing(heap)); + + // collect if not the main thread + if (heap != &_mi_heap_main) { + _mi_heap_collect_abandon(heap); + } + + // merge stats + _mi_stats_done(&heap->tld->stats); + + // free if not the main thread + if (heap != &_mi_heap_main) { + // the following assertion does not always hold for huge segments as those are always treated + // as abondened: one may allocate it in one thread, but deallocate in another in which case + // the count can be too large or negative. todo: perhaps not count huge segments? see issue #363 + // mi_assert_internal(heap->tld->segments.count == 0 || heap->thread_id != _mi_thread_id()); + mi_thread_data_free((mi_thread_data_t*)heap); + } + else { + #if 0 + // never free the main thread even in debug mode; if a dll is linked statically with mimalloc, + // there may still be delete/free calls after the mi_fls_done is called. Issue #207 + _mi_heap_destroy_pages(heap); + mi_assert_internal(heap->tld->heap_backing == &_mi_heap_main); + #endif + } + return false; +} + + + +// -------------------------------------------------------- +// Try to run `mi_thread_done()` automatically so any memory +// owned by the thread but not yet released can be abandoned +// and re-owned by another thread. +// +// 1. windows dynamic library: +// call from DllMain on DLL_THREAD_DETACH +// 2. windows static library: +// use `FlsAlloc` to call a destructor when the thread is done +// 3. unix, pthreads: +// use a pthread key to call a destructor when a pthread is done +// +// In the last two cases we also need to call `mi_process_init` +// to set up the thread local keys. +// -------------------------------------------------------- + +// Set up handlers so `mi_thread_done` is called automatically +static void mi_process_setup_auto_thread_done(void) { + static bool tls_initialized = false; // fine if it races + if (tls_initialized) return; + tls_initialized = true; + _mi_prim_thread_init_auto_done(); + _mi_heap_set_default_direct(&_mi_heap_main); +} + + +bool _mi_is_main_thread(void) { + return (_mi_heap_main.thread_id==0 || _mi_heap_main.thread_id == _mi_thread_id()); +} + +static _Atomic(size_t) thread_count = MI_ATOMIC_VAR_INIT(1); + +size_t _mi_current_thread_count(void) { + return mi_atomic_load_relaxed(&thread_count); +} + +// This is called from the `mi_malloc_generic` +void mi_thread_init(void) mi_attr_noexcept +{ + // ensure our process has started already + mi_process_init(); + + // initialize the thread local default heap + // (this will call `_mi_heap_set_default_direct` and thus set the + // fiber/pthread key to a non-zero value, ensuring `_mi_thread_done` is called) + if (_mi_heap_init()) return; // returns true if already initialized + + _mi_stat_increase(&_mi_stats_main.threads, 1); + mi_atomic_increment_relaxed(&thread_count); + //_mi_verbose_message("thread init: 0x%zx\n", _mi_thread_id()); +} + +void mi_thread_done(void) mi_attr_noexcept { + _mi_thread_done(NULL); +} + +void _mi_thread_done(mi_heap_t* heap) +{ + // calling with NULL implies using the default heap + if (heap == NULL) { + heap = mi_prim_get_default_heap(); + if (heap == NULL) return; + } + + // prevent re-entrancy through heap_done/heap_set_default_direct (issue #699) + if (!mi_heap_is_initialized(heap)) { + return; + } + + // adjust stats + mi_atomic_decrement_relaxed(&thread_count); + _mi_stat_decrease(&_mi_stats_main.threads, 1); + + // check thread-id as on Windows shutdown with FLS the main (exit) thread may call this on thread-local heaps... + if (heap->thread_id != _mi_thread_id()) return; + + // abandon the thread local heap + if (_mi_heap_done(heap)) return; // returns true if already ran +} + +void _mi_heap_set_default_direct(mi_heap_t* heap) { + mi_assert_internal(heap != NULL); + #if defined(MI_TLS_SLOT) + mi_prim_tls_slot_set(MI_TLS_SLOT,heap); + #elif defined(MI_TLS_PTHREAD_SLOT_OFS) + *mi_tls_pthread_heap_slot() = heap; + #elif defined(MI_TLS_PTHREAD) + // we use _mi_heap_default_key + #else + _mi_heap_default = heap; + #endif + + // ensure the default heap is passed to `_mi_thread_done` + // setting to a non-NULL value also ensures `mi_thread_done` is called. + _mi_prim_thread_associate_default_heap(heap); +} + + +// -------------------------------------------------------- +// Run functions on process init/done, and thread init/done +// -------------------------------------------------------- +static void mi_cdecl mi_process_done(void); + +static bool os_preloading = true; // true until this module is initialized +static bool mi_redirected = false; // true if malloc redirects to mi_malloc + +// Returns true if this module has not been initialized; Don't use C runtime routines until it returns false. +bool mi_decl_noinline _mi_preloading(void) { + return os_preloading; +} + +mi_decl_nodiscard bool mi_is_redirected(void) mi_attr_noexcept { + return mi_redirected; +} + +// Communicate with the redirection module on Windows +#if defined(_WIN32) && defined(MI_SHARED_LIB) && !defined(MI_WIN_NOREDIRECT) +#ifdef __cplusplus +extern "C" { +#endif +mi_decl_export void _mi_redirect_entry(DWORD reason) { + // called on redirection; careful as this may be called before DllMain + if (reason == DLL_PROCESS_ATTACH) { + mi_redirected = true; + } + else if (reason == DLL_PROCESS_DETACH) { + mi_redirected = false; + } + else if (reason == DLL_THREAD_DETACH) { + mi_thread_done(); + } +} +__declspec(dllimport) bool mi_cdecl mi_allocator_init(const char** message); +__declspec(dllimport) void mi_cdecl mi_allocator_done(void); +#ifdef __cplusplus +} +#endif +#else +static bool mi_allocator_init(const char** message) { + if (message != NULL) *message = NULL; + return true; +} +static void mi_allocator_done(void) { + // nothing to do +} +#endif + +// Called once by the process loader +static void mi_process_load(void) { + mi_heap_main_init(); + #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) + volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true; + if (dummy == NULL) return; // use dummy or otherwise the access may get optimized away (issue #697) + #endif + os_preloading = false; + mi_assert_internal(_mi_is_main_thread()); + #if !(defined(_WIN32) && defined(MI_SHARED_LIB)) // use Dll process detach (see below) instead of atexit (issue #521) + atexit(&mi_process_done); + #endif + _mi_options_init(); + mi_process_setup_auto_thread_done(); + mi_process_init(); + if (mi_redirected) _mi_verbose_message("malloc is redirected.\n"); + + // show message from the redirector (if present) + const char* msg = NULL; + mi_allocator_init(&msg); + if (msg != NULL && (mi_option_is_enabled(mi_option_verbose) || mi_option_is_enabled(mi_option_show_errors))) { + _mi_fputs(NULL,NULL,NULL,msg); + } + + // reseed random + _mi_random_reinit_if_weak(&_mi_heap_main.random); +} + +#if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64)) +#include +mi_decl_cache_align bool _mi_cpu_has_fsrm = false; + +static void mi_detect_cpu_features(void) { + // FSRM for fast rep movsb support (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017)) + int32_t cpu_info[4]; + __cpuid(cpu_info, 7); + _mi_cpu_has_fsrm = ((cpu_info[3] & (1 << 4)) != 0); // bit 4 of EDX : see +} +#else +static void mi_detect_cpu_features(void) { + // nothing +} +#endif + +// Initialize the process; called by thread_init or the process loader +void mi_process_init(void) mi_attr_noexcept { + // ensure we are called once + static mi_atomic_once_t process_init; + #if _MSC_VER < 1920 + mi_heap_main_init(); // vs2017 can dynamically re-initialize _mi_heap_main + #endif + if (!mi_atomic_once(&process_init)) return; + _mi_process_is_initialized = true; + _mi_verbose_message("process init: 0x%zx\n", _mi_thread_id()); + mi_process_setup_auto_thread_done(); + + mi_detect_cpu_features(); + _mi_os_init(); + mi_heap_main_init(); + #if MI_DEBUG + _mi_verbose_message("debug level : %d\n", MI_DEBUG); + #endif + _mi_verbose_message("secure level: %d\n", MI_SECURE); + _mi_verbose_message("mem tracking: %s\n", MI_TRACK_TOOL); + #if MI_TSAN + _mi_verbose_message("thread santizer enabled\n"); + #endif + mi_thread_init(); + + #if defined(_WIN32) + // On windows, when building as a static lib the FLS cleanup happens to early for the main thread. + // To avoid this, set the FLS value for the main thread to NULL so the fls cleanup + // will not call _mi_thread_done on the (still executing) main thread. See issue #508. + _mi_prim_thread_associate_default_heap(NULL); + #endif + + mi_stats_reset(); // only call stat reset *after* thread init (or the heap tld == NULL) + mi_track_init(); + + if (mi_option_is_enabled(mi_option_reserve_huge_os_pages)) { + size_t pages = mi_option_get_clamp(mi_option_reserve_huge_os_pages, 0, 128*1024); + long reserve_at = mi_option_get(mi_option_reserve_huge_os_pages_at); + if (reserve_at != -1) { + mi_reserve_huge_os_pages_at(pages, reserve_at, pages*500); + } else { + mi_reserve_huge_os_pages_interleave(pages, 0, pages*500); + } + } + if (mi_option_is_enabled(mi_option_reserve_os_memory)) { + long ksize = mi_option_get(mi_option_reserve_os_memory); + if (ksize > 0) { + mi_reserve_os_memory((size_t)ksize*MI_KiB, true /* commit? */, true /* allow large pages? */); + } + } +} + +// Called when the process is done (through `at_exit`) +static void mi_cdecl mi_process_done(void) { + // only shutdown if we were initialized + if (!_mi_process_is_initialized) return; + // ensure we are called once + static bool process_done = false; + if (process_done) return; + process_done = true; + + // release any thread specific resources and ensure _mi_thread_done is called on all but the main thread + _mi_prim_thread_done_auto_done(); + + #ifndef MI_SKIP_COLLECT_ON_EXIT + #if (MI_DEBUG || !defined(MI_SHARED_LIB)) + // free all memory if possible on process exit. This is not needed for a stand-alone process + // but should be done if mimalloc is statically linked into another shared library which + // is repeatedly loaded/unloaded, see issue #281. + mi_collect(true /* force */ ); + #endif + #endif + + // Forcefully release all retained memory; this can be dangerous in general if overriding regular malloc/free + // since after process_done there might still be other code running that calls `free` (like at_exit routines, + // or C-runtime termination code. + if (mi_option_is_enabled(mi_option_destroy_on_exit)) { + mi_collect(true /* force */); + _mi_heap_unsafe_destroy_all(); // forcefully release all memory held by all heaps (of this thread only!) + _mi_arena_unsafe_destroy_all(& _mi_heap_main_get()->tld->stats); + } + + if (mi_option_is_enabled(mi_option_show_stats) || mi_option_is_enabled(mi_option_verbose)) { + mi_stats_print(NULL); + } + mi_allocator_done(); + _mi_verbose_message("process done: 0x%zx\n", _mi_heap_main.thread_id); + os_preloading = true; // don't call the C runtime anymore +} + + + +#if defined(_WIN32) && defined(MI_SHARED_LIB) + // Windows DLL: easy to hook into process_init and thread_done + __declspec(dllexport) BOOL WINAPI DllMain(HINSTANCE inst, DWORD reason, LPVOID reserved) { + MI_UNUSED(reserved); + MI_UNUSED(inst); + if (reason==DLL_PROCESS_ATTACH) { + mi_process_load(); + } + else if (reason==DLL_PROCESS_DETACH) { + mi_process_done(); + } + else if (reason==DLL_THREAD_DETACH) { + if (!mi_is_redirected()) { + mi_thread_done(); + } + } + return TRUE; + } + +#elif defined(_MSC_VER) + // MSVC: use data section magic for static libraries + // See + static int _mi_process_init(void) { + mi_process_load(); + return 0; + } + typedef int(*_mi_crt_callback_t)(void); + #if defined(_M_X64) || defined(_M_ARM64) + __pragma(comment(linker, "/include:" "_mi_msvc_initu")) + #pragma section(".CRT$XIU", long, read) + #else + __pragma(comment(linker, "/include:" "__mi_msvc_initu")) + #endif + #pragma data_seg(".CRT$XIU") + mi_decl_externc _mi_crt_callback_t _mi_msvc_initu[] = { &_mi_process_init }; + #pragma data_seg() + +#elif defined(__cplusplus) + // C++: use static initialization to detect process start + static bool _mi_process_init(void) { + mi_process_load(); + return (_mi_heap_main.thread_id != 0); + } + static bool mi_initialized = _mi_process_init(); + +#elif defined(__GNUC__) || defined(__clang__) + // GCC,Clang: use the constructor attribute + static void __attribute__((constructor)) _mi_process_init(void) { + mi_process_load(); + } + +#else +#pragma message("define a way to call mi_process_load on your platform") +#endif diff --git a/3rdparty/mimalloc/src/options.c b/3rdparty/mimalloc/src/options.c new file mode 100644 index 00000000..345b560e --- /dev/null +++ b/3rdparty/mimalloc/src/options.c @@ -0,0 +1,571 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // mi_prim_out_stderr + +#include // FILE +#include // abort +#include + + +static long mi_max_error_count = 16; // stop outputting errors after this (use < 0 for no limit) +static long mi_max_warning_count = 16; // stop outputting warnings after this (use < 0 for no limit) + +static void mi_add_stderr_output(void); + +int mi_version(void) mi_attr_noexcept { + return MI_MALLOC_VERSION; +} + + +// -------------------------------------------------------- +// Options +// These can be accessed by multiple threads and may be +// concurrently initialized, but an initializing data race +// is ok since they resolve to the same value. +// -------------------------------------------------------- +typedef enum mi_init_e { + UNINIT, // not yet initialized + DEFAULTED, // not found in the environment, use default value + INITIALIZED // found in environment or set explicitly +} mi_init_t; + +typedef struct mi_option_desc_s { + long value; // the value + mi_init_t init; // is it initialized yet? (from the environment) + mi_option_t option; // for debugging: the option index should match the option + const char* name; // option name without `mimalloc_` prefix + const char* legacy_name; // potential legacy option name +} mi_option_desc_t; + +#define MI_OPTION(opt) mi_option_##opt, #opt, NULL +#define MI_OPTION_LEGACY(opt,legacy) mi_option_##opt, #opt, #legacy + +static mi_option_desc_t options[_mi_option_last] = +{ + // stable options + #if MI_DEBUG || defined(MI_SHOW_ERRORS) + { 1, UNINIT, MI_OPTION(show_errors) }, + #else + { 0, UNINIT, MI_OPTION(show_errors) }, + #endif + { 0, UNINIT, MI_OPTION(show_stats) }, + { 0, UNINIT, MI_OPTION(verbose) }, + + // the following options are experimental and not all combinations make sense. + { 1, UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`) + { 2, UNINIT, MI_OPTION_LEGACY(arena_eager_commit,eager_region_commit) }, // eager commit arena's? 2 is used to enable this only on an OS that has overcommit (i.e. linux) + { 1, UNINIT, MI_OPTION_LEGACY(purge_decommits,reset_decommits) }, // purge decommits memory (instead of reset) (note: on linux this uses MADV_DONTNEED for decommit) + { 0, UNINIT, MI_OPTION_LEGACY(allow_large_os_pages,large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's + { 0, UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages + {-1, UNINIT, MI_OPTION(reserve_huge_os_pages_at) }, // reserve huge pages at node N + { 0, UNINIT, MI_OPTION(reserve_os_memory) }, + { 0, UNINIT, MI_OPTION(deprecated_segment_cache) }, // cache N segments per thread + { 0, UNINIT, MI_OPTION(deprecated_page_reset) }, // reset page memory on free + { 0, UNINIT, MI_OPTION_LEGACY(abandoned_page_purge,abandoned_page_reset) }, // reset free page memory when a thread terminates + { 0, UNINIT, MI_OPTION(deprecated_segment_reset) }, // reset segment memory on free (needs eager commit) +#if defined(__NetBSD__) + { 0, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed +#else + { 1, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed (but per page in the segment on demand) +#endif + { 10, UNINIT, MI_OPTION_LEGACY(purge_delay,reset_delay) }, // purge delay in milli-seconds + { 0, UNINIT, MI_OPTION(use_numa_nodes) }, // 0 = use available numa nodes, otherwise use at most N nodes. + { 0, UNINIT, MI_OPTION(limit_os_alloc) }, // 1 = do not use OS memory for allocation (but only reserved arenas) + { 100, UNINIT, MI_OPTION(os_tag) }, // only apple specific for now but might serve more or less related purpose + { 16, UNINIT, MI_OPTION(max_errors) }, // maximum errors that are output + { 16, UNINIT, MI_OPTION(max_warnings) }, // maximum warnings that are output + { 8, UNINIT, MI_OPTION(max_segment_reclaim)}, // max. number of segment reclaims from the abandoned segments per try. + { 0, UNINIT, MI_OPTION(destroy_on_exit)}, // release all OS memory on process exit; careful with dangling pointer or after-exit frees! + #if (MI_INTPTR_SIZE>4) + { 1024L * 1024L, UNINIT, MI_OPTION(arena_reserve) }, // reserve memory N KiB at a time + #else + { 128L * 1024L, UNINIT, MI_OPTION(arena_reserve) }, + #endif + { 10, UNINIT, MI_OPTION(arena_purge_mult) }, // purge delay multiplier for arena's + { 1, UNINIT, MI_OPTION_LEGACY(purge_extend_delay, decommit_extend_delay) }, +}; + +static void mi_option_init(mi_option_desc_t* desc); + +void _mi_options_init(void) { + // called on process load; should not be called before the CRT is initialized! + // (e.g. do not call this from process_init as that may run before CRT initialization) + mi_add_stderr_output(); // now it safe to use stderr for output + for(int i = 0; i < _mi_option_last; i++ ) { + mi_option_t option = (mi_option_t)i; + long l = mi_option_get(option); MI_UNUSED(l); // initialize + // if (option != mi_option_verbose) + { + mi_option_desc_t* desc = &options[option]; + _mi_verbose_message("option '%s': %ld\n", desc->name, desc->value); + } + } + mi_max_error_count = mi_option_get(mi_option_max_errors); + mi_max_warning_count = mi_option_get(mi_option_max_warnings); +} + +mi_decl_nodiscard long mi_option_get(mi_option_t option) { + mi_assert(option >= 0 && option < _mi_option_last); + if (option < 0 || option >= _mi_option_last) return 0; + mi_option_desc_t* desc = &options[option]; + mi_assert(desc->option == option); // index should match the option + if mi_unlikely(desc->init == UNINIT) { + mi_option_init(desc); + } + return desc->value; +} + +mi_decl_nodiscard long mi_option_get_clamp(mi_option_t option, long min, long max) { + long x = mi_option_get(option); + return (x < min ? min : (x > max ? max : x)); +} + +mi_decl_nodiscard size_t mi_option_get_size(mi_option_t option) { + mi_assert_internal(option == mi_option_reserve_os_memory || option == mi_option_arena_reserve); + long x = mi_option_get(option); + return (x < 0 ? 0 : (size_t)x * MI_KiB); +} + +void mi_option_set(mi_option_t option, long value) { + mi_assert(option >= 0 && option < _mi_option_last); + if (option < 0 || option >= _mi_option_last) return; + mi_option_desc_t* desc = &options[option]; + mi_assert(desc->option == option); // index should match the option + desc->value = value; + desc->init = INITIALIZED; +} + +void mi_option_set_default(mi_option_t option, long value) { + mi_assert(option >= 0 && option < _mi_option_last); + if (option < 0 || option >= _mi_option_last) return; + mi_option_desc_t* desc = &options[option]; + if (desc->init != INITIALIZED) { + desc->value = value; + } +} + +mi_decl_nodiscard bool mi_option_is_enabled(mi_option_t option) { + return (mi_option_get(option) != 0); +} + +void mi_option_set_enabled(mi_option_t option, bool enable) { + mi_option_set(option, (enable ? 1 : 0)); +} + +void mi_option_set_enabled_default(mi_option_t option, bool enable) { + mi_option_set_default(option, (enable ? 1 : 0)); +} + +void mi_option_enable(mi_option_t option) { + mi_option_set_enabled(option,true); +} + +void mi_option_disable(mi_option_t option) { + mi_option_set_enabled(option,false); +} + +static void mi_cdecl mi_out_stderr(const char* msg, void* arg) { + MI_UNUSED(arg); + if (msg != NULL && msg[0] != 0) { + _mi_prim_out_stderr(msg); + } +} + +// Since an output function can be registered earliest in the `main` +// function we also buffer output that happens earlier. When +// an output function is registered it is called immediately with +// the output up to that point. +#ifndef MI_MAX_DELAY_OUTPUT +#define MI_MAX_DELAY_OUTPUT ((size_t)(32*1024)) +#endif +static char out_buf[MI_MAX_DELAY_OUTPUT+1]; +static _Atomic(size_t) out_len; + +static void mi_cdecl mi_out_buf(const char* msg, void* arg) { + MI_UNUSED(arg); + if (msg==NULL) return; + if (mi_atomic_load_relaxed(&out_len)>=MI_MAX_DELAY_OUTPUT) return; + size_t n = _mi_strlen(msg); + if (n==0) return; + // claim space + size_t start = mi_atomic_add_acq_rel(&out_len, n); + if (start >= MI_MAX_DELAY_OUTPUT) return; + // check bound + if (start+n >= MI_MAX_DELAY_OUTPUT) { + n = MI_MAX_DELAY_OUTPUT-start-1; + } + _mi_memcpy(&out_buf[start], msg, n); +} + +static void mi_out_buf_flush(mi_output_fun* out, bool no_more_buf, void* arg) { + if (out==NULL) return; + // claim (if `no_more_buf == true`, no more output will be added after this point) + size_t count = mi_atomic_add_acq_rel(&out_len, (no_more_buf ? MI_MAX_DELAY_OUTPUT : 1)); + // and output the current contents + if (count>MI_MAX_DELAY_OUTPUT) count = MI_MAX_DELAY_OUTPUT; + out_buf[count] = 0; + out(out_buf,arg); + if (!no_more_buf) { + out_buf[count] = '\n'; // if continue with the buffer, insert a newline + } +} + + +// Once this module is loaded, switch to this routine +// which outputs to stderr and the delayed output buffer. +static void mi_cdecl mi_out_buf_stderr(const char* msg, void* arg) { + mi_out_stderr(msg,arg); + mi_out_buf(msg,arg); +} + + + +// -------------------------------------------------------- +// Default output handler +// -------------------------------------------------------- + +// Should be atomic but gives errors on many platforms as generally we cannot cast a function pointer to a uintptr_t. +// For now, don't register output from multiple threads. +static mi_output_fun* volatile mi_out_default; // = NULL +static _Atomic(void*) mi_out_arg; // = NULL + +static mi_output_fun* mi_out_get_default(void** parg) { + if (parg != NULL) { *parg = mi_atomic_load_ptr_acquire(void,&mi_out_arg); } + mi_output_fun* out = mi_out_default; + return (out == NULL ? &mi_out_buf : out); +} + +void mi_register_output(mi_output_fun* out, void* arg) mi_attr_noexcept { + mi_out_default = (out == NULL ? &mi_out_stderr : out); // stop using the delayed output buffer + mi_atomic_store_ptr_release(void,&mi_out_arg, arg); + if (out!=NULL) mi_out_buf_flush(out,true,arg); // output all the delayed output now +} + +// add stderr to the delayed output after the module is loaded +static void mi_add_stderr_output(void) { + mi_assert_internal(mi_out_default == NULL); + mi_out_buf_flush(&mi_out_stderr, false, NULL); // flush current contents to stderr + mi_out_default = &mi_out_buf_stderr; // and add stderr to the delayed output +} + +// -------------------------------------------------------- +// Messages, all end up calling `_mi_fputs`. +// -------------------------------------------------------- +static _Atomic(size_t) error_count; // = 0; // when >= max_error_count stop emitting errors +static _Atomic(size_t) warning_count; // = 0; // when >= max_warning_count stop emitting warnings + +// When overriding malloc, we may recurse into mi_vfprintf if an allocation +// inside the C runtime causes another message. +// In some cases (like on macOS) the loader already allocates which +// calls into mimalloc; if we then access thread locals (like `recurse`) +// this may crash as the access may call _tlv_bootstrap that tries to +// (recursively) invoke malloc again to allocate space for the thread local +// variables on demand. This is why we use a _mi_preloading test on such +// platforms. However, C code generator may move the initial thread local address +// load before the `if` and we therefore split it out in a separate funcion. +static mi_decl_thread bool recurse = false; + +static mi_decl_noinline bool mi_recurse_enter_prim(void) { + if (recurse) return false; + recurse = true; + return true; +} + +static mi_decl_noinline void mi_recurse_exit_prim(void) { + recurse = false; +} + +static bool mi_recurse_enter(void) { + #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) + if (_mi_preloading()) return false; + #endif + return mi_recurse_enter_prim(); +} + +static void mi_recurse_exit(void) { + #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) + if (_mi_preloading()) return; + #endif + mi_recurse_exit_prim(); +} + +void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message) { + if (out==NULL || (void*)out==(void*)stdout || (void*)out==(void*)stderr) { // TODO: use mi_out_stderr for stderr? + if (!mi_recurse_enter()) return; + out = mi_out_get_default(&arg); + if (prefix != NULL) out(prefix, arg); + out(message, arg); + mi_recurse_exit(); + } + else { + if (prefix != NULL) out(prefix, arg); + out(message, arg); + } +} + +// Define our own limited `fprintf` that avoids memory allocation. +// We do this using `snprintf` with a limited buffer. +static void mi_vfprintf( mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args ) { + char buf[512]; + if (fmt==NULL) return; + if (!mi_recurse_enter()) return; + vsnprintf(buf,sizeof(buf)-1,fmt,args); + mi_recurse_exit(); + _mi_fputs(out,arg,prefix,buf); +} + +void _mi_fprintf( mi_output_fun* out, void* arg, const char* fmt, ... ) { + va_list args; + va_start(args,fmt); + mi_vfprintf(out,arg,NULL,fmt,args); + va_end(args); +} + +static void mi_vfprintf_thread(mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args) { + if (prefix != NULL && _mi_strnlen(prefix,33) <= 32 && !_mi_is_main_thread()) { + char tprefix[64]; + snprintf(tprefix, sizeof(tprefix), "%sthread 0x%llx: ", prefix, (unsigned long long)_mi_thread_id()); + mi_vfprintf(out, arg, tprefix, fmt, args); + } + else { + mi_vfprintf(out, arg, prefix, fmt, args); + } +} + +void _mi_trace_message(const char* fmt, ...) { + if (mi_option_get(mi_option_verbose) <= 1) return; // only with verbose level 2 or higher + va_list args; + va_start(args, fmt); + mi_vfprintf_thread(NULL, NULL, "mimalloc: ", fmt, args); + va_end(args); +} + +void _mi_verbose_message(const char* fmt, ...) { + if (!mi_option_is_enabled(mi_option_verbose)) return; + va_list args; + va_start(args,fmt); + mi_vfprintf(NULL, NULL, "mimalloc: ", fmt, args); + va_end(args); +} + +static void mi_show_error_message(const char* fmt, va_list args) { + if (!mi_option_is_enabled(mi_option_verbose)) { + if (!mi_option_is_enabled(mi_option_show_errors)) return; + if (mi_max_error_count >= 0 && (long)mi_atomic_increment_acq_rel(&error_count) > mi_max_error_count) return; + } + mi_vfprintf_thread(NULL, NULL, "mimalloc: error: ", fmt, args); +} + +void _mi_warning_message(const char* fmt, ...) { + if (!mi_option_is_enabled(mi_option_verbose)) { + if (!mi_option_is_enabled(mi_option_show_errors)) return; + if (mi_max_warning_count >= 0 && (long)mi_atomic_increment_acq_rel(&warning_count) > mi_max_warning_count) return; + } + va_list args; + va_start(args,fmt); + mi_vfprintf_thread(NULL, NULL, "mimalloc: warning: ", fmt, args); + va_end(args); +} + + +#if MI_DEBUG +void _mi_assert_fail(const char* assertion, const char* fname, unsigned line, const char* func ) { + _mi_fprintf(NULL, NULL, "mimalloc: assertion failed: at \"%s\":%u, %s\n assertion: \"%s\"\n", fname, line, (func==NULL?"":func), assertion); + abort(); +} +#endif + +// -------------------------------------------------------- +// Errors +// -------------------------------------------------------- + +static mi_error_fun* volatile mi_error_handler; // = NULL +static _Atomic(void*) mi_error_arg; // = NULL + +static void mi_error_default(int err) { + MI_UNUSED(err); +#if (MI_DEBUG>0) + if (err==EFAULT) { + #ifdef _MSC_VER + __debugbreak(); + #endif + abort(); + } +#endif +#if (MI_SECURE>0) + if (err==EFAULT) { // abort on serious errors in secure mode (corrupted meta-data) + abort(); + } +#endif +#if defined(MI_XMALLOC) + if (err==ENOMEM || err==EOVERFLOW) { // abort on memory allocation fails in xmalloc mode + abort(); + } +#endif +} + +void mi_register_error(mi_error_fun* fun, void* arg) { + mi_error_handler = fun; // can be NULL + mi_atomic_store_ptr_release(void,&mi_error_arg, arg); +} + +void _mi_error_message(int err, const char* fmt, ...) { + // show detailed error message + va_list args; + va_start(args, fmt); + mi_show_error_message(fmt, args); + va_end(args); + // and call the error handler which may abort (or return normally) + if (mi_error_handler != NULL) { + mi_error_handler(err, mi_atomic_load_ptr_acquire(void,&mi_error_arg)); + } + else { + mi_error_default(err); + } +} + +// -------------------------------------------------------- +// Initialize options by checking the environment +// -------------------------------------------------------- +char _mi_toupper(char c) { + if (c >= 'a' && c <= 'z') return (c - 'a' + 'A'); + else return c; +} + +int _mi_strnicmp(const char* s, const char* t, size_t n) { + if (n == 0) return 0; + for (; *s != 0 && *t != 0 && n > 0; s++, t++, n--) { + if (_mi_toupper(*s) != _mi_toupper(*t)) break; + } + return (n == 0 ? 0 : *s - *t); +} + +void _mi_strlcpy(char* dest, const char* src, size_t dest_size) { + if (dest==NULL || src==NULL || dest_size == 0) return; + // copy until end of src, or when dest is (almost) full + while (*src != 0 && dest_size > 1) { + *dest++ = *src++; + dest_size--; + } + // always zero terminate + *dest = 0; +} + +void _mi_strlcat(char* dest, const char* src, size_t dest_size) { + if (dest==NULL || src==NULL || dest_size == 0) return; + // find end of string in the dest buffer + while (*dest != 0 && dest_size > 1) { + dest++; + dest_size--; + } + // and catenate + _mi_strlcpy(dest, src, dest_size); +} + +size_t _mi_strlen(const char* s) { + if (s==NULL) return 0; + size_t len = 0; + while(s[len] != 0) { len++; } + return len; +} + +size_t _mi_strnlen(const char* s, size_t max_len) { + if (s==NULL) return 0; + size_t len = 0; + while(s[len] != 0 && len < max_len) { len++; } + return len; +} + +#ifdef MI_NO_GETENV +static bool mi_getenv(const char* name, char* result, size_t result_size) { + MI_UNUSED(name); + MI_UNUSED(result); + MI_UNUSED(result_size); + return false; +} +#else +static bool mi_getenv(const char* name, char* result, size_t result_size) { + if (name==NULL || result == NULL || result_size < 64) return false; + return _mi_prim_getenv(name,result,result_size); +} +#endif + +// TODO: implement ourselves to reduce dependencies on the C runtime +#include // strtol +#include // strstr + + +static void mi_option_init(mi_option_desc_t* desc) { + // Read option value from the environment + char s[64 + 1]; + char buf[64+1]; + _mi_strlcpy(buf, "mimalloc_", sizeof(buf)); + _mi_strlcat(buf, desc->name, sizeof(buf)); + bool found = mi_getenv(buf, s, sizeof(s)); + if (!found && desc->legacy_name != NULL) { + _mi_strlcpy(buf, "mimalloc_", sizeof(buf)); + _mi_strlcat(buf, desc->legacy_name, sizeof(buf)); + found = mi_getenv(buf, s, sizeof(s)); + if (found) { + _mi_warning_message("environment option \"mimalloc_%s\" is deprecated -- use \"mimalloc_%s\" instead.\n", desc->legacy_name, desc->name); + } + } + + if (found) { + size_t len = _mi_strnlen(s, sizeof(buf) - 1); + for (size_t i = 0; i < len; i++) { + buf[i] = _mi_toupper(s[i]); + } + buf[len] = 0; + if (buf[0] == 0 || strstr("1;TRUE;YES;ON", buf) != NULL) { + desc->value = 1; + desc->init = INITIALIZED; + } + else if (strstr("0;FALSE;NO;OFF", buf) != NULL) { + desc->value = 0; + desc->init = INITIALIZED; + } + else { + char* end = buf; + long value = strtol(buf, &end, 10); + if (desc->option == mi_option_reserve_os_memory || desc->option == mi_option_arena_reserve) { + // this option is interpreted in KiB to prevent overflow of `long` + if (*end == 'K') { end++; } + else if (*end == 'M') { value *= MI_KiB; end++; } + else if (*end == 'G') { value *= MI_MiB; end++; } + else { value = (value + MI_KiB - 1) / MI_KiB; } + if (end[0] == 'I' && end[1] == 'B') { end += 2; } + else if (*end == 'B') { end++; } + } + if (*end == 0) { + desc->value = value; + desc->init = INITIALIZED; + } + else { + // set `init` first to avoid recursion through _mi_warning_message on mimalloc_verbose. + desc->init = DEFAULTED; + if (desc->option == mi_option_verbose && desc->value == 0) { + // if the 'mimalloc_verbose' env var has a bogus value we'd never know + // (since the value defaults to 'off') so in that case briefly enable verbose + desc->value = 1; + _mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name); + desc->value = 0; + } + else { + _mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name); + } + } + } + mi_assert_internal(desc->init != UNINIT); + } + else if (!_mi_preloading()) { + desc->init = DEFAULTED; + } +} diff --git a/3rdparty/mimalloc/src/os.c b/3rdparty/mimalloc/src/os.c new file mode 100644 index 00000000..b4f02ba3 --- /dev/null +++ b/3rdparty/mimalloc/src/os.c @@ -0,0 +1,689 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" + + +/* ----------------------------------------------------------- + Initialization. + On windows initializes support for aligned allocation and + large OS pages (if MIMALLOC_LARGE_OS_PAGES is true). +----------------------------------------------------------- */ + +static mi_os_mem_config_t mi_os_mem_config = { + 4096, // page size + 0, // large page size (usually 2MiB) + 4096, // allocation granularity + true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems) + false, // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span) + true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory) +}; + +bool _mi_os_has_overcommit(void) { + return mi_os_mem_config.has_overcommit; +} + +bool _mi_os_has_virtual_reserve(void) { + return mi_os_mem_config.has_virtual_reserve; +} + + +// OS (small) page size +size_t _mi_os_page_size(void) { + return mi_os_mem_config.page_size; +} + +// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB) +size_t _mi_os_large_page_size(void) { + return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size()); +} + +bool _mi_os_use_large_page(size_t size, size_t alignment) { + // if we have access, check the size and alignment requirements + if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false; + return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0); +} + +// round to a good OS allocation size (bounded by max 12.5% waste) +size_t _mi_os_good_alloc_size(size_t size) { + size_t align_size; + if (size < 512*MI_KiB) align_size = _mi_os_page_size(); + else if (size < 2*MI_MiB) align_size = 64*MI_KiB; + else if (size < 8*MI_MiB) align_size = 256*MI_KiB; + else if (size < 32*MI_MiB) align_size = 1*MI_MiB; + else align_size = 4*MI_MiB; + if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow? + return _mi_align_up(size, align_size); +} + +void _mi_os_init(void) { + _mi_prim_mem_init(&mi_os_mem_config); +} + + +/* ----------------------------------------------------------- + Util +-------------------------------------------------------------- */ +bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); +bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats); + +static void* mi_align_up_ptr(void* p, size_t alignment) { + return (void*)_mi_align_up((uintptr_t)p, alignment); +} + +static void* mi_align_down_ptr(void* p, size_t alignment) { + return (void*)_mi_align_down((uintptr_t)p, alignment); +} + + +/* ----------------------------------------------------------- + aligned hinting +-------------------------------------------------------------- */ + +// On 64-bit systems, we can do efficient aligned allocation by using +// the 2TiB to 30TiB area to allocate those. +#if (MI_INTPTR_SIZE >= 8) +static mi_decl_cache_align _Atomic(uintptr_t)aligned_base; + +// Return a MI_SEGMENT_SIZE aligned address that is probably available. +// If this returns NULL, the OS will determine the address but on some OS's that may not be +// properly aligned which can be more costly as it needs to be adjusted afterwards. +// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization; +// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses +// in the middle of the 2TiB - 6TiB address range (see issue #372)) + +#define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start +#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes) +#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages) + +void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) +{ + if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL; + size = _mi_align_up(size, MI_SEGMENT_SIZE); + if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096. + #if (MI_SECURE>0) + size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas. + #endif + + uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size); + if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize + uintptr_t init = MI_HINT_BASE; + #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode + uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap()); + init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB + #endif + uintptr_t expected = hint + size; + mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init); + hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all + } + if (hint%try_alignment != 0) return NULL; + return (void*)hint; +} +#else +void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) { + MI_UNUSED(try_alignment); MI_UNUSED(size); + return NULL; +} +#endif + + +/* ----------------------------------------------------------- + Free memory +-------------------------------------------------------------- */ + +static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats); + +static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + mi_assert_internal((size % _mi_os_page_size()) == 0); + if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr) + int err = _mi_prim_free(addr, size); + if (err != 0) { + _mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr); + } + mi_stats_t* stats = &_mi_stats_main; + if (still_committed) { _mi_stat_decrease(&stats->committed, size); } + _mi_stat_decrease(&stats->reserved, size); +} + +void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) { + if (mi_memkind_is_os(memid.memkind)) { + size_t csize = _mi_os_good_alloc_size(size); + void* base = addr; + // different base? (due to alignment) + if (memid.mem.os.base != NULL) { + mi_assert(memid.mem.os.base <= addr); + mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr); + base = memid.mem.os.base; + csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base); + } + // free it + if (memid.memkind == MI_MEM_OS_HUGE) { + mi_assert(memid.is_pinned); + mi_os_free_huge_os_pages(base, csize, tld_stats); + } + else { + mi_os_prim_free(base, csize, still_committed, tld_stats); + } + } + else { + // nothing to do + mi_assert(memid.memkind < MI_MEM_OS); + } +} + +void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) { + _mi_os_free_ex(p, size, true, memid, tld_stats); +} + + +/* ----------------------------------------------------------- + Primitive allocation from the OS. +-------------------------------------------------------------- */ + +// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. +static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* stats) { + mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(is_zero != NULL); + mi_assert_internal(is_large != NULL); + if (size == 0) return NULL; + if (!commit) { allow_large = false; } + if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning + + *is_zero = false; + void* p = NULL; + int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p); + if (err != 0) { + _mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large); + } + mi_stat_counter_increase(stats->mmap_calls, 1); + if (p != NULL) { + _mi_stat_increase(&stats->reserved, size); + if (commit) { + _mi_stat_increase(&stats->committed, size); + // seems needed for asan (or `mimalloc-test-api` fails) + #ifdef MI_TRACK_ASAN + if (*is_zero) { mi_track_mem_defined(p,size); } + else { mi_track_mem_undefined(p,size); } + #endif + } + } + return p; +} + + +// Primitive aligned allocation from the OS. +// This function guarantees the allocated memory is aligned. +static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) { + mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0)); + mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(is_large != NULL); + mi_assert_internal(is_zero != NULL); + mi_assert_internal(base != NULL); + if (!commit) allow_large = false; + if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL; + size = _mi_align_up(size, _mi_os_page_size()); + + // try first with a hint (this will be aligned directly on Win 10+ or BSD) + void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats); + if (p == NULL) return NULL; + + // aligned already? + if (((uintptr_t)p % alignment) == 0) { + *base = p; + } + else { + // if not aligned, free it, overallocate, and unmap around it + _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit); + mi_os_prim_free(p, size, commit, stats); + if (size >= (SIZE_MAX - alignment)) return NULL; // overflow + const size_t over_size = size + alignment; + + if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block + // over-allocate uncommitted (virtual) memory + p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats); + if (p == NULL) return NULL; + + // set p to the aligned part in the full region + // note: this is dangerous on Windows as VirtualFree needs the actual base pointer + // this is handled though by having the `base` field in the memid's + *base = p; // remember the base + p = mi_align_up_ptr(p, alignment); + + // explicitly commit only the aligned part + if (commit) { + _mi_os_commit(p, size, NULL, stats); + } + } + else { // mmap can free inside an allocation + // overallocate... + p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats); + if (p == NULL) return NULL; + + // and selectively unmap parts around the over-allocated area. (noop on sbrk) + void* aligned_p = mi_align_up_ptr(p, alignment); + size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; + size_t mid_size = _mi_align_up(size, _mi_os_page_size()); + size_t post_size = over_size - pre_size - mid_size; + mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size); + if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); } + if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); } + // we can return the aligned pointer on `mmap` (and sbrk) systems + p = aligned_p; + *base = aligned_p; // since we freed the pre part, `*base == p`. + } + } + + mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0)); + return p; +} + + +/* ----------------------------------------------------------- + OS API: alloc and alloc_aligned +----------------------------------------------------------- */ + +void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + *memid = _mi_memid_none(); + mi_stats_t* stats = &_mi_stats_main; + if (size == 0) return NULL; + size = _mi_os_good_alloc_size(size); + bool os_is_large = false; + bool os_is_zero = false; + void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats); + if (p != NULL) { + *memid = _mi_memid_create_os(true, os_is_zero, os_is_large); + } + return p; +} + +void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) +{ + MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings + MI_UNUSED(tld_stats); + *memid = _mi_memid_none(); + if (size == 0) return NULL; + size = _mi_os_good_alloc_size(size); + alignment = _mi_align_up(alignment, _mi_os_page_size()); + + bool os_is_large = false; + bool os_is_zero = false; + void* os_base = NULL; + void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &_mi_stats_main /*tld->stats*/ ); + if (p != NULL) { + *memid = _mi_memid_create_os(commit, os_is_zero, os_is_large); + memid->mem.os.base = os_base; + memid->mem.os.alignment = alignment; + } + return p; +} + +/* ----------------------------------------------------------- + OS aligned allocation with an offset. This is used + for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc + page where the object can be aligned at an offset from the start of the segment. + As we may need to overallocate, we need to free such pointers using `mi_free_aligned` + to use the actual start of the memory region. +----------------------------------------------------------- */ + +void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) { + mi_assert(offset <= MI_SEGMENT_SIZE); + mi_assert(offset <= size); + mi_assert((alignment % _mi_os_page_size()) == 0); + *memid = _mi_memid_none(); + if (offset > MI_SEGMENT_SIZE) return NULL; + if (offset == 0) { + // regular aligned allocation + return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld_stats); + } + else { + // overallocate to align at an offset + const size_t extra = _mi_align_up(offset, alignment) - offset; + const size_t oversize = size + extra; + void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, tld_stats); + if (start == NULL) return NULL; + + void* const p = (uint8_t*)start + extra; + mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment)); + // decommit the overallocation at the start + if (commit && extra > _mi_os_page_size()) { + _mi_os_decommit(start, extra, tld_stats); + } + return p; + } +} + +/* ----------------------------------------------------------- + OS memory API: reset, commit, decommit, protect, unprotect. +----------------------------------------------------------- */ + +// OS page align within a given area, either conservative (pages inside the area only), +// or not (straddling pages outside the area is possible) +static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) { + mi_assert(addr != NULL && size > 0); + if (newsize != NULL) *newsize = 0; + if (size == 0 || addr == NULL) return NULL; + + // page align conservatively within the range + void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size()) + : mi_align_down_ptr(addr, _mi_os_page_size())); + void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size()) + : mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size())); + ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start; + if (diff <= 0) return NULL; + + mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size)); + if (newsize != NULL) *newsize = (size_t)diff; + return start; +} + +static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) { + return mi_os_page_align_areax(true, addr, size, newsize); +} + +bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + mi_stats_t* stats = &_mi_stats_main; + if (is_zero != NULL) { *is_zero = false; } + _mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit + _mi_stat_counter_increase(&stats->commit_calls, 1); + + // page align range + size_t csize; + void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize); + if (csize == 0) return true; + + // commit + bool os_is_zero = false; + int err = _mi_prim_commit(start, csize, &os_is_zero); + if (err != 0) { + _mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); + return false; + } + if (os_is_zero && is_zero != NULL) { + *is_zero = true; + mi_assert_expensive(mi_mem_is_zero(start, csize)); + } + // note: the following seems required for asan (otherwise `mimalloc-test-stress` fails) + #ifdef MI_TRACK_ASAN + if (os_is_zero) { mi_track_mem_defined(start,csize); } + else { mi_track_mem_undefined(start,csize); } + #endif + return true; +} + +static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + mi_stats_t* stats = &_mi_stats_main; + mi_assert_internal(needs_recommit!=NULL); + _mi_stat_decrease(&stats->committed, size); + + // page align + size_t csize; + void* start = mi_os_page_align_area_conservative(addr, size, &csize); + if (csize == 0) return true; + + // decommit + *needs_recommit = true; + int err = _mi_prim_decommit(start,csize,needs_recommit); + if (err != 0) { + _mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); + } + mi_assert_internal(err == 0); + return (err == 0); +} + +bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) { + bool needs_recommit; + return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats); +} + + +// Signal to the OS that the address range is no longer in use +// but may be used later again. This will release physical memory +// pages and reduce swapping while keeping the memory committed. +// We page align to a conservative area inside the range to reset. +bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) { + // page align conservatively within the range + size_t csize; + void* start = mi_os_page_align_area_conservative(addr, size, &csize); + if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr) + _mi_stat_increase(&stats->reset, csize); + _mi_stat_counter_increase(&stats->reset_calls, 1); + + #if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN + memset(start, 0, csize); // pretend it is eagerly reset + #endif + + int err = _mi_prim_reset(start, csize); + if (err != 0) { + _mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); + } + return (err == 0); +} + + +// either resets or decommits memory, returns true if the memory needs +// to be recommitted if it is to be re-used later on. +bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats) +{ + if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed? + _mi_stat_counter_increase(&stats->purge_calls, 1); + _mi_stat_increase(&stats->purged, size); + + if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit? + !_mi_preloading()) // don't decommit during preloading (unsafe) + { + bool needs_recommit = true; + mi_os_decommit_ex(p, size, &needs_recommit, stats); + return needs_recommit; + } + else { + if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed + _mi_os_reset(p, size, stats); + } + return false; // needs no recommit + } +} + +// either resets or decommits memory, returns true if the memory needs +// to be recommitted if it is to be re-used later on. +bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) { + return _mi_os_purge_ex(p, size, true, stats); +} + +// Protect a region in memory to be not accessible. +static bool mi_os_protectx(void* addr, size_t size, bool protect) { + // page align conservatively within the range + size_t csize = 0; + void* start = mi_os_page_align_area_conservative(addr, size, &csize); + if (csize == 0) return false; + /* + if (_mi_os_is_huge_reserved(addr)) { + _mi_warning_message("cannot mprotect memory allocated in huge OS pages\n"); + } + */ + int err = _mi_prim_protect(start,csize,protect); + if (err != 0) { + _mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize); + } + return (err == 0); +} + +bool _mi_os_protect(void* addr, size_t size) { + return mi_os_protectx(addr, size, true); +} + +bool _mi_os_unprotect(void* addr, size_t size) { + return mi_os_protectx(addr, size, false); +} + + + +/* ---------------------------------------------------------------------------- +Support for allocating huge OS pages (1Gib) that are reserved up-front +and possibly associated with a specific NUMA node. (use `numa_node>=0`) +-----------------------------------------------------------------------------*/ +#define MI_HUGE_OS_PAGE_SIZE (MI_GiB) + + +#if (MI_INTPTR_SIZE >= 8) +// To ensure proper alignment, use our own area for huge OS pages +static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0 + +// Claim an aligned address range for huge pages +static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { + if (total_size != NULL) *total_size = 0; + const size_t size = pages * MI_HUGE_OS_PAGE_SIZE; + + uintptr_t start = 0; + uintptr_t end = 0; + uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start); + do { + start = huge_start; + if (start == 0) { + // Initialize the start address after the 32TiB area + start = ((uintptr_t)32 << 40); // 32TiB virtual start address + #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode + uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap()); + start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB + #endif + } + end = start + size; + mi_assert_internal(end % MI_SEGMENT_SIZE == 0); + } while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end)); + + if (total_size != NULL) *total_size = size; + return (uint8_t*)start; +} +#else +static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { + MI_UNUSED(pages); + if (total_size != NULL) *total_size = 0; + return NULL; +} +#endif + +// Allocate MI_SEGMENT_SIZE aligned huge pages +void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) { + *memid = _mi_memid_none(); + if (psize != NULL) *psize = 0; + if (pages_reserved != NULL) *pages_reserved = 0; + size_t size = 0; + uint8_t* start = mi_os_claim_huge_pages(pages, &size); + if (start == NULL) return NULL; // or 32-bit systems + + // Allocate one page at the time but try to place them contiguously + // We allocate one page at the time to be able to abort if it takes too long + // or to at least allocate as many as available on the system. + mi_msecs_t start_t = _mi_clock_start(); + size_t page = 0; + bool all_zero = true; + while (page < pages) { + // allocate a page + bool is_zero = false; + void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE); + void* p = NULL; + int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p); + if (!is_zero) { all_zero = false; } + if (err != 0) { + _mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE); + break; + } + + // Did we succeed at a contiguous address? + if (p != addr) { + // no success, issue a warning and break + if (p != NULL) { + _mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr); + mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main); + } + break; + } + + // success, record it + page++; // increase before timeout check (see issue #711) + _mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE); + _mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE); + + // check for timeout + if (max_msecs > 0) { + mi_msecs_t elapsed = _mi_clock_end(start_t); + if (page >= 1) { + mi_msecs_t estimate = ((elapsed / (page+1)) * pages); + if (estimate > 2*max_msecs) { // seems like we are going to timeout, break + elapsed = max_msecs + 1; + } + } + if (elapsed > max_msecs) { + _mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page); + break; + } + } + } + mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size); + if (pages_reserved != NULL) { *pages_reserved = page; } + if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; } + if (page != 0) { + mi_assert(start != NULL); + *memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */); + memid->memkind = MI_MEM_OS_HUGE; + mi_assert(memid->is_pinned); + #ifdef MI_TRACK_ASAN + if (all_zero) { mi_track_mem_defined(start,size); } + #endif + } + return (page == 0 ? NULL : start); +} + +// free every huge page in a range individually (as we allocated per page) +// note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems. +static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) { + if (p==NULL || size==0) return; + uint8_t* base = (uint8_t*)p; + while (size >= MI_HUGE_OS_PAGE_SIZE) { + mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats); + size -= MI_HUGE_OS_PAGE_SIZE; + base += MI_HUGE_OS_PAGE_SIZE; + } +} + +/* ---------------------------------------------------------------------------- +Support NUMA aware allocation +-----------------------------------------------------------------------------*/ + +_Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count + +size_t _mi_os_numa_node_count_get(void) { + size_t count = mi_atomic_load_acquire(&_mi_numa_node_count); + if (count <= 0) { + long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly? + if (ncount > 0) { + count = (size_t)ncount; + } + else { + count = _mi_prim_numa_node_count(); // or detect dynamically + if (count == 0) count = 1; + } + mi_atomic_store_release(&_mi_numa_node_count, count); // save it + _mi_verbose_message("using %zd numa regions\n", count); + } + return count; +} + +int _mi_os_numa_node_get(mi_os_tld_t* tld) { + MI_UNUSED(tld); + size_t numa_count = _mi_os_numa_node_count(); + if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0 + // never more than the node count and >= 0 + size_t numa_node = _mi_prim_numa_node(); + if (numa_node >= numa_count) { numa_node = numa_node % numa_count; } + return (int)numa_node; +} diff --git a/3rdparty/mimalloc/src/page-queue.c b/3rdparty/mimalloc/src/page-queue.c new file mode 100644 index 00000000..cb54b374 --- /dev/null +++ b/3rdparty/mimalloc/src/page-queue.c @@ -0,0 +1,332 @@ +/*---------------------------------------------------------------------------- +Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ----------------------------------------------------------- + Definition of page queues for each block size +----------------------------------------------------------- */ + +#ifndef MI_IN_PAGE_C +#error "this file should be included from 'page.c'" +#endif + +/* ----------------------------------------------------------- + Minimal alignment in machine words (i.e. `sizeof(void*)`) +----------------------------------------------------------- */ + +#if (MI_MAX_ALIGN_SIZE > 4*MI_INTPTR_SIZE) + #error "define alignment for more than 4x word size for this platform" +#elif (MI_MAX_ALIGN_SIZE > 2*MI_INTPTR_SIZE) + #define MI_ALIGN4W // 4 machine words minimal alignment +#elif (MI_MAX_ALIGN_SIZE > MI_INTPTR_SIZE) + #define MI_ALIGN2W // 2 machine words minimal alignment +#else + // ok, default alignment is 1 word +#endif + + +/* ----------------------------------------------------------- + Queue query +----------------------------------------------------------- */ + + +static inline bool mi_page_queue_is_huge(const mi_page_queue_t* pq) { + return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+sizeof(uintptr_t))); +} + +static inline bool mi_page_queue_is_full(const mi_page_queue_t* pq) { + return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+(2*sizeof(uintptr_t)))); +} + +static inline bool mi_page_queue_is_special(const mi_page_queue_t* pq) { + return (pq->block_size > MI_MEDIUM_OBJ_SIZE_MAX); +} + +/* ----------------------------------------------------------- + Bins +----------------------------------------------------------- */ + +// Return the bin for a given field size. +// Returns MI_BIN_HUGE if the size is too large. +// We use `wsize` for the size in "machine word sizes", +// i.e. byte size == `wsize*sizeof(void*)`. +static inline uint8_t mi_bin(size_t size) { + size_t wsize = _mi_wsize_from_size(size); + uint8_t bin; + if (wsize <= 1) { + bin = 1; + } + #if defined(MI_ALIGN4W) + else if (wsize <= 4) { + bin = (uint8_t)((wsize+1)&~1); // round to double word sizes + } + #elif defined(MI_ALIGN2W) + else if (wsize <= 8) { + bin = (uint8_t)((wsize+1)&~1); // round to double word sizes + } + #else + else if (wsize <= 8) { + bin = (uint8_t)wsize; + } + #endif + else if (wsize > MI_MEDIUM_OBJ_WSIZE_MAX) { + bin = MI_BIN_HUGE; + } + else { + #if defined(MI_ALIGN4W) + if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes + #endif + wsize--; + // find the highest bit + uint8_t b = (uint8_t)mi_bsr(wsize); // note: wsize != 0 + // and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation). + // - adjust with 3 because we use do not round the first 8 sizes + // which each get an exact bin + bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3; + mi_assert_internal(bin < MI_BIN_HUGE); + } + mi_assert_internal(bin > 0 && bin <= MI_BIN_HUGE); + return bin; +} + + + +/* ----------------------------------------------------------- + Queue of pages with free blocks +----------------------------------------------------------- */ + +uint8_t _mi_bin(size_t size) { + return mi_bin(size); +} + +size_t _mi_bin_size(uint8_t bin) { + return _mi_heap_empty.pages[bin].block_size; +} + +// Good size for allocation +size_t mi_good_size(size_t size) mi_attr_noexcept { + if (size <= MI_MEDIUM_OBJ_SIZE_MAX) { + return _mi_bin_size(mi_bin(size)); + } + else { + return _mi_align_up(size,_mi_os_page_size()); + } +} + +#if (MI_DEBUG>1) +static bool mi_page_queue_contains(mi_page_queue_t* queue, const mi_page_t* page) { + mi_assert_internal(page != NULL); + mi_page_t* list = queue->first; + while (list != NULL) { + mi_assert_internal(list->next == NULL || list->next->prev == list); + mi_assert_internal(list->prev == NULL || list->prev->next == list); + if (list == page) break; + list = list->next; + } + return (list == page); +} + +#endif + +#if (MI_DEBUG>1) +static bool mi_heap_contains_queue(const mi_heap_t* heap, const mi_page_queue_t* pq) { + return (pq >= &heap->pages[0] && pq <= &heap->pages[MI_BIN_FULL]); +} +#endif + +static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) { + uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size)); + mi_heap_t* heap = mi_page_heap(page); + mi_assert_internal(heap != NULL && bin <= MI_BIN_FULL); + mi_page_queue_t* pq = &heap->pages[bin]; + mi_assert_internal(bin >= MI_BIN_HUGE || page->xblock_size == pq->block_size); + mi_assert_expensive(mi_page_queue_contains(pq, page)); + return pq; +} + +static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) { + uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size)); + mi_assert_internal(bin <= MI_BIN_FULL); + mi_page_queue_t* pq = &heap->pages[bin]; + mi_assert_internal(mi_page_is_in_full(page) || page->xblock_size == pq->block_size); + return pq; +} + +// The current small page array is for efficiency and for each +// small size (up to 256) it points directly to the page for that +// size without having to compute the bin. This means when the +// current free page queue is updated for a small bin, we need to update a +// range of entries in `_mi_page_small_free`. +static inline void mi_heap_queue_first_update(mi_heap_t* heap, const mi_page_queue_t* pq) { + mi_assert_internal(mi_heap_contains_queue(heap,pq)); + size_t size = pq->block_size; + if (size > MI_SMALL_SIZE_MAX) return; + + mi_page_t* page = pq->first; + if (pq->first == NULL) page = (mi_page_t*)&_mi_page_empty; + + // find index in the right direct page array + size_t start; + size_t idx = _mi_wsize_from_size(size); + mi_page_t** pages_free = heap->pages_free_direct; + + if (pages_free[idx] == page) return; // already set + + // find start slot + if (idx<=1) { + start = 0; + } + else { + // find previous size; due to minimal alignment upto 3 previous bins may need to be skipped + uint8_t bin = mi_bin(size); + const mi_page_queue_t* prev = pq - 1; + while( bin == mi_bin(prev->block_size) && prev > &heap->pages[0]) { + prev--; + } + start = 1 + _mi_wsize_from_size(prev->block_size); + if (start > idx) start = idx; + } + + // set size range to the right page + mi_assert(start <= idx); + for (size_t sz = start; sz <= idx; sz++) { + pages_free[sz] = page; + } +} + +/* +static bool mi_page_queue_is_empty(mi_page_queue_t* queue) { + return (queue->first == NULL); +} +*/ + +static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) { + mi_assert_internal(page != NULL); + mi_assert_expensive(mi_page_queue_contains(queue, page)); + mi_assert_internal(page->xblock_size == queue->block_size || (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue)) || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); + mi_heap_t* heap = mi_page_heap(page); + + if (page->prev != NULL) page->prev->next = page->next; + if (page->next != NULL) page->next->prev = page->prev; + if (page == queue->last) queue->last = page->prev; + if (page == queue->first) { + queue->first = page->next; + // update first + mi_assert_internal(mi_heap_contains_queue(heap, queue)); + mi_heap_queue_first_update(heap,queue); + } + heap->page_count--; + page->next = NULL; + page->prev = NULL; + // mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), NULL); + mi_page_set_in_full(page,false); +} + + +static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) { + mi_assert_internal(mi_page_heap(page) == heap); + mi_assert_internal(!mi_page_queue_contains(queue, page)); + #if MI_HUGE_PAGE_ABANDON + mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE); + #endif + mi_assert_internal(page->xblock_size == queue->block_size || + (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX) || + (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); + + mi_page_set_in_full(page, mi_page_queue_is_full(queue)); + // mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), heap); + page->next = queue->first; + page->prev = NULL; + if (queue->first != NULL) { + mi_assert_internal(queue->first->prev == NULL); + queue->first->prev = page; + queue->first = page; + } + else { + queue->first = queue->last = page; + } + + // update direct + mi_heap_queue_first_update(heap, queue); + heap->page_count++; +} + + +static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) { + mi_assert_internal(page != NULL); + mi_assert_expensive(mi_page_queue_contains(from, page)); + mi_assert_expensive(!mi_page_queue_contains(to, page)); + + mi_assert_internal((page->xblock_size == to->block_size && page->xblock_size == from->block_size) || + (page->xblock_size == to->block_size && mi_page_queue_is_full(from)) || + (page->xblock_size == from->block_size && mi_page_queue_is_full(to)) || + (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(to)) || + (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_full(to))); + + mi_heap_t* heap = mi_page_heap(page); + if (page->prev != NULL) page->prev->next = page->next; + if (page->next != NULL) page->next->prev = page->prev; + if (page == from->last) from->last = page->prev; + if (page == from->first) { + from->first = page->next; + // update first + mi_assert_internal(mi_heap_contains_queue(heap, from)); + mi_heap_queue_first_update(heap, from); + } + + page->prev = to->last; + page->next = NULL; + if (to->last != NULL) { + mi_assert_internal(heap == mi_page_heap(to->last)); + to->last->next = page; + to->last = page; + } + else { + to->first = page; + to->last = page; + mi_heap_queue_first_update(heap, to); + } + + mi_page_set_in_full(page, mi_page_queue_is_full(to)); +} + +// Only called from `mi_heap_absorb`. +size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append) { + mi_assert_internal(mi_heap_contains_queue(heap,pq)); + mi_assert_internal(pq->block_size == append->block_size); + + if (append->first==NULL) return 0; + + // set append pages to new heap and count + size_t count = 0; + for (mi_page_t* page = append->first; page != NULL; page = page->next) { + // inline `mi_page_set_heap` to avoid wrong assertion during absorption; + // in this case it is ok to be delayed freeing since both "to" and "from" heap are still alive. + mi_atomic_store_release(&page->xheap, (uintptr_t)heap); + // set the flag to delayed free (not overriding NEVER_DELAYED_FREE) which has as a + // side effect that it spins until any DELAYED_FREEING is finished. This ensures + // that after appending only the new heap will be used for delayed free operations. + _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false); + count++; + } + + if (pq->last==NULL) { + // take over afresh + mi_assert_internal(pq->first==NULL); + pq->first = append->first; + pq->last = append->last; + mi_heap_queue_first_update(heap, pq); + } + else { + // append to end + mi_assert_internal(pq->last!=NULL); + mi_assert_internal(append->first!=NULL); + pq->last->next = append->first; + append->first->prev = pq->last; + pq->last = append->last; + } + return count; +} diff --git a/3rdparty/mimalloc/src/page.c b/3rdparty/mimalloc/src/page.c new file mode 100644 index 00000000..8ac0a715 --- /dev/null +++ b/3rdparty/mimalloc/src/page.c @@ -0,0 +1,939 @@ +/*---------------------------------------------------------------------------- +Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ----------------------------------------------------------- + The core of the allocator. Every segment contains + pages of a certain block size. The main function + exported is `mi_malloc_generic`. +----------------------------------------------------------- */ + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" + +/* ----------------------------------------------------------- + Definition of page queues for each block size +----------------------------------------------------------- */ + +#define MI_IN_PAGE_C +#include "page-queue.c" +#undef MI_IN_PAGE_C + + +/* ----------------------------------------------------------- + Page helpers +----------------------------------------------------------- */ + +// Index a block in a page +static inline mi_block_t* mi_page_block_at(const mi_page_t* page, void* page_start, size_t block_size, size_t i) { + MI_UNUSED(page); + mi_assert_internal(page != NULL); + mi_assert_internal(i <= page->reserved); + return (mi_block_t*)((uint8_t*)page_start + (i * block_size)); +} + +static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t size, mi_tld_t* tld); +static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld); + +#if (MI_DEBUG>=3) +static size_t mi_page_list_count(mi_page_t* page, mi_block_t* head) { + size_t count = 0; + while (head != NULL) { + mi_assert_internal(page == _mi_ptr_page(head)); + count++; + head = mi_block_next(page, head); + } + return count; +} + +/* +// Start of the page available memory +static inline uint8_t* mi_page_area(const mi_page_t* page) { + return _mi_page_start(_mi_page_segment(page), page, NULL); +} +*/ + +static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) { + size_t psize; + uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize); + mi_block_t* start = (mi_block_t*)page_area; + mi_block_t* end = (mi_block_t*)(page_area + psize); + while(p != NULL) { + if (p < start || p >= end) return false; + p = mi_block_next(page, p); + } +#if MI_DEBUG>3 // generally too expensive to check this + if (page->free_is_zero) { + const size_t ubsize = mi_page_usable_block_size(page); + for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page, block)) { + mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t))); + } + } +#endif + return true; +} + +static bool mi_page_is_valid_init(mi_page_t* page) { + mi_assert_internal(page->xblock_size > 0); + mi_assert_internal(page->used <= page->capacity); + mi_assert_internal(page->capacity <= page->reserved); + + mi_segment_t* segment = _mi_page_segment(page); + uint8_t* start = _mi_page_start(segment,page,NULL); + mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL)); + //const size_t bsize = mi_page_block_size(page); + //mi_assert_internal(start + page->capacity*page->block_size == page->top); + + mi_assert_internal(mi_page_list_is_valid(page,page->free)); + mi_assert_internal(mi_page_list_is_valid(page,page->local_free)); + + #if MI_DEBUG>3 // generally too expensive to check this + if (page->free_is_zero) { + const size_t ubsize = mi_page_usable_block_size(page); + for(mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) { + mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t))); + } + } + #endif + + #if !MI_TRACK_ENABLED && !MI_TSAN + mi_block_t* tfree = mi_page_thread_free(page); + mi_assert_internal(mi_page_list_is_valid(page, tfree)); + //size_t tfree_count = mi_page_list_count(page, tfree); + //mi_assert_internal(tfree_count <= page->thread_freed + 1); + #endif + + size_t free_count = mi_page_list_count(page, page->free) + mi_page_list_count(page, page->local_free); + mi_assert_internal(page->used + free_count == page->capacity); + + return true; +} + +extern bool _mi_process_is_initialized; // has mi_process_init been called? + +bool _mi_page_is_valid(mi_page_t* page) { + mi_assert_internal(mi_page_is_valid_init(page)); + #if MI_SECURE + mi_assert_internal(page->keys[0] != 0); + #endif + if (mi_page_heap(page)!=NULL) { + mi_segment_t* segment = _mi_page_segment(page); + + mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id); + #if MI_HUGE_PAGE_ABANDON + if (segment->kind != MI_SEGMENT_HUGE) + #endif + { + mi_page_queue_t* pq = mi_page_queue_of(page); + mi_assert_internal(mi_page_queue_contains(pq, page)); + mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page)); + mi_assert_internal(mi_heap_contains_queue(mi_page_heap(page),pq)); + } + } + return true; +} +#endif + +void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) { + while (!_mi_page_try_use_delayed_free(page, delay, override_never)) { + mi_atomic_yield(); + } +} + +bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) { + mi_thread_free_t tfreex; + mi_delayed_t old_delay; + mi_thread_free_t tfree; + size_t yield_count = 0; + do { + tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS; + tfreex = mi_tf_set_delayed(tfree, delay); + old_delay = mi_tf_delayed(tfree); + if mi_unlikely(old_delay == MI_DELAYED_FREEING) { + if (yield_count >= 4) return false; // give up after 4 tries + yield_count++; + mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done. + // tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail + } + else if (delay == old_delay) { + break; // avoid atomic operation if already equal + } + else if (!override_never && old_delay == MI_NEVER_DELAYED_FREE) { + break; // leave never-delayed flag set + } + } while ((old_delay == MI_DELAYED_FREEING) || + !mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); + + return true; // success +} + +/* ----------------------------------------------------------- + Page collect the `local_free` and `thread_free` lists +----------------------------------------------------------- */ + +// Collect the local `thread_free` list using an atomic exchange. +// Note: The exchange must be done atomically as this is used right after +// moving to the full list in `mi_page_collect_ex` and we need to +// ensure that there was no race where the page became unfull just before the move. +static void _mi_page_thread_free_collect(mi_page_t* page) +{ + mi_block_t* head; + mi_thread_free_t tfreex; + mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); + do { + head = mi_tf_block(tfree); + tfreex = mi_tf_set_block(tfree,NULL); + } while (!mi_atomic_cas_weak_acq_rel(&page->xthread_free, &tfree, tfreex)); + + // return if the list is empty + if (head == NULL) return; + + // find the tail -- also to get a proper count (without data races) + uint32_t max_count = page->capacity; // cannot collect more than capacity + uint32_t count = 1; + mi_block_t* tail = head; + mi_block_t* next; + while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) { + count++; + tail = next; + } + // if `count > max_count` there was a memory corruption (possibly infinite list due to double multi-threaded free) + if (count > max_count) { + _mi_error_message(EFAULT, "corrupted thread-free list\n"); + return; // the thread-free items cannot be freed + } + + // and append the current local free list + mi_block_set_next(page,tail, page->local_free); + page->local_free = head; + + // update counts now + page->used -= count; +} + +void _mi_page_free_collect(mi_page_t* page, bool force) { + mi_assert_internal(page!=NULL); + + // collect the thread free list + if (force || mi_page_thread_free(page) != NULL) { // quick test to avoid an atomic operation + _mi_page_thread_free_collect(page); + } + + // and the local free list + if (page->local_free != NULL) { + if mi_likely(page->free == NULL) { + // usual case + page->free = page->local_free; + page->local_free = NULL; + page->free_is_zero = false; + } + else if (force) { + // append -- only on shutdown (force) as this is a linear operation + mi_block_t* tail = page->local_free; + mi_block_t* next; + while ((next = mi_block_next(page, tail)) != NULL) { + tail = next; + } + mi_block_set_next(page, tail, page->free); + page->free = page->local_free; + page->local_free = NULL; + page->free_is_zero = false; + } + } + + mi_assert_internal(!force || page->local_free == NULL); +} + + + +/* ----------------------------------------------------------- + Page fresh and retire +----------------------------------------------------------- */ + +// called from segments when reclaiming abandoned pages +void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) { + mi_assert_expensive(mi_page_is_valid_init(page)); + + mi_assert_internal(mi_page_heap(page) == heap); + mi_assert_internal(mi_page_thread_free_flag(page) != MI_NEVER_DELAYED_FREE); + #if MI_HUGE_PAGE_ABANDON + mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE); + #endif + + // TODO: push on full queue immediately if it is full? + mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page)); + mi_page_queue_push(heap, pq, page); + mi_assert_expensive(_mi_page_is_valid(page)); +} + +// allocate a fresh page from a segment +static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size, size_t page_alignment) { + #if !MI_HUGE_PAGE_ABANDON + mi_assert_internal(pq != NULL); + mi_assert_internal(mi_heap_contains_queue(heap, pq)); + mi_assert_internal(page_alignment > 0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || block_size == pq->block_size); + #endif + mi_page_t* page = _mi_segment_page_alloc(heap, block_size, page_alignment, &heap->tld->segments, &heap->tld->os); + if (page == NULL) { + // this may be out-of-memory, or an abandoned page was reclaimed (and in our queue) + return NULL; + } + mi_assert_internal(page_alignment >0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || _mi_page_segment(page)->kind != MI_SEGMENT_HUGE); + mi_assert_internal(pq!=NULL || page->xblock_size != 0); + mi_assert_internal(pq!=NULL || mi_page_block_size(page) >= block_size); + // a fresh page was found, initialize it + const size_t full_block_size = ((pq == NULL || mi_page_queue_is_huge(pq)) ? mi_page_block_size(page) : block_size); // see also: mi_segment_huge_page_alloc + mi_assert_internal(full_block_size >= block_size); + mi_page_init(heap, page, full_block_size, heap->tld); + mi_heap_stat_increase(heap, pages, 1); + if (pq != NULL) { mi_page_queue_push(heap, pq, page); } + mi_assert_expensive(_mi_page_is_valid(page)); + return page; +} + +// Get a fresh page to use +static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) { + mi_assert_internal(mi_heap_contains_queue(heap, pq)); + mi_page_t* page = mi_page_fresh_alloc(heap, pq, pq->block_size, 0); + if (page==NULL) return NULL; + mi_assert_internal(pq->block_size==mi_page_block_size(page)); + mi_assert_internal(pq==mi_page_queue(heap, mi_page_block_size(page))); + return page; +} + +/* ----------------------------------------------------------- + Do any delayed frees + (put there by other threads if they deallocated in a full page) +----------------------------------------------------------- */ +void _mi_heap_delayed_free_all(mi_heap_t* heap) { + while (!_mi_heap_delayed_free_partial(heap)) { + mi_atomic_yield(); + } +} + +// returns true if all delayed frees were processed +bool _mi_heap_delayed_free_partial(mi_heap_t* heap) { + // take over the list (note: no atomic exchange since it is often NULL) + mi_block_t* block = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); + while (block != NULL && !mi_atomic_cas_ptr_weak_acq_rel(mi_block_t, &heap->thread_delayed_free, &block, NULL)) { /* nothing */ }; + bool all_freed = true; + + // and free them all + while(block != NULL) { + mi_block_t* next = mi_block_nextx(heap,block, heap->keys); + // use internal free instead of regular one to keep stats etc correct + if (!_mi_free_delayed_block(block)) { + // we might already start delayed freeing while another thread has not yet + // reset the delayed_freeing flag; in that case delay it further by reinserting the current block + // into the delayed free list + all_freed = false; + mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); + do { + mi_block_set_nextx(heap, block, dfree, heap->keys); + } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); + } + block = next; + } + return all_freed; +} + +/* ----------------------------------------------------------- + Unfull, abandon, free and retire +----------------------------------------------------------- */ + +// Move a page from the full list back to a regular list +void _mi_page_unfull(mi_page_t* page) { + mi_assert_internal(page != NULL); + mi_assert_expensive(_mi_page_is_valid(page)); + mi_assert_internal(mi_page_is_in_full(page)); + if (!mi_page_is_in_full(page)) return; + + mi_heap_t* heap = mi_page_heap(page); + mi_page_queue_t* pqfull = &heap->pages[MI_BIN_FULL]; + mi_page_set_in_full(page, false); // to get the right queue + mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page); + mi_page_set_in_full(page, true); + mi_page_queue_enqueue_from(pq, pqfull, page); +} + +static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) { + mi_assert_internal(pq == mi_page_queue_of(page)); + mi_assert_internal(!mi_page_immediate_available(page)); + mi_assert_internal(!mi_page_is_in_full(page)); + + if (mi_page_is_in_full(page)) return; + mi_page_queue_enqueue_from(&mi_page_heap(page)->pages[MI_BIN_FULL], pq, page); + _mi_page_free_collect(page,false); // try to collect right away in case another thread freed just before MI_USE_DELAYED_FREE was set +} + + +// Abandon a page with used blocks at the end of a thread. +// Note: only call if it is ensured that no references exist from +// the `page->heap->thread_delayed_free` into this page. +// Currently only called through `mi_heap_collect_ex` which ensures this. +void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) { + mi_assert_internal(page != NULL); + mi_assert_expensive(_mi_page_is_valid(page)); + mi_assert_internal(pq == mi_page_queue_of(page)); + mi_assert_internal(mi_page_heap(page) != NULL); + + mi_heap_t* pheap = mi_page_heap(page); + + // remove from our page list + mi_segments_tld_t* segments_tld = &pheap->tld->segments; + mi_page_queue_remove(pq, page); + + // page is no longer associated with our heap + mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); + mi_page_set_heap(page, NULL); + +#if (MI_DEBUG>1) && !MI_TRACK_ENABLED + // check there are no references left.. + for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) { + mi_assert_internal(_mi_ptr_page(block) != page); + } +#endif + + // and abandon it + mi_assert_internal(mi_page_heap(page) == NULL); + _mi_segment_page_abandon(page,segments_tld); +} + + +// Free a page with no more free blocks +void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) { + mi_assert_internal(page != NULL); + mi_assert_expensive(_mi_page_is_valid(page)); + mi_assert_internal(pq == mi_page_queue_of(page)); + mi_assert_internal(mi_page_all_free(page)); + mi_assert_internal(mi_page_thread_free_flag(page)!=MI_DELAYED_FREEING); + + // no more aligned blocks in here + mi_page_set_has_aligned(page, false); + + mi_heap_t* heap = mi_page_heap(page); + + // remove from the page list + // (no need to do _mi_heap_delayed_free first as all blocks are already free) + mi_segments_tld_t* segments_tld = &heap->tld->segments; + mi_page_queue_remove(pq, page); + + // and free it + mi_page_set_heap(page,NULL); + _mi_segment_page_free(page, force, segments_tld); +} + +// Retire parameters +#define MI_MAX_RETIRE_SIZE (MI_MEDIUM_OBJ_SIZE_MAX) +#define MI_RETIRE_CYCLES (16) + +// Retire a page with no more used blocks +// Important to not retire too quickly though as new +// allocations might coming. +// Note: called from `mi_free` and benchmarks often +// trigger this due to freeing everything and then +// allocating again so careful when changing this. +void _mi_page_retire(mi_page_t* page) mi_attr_noexcept { + mi_assert_internal(page != NULL); + mi_assert_expensive(_mi_page_is_valid(page)); + mi_assert_internal(mi_page_all_free(page)); + + mi_page_set_has_aligned(page, false); + + // don't retire too often.. + // (or we end up retiring and re-allocating most of the time) + // NOTE: refine this more: we should not retire if this + // is the only page left with free blocks. It is not clear + // how to check this efficiently though... + // for now, we don't retire if it is the only page left of this size class. + mi_page_queue_t* pq = mi_page_queue_of(page); + if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue? + if (pq->last==page && pq->first==page) { // the only page in the queue? + mi_stat_counter_increase(_mi_stats_main.page_no_retire,1); + page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4); + mi_heap_t* heap = mi_page_heap(page); + mi_assert_internal(pq >= heap->pages); + const size_t index = pq - heap->pages; + mi_assert_internal(index < MI_BIN_FULL && index < MI_BIN_HUGE); + if (index < heap->page_retired_min) heap->page_retired_min = index; + if (index > heap->page_retired_max) heap->page_retired_max = index; + mi_assert_internal(mi_page_all_free(page)); + return; // dont't free after all + } + } + _mi_page_free(page, pq, false); +} + +// free retired pages: we don't need to look at the entire queues +// since we only retire pages that are at the head position in a queue. +void _mi_heap_collect_retired(mi_heap_t* heap, bool force) { + size_t min = MI_BIN_FULL; + size_t max = 0; + for(size_t bin = heap->page_retired_min; bin <= heap->page_retired_max; bin++) { + mi_page_queue_t* pq = &heap->pages[bin]; + mi_page_t* page = pq->first; + if (page != NULL && page->retire_expire != 0) { + if (mi_page_all_free(page)) { + page->retire_expire--; + if (force || page->retire_expire == 0) { + _mi_page_free(pq->first, pq, force); + } + else { + // keep retired, update min/max + if (bin < min) min = bin; + if (bin > max) max = bin; + } + } + else { + page->retire_expire = 0; + } + } + } + heap->page_retired_min = min; + heap->page_retired_max = max; +} + + +/* ----------------------------------------------------------- + Initialize the initial free list in a page. + In secure mode we initialize a randomized list by + alternating between slices. +----------------------------------------------------------- */ + +#define MI_MAX_SLICE_SHIFT (6) // at most 64 slices +#define MI_MAX_SLICES (1UL << MI_MAX_SLICE_SHIFT) +#define MI_MIN_SLICES (2) + +static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) { + MI_UNUSED(stats); + #if (MI_SECURE<=2) + mi_assert_internal(page->free == NULL); + mi_assert_internal(page->local_free == NULL); + #endif + mi_assert_internal(page->capacity + extend <= page->reserved); + mi_assert_internal(bsize == mi_page_block_size(page)); + void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL); + + // initialize a randomized free list + // set up `slice_count` slices to alternate between + size_t shift = MI_MAX_SLICE_SHIFT; + while ((extend >> shift) == 0) { + shift--; + } + const size_t slice_count = (size_t)1U << shift; + const size_t slice_extend = extend / slice_count; + mi_assert_internal(slice_extend >= 1); + mi_block_t* blocks[MI_MAX_SLICES]; // current start of the slice + size_t counts[MI_MAX_SLICES]; // available objects in the slice + for (size_t i = 0; i < slice_count; i++) { + blocks[i] = mi_page_block_at(page, page_area, bsize, page->capacity + i*slice_extend); + counts[i] = slice_extend; + } + counts[slice_count-1] += (extend % slice_count); // final slice holds the modulus too (todo: distribute evenly?) + + // and initialize the free list by randomly threading through them + // set up first element + const uintptr_t r = _mi_heap_random_next(heap); + size_t current = r % slice_count; + counts[current]--; + mi_block_t* const free_start = blocks[current]; + // and iterate through the rest; use `random_shuffle` for performance + uintptr_t rnd = _mi_random_shuffle(r|1); // ensure not 0 + for (size_t i = 1; i < extend; i++) { + // call random_shuffle only every INTPTR_SIZE rounds + const size_t round = i%MI_INTPTR_SIZE; + if (round == 0) rnd = _mi_random_shuffle(rnd); + // select a random next slice index + size_t next = ((rnd >> 8*round) & (slice_count-1)); + while (counts[next]==0) { // ensure it still has space + next++; + if (next==slice_count) next = 0; + } + // and link the current block to it + counts[next]--; + mi_block_t* const block = blocks[current]; + blocks[current] = (mi_block_t*)((uint8_t*)block + bsize); // bump to the following block + mi_block_set_next(page, block, blocks[next]); // and set next; note: we may have `current == next` + current = next; + } + // prepend to the free list (usually NULL) + mi_block_set_next(page, blocks[current], page->free); // end of the list + page->free = free_start; +} + +static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) +{ + MI_UNUSED(stats); + #if (MI_SECURE <= 2) + mi_assert_internal(page->free == NULL); + mi_assert_internal(page->local_free == NULL); + #endif + mi_assert_internal(page->capacity + extend <= page->reserved); + mi_assert_internal(bsize == mi_page_block_size(page)); + void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL ); + + mi_block_t* const start = mi_page_block_at(page, page_area, bsize, page->capacity); + + // initialize a sequential free list + mi_block_t* const last = mi_page_block_at(page, page_area, bsize, page->capacity + extend - 1); + mi_block_t* block = start; + while(block <= last) { + mi_block_t* next = (mi_block_t*)((uint8_t*)block + bsize); + mi_block_set_next(page,block,next); + block = next; + } + // prepend to free list (usually `NULL`) + mi_block_set_next(page, last, page->free); + page->free = start; +} + +/* ----------------------------------------------------------- + Page initialize and extend the capacity +----------------------------------------------------------- */ + +#define MI_MAX_EXTEND_SIZE (4*1024) // heuristic, one OS page seems to work well. +#if (MI_SECURE>0) +#define MI_MIN_EXTEND (8*MI_SECURE) // extend at least by this many +#else +#define MI_MIN_EXTEND (4) +#endif + +// Extend the capacity (up to reserved) by initializing a free list +// We do at most `MI_MAX_EXTEND` to avoid touching too much memory +// Note: we also experimented with "bump" allocation on the first +// allocations but this did not speed up any benchmark (due to an +// extra test in malloc? or cache effects?) +static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) { + MI_UNUSED(tld); + mi_assert_expensive(mi_page_is_valid_init(page)); + #if (MI_SECURE<=2) + mi_assert(page->free == NULL); + mi_assert(page->local_free == NULL); + if (page->free != NULL) return; + #endif + if (page->capacity >= page->reserved) return; + + size_t page_size; + _mi_page_start(_mi_page_segment(page), page, &page_size); + mi_stat_counter_increase(tld->stats.pages_extended, 1); + + // calculate the extend count + const size_t bsize = (page->xblock_size < MI_HUGE_BLOCK_SIZE ? page->xblock_size : page_size); + size_t extend = page->reserved - page->capacity; + mi_assert_internal(extend > 0); + + size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/(uint32_t)bsize); + if (max_extend < MI_MIN_EXTEND) { max_extend = MI_MIN_EXTEND; } + mi_assert_internal(max_extend > 0); + + if (extend > max_extend) { + // ensure we don't touch memory beyond the page to reduce page commit. + // the `lean` benchmark tests this. Going from 1 to 8 increases rss by 50%. + extend = max_extend; + } + + mi_assert_internal(extend > 0 && extend + page->capacity <= page->reserved); + mi_assert_internal(extend < (1UL<<16)); + + // and append the extend the free list + if (extend < MI_MIN_SLICES || MI_SECURE==0) { //!mi_option_is_enabled(mi_option_secure)) { + mi_page_free_list_extend(page, bsize, extend, &tld->stats ); + } + else { + mi_page_free_list_extend_secure(heap, page, bsize, extend, &tld->stats); + } + // enable the new free list + page->capacity += (uint16_t)extend; + mi_stat_increase(tld->stats.page_committed, extend * bsize); + mi_assert_expensive(mi_page_is_valid_init(page)); +} + +// Initialize a fresh page +static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi_tld_t* tld) { + mi_assert(page != NULL); + mi_segment_t* segment = _mi_page_segment(page); + mi_assert(segment != NULL); + mi_assert_internal(block_size > 0); + // set fields + mi_page_set_heap(page, heap); + page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start + size_t page_size; + const void* page_start = _mi_segment_page_start(segment, page, &page_size); + MI_UNUSED(page_start); + mi_track_mem_noaccess(page_start,page_size); + mi_assert_internal(mi_page_block_size(page) <= page_size); + mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE); + mi_assert_internal(page_size / block_size < (1L<<16)); + page->reserved = (uint16_t)(page_size / block_size); + mi_assert_internal(page->reserved > 0); + #if (MI_PADDING || MI_ENCODE_FREELIST) + page->keys[0] = _mi_heap_random_next(heap); + page->keys[1] = _mi_heap_random_next(heap); + #endif + page->free_is_zero = page->is_zero_init; + #if MI_DEBUG>2 + if (page->is_zero_init) { + mi_track_mem_defined(page_start, page_size); + mi_assert_expensive(mi_mem_is_zero(page_start, page_size)); + } + #endif + + mi_assert_internal(page->is_committed); + mi_assert_internal(page->capacity == 0); + mi_assert_internal(page->free == NULL); + mi_assert_internal(page->used == 0); + mi_assert_internal(page->xthread_free == 0); + mi_assert_internal(page->next == NULL); + mi_assert_internal(page->prev == NULL); + mi_assert_internal(page->retire_expire == 0); + mi_assert_internal(!mi_page_has_aligned(page)); + #if (MI_PADDING || MI_ENCODE_FREELIST) + mi_assert_internal(page->keys[0] != 0); + mi_assert_internal(page->keys[1] != 0); + #endif + mi_assert_expensive(mi_page_is_valid_init(page)); + + // initialize an initial free list + mi_page_extend_free(heap,page,tld); + mi_assert(mi_page_immediate_available(page)); +} + + +/* ----------------------------------------------------------- + Find pages with free blocks +-------------------------------------------------------------*/ + +// Find a page with free blocks of `page->block_size`. +static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq, bool first_try) +{ + // search through the pages in "next fit" order + #if MI_STAT + size_t count = 0; + #endif + mi_page_t* page = pq->first; + while (page != NULL) + { + mi_page_t* next = page->next; // remember next + #if MI_STAT + count++; + #endif + + // 0. collect freed blocks by us and other threads + _mi_page_free_collect(page, false); + + // 1. if the page contains free blocks, we are done + if (mi_page_immediate_available(page)) { + break; // pick this one + } + + // 2. Try to extend + if (page->capacity < page->reserved) { + mi_page_extend_free(heap, page, heap->tld); + mi_assert_internal(mi_page_immediate_available(page)); + break; + } + + // 3. If the page is completely full, move it to the `mi_pages_full` + // queue so we don't visit long-lived pages too often. + mi_assert_internal(!mi_page_is_in_full(page) && !mi_page_immediate_available(page)); + mi_page_to_full(page, pq); + + page = next; + } // for each page + + mi_heap_stat_counter_increase(heap, searches, count); + + if (page == NULL) { + _mi_heap_collect_retired(heap, false); // perhaps make a page available? + page = mi_page_fresh(heap, pq); + if (page == NULL && first_try) { + // out-of-memory _or_ an abandoned page with free blocks was reclaimed, try once again + page = mi_page_queue_find_free_ex(heap, pq, false); + } + } + else { + mi_assert(pq->first == page); + page->retire_expire = 0; + } + mi_assert_internal(page == NULL || mi_page_immediate_available(page)); + return page; +} + + + +// Find a page with free blocks of `size`. +static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) { + mi_page_queue_t* pq = mi_page_queue(heap,size); + mi_page_t* page = pq->first; + if (page != NULL) { + #if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness + if (page->capacity < page->reserved && ((_mi_heap_random_next(heap) & 1) == 1)) { + mi_page_extend_free(heap, page, heap->tld); + mi_assert_internal(mi_page_immediate_available(page)); + } + else + #endif + { + _mi_page_free_collect(page,false); + } + + if (mi_page_immediate_available(page)) { + page->retire_expire = 0; + return page; // fast path + } + } + return mi_page_queue_find_free_ex(heap, pq, true); +} + + +/* ----------------------------------------------------------- + Users can register a deferred free function called + when the `free` list is empty. Since the `local_free` + is separate this is deterministically called after + a certain number of allocations. +----------------------------------------------------------- */ + +static mi_deferred_free_fun* volatile deferred_free = NULL; +static _Atomic(void*) deferred_arg; // = NULL + +void _mi_deferred_free(mi_heap_t* heap, bool force) { + heap->tld->heartbeat++; + if (deferred_free != NULL && !heap->tld->recurse) { + heap->tld->recurse = true; + deferred_free(force, heap->tld->heartbeat, mi_atomic_load_ptr_relaxed(void,&deferred_arg)); + heap->tld->recurse = false; + } +} + +void mi_register_deferred_free(mi_deferred_free_fun* fn, void* arg) mi_attr_noexcept { + deferred_free = fn; + mi_atomic_store_ptr_release(void,&deferred_arg, arg); +} + + +/* ----------------------------------------------------------- + General allocation +----------------------------------------------------------- */ + +// Large and huge page allocation. +// Huge pages are allocated directly without being in a queue. +// Because huge pages contain just one block, and the segment contains +// just that page, we always treat them as abandoned and any thread +// that frees the block can free the whole page and segment directly. +// Huge pages are also use if the requested alignment is very large (> MI_ALIGNMENT_MAX). +static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t page_alignment) { + size_t block_size = _mi_os_good_alloc_size(size); + mi_assert_internal(mi_bin(block_size) == MI_BIN_HUGE || page_alignment > 0); + bool is_huge = (block_size > MI_LARGE_OBJ_SIZE_MAX || page_alignment > 0); + #if MI_HUGE_PAGE_ABANDON + mi_page_queue_t* pq = (is_huge ? NULL : mi_page_queue(heap, block_size)); + #else + mi_page_queue_t* pq = mi_page_queue(heap, is_huge ? MI_HUGE_BLOCK_SIZE : block_size); // not block_size as that can be low if the page_alignment > 0 + mi_assert_internal(!is_huge || mi_page_queue_is_huge(pq)); + #endif + mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment); + if (page != NULL) { + mi_assert_internal(mi_page_immediate_available(page)); + + if (is_huge) { + mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE); + mi_assert_internal(_mi_page_segment(page)->used==1); + #if MI_HUGE_PAGE_ABANDON + mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue + mi_page_set_heap(page, NULL); + #endif + } + else { + mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE); + } + + const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding + if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { + mi_heap_stat_increase(heap, large, bsize); + mi_heap_stat_counter_increase(heap, large_count, 1); + } + else { + mi_heap_stat_increase(heap, huge, bsize); + mi_heap_stat_counter_increase(heap, huge_count, 1); + } + } + return page; +} + + +// Allocate a page +// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed. +static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept { + // huge allocation? + const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` + if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) { + if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see ) + _mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size); + return NULL; + } + else { + return mi_large_huge_page_alloc(heap,size,huge_alignment); + } + } + else { + // otherwise find a page with free blocks in our size segregated queues + #if MI_PADDING + mi_assert_internal(size >= MI_PADDING_SIZE); + #endif + return mi_find_free_page(heap, size); + } +} + +// Generic allocation routine if the fast path (`alloc.c:mi_page_malloc`) does not succeed. +// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed. +// The `huge_alignment` is normally 0 but is set to a multiple of MI_SEGMENT_SIZE for +// very large requested alignments in which case we use a huge segment. +void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept +{ + mi_assert_internal(heap != NULL); + + // initialize if necessary + if mi_unlikely(!mi_heap_is_initialized(heap)) { + heap = mi_heap_get_default(); // calls mi_thread_init + if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; } + } + mi_assert_internal(mi_heap_is_initialized(heap)); + + // call potential deferred free routines + _mi_deferred_free(heap, false); + + // free delayed frees from other threads (but skip contended ones) + _mi_heap_delayed_free_partial(heap); + + // find (or allocate) a page of the right size + mi_page_t* page = mi_find_page(heap, size, huge_alignment); + if mi_unlikely(page == NULL) { // first time out of memory, try to collect and retry the allocation once more + mi_heap_collect(heap, true /* force */); + page = mi_find_page(heap, size, huge_alignment); + } + + if mi_unlikely(page == NULL) { // out of memory + const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` + _mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size); + return NULL; + } + + mi_assert_internal(mi_page_immediate_available(page)); + mi_assert_internal(mi_page_block_size(page) >= size); + + // and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc) + if mi_unlikely(zero && page->xblock_size == 0) { + // note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case. + void* p = _mi_page_malloc(heap, page, size, false); + mi_assert_internal(p != NULL); + _mi_memzero_aligned(p, mi_page_usable_block_size(page)); + return p; + } + else { + return _mi_page_malloc(heap, page, size, zero); + } +} diff --git a/3rdparty/mimalloc/src/prim/osx/alloc-override-zone.c b/3rdparty/mimalloc/src/prim/osx/alloc-override-zone.c new file mode 100644 index 00000000..0e0a99d9 --- /dev/null +++ b/3rdparty/mimalloc/src/prim/osx/alloc-override-zone.c @@ -0,0 +1,458 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2022, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +#include "mimalloc.h" +#include "mimalloc/internal.h" + +#if defined(MI_MALLOC_OVERRIDE) + +#if !defined(__APPLE__) +#error "this file should only be included on macOS" +#endif + +/* ------------------------------------------------------ + Override system malloc on macOS + This is done through the malloc zone interface. + It seems to be most robust in combination with interposing + though or otherwise we may get zone errors as there are could + be allocations done by the time we take over the + zone. +------------------------------------------------------ */ + +#include +#include +#include // memset +#include + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) +// only available from OSX 10.6 +extern malloc_zone_t* malloc_default_purgeable_zone(void) __attribute__((weak_import)); +#endif + +/* ------------------------------------------------------ + malloc zone members +------------------------------------------------------ */ + +static size_t zone_size(malloc_zone_t* zone, const void* p) { + MI_UNUSED(zone); + if (!mi_is_in_heap_region(p)){ return 0; } // not our pointer, bail out + return mi_usable_size(p); +} + +static void* zone_malloc(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); + return mi_malloc(size); +} + +static void* zone_calloc(malloc_zone_t* zone, size_t count, size_t size) { + MI_UNUSED(zone); + return mi_calloc(count, size); +} + +static void* zone_valloc(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); + return mi_malloc_aligned(size, _mi_os_page_size()); +} + +static void zone_free(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); + mi_cfree(p); +} + +static void* zone_realloc(malloc_zone_t* zone, void* p, size_t newsize) { + MI_UNUSED(zone); + return mi_realloc(p, newsize); +} + +static void* zone_memalign(malloc_zone_t* zone, size_t alignment, size_t size) { + MI_UNUSED(zone); + return mi_malloc_aligned(size,alignment); +} + +static void zone_destroy(malloc_zone_t* zone) { + MI_UNUSED(zone); + // todo: ignore for now? +} + +static unsigned zone_batch_malloc(malloc_zone_t* zone, size_t size, void** ps, unsigned count) { + size_t i; + for (i = 0; i < count; i++) { + ps[i] = zone_malloc(zone, size); + if (ps[i] == NULL) break; + } + return i; +} + +static void zone_batch_free(malloc_zone_t* zone, void** ps, unsigned count) { + for(size_t i = 0; i < count; i++) { + zone_free(zone, ps[i]); + ps[i] = NULL; + } +} + +static size_t zone_pressure_relief(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); MI_UNUSED(size); + mi_collect(false); + return 0; +} + +static void zone_free_definite_size(malloc_zone_t* zone, void* p, size_t size) { + MI_UNUSED(size); + zone_free(zone,p); +} + +static boolean_t zone_claimed_address(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); + return mi_is_in_heap_region(p); +} + + +/* ------------------------------------------------------ + Introspection members +------------------------------------------------------ */ + +static kern_return_t intro_enumerator(task_t task, void* p, + unsigned type_mask, vm_address_t zone_address, + memory_reader_t reader, + vm_range_recorder_t recorder) +{ + // todo: enumerate all memory + MI_UNUSED(task); MI_UNUSED(p); MI_UNUSED(type_mask); MI_UNUSED(zone_address); + MI_UNUSED(reader); MI_UNUSED(recorder); + return KERN_SUCCESS; +} + +static size_t intro_good_size(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); + return mi_good_size(size); +} + +static boolean_t intro_check(malloc_zone_t* zone) { + MI_UNUSED(zone); + return true; +} + +static void intro_print(malloc_zone_t* zone, boolean_t verbose) { + MI_UNUSED(zone); MI_UNUSED(verbose); + mi_stats_print(NULL); +} + +static void intro_log(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); MI_UNUSED(p); + // todo? +} + +static void intro_force_lock(malloc_zone_t* zone) { + MI_UNUSED(zone); + // todo? +} + +static void intro_force_unlock(malloc_zone_t* zone) { + MI_UNUSED(zone); + // todo? +} + +static void intro_statistics(malloc_zone_t* zone, malloc_statistics_t* stats) { + MI_UNUSED(zone); + // todo... + stats->blocks_in_use = 0; + stats->size_in_use = 0; + stats->max_size_in_use = 0; + stats->size_allocated = 0; +} + +static boolean_t intro_zone_locked(malloc_zone_t* zone) { + MI_UNUSED(zone); + return false; +} + + +/* ------------------------------------------------------ + At process start, override the default allocator +------------------------------------------------------ */ + +#if defined(__GNUC__) && !defined(__clang__) +#pragma GCC diagnostic ignored "-Wmissing-field-initializers" +#endif + +#if defined(__clang__) +#pragma clang diagnostic ignored "-Wc99-extensions" +#endif + +static malloc_introspection_t mi_introspect = { + .enumerator = &intro_enumerator, + .good_size = &intro_good_size, + .check = &intro_check, + .print = &intro_print, + .log = &intro_log, + .force_lock = &intro_force_lock, + .force_unlock = &intro_force_unlock, +#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) && !defined(__ppc__) + .statistics = &intro_statistics, + .zone_locked = &intro_zone_locked, +#endif +}; + +static malloc_zone_t mi_malloc_zone = { + // note: even with designators, the order is important for C++ compilation + //.reserved1 = NULL, + //.reserved2 = NULL, + .size = &zone_size, + .malloc = &zone_malloc, + .calloc = &zone_calloc, + .valloc = &zone_valloc, + .free = &zone_free, + .realloc = &zone_realloc, + .destroy = &zone_destroy, + .zone_name = "mimalloc", + .batch_malloc = &zone_batch_malloc, + .batch_free = &zone_batch_free, + .introspect = &mi_introspect, +#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) && !defined(__ppc__) + #if defined(MAC_OS_X_VERSION_10_14) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_14) + .version = 10, + #else + .version = 9, + #endif + // switch to version 9+ on OSX 10.6 to support memalign. + .memalign = &zone_memalign, + .free_definite_size = &zone_free_definite_size, + .pressure_relief = &zone_pressure_relief, + #if defined(MAC_OS_X_VERSION_10_14) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_14) + .claimed_address = &zone_claimed_address, + #endif +#else + .version = 4, +#endif +}; + +#ifdef __cplusplus +} +#endif + + +#if defined(MI_OSX_INTERPOSE) && defined(MI_SHARED_LIB_EXPORT) + +// ------------------------------------------------------ +// Override malloc_xxx and malloc_zone_xxx api's to use only +// our mimalloc zone. Since even the loader uses malloc +// on macOS, this ensures that all allocations go through +// mimalloc (as all calls are interposed). +// The main `malloc`, `free`, etc calls are interposed in `alloc-override.c`, +// Here, we also override macOS specific API's like +// `malloc_zone_calloc` etc. see +// ------------------------------------------------------ + +static inline malloc_zone_t* mi_get_default_zone(void) +{ + static bool init; + if mi_unlikely(!init) { + init = true; + malloc_zone_register(&mi_malloc_zone); // by calling register we avoid a zone error on free (see ) + } + return &mi_malloc_zone; +} + +mi_decl_externc int malloc_jumpstart(uintptr_t cookie); +mi_decl_externc void _malloc_fork_prepare(void); +mi_decl_externc void _malloc_fork_parent(void); +mi_decl_externc void _malloc_fork_child(void); + + +static malloc_zone_t* mi_malloc_create_zone(vm_size_t size, unsigned flags) { + MI_UNUSED(size); MI_UNUSED(flags); + return mi_get_default_zone(); +} + +static malloc_zone_t* mi_malloc_default_zone (void) { + return mi_get_default_zone(); +} + +static malloc_zone_t* mi_malloc_default_purgeable_zone(void) { + return mi_get_default_zone(); +} + +static void mi_malloc_destroy_zone(malloc_zone_t* zone) { + MI_UNUSED(zone); + // nothing. +} + +static kern_return_t mi_malloc_get_all_zones (task_t task, memory_reader_t mr, vm_address_t** addresses, unsigned* count) { + MI_UNUSED(task); MI_UNUSED(mr); + if (addresses != NULL) *addresses = NULL; + if (count != NULL) *count = 0; + return KERN_SUCCESS; +} + +static const char* mi_malloc_get_zone_name(malloc_zone_t* zone) { + return (zone == NULL ? mi_malloc_zone.zone_name : zone->zone_name); +} + +static void mi_malloc_set_zone_name(malloc_zone_t* zone, const char* name) { + MI_UNUSED(zone); MI_UNUSED(name); +} + +static int mi_malloc_jumpstart(uintptr_t cookie) { + MI_UNUSED(cookie); + return 1; // or 0 for no error? +} + +static void mi__malloc_fork_prepare(void) { + // nothing +} +static void mi__malloc_fork_parent(void) { + // nothing +} +static void mi__malloc_fork_child(void) { + // nothing +} + +static void mi_malloc_printf(const char* fmt, ...) { + MI_UNUSED(fmt); +} + +static bool zone_check(malloc_zone_t* zone) { + MI_UNUSED(zone); + return true; +} + +static malloc_zone_t* zone_from_ptr(const void* p) { + MI_UNUSED(p); + return mi_get_default_zone(); +} + +static void zone_log(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); MI_UNUSED(p); +} + +static void zone_print(malloc_zone_t* zone, bool b) { + MI_UNUSED(zone); MI_UNUSED(b); +} + +static void zone_print_ptr_info(void* p) { + MI_UNUSED(p); +} + +static void zone_register(malloc_zone_t* zone) { + MI_UNUSED(zone); +} + +static void zone_unregister(malloc_zone_t* zone) { + MI_UNUSED(zone); +} + +// use interposing so `DYLD_INSERT_LIBRARIES` works without `DYLD_FORCE_FLAT_NAMESPACE=1` +// See: +struct mi_interpose_s { + const void* replacement; + const void* target; +}; +#define MI_INTERPOSE_FUN(oldfun,newfun) { (const void*)&newfun, (const void*)&oldfun } +#define MI_INTERPOSE_MI(fun) MI_INTERPOSE_FUN(fun,mi_##fun) +#define MI_INTERPOSE_ZONE(fun) MI_INTERPOSE_FUN(malloc_##fun,fun) +__attribute__((used)) static const struct mi_interpose_s _mi_zone_interposes[] __attribute__((section("__DATA, __interpose"))) = +{ + + MI_INTERPOSE_MI(malloc_create_zone), + MI_INTERPOSE_MI(malloc_default_purgeable_zone), + MI_INTERPOSE_MI(malloc_default_zone), + MI_INTERPOSE_MI(malloc_destroy_zone), + MI_INTERPOSE_MI(malloc_get_all_zones), + MI_INTERPOSE_MI(malloc_get_zone_name), + MI_INTERPOSE_MI(malloc_jumpstart), + MI_INTERPOSE_MI(malloc_printf), + MI_INTERPOSE_MI(malloc_set_zone_name), + MI_INTERPOSE_MI(_malloc_fork_child), + MI_INTERPOSE_MI(_malloc_fork_parent), + MI_INTERPOSE_MI(_malloc_fork_prepare), + + MI_INTERPOSE_ZONE(zone_batch_free), + MI_INTERPOSE_ZONE(zone_batch_malloc), + MI_INTERPOSE_ZONE(zone_calloc), + MI_INTERPOSE_ZONE(zone_check), + MI_INTERPOSE_ZONE(zone_free), + MI_INTERPOSE_ZONE(zone_from_ptr), + MI_INTERPOSE_ZONE(zone_log), + MI_INTERPOSE_ZONE(zone_malloc), + MI_INTERPOSE_ZONE(zone_memalign), + MI_INTERPOSE_ZONE(zone_print), + MI_INTERPOSE_ZONE(zone_print_ptr_info), + MI_INTERPOSE_ZONE(zone_realloc), + MI_INTERPOSE_ZONE(zone_register), + MI_INTERPOSE_ZONE(zone_unregister), + MI_INTERPOSE_ZONE(zone_valloc) +}; + + +#else + +// ------------------------------------------------------ +// hook into the zone api's without interposing +// This is the official way of adding an allocator but +// it seems less robust than using interpose. +// ------------------------------------------------------ + +static inline malloc_zone_t* mi_get_default_zone(void) +{ + // The first returned zone is the real default + malloc_zone_t** zones = NULL; + unsigned count = 0; + kern_return_t ret = malloc_get_all_zones(0, NULL, (vm_address_t**)&zones, &count); + if (ret == KERN_SUCCESS && count > 0) { + return zones[0]; + } + else { + // fallback + return malloc_default_zone(); + } +} + +#if defined(__clang__) +__attribute__((constructor(0))) +#else +__attribute__((constructor)) // seems not supported by g++-11 on the M1 +#endif +static void _mi_macos_override_malloc(void) { + malloc_zone_t* purgeable_zone = NULL; + + #if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) + // force the purgeable zone to exist to avoid strange bugs + if (malloc_default_purgeable_zone) { + purgeable_zone = malloc_default_purgeable_zone(); + } + #endif + + // Register our zone. + // thomcc: I think this is still needed to put us in the zone list. + malloc_zone_register(&mi_malloc_zone); + // Unregister the default zone, this makes our zone the new default + // as that was the last registered. + malloc_zone_t *default_zone = mi_get_default_zone(); + // thomcc: Unsure if the next test is *always* false or just false in the + // cases I've tried. I'm also unsure if the code inside is needed. at all + if (default_zone != &mi_malloc_zone) { + malloc_zone_unregister(default_zone); + + // Reregister the default zone so free and realloc in that zone keep working. + malloc_zone_register(default_zone); + } + + // Unregister, and re-register the purgeable_zone to avoid bugs if it occurs + // earlier than the default zone. + if (purgeable_zone != NULL) { + malloc_zone_unregister(purgeable_zone); + malloc_zone_register(purgeable_zone); + } + +} +#endif // MI_OSX_INTERPOSE + +#endif // MI_MALLOC_OVERRIDE diff --git a/3rdparty/mimalloc/src/prim/osx/prim.c b/3rdparty/mimalloc/src/prim/osx/prim.c new file mode 100644 index 00000000..8a2f4e8a --- /dev/null +++ b/3rdparty/mimalloc/src/prim/osx/prim.c @@ -0,0 +1,9 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// We use the unix/prim.c with the mmap API on macOSX +#include "../unix/prim.c" diff --git a/3rdparty/mimalloc/src/prim/prim.c b/3rdparty/mimalloc/src/prim/prim.c new file mode 100644 index 00000000..9a597d8e --- /dev/null +++ b/3rdparty/mimalloc/src/prim/prim.c @@ -0,0 +1,24 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// Select the implementation of the primitives +// depending on the OS. + +#if defined(_WIN32) +#include "windows/prim.c" // VirtualAlloc (Windows) + +#elif defined(__APPLE__) +#include "osx/prim.c" // macOSX (actually defers to mmap in unix/prim.c) + +#elif defined(__wasi__) +#define MI_USE_SBRK +#include "wasi/prim.c" // memory-grow or sbrk (Wasm) + +#else +#include "unix/prim.c" // mmap() (Linux, macOSX, BSD, Illumnos, Haiku, DragonFly, etc.) + +#endif diff --git a/3rdparty/mimalloc/src/prim/readme.md b/3rdparty/mimalloc/src/prim/readme.md new file mode 100644 index 00000000..380dd3a7 --- /dev/null +++ b/3rdparty/mimalloc/src/prim/readme.md @@ -0,0 +1,9 @@ +## Portability Primitives + +This is the portability layer where all primitives needed from the OS are defined. + +- `include/mimalloc/prim.h`: primitive portability API definition. +- `prim.c`: Selects one of `unix/prim.c`, `wasi/prim.c`, or `windows/prim.c` depending on the host platform + (and on macOS, `osx/prim.c` defers to `unix/prim.c`). + +Note: still work in progress, there may still be places in the sources that still depend on OS ifdef's. \ No newline at end of file diff --git a/3rdparty/mimalloc/src/prim/unix/prim.c b/3rdparty/mimalloc/src/prim/unix/prim.c new file mode 100644 index 00000000..314281fe --- /dev/null +++ b/3rdparty/mimalloc/src/prim/unix/prim.c @@ -0,0 +1,859 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// This file is included in `src/prim/prim.c` + +#ifndef _DEFAULT_SOURCE +#define _DEFAULT_SOURCE // ensure mmap flags and syscall are defined +#endif + +#if defined(__sun) +// illumos provides new mman.h api when any of these are defined +// otherwise the old api based on caddr_t which predates the void pointers one. +// stock solaris provides only the former, chose to atomically to discard those +// flags only here rather than project wide tough. +#undef _XOPEN_SOURCE +#undef _POSIX_C_SOURCE +#endif + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" + +#include // mmap +#include // sysconf + +#if defined(__linux__) + #include + #include + #if defined(__GLIBC__) + #include // linux mmap flags + #else + #include + #endif +#elif defined(__APPLE__) + #include + #if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR + #include + #endif +#elif defined(__FreeBSD__) || defined(__DragonFly__) + #include + #if __FreeBSD_version >= 1200000 + #include + #include + #endif + #include +#endif + +#if !defined(__HAIKU__) && !defined(__APPLE__) && !defined(__CYGWIN__) + #define MI_HAS_SYSCALL_H + #include +#endif + +//------------------------------------------------------------------------------------ +// Use syscalls for some primitives to allow for libraries that override open/read/close etc. +// and do allocation themselves; using syscalls prevents recursion when mimalloc is +// still initializing (issue #713) +//------------------------------------------------------------------------------------ + +#if defined(MI_HAS_SYSCALL_H) && defined(SYS_open) && defined(SYS_close) && defined(SYS_read) && defined(SYS_access) + +static int mi_prim_open(const char* fpath, int open_flags) { + return syscall(SYS_open,fpath,open_flags,0); +} +static ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) { + return syscall(SYS_read,fd,buf,bufsize); +} +static int mi_prim_close(int fd) { + return syscall(SYS_close,fd); +} +static int mi_prim_access(const char *fpath, int mode) { + return syscall(SYS_access,fpath,mode); +} + +#elif !defined(__APPLE__) // avoid unused warnings + +static int mi_prim_open(const char* fpath, int open_flags) { + return open(fpath,open_flags); +} +static ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) { + return read(fd,buf,bufsize); +} +static int mi_prim_close(int fd) { + return close(fd); +} +static int mi_prim_access(const char *fpath, int mode) { + return access(fpath,mode); +} + +#endif + + + +//--------------------------------------------- +// init +//--------------------------------------------- + +static bool unix_detect_overcommit(void) { + bool os_overcommit = true; +#if defined(__linux__) + int fd = mi_prim_open("/proc/sys/vm/overcommit_memory", O_RDONLY); + if (fd >= 0) { + char buf[32]; + ssize_t nread = mi_prim_read(fd, &buf, sizeof(buf)); + mi_prim_close(fd); + // + // 0: heuristic overcommit, 1: always overcommit, 2: never overcommit (ignore NORESERVE) + if (nread >= 1) { + os_overcommit = (buf[0] == '0' || buf[0] == '1'); + } + } +#elif defined(__FreeBSD__) + int val = 0; + size_t olen = sizeof(val); + if (sysctlbyname("vm.overcommit", &val, &olen, NULL, 0) == 0) { + os_overcommit = (val != 0); + } +#else + // default: overcommit is true +#endif + return os_overcommit; +} + +void _mi_prim_mem_init( mi_os_mem_config_t* config ) { + long psize = sysconf(_SC_PAGESIZE); + if (psize > 0) { + config->page_size = (size_t)psize; + config->alloc_granularity = (size_t)psize; + } + config->large_page_size = 2*MI_MiB; // TODO: can we query the OS for this? + config->has_overcommit = unix_detect_overcommit(); + config->must_free_whole = false; // mmap can free in parts + config->has_virtual_reserve = true; // todo: check if this true for NetBSD? (for anonymous mmap with PROT_NONE) +} + + +//--------------------------------------------- +// free +//--------------------------------------------- + +int _mi_prim_free(void* addr, size_t size ) { + bool err = (munmap(addr, size) == -1); + return (err ? errno : 0); +} + + +//--------------------------------------------- +// mmap +//--------------------------------------------- + +static int unix_madvise(void* addr, size_t size, int advice) { + #if defined(__sun) + return madvise((caddr_t)addr, size, advice); // Solaris needs cast (issue #520) + #else + return madvise(addr, size, advice); + #endif +} + +static void* unix_mmap_prim(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) { + MI_UNUSED(try_alignment); + void* p = NULL; + #if defined(MAP_ALIGNED) // BSD + if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) { + size_t n = mi_bsr(try_alignment); + if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB + p = mmap(addr, size, protect_flags, flags | MAP_ALIGNED(n), fd, 0); + if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) { + int err = errno; + _mi_warning_message("unable to directly request aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, addr); + } + if (p!=MAP_FAILED) return p; + // fall back to regular mmap + } + } + #elif defined(MAP_ALIGN) // Solaris + if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) { + p = mmap((void*)try_alignment, size, protect_flags, flags | MAP_ALIGN, fd, 0); // addr parameter is the required alignment + if (p!=MAP_FAILED) return p; + // fall back to regular mmap + } + #endif + #if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED) + // on 64-bit systems, use the virtual address area after 2TiB for 4MiB aligned allocations + if (addr == NULL) { + void* hint = _mi_os_get_aligned_hint(try_alignment, size); + if (hint != NULL) { + p = mmap(hint, size, protect_flags, flags, fd, 0); + if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) { + #if MI_TRACK_ENABLED // asan sometimes does not instrument errno correctly? + int err = 0; + #else + int err = errno; + #endif + _mi_warning_message("unable to directly request hinted aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, hint); + } + if (p!=MAP_FAILED) return p; + // fall back to regular mmap + } + } + #endif + // regular mmap + p = mmap(addr, size, protect_flags, flags, fd, 0); + if (p!=MAP_FAILED) return p; + // failed to allocate + return NULL; +} + +static int unix_mmap_fd(void) { + #if defined(VM_MAKE_TAG) + // macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99) + int os_tag = (int)mi_option_get(mi_option_os_tag); + if (os_tag < 100 || os_tag > 255) { os_tag = 100; } + return VM_MAKE_TAG(os_tag); + #else + return -1; + #endif +} + +static void* unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) { + #if !defined(MAP_ANONYMOUS) + #define MAP_ANONYMOUS MAP_ANON + #endif + #if !defined(MAP_NORESERVE) + #define MAP_NORESERVE 0 + #endif + void* p = NULL; + const int fd = unix_mmap_fd(); + int flags = MAP_PRIVATE | MAP_ANONYMOUS; + if (_mi_os_has_overcommit()) { + flags |= MAP_NORESERVE; + } + #if defined(PROT_MAX) + protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD + #endif + // huge page allocation + if ((large_only || _mi_os_use_large_page(size, try_alignment)) && allow_large) { + static _Atomic(size_t) large_page_try_ok; // = 0; + size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); + if (!large_only && try_ok > 0) { + // If the OS is not configured for large OS pages, or the user does not have + // enough permission, the `mmap` will always fail (but it might also fail for other reasons). + // Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times + // to avoid too many failing calls to mmap. + mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); + } + else { + int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux + int lfd = fd; + #ifdef MAP_ALIGNED_SUPER + lflags |= MAP_ALIGNED_SUPER; + #endif + #ifdef MAP_HUGETLB + lflags |= MAP_HUGETLB; + #endif + #ifdef MAP_HUGE_1GB + static bool mi_huge_pages_available = true; + if ((size % MI_GiB) == 0 && mi_huge_pages_available) { + lflags |= MAP_HUGE_1GB; + } + else + #endif + { + #ifdef MAP_HUGE_2MB + lflags |= MAP_HUGE_2MB; + #endif + } + #ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB + lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB; + #endif + if (large_only || lflags != flags) { + // try large OS page allocation + *is_large = true; + p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd); + #ifdef MAP_HUGE_1GB + if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) { + mi_huge_pages_available = false; // don't try huge 1GiB pages again + _mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (errno: %i)\n", errno); + lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB); + p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd); + } + #endif + if (large_only) return p; + if (p == NULL) { + mi_atomic_store_release(&large_page_try_ok, (size_t)8); // on error, don't try again for the next N allocations + } + } + } + } + // regular allocation + if (p == NULL) { + *is_large = false; + p = unix_mmap_prim(addr, size, try_alignment, protect_flags, flags, fd); + if (p != NULL) { + #if defined(MADV_HUGEPAGE) + // Many Linux systems don't allow MAP_HUGETLB but they support instead + // transparent huge pages (THP). Generally, it is not required to call `madvise` with MADV_HUGE + // though since properly aligned allocations will already use large pages if available + // in that case -- in particular for our large regions (in `memory.c`). + // However, some systems only allow THP if called with explicit `madvise`, so + // when large OS pages are enabled for mimalloc, we call `madvise` anyways. + if (allow_large && _mi_os_use_large_page(size, try_alignment)) { + if (unix_madvise(p, size, MADV_HUGEPAGE) == 0) { + *is_large = true; // possibly + }; + } + #elif defined(__sun) + if (allow_large && _mi_os_use_large_page(size, try_alignment)) { + struct memcntl_mha cmd = {0}; + cmd.mha_pagesize = large_os_page_size; + cmd.mha_cmd = MHA_MAPSIZE_VA; + if (memcntl((caddr_t)p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) { + *is_large = true; + } + } + #endif + } + } + return p; +} + +// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. +int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { + mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(commit || !allow_large); + mi_assert_internal(try_alignment > 0); + + *is_zero = true; + int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE); + *addr = unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large); + return (*addr != NULL ? 0 : errno); +} + + +//--------------------------------------------- +// Commit/Reset +//--------------------------------------------- + +static void unix_mprotect_hint(int err) { + #if defined(__linux__) && (MI_SECURE>=2) // guard page around every mimalloc page + if (err == ENOMEM) { + _mi_warning_message("The next warning may be caused by a low memory map limit.\n" + " On Linux this is controlled by the vm.max_map_count -- maybe increase it?\n" + " For example: sudo sysctl -w vm.max_map_count=262144\n"); + } + #else + MI_UNUSED(err); + #endif +} + +int _mi_prim_commit(void* start, size_t size, bool* is_zero) { + // commit: ensure we can access the area + // note: we may think that *is_zero can be true since the memory + // was either from mmap PROT_NONE, or from decommit MADV_DONTNEED, but + // we sometimes call commit on a range with still partially committed + // memory and `mprotect` does not zero the range. + *is_zero = false; + int err = mprotect(start, size, (PROT_READ | PROT_WRITE)); + if (err != 0) { + err = errno; + unix_mprotect_hint(err); + } + return err; +} + +int _mi_prim_decommit(void* start, size_t size, bool* needs_recommit) { + int err = 0; + // decommit: use MADV_DONTNEED as it decreases rss immediately (unlike MADV_FREE) + err = unix_madvise(start, size, MADV_DONTNEED); + #if !MI_DEBUG && !MI_SECURE + *needs_recommit = false; + #else + *needs_recommit = true; + mprotect(start, size, PROT_NONE); + #endif + /* + // decommit: use mmap with MAP_FIXED and PROT_NONE to discard the existing memory (and reduce rss) + *needs_recommit = true; + const int fd = unix_mmap_fd(); + void* p = mmap(start, size, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), fd, 0); + if (p != start) { err = errno; } + */ + return err; +} + +int _mi_prim_reset(void* start, size_t size) { + // We try to use `MADV_FREE` as that is the fastest. A drawback though is that it + // will not reduce the `rss` stats in tools like `top` even though the memory is available + // to other processes. With the default `MIMALLOC_PURGE_DECOMMITS=1` we ensure that by + // default `MADV_DONTNEED` is used though. + #if defined(MADV_FREE) + static _Atomic(size_t) advice = MI_ATOMIC_VAR_INIT(MADV_FREE); + int oadvice = (int)mi_atomic_load_relaxed(&advice); + int err; + while ((err = unix_madvise(start, size, oadvice)) != 0 && errno == EAGAIN) { errno = 0; }; + if (err != 0 && errno == EINVAL && oadvice == MADV_FREE) { + // if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on + mi_atomic_store_release(&advice, (size_t)MADV_DONTNEED); + err = unix_madvise(start, size, MADV_DONTNEED); + } + #else + int err = unix_madvise(start, size, MADV_DONTNEED); + #endif + return err; +} + +int _mi_prim_protect(void* start, size_t size, bool protect) { + int err = mprotect(start, size, protect ? PROT_NONE : (PROT_READ | PROT_WRITE)); + if (err != 0) { err = errno; } + unix_mprotect_hint(err); + return err; +} + + + +//--------------------------------------------- +// Huge page allocation +//--------------------------------------------- + +#if (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__) && !defined(__CYGWIN__) + +#ifndef MPOL_PREFERRED +#define MPOL_PREFERRED 1 +#endif + +#if defined(MI_HAS_SYSCALL_H) && defined(SYS_mbind) +static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { + return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags); +} +#else +static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { + MI_UNUSED(start); MI_UNUSED(len); MI_UNUSED(mode); MI_UNUSED(nmask); MI_UNUSED(maxnode); MI_UNUSED(flags); + return 0; +} +#endif + +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) { + bool is_large = true; + *is_zero = true; + *addr = unix_mmap(hint_addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large); + if (*addr != NULL && numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes + unsigned long numa_mask = (1UL << numa_node); + // TODO: does `mbind` work correctly for huge OS pages? should we + // use `set_mempolicy` before calling mmap instead? + // see: + long err = mi_prim_mbind(*addr, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0); + if (err != 0) { + err = errno; + _mi_warning_message("failed to bind huge (1GiB) pages to numa node %d (error: %d (0x%x))\n", numa_node, err, err); + } + } + return (*addr != NULL ? 0 : errno); +} + +#else + +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) { + MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node); + *is_zero = false; + *addr = NULL; + return ENOMEM; +} + +#endif + +//--------------------------------------------- +// NUMA nodes +//--------------------------------------------- + +#if defined(__linux__) + +#include // snprintf + +size_t _mi_prim_numa_node(void) { + #if defined(MI_HAS_SYSCALL_H) && defined(SYS_getcpu) + unsigned long node = 0; + unsigned long ncpu = 0; + long err = syscall(SYS_getcpu, &ncpu, &node, NULL); + if (err != 0) return 0; + return node; + #else + return 0; + #endif +} + +size_t _mi_prim_numa_node_count(void) { + char buf[128]; + unsigned node = 0; + for(node = 0; node < 256; node++) { + // enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation) + snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1); + if (mi_prim_access(buf,R_OK) != 0) break; + } + return (node+1); +} + +#elif defined(__FreeBSD__) && __FreeBSD_version >= 1200000 + +size_t _mi_prim_numa_node(void) { + domainset_t dom; + size_t node; + int policy; + if (cpuset_getdomain(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(dom), &dom, &policy) == -1) return 0ul; + for (node = 0; node < MAXMEMDOM; node++) { + if (DOMAINSET_ISSET(node, &dom)) return node; + } + return 0ul; +} + +size_t _mi_prim_numa_node_count(void) { + size_t ndomains = 0; + size_t len = sizeof(ndomains); + if (sysctlbyname("vm.ndomains", &ndomains, &len, NULL, 0) == -1) return 0ul; + return ndomains; +} + +#elif defined(__DragonFly__) + +size_t _mi_prim_numa_node(void) { + // TODO: DragonFly does not seem to provide any userland means to get this information. + return 0ul; +} + +size_t _mi_prim_numa_node_count(void) { + size_t ncpus = 0, nvirtcoresperphys = 0; + size_t len = sizeof(size_t); + if (sysctlbyname("hw.ncpu", &ncpus, &len, NULL, 0) == -1) return 0ul; + if (sysctlbyname("hw.cpu_topology_ht_ids", &nvirtcoresperphys, &len, NULL, 0) == -1) return 0ul; + return nvirtcoresperphys * ncpus; +} + +#else + +size_t _mi_prim_numa_node(void) { + return 0; +} + +size_t _mi_prim_numa_node_count(void) { + return 1; +} + +#endif + +// ---------------------------------------------------------------- +// Clock +// ---------------------------------------------------------------- + +#include + +#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC) + +mi_msecs_t _mi_prim_clock_now(void) { + struct timespec t; + #ifdef CLOCK_MONOTONIC + clock_gettime(CLOCK_MONOTONIC, &t); + #else + clock_gettime(CLOCK_REALTIME, &t); + #endif + return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000); +} + +#else + +// low resolution timer +mi_msecs_t _mi_prim_clock_now(void) { + #if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0) + return (mi_msecs_t)clock(); + #elif (CLOCKS_PER_SEC < 1000) + return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC); + #else + return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000); + #endif +} + +#endif + + + + +//---------------------------------------------------------------- +// Process info +//---------------------------------------------------------------- + +#if defined(__unix__) || defined(__unix) || defined(unix) || defined(__APPLE__) || defined(__HAIKU__) +#include +#include +#include + +#if defined(__APPLE__) +#include +#endif + +#if defined(__HAIKU__) +#include +#endif + +static mi_msecs_t timeval_secs(const struct timeval* tv) { + return ((mi_msecs_t)tv->tv_sec * 1000L) + ((mi_msecs_t)tv->tv_usec / 1000L); +} + +void _mi_prim_process_info(mi_process_info_t* pinfo) +{ + struct rusage rusage; + getrusage(RUSAGE_SELF, &rusage); + pinfo->utime = timeval_secs(&rusage.ru_utime); + pinfo->stime = timeval_secs(&rusage.ru_stime); +#if !defined(__HAIKU__) + pinfo->page_faults = rusage.ru_majflt; +#endif +#if defined(__HAIKU__) + // Haiku does not have (yet?) a way to + // get these stats per process + thread_info tid; + area_info mem; + ssize_t c; + get_thread_info(find_thread(0), &tid); + while (get_next_area_info(tid.team, &c, &mem) == B_OK) { + pinfo->peak_rss += mem.ram_size; + } + pinfo->page_faults = 0; +#elif defined(__APPLE__) + pinfo->peak_rss = rusage.ru_maxrss; // macos reports in bytes + #ifdef MACH_TASK_BASIC_INFO + struct mach_task_basic_info info; + mach_msg_type_number_t infoCount = MACH_TASK_BASIC_INFO_COUNT; + if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) { + pinfo->current_rss = (size_t)info.resident_size; + } + #else + struct task_basic_info info; + mach_msg_type_number_t infoCount = TASK_BASIC_INFO_COUNT; + if (task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) { + pinfo->current_rss = (size_t)info.resident_size; + } + #endif +#else + pinfo->peak_rss = rusage.ru_maxrss * 1024; // Linux/BSD report in KiB +#endif + // use defaults for commit +} + +#else + +#ifndef __wasi__ +// WebAssembly instances are not processes +#pragma message("define a way to get process info") +#endif + +void _mi_prim_process_info(mi_process_info_t* pinfo) +{ + // use defaults + MI_UNUSED(pinfo); +} + +#endif + + +//---------------------------------------------------------------- +// Output +//---------------------------------------------------------------- + +void _mi_prim_out_stderr( const char* msg ) { + fputs(msg,stderr); +} + + +//---------------------------------------------------------------- +// Environment +//---------------------------------------------------------------- + +#if !defined(MI_USE_ENVIRON) || (MI_USE_ENVIRON!=0) +// On Posix systemsr use `environ` to access environment variables +// even before the C runtime is initialized. +#if defined(__APPLE__) && defined(__has_include) && __has_include() +#include +static char** mi_get_environ(void) { + return (*_NSGetEnviron()); +} +#else +extern char** environ; +static char** mi_get_environ(void) { + return environ; +} +#endif +bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { + if (name==NULL) return false; + const size_t len = _mi_strlen(name); + if (len == 0) return false; + char** env = mi_get_environ(); + if (env == NULL) return false; + // compare up to 10000 entries + for (int i = 0; i < 10000 && env[i] != NULL; i++) { + const char* s = env[i]; + if (_mi_strnicmp(name, s, len) == 0 && s[len] == '=') { // case insensitive + // found it + _mi_strlcpy(result, s + len + 1, result_size); + return true; + } + } + return false; +} +#else +// fallback: use standard C `getenv` but this cannot be used while initializing the C runtime +bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { + // cannot call getenv() when still initializing the C runtime. + if (_mi_preloading()) return false; + const char* s = getenv(name); + if (s == NULL) { + // we check the upper case name too. + char buf[64+1]; + size_t len = _mi_strnlen(name,sizeof(buf)-1); + for (size_t i = 0; i < len; i++) { + buf[i] = _mi_toupper(name[i]); + } + buf[len] = 0; + s = getenv(buf); + } + if (s == NULL || _mi_strnlen(s,result_size) >= result_size) return false; + _mi_strlcpy(result, s, result_size); + return true; +} +#endif // !MI_USE_ENVIRON + + +//---------------------------------------------------------------- +// Random +//---------------------------------------------------------------- + +#if defined(__APPLE__) + +#include +#if defined(MAC_OS_X_VERSION_10_10) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_10 +#include +#include +#endif +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + #if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15 + // We prefere CCRandomGenerateBytes as it returns an error code while arc4random_buf + // may fail silently on macOS. See PR #390, and + return (CCRandomGenerateBytes(buf, buf_len) == kCCSuccess); + #else + // fall back on older macOS + arc4random_buf(buf, buf_len); + return true; + #endif +} + +#elif defined(__ANDROID__) || defined(__DragonFly__) || \ + defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \ + defined(__sun) + +#include +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + arc4random_buf(buf, buf_len); + return true; +} + +#elif defined(__linux__) || defined(__HAIKU__) + +#include +#include +#include +#include + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + // Modern Linux provides `getrandom` but different distributions either use `sys/random.h` or `linux/random.h` + // and for the latter the actual `getrandom` call is not always defined. + // (see ) + // We therefore use a syscall directly and fall back dynamically to /dev/urandom when needed. + #if defined(MI_HAS_SYSCALL_H) && defined(SYS_getrandom) + #ifndef GRND_NONBLOCK + #define GRND_NONBLOCK (1) + #endif + static _Atomic(uintptr_t) no_getrandom; // = 0 + if (mi_atomic_load_acquire(&no_getrandom)==0) { + ssize_t ret = syscall(SYS_getrandom, buf, buf_len, GRND_NONBLOCK); + if (ret >= 0) return (buf_len == (size_t)ret); + if (errno != ENOSYS) return false; + mi_atomic_store_release(&no_getrandom, (uintptr_t)1); // don't call again, and fall back to /dev/urandom + } + #endif + int flags = O_RDONLY; + #if defined(O_CLOEXEC) + flags |= O_CLOEXEC; + #endif + int fd = mi_prim_open("/dev/urandom", flags); + if (fd < 0) return false; + size_t count = 0; + while(count < buf_len) { + ssize_t ret = mi_prim_read(fd, (char*)buf + count, buf_len - count); + if (ret<=0) { + if (errno!=EAGAIN && errno!=EINTR) break; + } + else { + count += ret; + } + } + mi_prim_close(fd); + return (count==buf_len); +} + +#else + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + return false; +} + +#endif + + +//---------------------------------------------------------------- +// Thread init/done +//---------------------------------------------------------------- + +#if defined(MI_USE_PTHREADS) + +// use pthread local storage keys to detect thread ending +// (and used with MI_TLS_PTHREADS for the default heap) +pthread_key_t _mi_heap_default_key = (pthread_key_t)(-1); + +static void mi_pthread_done(void* value) { + if (value!=NULL) { + _mi_thread_done((mi_heap_t*)value); + } +} + +void _mi_prim_thread_init_auto_done(void) { + mi_assert_internal(_mi_heap_default_key == (pthread_key_t)(-1)); + pthread_key_create(&_mi_heap_default_key, &mi_pthread_done); +} + +void _mi_prim_thread_done_auto_done(void) { + // nothing to do +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + if (_mi_heap_default_key != (pthread_key_t)(-1)) { // can happen during recursive invocation on freeBSD + pthread_setspecific(_mi_heap_default_key, heap); + } +} + +#else + +void _mi_prim_thread_init_auto_done(void) { + // nothing +} + +void _mi_prim_thread_done_auto_done(void) { + // nothing +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + MI_UNUSED(heap); +} + +#endif diff --git a/3rdparty/mimalloc/src/prim/wasi/prim.c b/3rdparty/mimalloc/src/prim/wasi/prim.c new file mode 100644 index 00000000..50511f0b --- /dev/null +++ b/3rdparty/mimalloc/src/prim/wasi/prim.c @@ -0,0 +1,275 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// This file is included in `src/prim/prim.c` + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" + +//--------------------------------------------- +// Initialize +//--------------------------------------------- + +void _mi_prim_mem_init( mi_os_mem_config_t* config ) { + config->page_size = 64*MI_KiB; // WebAssembly has a fixed page size: 64KiB + config->alloc_granularity = 16; + config->has_overcommit = false; + config->must_free_whole = true; + config->has_virtual_reserve = false; +} + +//--------------------------------------------- +// Free +//--------------------------------------------- + +int _mi_prim_free(void* addr, size_t size ) { + MI_UNUSED(addr); MI_UNUSED(size); + // wasi heap cannot be shrunk + return 0; +} + + +//--------------------------------------------- +// Allocation: sbrk or memory_grow +//--------------------------------------------- + +#if defined(MI_USE_SBRK) + static void* mi_memory_grow( size_t size ) { + void* p = sbrk(size); + if (p == (void*)(-1)) return NULL; + #if !defined(__wasi__) // on wasi this is always zero initialized already (?) + memset(p,0,size); + #endif + return p; + } +#elif defined(__wasi__) + static void* mi_memory_grow( size_t size ) { + size_t base = (size > 0 ? __builtin_wasm_memory_grow(0,_mi_divide_up(size, _mi_os_page_size())) + : __builtin_wasm_memory_size(0)); + if (base == SIZE_MAX) return NULL; + return (void*)(base * _mi_os_page_size()); + } +#endif + +#if defined(MI_USE_PTHREADS) +static pthread_mutex_t mi_heap_grow_mutex = PTHREAD_MUTEX_INITIALIZER; +#endif + +static void* mi_prim_mem_grow(size_t size, size_t try_alignment) { + void* p = NULL; + if (try_alignment <= 1) { + // `sbrk` is not thread safe in general so try to protect it (we could skip this on WASM but leave it in for now) + #if defined(MI_USE_PTHREADS) + pthread_mutex_lock(&mi_heap_grow_mutex); + #endif + p = mi_memory_grow(size); + #if defined(MI_USE_PTHREADS) + pthread_mutex_unlock(&mi_heap_grow_mutex); + #endif + } + else { + void* base = NULL; + size_t alloc_size = 0; + // to allocate aligned use a lock to try to avoid thread interaction + // between getting the current size and actual allocation + // (also, `sbrk` is not thread safe in general) + #if defined(MI_USE_PTHREADS) + pthread_mutex_lock(&mi_heap_grow_mutex); + #endif + { + void* current = mi_memory_grow(0); // get current size + if (current != NULL) { + void* aligned_current = mi_align_up_ptr(current, try_alignment); // and align from there to minimize wasted space + alloc_size = _mi_align_up( ((uint8_t*)aligned_current - (uint8_t*)current) + size, _mi_os_page_size()); + base = mi_memory_grow(alloc_size); + } + } + #if defined(MI_USE_PTHREADS) + pthread_mutex_unlock(&mi_heap_grow_mutex); + #endif + if (base != NULL) { + p = mi_align_up_ptr(base, try_alignment); + if ((uint8_t*)p + size > (uint8_t*)base + alloc_size) { + // another thread used wasm_memory_grow/sbrk in-between and we do not have enough + // space after alignment. Give up (and waste the space as we cannot shrink :-( ) + // (in `mi_os_mem_alloc_aligned` this will fall back to overallocation to align) + p = NULL; + } + } + } + /* + if (p == NULL) { + _mi_warning_message("unable to allocate sbrk/wasm_memory_grow OS memory (%zu bytes, %zu alignment)\n", size, try_alignment); + errno = ENOMEM; + return NULL; + } + */ + mi_assert_internal( p == NULL || try_alignment == 0 || (uintptr_t)p % try_alignment == 0 ); + return p; +} + +// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. +int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { + MI_UNUSED(allow_large); MI_UNUSED(commit); + *is_large = false; + *is_zero = false; + *addr = mi_prim_mem_grow(size, try_alignment); + return (*addr != NULL ? 0 : ENOMEM); +} + + +//--------------------------------------------- +// Commit/Reset/Protect +//--------------------------------------------- + +int _mi_prim_commit(void* addr, size_t size, bool* is_zero) { + MI_UNUSED(addr); MI_UNUSED(size); + *is_zero = false; + return 0; +} + +int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) { + MI_UNUSED(addr); MI_UNUSED(size); + *needs_recommit = false; + return 0; +} + +int _mi_prim_reset(void* addr, size_t size) { + MI_UNUSED(addr); MI_UNUSED(size); + return 0; +} + +int _mi_prim_protect(void* addr, size_t size, bool protect) { + MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(protect); + return 0; +} + + +//--------------------------------------------- +// Huge pages and NUMA nodes +//--------------------------------------------- + +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) { + MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node); + *is_zero = true; + *addr = NULL; + return ENOSYS; +} + +size_t _mi_prim_numa_node(void) { + return 0; +} + +size_t _mi_prim_numa_node_count(void) { + return 1; +} + + +//---------------------------------------------------------------- +// Clock +//---------------------------------------------------------------- + +#include + +#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC) + +mi_msecs_t _mi_prim_clock_now(void) { + struct timespec t; + #ifdef CLOCK_MONOTONIC + clock_gettime(CLOCK_MONOTONIC, &t); + #else + clock_gettime(CLOCK_REALTIME, &t); + #endif + return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000); +} + +#else + +// low resolution timer +mi_msecs_t _mi_prim_clock_now(void) { + #if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0) + return (mi_msecs_t)clock(); + #elif (CLOCKS_PER_SEC < 1000) + return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC); + #else + return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000); + #endif +} + +#endif + + +//---------------------------------------------------------------- +// Process info +//---------------------------------------------------------------- + +void _mi_prim_process_info(mi_process_info_t* pinfo) +{ + // use defaults + MI_UNUSED(pinfo); +} + + +//---------------------------------------------------------------- +// Output +//---------------------------------------------------------------- + +void _mi_prim_out_stderr( const char* msg ) { + fputs(msg,stderr); +} + + +//---------------------------------------------------------------- +// Environment +//---------------------------------------------------------------- + +bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { + // cannot call getenv() when still initializing the C runtime. + if (_mi_preloading()) return false; + const char* s = getenv(name); + if (s == NULL) { + // we check the upper case name too. + char buf[64+1]; + size_t len = _mi_strnlen(name,sizeof(buf)-1); + for (size_t i = 0; i < len; i++) { + buf[i] = _mi_toupper(name[i]); + } + buf[len] = 0; + s = getenv(buf); + } + if (s == NULL || _mi_strnlen(s,result_size) >= result_size) return false; + _mi_strlcpy(result, s, result_size); + return true; +} + + +//---------------------------------------------------------------- +// Random +//---------------------------------------------------------------- + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + return false; +} + + +//---------------------------------------------------------------- +// Thread init/done +//---------------------------------------------------------------- + +void _mi_prim_thread_init_auto_done(void) { + // nothing +} + +void _mi_prim_thread_done_auto_done(void) { + // nothing +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + MI_UNUSED(heap); +} diff --git a/3rdparty/mimalloc/src/prim/windows/etw-mimalloc.wprp b/3rdparty/mimalloc/src/prim/windows/etw-mimalloc.wprp new file mode 100644 index 00000000..b00cd7ad --- /dev/null +++ b/3rdparty/mimalloc/src/prim/windows/etw-mimalloc.wprp @@ -0,0 +1,61 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/3rdparty/mimalloc/src/prim/windows/etw.h b/3rdparty/mimalloc/src/prim/windows/etw.h new file mode 100644 index 00000000..4e0a092a --- /dev/null +++ b/3rdparty/mimalloc/src/prim/windows/etw.h @@ -0,0 +1,905 @@ +//**********************************************************************` +//* This is an include file generated by Message Compiler. *` +//* *` +//* Copyright (c) Microsoft Corporation. All Rights Reserved. *` +//**********************************************************************` +#pragma once + +//***************************************************************************** +// +// Notes on the ETW event code generated by MC: +// +// - Structures and arrays of structures are treated as an opaque binary blob. +// The caller is responsible for packing the data for the structure into a +// single region of memory, with no padding between values. The macro will +// have an extra parameter for the length of the blob. +// - Arrays of nul-terminated strings must be packed by the caller into a +// single binary blob containing the correct number of strings, with a nul +// after each string. The size of the blob is specified in characters, and +// includes the final nul. +// - Arrays of SID are treated as a single binary blob. The caller is +// responsible for packing the SID values into a single region of memory with +// no padding. +// - The length attribute on the data element in the manifest is significant +// for values with intype win:UnicodeString, win:AnsiString, or win:Binary. +// The length attribute must be specified for win:Binary, and is optional for +// win:UnicodeString and win:AnsiString (if no length is given, the strings +// are assumed to be nul-terminated). For win:UnicodeString, the length is +// measured in characters, not bytes. +// - For an array of win:UnicodeString, win:AnsiString, or win:Binary, the +// length attribute applies to every value in the array, so every value in +// the array must have the same length. The values in the array are provided +// to the macro via a single pointer -- the caller is responsible for packing +// all of the values into a single region of memory with no padding between +// values. +// - Values of type win:CountedUnicodeString, win:CountedAnsiString, and +// win:CountedBinary can be generated and collected on Vista or later. +// However, they may not decode properly without the Windows 10 2018 Fall +// Update. +// - Arrays of type win:CountedUnicodeString, win:CountedAnsiString, and +// win:CountedBinary must be packed by the caller into a single region of +// memory. The format for each item is a UINT16 byte-count followed by that +// many bytes of data. When providing the array to the generated macro, you +// must provide the total size of the packed array data, including the UINT16 +// sizes for each item. In the case of win:CountedUnicodeString, the data +// size is specified in WCHAR (16-bit) units. In the case of +// win:CountedAnsiString and win:CountedBinary, the data size is specified in +// bytes. +// +//***************************************************************************** + +#include +#include +#include + +#ifndef ETW_INLINE + #ifdef _ETW_KM_ + // In kernel mode, save stack space by never inlining templates. + #define ETW_INLINE DECLSPEC_NOINLINE __inline + #else + // In user mode, save code size by inlining templates as appropriate. + #define ETW_INLINE __inline + #endif +#endif // ETW_INLINE + +#if defined(__cplusplus) +extern "C" { +#endif + +// +// MCGEN_DISABLE_PROVIDER_CODE_GENERATION macro: +// Define this macro to have the compiler skip the generated functions in this +// header. +// +#ifndef MCGEN_DISABLE_PROVIDER_CODE_GENERATION + +// +// MCGEN_USE_KERNEL_MODE_APIS macro: +// Controls whether the generated code uses kernel-mode or user-mode APIs. +// - Set to 0 to use Windows user-mode APIs such as EventRegister. +// - Set to 1 to use Windows kernel-mode APIs such as EtwRegister. +// Default is based on whether the _ETW_KM_ macro is defined (i.e. by wdm.h). +// Note that the APIs can also be overridden directly, e.g. by setting the +// MCGEN_EVENTWRITETRANSFER or MCGEN_EVENTREGISTER macros. +// +#ifndef MCGEN_USE_KERNEL_MODE_APIS + #ifdef _ETW_KM_ + #define MCGEN_USE_KERNEL_MODE_APIS 1 + #else + #define MCGEN_USE_KERNEL_MODE_APIS 0 + #endif +#endif // MCGEN_USE_KERNEL_MODE_APIS + +// +// MCGEN_HAVE_EVENTSETINFORMATION macro: +// Controls how McGenEventSetInformation uses the EventSetInformation API. +// - Set to 0 to disable the use of EventSetInformation +// (McGenEventSetInformation will always return an error). +// - Set to 1 to directly invoke MCGEN_EVENTSETINFORMATION. +// - Set to 2 to to locate EventSetInformation at runtime via GetProcAddress +// (user-mode) or MmGetSystemRoutineAddress (kernel-mode). +// Default is determined as follows: +// - If MCGEN_EVENTSETINFORMATION has been customized, set to 1 +// (i.e. use MCGEN_EVENTSETINFORMATION). +// - Else if the target OS version has EventSetInformation, set to 1 +// (i.e. use MCGEN_EVENTSETINFORMATION). +// - Else set to 2 (i.e. try to dynamically locate EventSetInformation). +// Note that an McGenEventSetInformation function will only be generated if one +// or more provider in a manifest has provider traits. +// +#ifndef MCGEN_HAVE_EVENTSETINFORMATION + #ifdef MCGEN_EVENTSETINFORMATION // if MCGEN_EVENTSETINFORMATION has been customized, + #define MCGEN_HAVE_EVENTSETINFORMATION 1 // directly invoke MCGEN_EVENTSETINFORMATION(...). + #elif MCGEN_USE_KERNEL_MODE_APIS // else if using kernel-mode APIs, + #if NTDDI_VERSION >= 0x06040000 // if target OS is Windows 10 or later, + #define MCGEN_HAVE_EVENTSETINFORMATION 1 // directly invoke MCGEN_EVENTSETINFORMATION(...). + #else // else + #define MCGEN_HAVE_EVENTSETINFORMATION 2 // find "EtwSetInformation" via MmGetSystemRoutineAddress. + #endif // else (using user-mode APIs) + #else // if target OS and SDK is Windows 8 or later, + #if WINVER >= 0x0602 && defined(EVENT_FILTER_TYPE_SCHEMATIZED) + #define MCGEN_HAVE_EVENTSETINFORMATION 1 // directly invoke MCGEN_EVENTSETINFORMATION(...). + #else // else + #define MCGEN_HAVE_EVENTSETINFORMATION 2 // find "EventSetInformation" via GetModuleHandleExW/GetProcAddress. + #endif + #endif +#endif // MCGEN_HAVE_EVENTSETINFORMATION + +// +// MCGEN Override Macros +// +// The following override macros may be defined before including this header +// to control the APIs used by this header: +// +// - MCGEN_EVENTREGISTER +// - MCGEN_EVENTUNREGISTER +// - MCGEN_EVENTSETINFORMATION +// - MCGEN_EVENTWRITETRANSFER +// +// If the the macro is undefined, the MC implementation will default to the +// corresponding ETW APIs. For example, if the MCGEN_EVENTREGISTER macro is +// undefined, the EventRegister[MyProviderName] macro will use EventRegister +// in user mode and will use EtwRegister in kernel mode. +// +// To prevent issues from conflicting definitions of these macros, the value +// of the override macro will be used as a suffix in certain internal function +// names. Because of this, the override macros must follow certain rules: +// +// - The macro must be defined before any MC-generated header is included and +// must not be undefined or redefined after any MC-generated header is +// included. Different translation units (i.e. different .c or .cpp files) +// may set the macros to different values, but within a translation unit +// (within a single .c or .cpp file), the macro must be set once and not +// changed. +// - The override must be an object-like macro, not a function-like macro +// (i.e. the override macro must not have a parameter list). +// - The override macro's value must be a simple identifier, i.e. must be +// something that starts with a letter or '_' and contains only letters, +// numbers, and '_' characters. +// - If the override macro's value is the name of a second object-like macro, +// the second object-like macro must follow the same rules. (The override +// macro's value can also be the name of a function-like macro, in which +// case the function-like macro does not need to follow the same rules.) +// +// For example, the following will cause compile errors: +// +// #define MCGEN_EVENTWRITETRANSFER MyNamespace::MyClass::MyFunction // Value has non-identifier characters (colon). +// #define MCGEN_EVENTWRITETRANSFER GetEventWriteFunctionPointer(7) // Value has non-identifier characters (parentheses). +// #define MCGEN_EVENTWRITETRANSFER(h,e,a,r,c,d) EventWrite(h,e,c,d) // Override is defined as a function-like macro. +// #define MY_OBJECT_LIKE_MACRO MyNamespace::MyClass::MyEventWriteFunction +// #define MCGEN_EVENTWRITETRANSFER MY_OBJECT_LIKE_MACRO // Evaluates to something with non-identifier characters (colon). +// +// The following would be ok: +// +// #define MCGEN_EVENTWRITETRANSFER MyEventWriteFunction1 // OK, suffix will be "MyEventWriteFunction1". +// #define MY_OBJECT_LIKE_MACRO MyEventWriteFunction2 +// #define MCGEN_EVENTWRITETRANSFER MY_OBJECT_LIKE_MACRO // OK, suffix will be "MyEventWriteFunction2". +// #define MY_FUNCTION_LIKE_MACRO(h,e,a,r,c,d) MyNamespace::MyClass::MyEventWriteFunction3(h,e,c,d) +// #define MCGEN_EVENTWRITETRANSFER MY_FUNCTION_LIKE_MACRO // OK, suffix will be "MY_FUNCTION_LIKE_MACRO". +// +#ifndef MCGEN_EVENTREGISTER + #if MCGEN_USE_KERNEL_MODE_APIS + #define MCGEN_EVENTREGISTER EtwRegister + #else + #define MCGEN_EVENTREGISTER EventRegister + #endif +#endif // MCGEN_EVENTREGISTER +#ifndef MCGEN_EVENTUNREGISTER + #if MCGEN_USE_KERNEL_MODE_APIS + #define MCGEN_EVENTUNREGISTER EtwUnregister + #else + #define MCGEN_EVENTUNREGISTER EventUnregister + #endif +#endif // MCGEN_EVENTUNREGISTER +#ifndef MCGEN_EVENTSETINFORMATION + #if MCGEN_USE_KERNEL_MODE_APIS + #define MCGEN_EVENTSETINFORMATION EtwSetInformation + #else + #define MCGEN_EVENTSETINFORMATION EventSetInformation + #endif +#endif // MCGEN_EVENTSETINFORMATION +#ifndef MCGEN_EVENTWRITETRANSFER + #if MCGEN_USE_KERNEL_MODE_APIS + #define MCGEN_EVENTWRITETRANSFER EtwWriteTransfer + #else + #define MCGEN_EVENTWRITETRANSFER EventWriteTransfer + #endif +#endif // MCGEN_EVENTWRITETRANSFER + +// +// MCGEN_EVENT_ENABLED macro: +// Override to control how the EventWrite[EventName] macros determine whether +// an event is enabled. The default behavior is for EventWrite[EventName] to +// use the EventEnabled[EventName] macros. +// +#ifndef MCGEN_EVENT_ENABLED +#define MCGEN_EVENT_ENABLED(EventName) EventEnabled##EventName() +#endif + +// +// MCGEN_EVENT_ENABLED_FORCONTEXT macro: +// Override to control how the EventWrite[EventName]_ForContext macros +// determine whether an event is enabled. The default behavior is for +// EventWrite[EventName]_ForContext to use the +// EventEnabled[EventName]_ForContext macros. +// +#ifndef MCGEN_EVENT_ENABLED_FORCONTEXT +#define MCGEN_EVENT_ENABLED_FORCONTEXT(pContext, EventName) EventEnabled##EventName##_ForContext(pContext) +#endif + +// +// MCGEN_ENABLE_CHECK macro: +// Determines whether the specified event would be considered as enabled +// based on the state of the specified context. Slightly faster than calling +// McGenEventEnabled directly. +// +#ifndef MCGEN_ENABLE_CHECK +#define MCGEN_ENABLE_CHECK(Context, Descriptor) (Context.IsEnabled && McGenEventEnabled(&Context, &Descriptor)) +#endif + +#if !defined(MCGEN_TRACE_CONTEXT_DEF) +#define MCGEN_TRACE_CONTEXT_DEF +// This structure is for use by MC-generated code and should not be used directly. +typedef struct _MCGEN_TRACE_CONTEXT +{ + TRACEHANDLE RegistrationHandle; + TRACEHANDLE Logger; // Used as pointer to provider traits. + ULONGLONG MatchAnyKeyword; + ULONGLONG MatchAllKeyword; + ULONG Flags; + ULONG IsEnabled; + UCHAR Level; + UCHAR Reserve; + USHORT EnableBitsCount; + PULONG EnableBitMask; + const ULONGLONG* EnableKeyWords; + const UCHAR* EnableLevel; +} MCGEN_TRACE_CONTEXT, *PMCGEN_TRACE_CONTEXT; +#endif // MCGEN_TRACE_CONTEXT_DEF + +#if !defined(MCGEN_LEVEL_KEYWORD_ENABLED_DEF) +#define MCGEN_LEVEL_KEYWORD_ENABLED_DEF +// +// Determines whether an event with a given Level and Keyword would be +// considered as enabled based on the state of the specified context. +// Note that you may want to use MCGEN_ENABLE_CHECK instead of calling this +// function directly. +// +FORCEINLINE +BOOLEAN +McGenLevelKeywordEnabled( + _In_ PMCGEN_TRACE_CONTEXT EnableInfo, + _In_ UCHAR Level, + _In_ ULONGLONG Keyword + ) +{ + // + // Check if the event Level is lower than the level at which + // the channel is enabled. + // If the event Level is 0 or the channel is enabled at level 0, + // all levels are enabled. + // + + if ((Level <= EnableInfo->Level) || // This also covers the case of Level == 0. + (EnableInfo->Level == 0)) { + + // + // Check if Keyword is enabled + // + + if ((Keyword == (ULONGLONG)0) || + ((Keyword & EnableInfo->MatchAnyKeyword) && + ((Keyword & EnableInfo->MatchAllKeyword) == EnableInfo->MatchAllKeyword))) { + return TRUE; + } + } + + return FALSE; +} +#endif // MCGEN_LEVEL_KEYWORD_ENABLED_DEF + +#if !defined(MCGEN_EVENT_ENABLED_DEF) +#define MCGEN_EVENT_ENABLED_DEF +// +// Determines whether the specified event would be considered as enabled based +// on the state of the specified context. Note that you may want to use +// MCGEN_ENABLE_CHECK instead of calling this function directly. +// +FORCEINLINE +BOOLEAN +McGenEventEnabled( + _In_ PMCGEN_TRACE_CONTEXT EnableInfo, + _In_ PCEVENT_DESCRIPTOR EventDescriptor + ) +{ + return McGenLevelKeywordEnabled(EnableInfo, EventDescriptor->Level, EventDescriptor->Keyword); +} +#endif // MCGEN_EVENT_ENABLED_DEF + +#if !defined(MCGEN_CONTROL_CALLBACK) +#define MCGEN_CONTROL_CALLBACK + +// This function is for use by MC-generated code and should not be used directly. +DECLSPEC_NOINLINE __inline +VOID +__stdcall +McGenControlCallbackV2( + _In_ LPCGUID SourceId, + _In_ ULONG ControlCode, + _In_ UCHAR Level, + _In_ ULONGLONG MatchAnyKeyword, + _In_ ULONGLONG MatchAllKeyword, + _In_opt_ PEVENT_FILTER_DESCRIPTOR FilterData, + _Inout_opt_ PVOID CallbackContext + ) +/*++ + +Routine Description: + + This is the notification callback for Windows Vista and later. + +Arguments: + + SourceId - The GUID that identifies the session that enabled the provider. + + ControlCode - The parameter indicates whether the provider + is being enabled or disabled. + + Level - The level at which the event is enabled. + + MatchAnyKeyword - The bitmask of keywords that the provider uses to + determine the category of events that it writes. + + MatchAllKeyword - This bitmask additionally restricts the category + of events that the provider writes. + + FilterData - The provider-defined data. + + CallbackContext - The context of the callback that is defined when the provider + called EtwRegister to register itself. + +Remarks: + + ETW calls this function to notify provider of enable/disable + +--*/ +{ + PMCGEN_TRACE_CONTEXT Ctx = (PMCGEN_TRACE_CONTEXT)CallbackContext; + ULONG Ix; +#ifndef MCGEN_PRIVATE_ENABLE_CALLBACK_V2 + UNREFERENCED_PARAMETER(SourceId); + UNREFERENCED_PARAMETER(FilterData); +#endif + + if (Ctx == NULL) { + return; + } + + switch (ControlCode) { + + case EVENT_CONTROL_CODE_ENABLE_PROVIDER: + Ctx->Level = Level; + Ctx->MatchAnyKeyword = MatchAnyKeyword; + Ctx->MatchAllKeyword = MatchAllKeyword; + Ctx->IsEnabled = EVENT_CONTROL_CODE_ENABLE_PROVIDER; + + for (Ix = 0; Ix < Ctx->EnableBitsCount; Ix += 1) { + if (McGenLevelKeywordEnabled(Ctx, Ctx->EnableLevel[Ix], Ctx->EnableKeyWords[Ix]) != FALSE) { + Ctx->EnableBitMask[Ix >> 5] |= (1 << (Ix % 32)); + } else { + Ctx->EnableBitMask[Ix >> 5] &= ~(1 << (Ix % 32)); + } + } + break; + + case EVENT_CONTROL_CODE_DISABLE_PROVIDER: + Ctx->IsEnabled = EVENT_CONTROL_CODE_DISABLE_PROVIDER; + Ctx->Level = 0; + Ctx->MatchAnyKeyword = 0; + Ctx->MatchAllKeyword = 0; + if (Ctx->EnableBitsCount > 0) { +#pragma warning(suppress: 26451) // Arithmetic overflow cannot occur, no matter the value of EnableBitCount + RtlZeroMemory(Ctx->EnableBitMask, (((Ctx->EnableBitsCount - 1) / 32) + 1) * sizeof(ULONG)); + } + break; + + default: + break; + } + +#ifdef MCGEN_PRIVATE_ENABLE_CALLBACK_V2 + // + // Call user defined callback + // + MCGEN_PRIVATE_ENABLE_CALLBACK_V2( + SourceId, + ControlCode, + Level, + MatchAnyKeyword, + MatchAllKeyword, + FilterData, + CallbackContext + ); +#endif // MCGEN_PRIVATE_ENABLE_CALLBACK_V2 + + return; +} + +#endif // MCGEN_CONTROL_CALLBACK + +#ifndef _mcgen_PENABLECALLBACK + #if MCGEN_USE_KERNEL_MODE_APIS + #define _mcgen_PENABLECALLBACK PETWENABLECALLBACK + #else + #define _mcgen_PENABLECALLBACK PENABLECALLBACK + #endif +#endif // _mcgen_PENABLECALLBACK + +#if !defined(_mcgen_PASTE2) +// This macro is for use by MC-generated code and should not be used directly. +#define _mcgen_PASTE2(a, b) _mcgen_PASTE2_imp(a, b) +#define _mcgen_PASTE2_imp(a, b) a##b +#endif // _mcgen_PASTE2 + +#if !defined(_mcgen_PASTE3) +// This macro is for use by MC-generated code and should not be used directly. +#define _mcgen_PASTE3(a, b, c) _mcgen_PASTE3_imp(a, b, c) +#define _mcgen_PASTE3_imp(a, b, c) a##b##_##c +#endif // _mcgen_PASTE3 + +// +// Macro validation +// + +// Validate MCGEN_EVENTREGISTER: + +// Trigger an error if MCGEN_EVENTREGISTER is not an unqualified (simple) identifier: +struct _mcgen_PASTE2(MCGEN_EVENTREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTREGISTER); + +// Trigger an error if MCGEN_EVENTREGISTER is redefined: +typedef struct _mcgen_PASTE2(MCGEN_EVENTREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTREGISTER) + MCGEN_EVENTREGISTER_must_not_be_redefined_between_headers; + +// Trigger an error if MCGEN_EVENTREGISTER is defined as a function-like macro: +typedef void MCGEN_EVENTREGISTER_must_not_be_a_functionLike_macro_MCGEN_EVENTREGISTER; +typedef int _mcgen_PASTE2(MCGEN_EVENTREGISTER_must_not_be_a_functionLike_macro_, MCGEN_EVENTREGISTER); + +// Validate MCGEN_EVENTUNREGISTER: + +// Trigger an error if MCGEN_EVENTUNREGISTER is not an unqualified (simple) identifier: +struct _mcgen_PASTE2(MCGEN_EVENTUNREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTUNREGISTER); + +// Trigger an error if MCGEN_EVENTUNREGISTER is redefined: +typedef struct _mcgen_PASTE2(MCGEN_EVENTUNREGISTER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTUNREGISTER) + MCGEN_EVENTUNREGISTER_must_not_be_redefined_between_headers; + +// Trigger an error if MCGEN_EVENTUNREGISTER is defined as a function-like macro: +typedef void MCGEN_EVENTUNREGISTER_must_not_be_a_functionLike_macro_MCGEN_EVENTUNREGISTER; +typedef int _mcgen_PASTE2(MCGEN_EVENTUNREGISTER_must_not_be_a_functionLike_macro_, MCGEN_EVENTUNREGISTER); + +// Validate MCGEN_EVENTSETINFORMATION: + +// Trigger an error if MCGEN_EVENTSETINFORMATION is not an unqualified (simple) identifier: +struct _mcgen_PASTE2(MCGEN_EVENTSETINFORMATION_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTSETINFORMATION); + +// Trigger an error if MCGEN_EVENTSETINFORMATION is redefined: +typedef struct _mcgen_PASTE2(MCGEN_EVENTSETINFORMATION_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTSETINFORMATION) + MCGEN_EVENTSETINFORMATION_must_not_be_redefined_between_headers; + +// Trigger an error if MCGEN_EVENTSETINFORMATION is defined as a function-like macro: +typedef void MCGEN_EVENTSETINFORMATION_must_not_be_a_functionLike_macro_MCGEN_EVENTSETINFORMATION; +typedef int _mcgen_PASTE2(MCGEN_EVENTSETINFORMATION_must_not_be_a_functionLike_macro_, MCGEN_EVENTSETINFORMATION); + +// Validate MCGEN_EVENTWRITETRANSFER: + +// Trigger an error if MCGEN_EVENTWRITETRANSFER is not an unqualified (simple) identifier: +struct _mcgen_PASTE2(MCGEN_EVENTWRITETRANSFER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTWRITETRANSFER); + +// Trigger an error if MCGEN_EVENTWRITETRANSFER is redefined: +typedef struct _mcgen_PASTE2(MCGEN_EVENTWRITETRANSFER_definition_must_be_an_unqualified_identifier_, MCGEN_EVENTWRITETRANSFER) + MCGEN_EVENTWRITETRANSFER_must_not_be_redefined_between_headers;; + +// Trigger an error if MCGEN_EVENTWRITETRANSFER is defined as a function-like macro: +typedef void MCGEN_EVENTWRITETRANSFER_must_not_be_a_functionLike_macro_MCGEN_EVENTWRITETRANSFER; +typedef int _mcgen_PASTE2(MCGEN_EVENTWRITETRANSFER_must_not_be_a_functionLike_macro_, MCGEN_EVENTWRITETRANSFER); + +#ifndef McGenEventWrite_def +#define McGenEventWrite_def + +// This macro is for use by MC-generated code and should not be used directly. +#define McGenEventWrite _mcgen_PASTE2(McGenEventWrite_, MCGEN_EVENTWRITETRANSFER) + +// This function is for use by MC-generated code and should not be used directly. +DECLSPEC_NOINLINE __inline +ULONG __stdcall +McGenEventWrite( + _In_ PMCGEN_TRACE_CONTEXT Context, + _In_ PCEVENT_DESCRIPTOR Descriptor, + _In_opt_ LPCGUID ActivityId, + _In_range_(1, 128) ULONG EventDataCount, + _Pre_cap_(EventDataCount) EVENT_DATA_DESCRIPTOR* EventData + ) +{ + const USHORT UNALIGNED* Traits; + + // Some customized MCGEN_EVENTWRITETRANSFER macros might ignore ActivityId. + UNREFERENCED_PARAMETER(ActivityId); + + Traits = (const USHORT UNALIGNED*)(UINT_PTR)Context->Logger; + + if (Traits == NULL) { + EventData[0].Ptr = 0; + EventData[0].Size = 0; + EventData[0].Reserved = 0; + } else { + EventData[0].Ptr = (ULONG_PTR)Traits; + EventData[0].Size = *Traits; + EventData[0].Reserved = 2; // EVENT_DATA_DESCRIPTOR_TYPE_PROVIDER_METADATA + } + + return MCGEN_EVENTWRITETRANSFER( + Context->RegistrationHandle, + Descriptor, + ActivityId, + NULL, + EventDataCount, + EventData); +} +#endif // McGenEventWrite_def + +#if !defined(McGenEventRegisterUnregister) +#define McGenEventRegisterUnregister + +// This macro is for use by MC-generated code and should not be used directly. +#define McGenEventRegister _mcgen_PASTE2(McGenEventRegister_, MCGEN_EVENTREGISTER) + +#pragma warning(push) +#pragma warning(disable:6103) +// This function is for use by MC-generated code and should not be used directly. +DECLSPEC_NOINLINE __inline +ULONG __stdcall +McGenEventRegister( + _In_ LPCGUID ProviderId, + _In_opt_ _mcgen_PENABLECALLBACK EnableCallback, + _In_opt_ PVOID CallbackContext, + _Inout_ PREGHANDLE RegHandle + ) +/*++ + +Routine Description: + + This function registers the provider with ETW. + +Arguments: + + ProviderId - Provider ID to register with ETW. + + EnableCallback - Callback to be used. + + CallbackContext - Context for the callback. + + RegHandle - Pointer to registration handle. + +Remarks: + + Should not be called if the provider is already registered (i.e. should not + be called if *RegHandle != 0). Repeatedly registering a provider is a bug + and may indicate a race condition. However, for compatibility with previous + behavior, this function will return SUCCESS in this case. + +--*/ +{ + ULONG Error; + + if (*RegHandle != 0) + { + Error = 0; // ERROR_SUCCESS + } + else + { + Error = MCGEN_EVENTREGISTER(ProviderId, EnableCallback, CallbackContext, RegHandle); + } + + return Error; +} +#pragma warning(pop) + +// This macro is for use by MC-generated code and should not be used directly. +#define McGenEventUnregister _mcgen_PASTE2(McGenEventUnregister_, MCGEN_EVENTUNREGISTER) + +// This function is for use by MC-generated code and should not be used directly. +DECLSPEC_NOINLINE __inline +ULONG __stdcall +McGenEventUnregister(_Inout_ PREGHANDLE RegHandle) +/*++ + +Routine Description: + + Unregister from ETW and set *RegHandle = 0. + +Arguments: + + RegHandle - the pointer to the provider registration handle + +Remarks: + + If provider has not been registered (i.e. if *RegHandle == 0), + return SUCCESS. It is safe to call McGenEventUnregister even if the + call to McGenEventRegister returned an error. + +--*/ +{ + ULONG Error; + + if(*RegHandle == 0) + { + Error = 0; // ERROR_SUCCESS + } + else + { + Error = MCGEN_EVENTUNREGISTER(*RegHandle); + *RegHandle = (REGHANDLE)0; + } + + return Error; +} + +#endif // McGenEventRegisterUnregister + +#ifndef _mcgen_EVENT_BIT_SET + #if defined(_M_IX86) || defined(_M_X64) + // This macro is for use by MC-generated code and should not be used directly. + #define _mcgen_EVENT_BIT_SET(EnableBits, BitPosition) ((((const unsigned char*)EnableBits)[BitPosition >> 3] & (1u << (BitPosition & 7))) != 0) + #else // CPU type + // This macro is for use by MC-generated code and should not be used directly. + #define _mcgen_EVENT_BIT_SET(EnableBits, BitPosition) ((EnableBits[BitPosition >> 5] & (1u << (BitPosition & 31))) != 0) + #endif // CPU type +#endif // _mcgen_EVENT_BIT_SET + +#endif // MCGEN_DISABLE_PROVIDER_CODE_GENERATION + +//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +// Provider "microsoft-windows-mimalloc" event count 2 +//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +// Provider GUID = 138f4dbb-ee04-4899-aa0a-572ad4475779 +EXTERN_C __declspec(selectany) const GUID ETW_MI_Provider = {0x138f4dbb, 0xee04, 0x4899, {0xaa, 0x0a, 0x57, 0x2a, 0xd4, 0x47, 0x57, 0x79}}; + +#ifndef ETW_MI_Provider_Traits +#define ETW_MI_Provider_Traits NULL +#endif // ETW_MI_Provider_Traits + +// +// Event Descriptors +// +EXTERN_C __declspec(selectany) const EVENT_DESCRIPTOR ETW_MI_ALLOC = {0x64, 0x1, 0x0, 0x4, 0x0, 0x0, 0x0}; +#define ETW_MI_ALLOC_value 0x64 +EXTERN_C __declspec(selectany) const EVENT_DESCRIPTOR ETW_MI_FREE = {0x65, 0x1, 0x0, 0x4, 0x0, 0x0, 0x0}; +#define ETW_MI_FREE_value 0x65 + +// +// MCGEN_DISABLE_PROVIDER_CODE_GENERATION macro: +// Define this macro to have the compiler skip the generated functions in this +// header. +// +#ifndef MCGEN_DISABLE_PROVIDER_CODE_GENERATION + +// +// Event Enablement Bits +// These variables are for use by MC-generated code and should not be used directly. +// +EXTERN_C __declspec(selectany) DECLSPEC_CACHEALIGN ULONG microsoft_windows_mimallocEnableBits[1]; +EXTERN_C __declspec(selectany) const ULONGLONG microsoft_windows_mimallocKeywords[1] = {0x0}; +EXTERN_C __declspec(selectany) const unsigned char microsoft_windows_mimallocLevels[1] = {4}; + +// +// Provider context +// +EXTERN_C __declspec(selectany) MCGEN_TRACE_CONTEXT ETW_MI_Provider_Context = {0, (ULONG_PTR)ETW_MI_Provider_Traits, 0, 0, 0, 0, 0, 0, 1, microsoft_windows_mimallocEnableBits, microsoft_windows_mimallocKeywords, microsoft_windows_mimallocLevels}; + +// +// Provider REGHANDLE +// +#define microsoft_windows_mimallocHandle (ETW_MI_Provider_Context.RegistrationHandle) + +// +// This macro is set to 0, indicating that the EventWrite[Name] macros do not +// have an Activity parameter. This is controlled by the -km and -um options. +// +#define ETW_MI_Provider_EventWriteActivity 0 + +// +// Register with ETW using the control GUID specified in the manifest. +// Invoke this macro during module initialization (i.e. program startup, +// DLL process attach, or driver load) to initialize the provider. +// Note that if this function returns an error, the error means that +// will not work, but no action needs to be taken -- even if EventRegister +// returns an error, it is generally safe to use EventWrite and +// EventUnregister macros (they will be no-ops if EventRegister failed). +// +#ifndef EventRegistermicrosoft_windows_mimalloc +#define EventRegistermicrosoft_windows_mimalloc() McGenEventRegister(&ETW_MI_Provider, McGenControlCallbackV2, &ETW_MI_Provider_Context, µsoft_windows_mimallocHandle) +#endif + +// +// Register with ETW using a specific control GUID (i.e. a GUID other than what +// is specified in the manifest). Advanced scenarios only. +// +#ifndef EventRegisterByGuidmicrosoft_windows_mimalloc +#define EventRegisterByGuidmicrosoft_windows_mimalloc(Guid) McGenEventRegister(&(Guid), McGenControlCallbackV2, &ETW_MI_Provider_Context, µsoft_windows_mimallocHandle) +#endif + +// +// Unregister with ETW and close the provider. +// Invoke this macro during module shutdown (i.e. program exit, DLL process +// detach, or driver unload) to unregister the provider. +// Note that you MUST call EventUnregister before DLL or driver unload +// (not optional): failure to unregister a provider before DLL or driver unload +// will result in crashes. +// +#ifndef EventUnregistermicrosoft_windows_mimalloc +#define EventUnregistermicrosoft_windows_mimalloc() McGenEventUnregister(µsoft_windows_mimallocHandle) +#endif + +// +// MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION macro: +// Define this macro to enable support for caller-allocated provider context. +// +#ifdef MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION + +// +// Advanced scenarios: Caller-allocated provider context. +// Use when multiple differently-configured provider handles are needed, +// e.g. for container-aware drivers, one context per container. +// +// Usage: +// +// - Caller enables the feature before including this header, e.g. +// #define MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION 1 +// - Caller allocates memory, e.g. pContext = malloc(sizeof(McGenContext_microsoft_windows_mimalloc)); +// - Caller registers the provider, e.g. EventRegistermicrosoft_windows_mimalloc_ForContext(pContext); +// - Caller writes events, e.g. EventWriteMyEvent_ForContext(pContext, ...); +// - Caller unregisters, e.g. EventUnregistermicrosoft_windows_mimalloc_ForContext(pContext); +// - Caller frees memory, e.g. free(pContext); +// + +typedef struct tagMcGenContext_microsoft_windows_mimalloc { + // The fields of this structure are subject to change and should + // not be accessed directly. To access the provider's REGHANDLE, + // use microsoft_windows_mimallocHandle_ForContext(pContext). + MCGEN_TRACE_CONTEXT Context; + ULONG EnableBits[1]; +} McGenContext_microsoft_windows_mimalloc; + +#define EventRegistermicrosoft_windows_mimalloc_ForContext(pContext) _mcgen_PASTE2(_mcgen_RegisterForContext_microsoft_windows_mimalloc_, MCGEN_EVENTREGISTER)(&ETW_MI_Provider, pContext) +#define EventRegisterByGuidmicrosoft_windows_mimalloc_ForContext(Guid, pContext) _mcgen_PASTE2(_mcgen_RegisterForContext_microsoft_windows_mimalloc_, MCGEN_EVENTREGISTER)(&(Guid), pContext) +#define EventUnregistermicrosoft_windows_mimalloc_ForContext(pContext) McGenEventUnregister(&(pContext)->Context.RegistrationHandle) + +// +// Provider REGHANDLE for caller-allocated context. +// +#define microsoft_windows_mimallocHandle_ForContext(pContext) ((pContext)->Context.RegistrationHandle) + +// This function is for use by MC-generated code and should not be used directly. +// Initialize and register the caller-allocated context. +__inline +ULONG __stdcall +_mcgen_PASTE2(_mcgen_RegisterForContext_microsoft_windows_mimalloc_, MCGEN_EVENTREGISTER)( + _In_ LPCGUID pProviderId, + _Out_ McGenContext_microsoft_windows_mimalloc* pContext) +{ + RtlZeroMemory(pContext, sizeof(*pContext)); + pContext->Context.Logger = (ULONG_PTR)ETW_MI_Provider_Traits; + pContext->Context.EnableBitsCount = 1; + pContext->Context.EnableBitMask = pContext->EnableBits; + pContext->Context.EnableKeyWords = microsoft_windows_mimallocKeywords; + pContext->Context.EnableLevel = microsoft_windows_mimallocLevels; + return McGenEventRegister( + pProviderId, + McGenControlCallbackV2, + &pContext->Context, + &pContext->Context.RegistrationHandle); +} + +// This function is for use by MC-generated code and should not be used directly. +// Trigger a compile error if called with the wrong parameter type. +FORCEINLINE +_Ret_ McGenContext_microsoft_windows_mimalloc* +_mcgen_CheckContextType_microsoft_windows_mimalloc(_In_ McGenContext_microsoft_windows_mimalloc* pContext) +{ + return pContext; +} + +#endif // MCGEN_ENABLE_FORCONTEXT_CODE_GENERATION + +// +// Enablement check macro for event "ETW_MI_ALLOC" +// +#define EventEnabledETW_MI_ALLOC() _mcgen_EVENT_BIT_SET(microsoft_windows_mimallocEnableBits, 0) +#define EventEnabledETW_MI_ALLOC_ForContext(pContext) _mcgen_EVENT_BIT_SET(_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->EnableBits, 0) + +// +// Event write macros for event "ETW_MI_ALLOC" +// +#define EventWriteETW_MI_ALLOC(Address, Size) \ + MCGEN_EVENT_ENABLED(ETW_MI_ALLOC) \ + ? _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&ETW_MI_Provider_Context, &ETW_MI_ALLOC, Address, Size) : 0 +#define EventWriteETW_MI_ALLOC_AssumeEnabled(Address, Size) \ + _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&ETW_MI_Provider_Context, &ETW_MI_ALLOC, Address, Size) +#define EventWriteETW_MI_ALLOC_ForContext(pContext, Address, Size) \ + MCGEN_EVENT_ENABLED_FORCONTEXT(pContext, ETW_MI_ALLOC) \ + ? _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&(pContext)->Context, &ETW_MI_ALLOC, Address, Size) : 0 +#define EventWriteETW_MI_ALLOC_ForContextAssumeEnabled(pContext, Address, Size) \ + _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC(&_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->Context, &ETW_MI_ALLOC, Address, Size) + +// This macro is for use by MC-generated code and should not be used directly. +#define _mcgen_TEMPLATE_FOR_ETW_MI_ALLOC _mcgen_PASTE2(McTemplateU0xx_, MCGEN_EVENTWRITETRANSFER) + +// +// Enablement check macro for event "ETW_MI_FREE" +// +#define EventEnabledETW_MI_FREE() _mcgen_EVENT_BIT_SET(microsoft_windows_mimallocEnableBits, 0) +#define EventEnabledETW_MI_FREE_ForContext(pContext) _mcgen_EVENT_BIT_SET(_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->EnableBits, 0) + +// +// Event write macros for event "ETW_MI_FREE" +// +#define EventWriteETW_MI_FREE(Address, Size) \ + MCGEN_EVENT_ENABLED(ETW_MI_FREE) \ + ? _mcgen_TEMPLATE_FOR_ETW_MI_FREE(&ETW_MI_Provider_Context, &ETW_MI_FREE, Address, Size) : 0 +#define EventWriteETW_MI_FREE_AssumeEnabled(Address, Size) \ + _mcgen_TEMPLATE_FOR_ETW_MI_FREE(&ETW_MI_Provider_Context, &ETW_MI_FREE, Address, Size) +#define EventWriteETW_MI_FREE_ForContext(pContext, Address, Size) \ + MCGEN_EVENT_ENABLED_FORCONTEXT(pContext, ETW_MI_FREE) \ + ? _mcgen_TEMPLATE_FOR_ETW_MI_FREE(&(pContext)->Context, &ETW_MI_FREE, Address, Size) : 0 +#define EventWriteETW_MI_FREE_ForContextAssumeEnabled(pContext, Address, Size) \ + _mcgen_TEMPLATE_FOR_ETW_MI_FREE(&_mcgen_CheckContextType_microsoft_windows_mimalloc(pContext)->Context, &ETW_MI_FREE, Address, Size) + +// This macro is for use by MC-generated code and should not be used directly. +#define _mcgen_TEMPLATE_FOR_ETW_MI_FREE _mcgen_PASTE2(McTemplateU0xx_, MCGEN_EVENTWRITETRANSFER) + +#endif // MCGEN_DISABLE_PROVIDER_CODE_GENERATION + +// +// MCGEN_DISABLE_PROVIDER_CODE_GENERATION macro: +// Define this macro to have the compiler skip the generated functions in this +// header. +// +#ifndef MCGEN_DISABLE_PROVIDER_CODE_GENERATION + +// +// Template Functions +// + +// +// Function for template "ETW_CUSTOM_HEAP_ALLOC_DATA" (and possibly others). +// This function is for use by MC-generated code and should not be used directly. +// +#ifndef McTemplateU0xx_def +#define McTemplateU0xx_def +ETW_INLINE +ULONG +_mcgen_PASTE2(McTemplateU0xx_, MCGEN_EVENTWRITETRANSFER)( + _In_ PMCGEN_TRACE_CONTEXT Context, + _In_ PCEVENT_DESCRIPTOR Descriptor, + _In_ const unsigned __int64 _Arg0, + _In_ const unsigned __int64 _Arg1 + ) +{ +#define McTemplateU0xx_ARGCOUNT 2 + + EVENT_DATA_DESCRIPTOR EventData[McTemplateU0xx_ARGCOUNT + 1]; + + EventDataDescCreate(&EventData[1],&_Arg0, sizeof(const unsigned __int64) ); + + EventDataDescCreate(&EventData[2],&_Arg1, sizeof(const unsigned __int64) ); + + return McGenEventWrite(Context, Descriptor, NULL, McTemplateU0xx_ARGCOUNT + 1, EventData); +} +#endif // McTemplateU0xx_def + +#endif // MCGEN_DISABLE_PROVIDER_CODE_GENERATION + +#if defined(__cplusplus) +} +#endif diff --git a/3rdparty/mimalloc/src/prim/windows/etw.man b/3rdparty/mimalloc/src/prim/windows/etw.man new file mode 100644 index 00000000..cfd1f8a9 Binary files /dev/null and b/3rdparty/mimalloc/src/prim/windows/etw.man differ diff --git a/3rdparty/mimalloc/src/prim/windows/prim.c b/3rdparty/mimalloc/src/prim/windows/prim.c new file mode 100644 index 00000000..e6b61079 --- /dev/null +++ b/3rdparty/mimalloc/src/prim/windows/prim.c @@ -0,0 +1,622 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// This file is included in `src/prim/prim.c` + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" +#include // fputs, stderr + + +//--------------------------------------------- +// Dynamically bind Windows API points for portability +//--------------------------------------------- + +// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016. +// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility) +// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB) +// We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's. +typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E { + MiMemExtendedParameterInvalidType = 0, + MiMemExtendedParameterAddressRequirements, + MiMemExtendedParameterNumaNode, + MiMemExtendedParameterPartitionHandle, + MiMemExtendedParameterUserPhysicalHandle, + MiMemExtendedParameterAttributeFlags, + MiMemExtendedParameterMax +} MI_MEM_EXTENDED_PARAMETER_TYPE; + +typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S { + struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type; + union { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg; +} MI_MEM_EXTENDED_PARAMETER; + +typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S { + PVOID LowestStartingAddress; + PVOID HighestEndingAddress; + SIZE_T Alignment; +} MI_MEM_ADDRESS_REQUIREMENTS; + +#define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE 0x00000010 + +#include +typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG); +typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG); +static PVirtualAlloc2 pVirtualAlloc2 = NULL; +static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL; + +// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7 +typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER; + +typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber); +typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber); +typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask); +typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber); +static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL; +static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL; +static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL; +static PGetNumaProcessorNode pGetNumaProcessorNode = NULL; + +//--------------------------------------------- +// Enable large page support dynamically (if possible) +//--------------------------------------------- + +static bool win_enable_large_os_pages(size_t* large_page_size) +{ + static bool large_initialized = false; + if (large_initialized) return (_mi_os_large_page_size() > 0); + large_initialized = true; + + // Try to see if large OS pages are supported + // To use large pages on Windows, we first need access permission + // Set "Lock pages in memory" permission in the group policy editor + // + unsigned long err = 0; + HANDLE token = NULL; + BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token); + if (ok) { + TOKEN_PRIVILEGES tp; + ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid); + if (ok) { + tp.PrivilegeCount = 1; + tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; + ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0); + if (ok) { + err = GetLastError(); + ok = (err == ERROR_SUCCESS); + if (ok && large_page_size != NULL) { + *large_page_size = GetLargePageMinimum(); + } + } + } + CloseHandle(token); + } + if (!ok) { + if (err == 0) err = GetLastError(); + _mi_warning_message("cannot enable large OS page support, error %lu\n", err); + } + return (ok!=0); +} + + +//--------------------------------------------- +// Initialize +//--------------------------------------------- + +void _mi_prim_mem_init( mi_os_mem_config_t* config ) +{ + config->has_overcommit = false; + config->must_free_whole = true; + config->has_virtual_reserve = true; + // get the page size + SYSTEM_INFO si; + GetSystemInfo(&si); + if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; } + if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; } + // get the VirtualAlloc2 function + HINSTANCE hDll; + hDll = LoadLibrary(TEXT("kernelbase.dll")); + if (hDll != NULL) { + // use VirtualAlloc2FromApp if possible as it is available to Windows store apps + pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp"); + if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2"); + FreeLibrary(hDll); + } + // NtAllocateVirtualMemoryEx is used for huge page allocation + hDll = LoadLibrary(TEXT("ntdll.dll")); + if (hDll != NULL) { + pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx"); + FreeLibrary(hDll); + } + // Try to use Win7+ numa API + hDll = LoadLibrary(TEXT("kernel32.dll")); + if (hDll != NULL) { + pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx"); + pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx"); + pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx"); + pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode"); + FreeLibrary(hDll); + } + if (mi_option_is_enabled(mi_option_allow_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) { + win_enable_large_os_pages(&config->large_page_size); + } +} + + +//--------------------------------------------- +// Free +//--------------------------------------------- + +int _mi_prim_free(void* addr, size_t size ) { + MI_UNUSED(size); + DWORD errcode = 0; + bool err = (VirtualFree(addr, 0, MEM_RELEASE) == 0); + if (err) { errcode = GetLastError(); } + if (errcode == ERROR_INVALID_ADDRESS) { + // In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside + // the memory region returned by VirtualAlloc; in that case we need to free using + // the start of the region. + MEMORY_BASIC_INFORMATION info = { 0 }; + VirtualQuery(addr, &info, sizeof(info)); + if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) { + errcode = 0; + err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0); + if (err) { errcode = GetLastError(); } + } + } + return (int)errcode; +} + + +//--------------------------------------------- +// VirtualAlloc +//--------------------------------------------- + +static void* win_virtual_alloc_prim(void* addr, size_t size, size_t try_alignment, DWORD flags) { + #if (MI_INTPTR_SIZE >= 8) + // on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations + if (addr == NULL) { + void* hint = _mi_os_get_aligned_hint(try_alignment,size); + if (hint != NULL) { + void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE); + if (p != NULL) return p; + _mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags); + // fall through on error + } + } + #endif + // on modern Windows try use VirtualAlloc2 for aligned allocation + if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) { + MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 }; + reqs.Alignment = try_alignment; + MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} }; + param.Type.Type = MiMemExtendedParameterAddressRequirements; + param.Arg.Pointer = &reqs; + void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, ¶m, 1); + if (p != NULL) return p; + _mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags); + // fall through on error + } + // last resort + return VirtualAlloc(addr, size, flags, PAGE_READWRITE); +} + +static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) { + mi_assert_internal(!(large_only && !allow_large)); + static _Atomic(size_t) large_page_try_ok; // = 0; + void* p = NULL; + // Try to allocate large OS pages (2MiB) if allowed or required. + if ((large_only || _mi_os_use_large_page(size, try_alignment)) + && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) { + size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); + if (!large_only && try_ok > 0) { + // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive. + // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times. + mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); + } + else { + // large OS pages must always reserve and commit. + *is_large = true; + p = win_virtual_alloc_prim(addr, size, try_alignment, flags | MEM_LARGE_PAGES); + if (large_only) return p; + // fall back to non-large page allocation on error (`p == NULL`). + if (p == NULL) { + mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations + } + } + } + // Fall back to regular page allocation + if (p == NULL) { + *is_large = ((flags&MEM_LARGE_PAGES) != 0); + p = win_virtual_alloc_prim(addr, size, try_alignment, flags); + } + //if (p == NULL) { _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large); } + return p; +} + +int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { + mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(commit || !allow_large); + mi_assert_internal(try_alignment > 0); + *is_zero = true; + int flags = MEM_RESERVE; + if (commit) { flags |= MEM_COMMIT; } + *addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large); + return (*addr != NULL ? 0 : (int)GetLastError()); +} + + +//--------------------------------------------- +// Commit/Reset/Protect +//--------------------------------------------- +#ifdef _MSC_VER +#pragma warning(disable:6250) // suppress warning calling VirtualFree without MEM_RELEASE (for decommit) +#endif + +int _mi_prim_commit(void* addr, size_t size, bool* is_zero) { + *is_zero = false; + /* + // zero'ing only happens on an initial commit... but checking upfront seems expensive.. + _MEMORY_BASIC_INFORMATION meminfo; _mi_memzero_var(meminfo); + if (VirtualQuery(addr, &meminfo, size) > 0) { + if ((meminfo.State & MEM_COMMIT) == 0) { + *is_zero = true; + } + } + */ + // commit + void* p = VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE); + if (p == NULL) return (int)GetLastError(); + return 0; +} + +int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) { + BOOL ok = VirtualFree(addr, size, MEM_DECOMMIT); + *needs_recommit = true; // for safety, assume always decommitted even in the case of an error. + return (ok ? 0 : (int)GetLastError()); +} + +int _mi_prim_reset(void* addr, size_t size) { + void* p = VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE); + mi_assert_internal(p == addr); + #if 0 + if (p != NULL) { + VirtualUnlock(addr,size); // VirtualUnlock after MEM_RESET removes the memory directly from the working set + } + #endif + return (p != NULL ? 0 : (int)GetLastError()); +} + +int _mi_prim_protect(void* addr, size_t size, bool protect) { + DWORD oldprotect = 0; + BOOL ok = VirtualProtect(addr, size, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect); + return (ok ? 0 : (int)GetLastError()); +} + + +//--------------------------------------------- +// Huge page allocation +//--------------------------------------------- + +static void* _mi_prim_alloc_huge_os_pagesx(void* hint_addr, size_t size, int numa_node) +{ + const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE; + + win_enable_large_os_pages(NULL); + + MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} }; + // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages + static bool mi_huge_pages_available = true; + if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) { + params[0].Type.Type = MiMemExtendedParameterAttributeFlags; + params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE; + ULONG param_count = 1; + if (numa_node >= 0) { + param_count++; + params[1].Type.Type = MiMemExtendedParameterNumaNode; + params[1].Arg.ULong = (unsigned)numa_node; + } + SIZE_T psize = size; + void* base = hint_addr; + NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count); + if (err == 0 && base != NULL) { + return base; + } + else { + // fall back to regular large pages + mi_huge_pages_available = false; // don't try further huge pages + _mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err); + } + } + // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation + if (pVirtualAlloc2 != NULL && numa_node >= 0) { + params[0].Type.Type = MiMemExtendedParameterNumaNode; + params[0].Arg.ULong = (unsigned)numa_node; + return (*pVirtualAlloc2)(GetCurrentProcess(), hint_addr, size, flags, PAGE_READWRITE, params, 1); + } + + // otherwise use regular virtual alloc on older windows + return VirtualAlloc(hint_addr, size, flags, PAGE_READWRITE); +} + +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) { + *is_zero = true; + *addr = _mi_prim_alloc_huge_os_pagesx(hint_addr,size,numa_node); + return (*addr != NULL ? 0 : (int)GetLastError()); +} + + +//--------------------------------------------- +// Numa nodes +//--------------------------------------------- + +size_t _mi_prim_numa_node(void) { + USHORT numa_node = 0; + if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) { + // Extended API is supported + MI_PROCESSOR_NUMBER pnum; + (*pGetCurrentProcessorNumberEx)(&pnum); + USHORT nnode = 0; + BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode); + if (ok) { numa_node = nnode; } + } + else if (pGetNumaProcessorNode != NULL) { + // Vista or earlier, use older API that is limited to 64 processors. Issue #277 + DWORD pnum = GetCurrentProcessorNumber(); + UCHAR nnode = 0; + BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode); + if (ok) { numa_node = nnode; } + } + return numa_node; +} + +size_t _mi_prim_numa_node_count(void) { + ULONG numa_max = 0; + GetNumaHighestNodeNumber(&numa_max); + // find the highest node number that has actual processors assigned to it. Issue #282 + while(numa_max > 0) { + if (pGetNumaNodeProcessorMaskEx != NULL) { + // Extended API is supported + GROUP_AFFINITY affinity; + if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) { + if (affinity.Mask != 0) break; // found the maximum non-empty node + } + } + else { + // Vista or earlier, use older API that is limited to 64 processors. + ULONGLONG mask; + if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) { + if (mask != 0) break; // found the maximum non-empty node + }; + } + // max node was invalid or had no processor assigned, try again + numa_max--; + } + return ((size_t)numa_max + 1); +} + + +//---------------------------------------------------------------- +// Clock +//---------------------------------------------------------------- + +static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) { + static LARGE_INTEGER mfreq; // = 0 + if (mfreq.QuadPart == 0LL) { + LARGE_INTEGER f; + QueryPerformanceFrequency(&f); + mfreq.QuadPart = f.QuadPart/1000LL; + if (mfreq.QuadPart == 0) mfreq.QuadPart = 1; + } + return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart); +} + +mi_msecs_t _mi_prim_clock_now(void) { + LARGE_INTEGER t; + QueryPerformanceCounter(&t); + return mi_to_msecs(t); +} + + +//---------------------------------------------------------------- +// Process Info +//---------------------------------------------------------------- + +#include +#include + +static mi_msecs_t filetime_msecs(const FILETIME* ftime) { + ULARGE_INTEGER i; + i.LowPart = ftime->dwLowDateTime; + i.HighPart = ftime->dwHighDateTime; + mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds + return msecs; +} + +typedef BOOL (WINAPI *PGetProcessMemoryInfo)(HANDLE, PPROCESS_MEMORY_COUNTERS, DWORD); +static PGetProcessMemoryInfo pGetProcessMemoryInfo = NULL; + +void _mi_prim_process_info(mi_process_info_t* pinfo) +{ + FILETIME ct; + FILETIME ut; + FILETIME st; + FILETIME et; + GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut); + pinfo->utime = filetime_msecs(&ut); + pinfo->stime = filetime_msecs(&st); + + // load psapi on demand + if (pGetProcessMemoryInfo == NULL) { + HINSTANCE hDll = LoadLibrary(TEXT("psapi.dll")); + if (hDll != NULL) { + pGetProcessMemoryInfo = (PGetProcessMemoryInfo)(void (*)(void))GetProcAddress(hDll, "GetProcessMemoryInfo"); + } + } + + // get process info + PROCESS_MEMORY_COUNTERS info; + memset(&info, 0, sizeof(info)); + if (pGetProcessMemoryInfo != NULL) { + pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info)); + } + pinfo->current_rss = (size_t)info.WorkingSetSize; + pinfo->peak_rss = (size_t)info.PeakWorkingSetSize; + pinfo->current_commit = (size_t)info.PagefileUsage; + pinfo->peak_commit = (size_t)info.PeakPagefileUsage; + pinfo->page_faults = (size_t)info.PageFaultCount; +} + +//---------------------------------------------------------------- +// Output +//---------------------------------------------------------------- + +void _mi_prim_out_stderr( const char* msg ) +{ + // on windows with redirection, the C runtime cannot handle locale dependent output + // after the main thread closes so we use direct console output. + if (!_mi_preloading()) { + // _cputs(msg); // _cputs cannot be used at is aborts if it fails to lock the console + static HANDLE hcon = INVALID_HANDLE_VALUE; + static bool hconIsConsole; + if (hcon == INVALID_HANDLE_VALUE) { + CONSOLE_SCREEN_BUFFER_INFO sbi; + hcon = GetStdHandle(STD_ERROR_HANDLE); + hconIsConsole = ((hcon != INVALID_HANDLE_VALUE) && GetConsoleScreenBufferInfo(hcon, &sbi)); + } + const size_t len = _mi_strlen(msg); + if (len > 0 && len < UINT32_MAX) { + DWORD written = 0; + if (hconIsConsole) { + WriteConsoleA(hcon, msg, (DWORD)len, &written, NULL); + } + else if (hcon != INVALID_HANDLE_VALUE) { + // use direct write if stderr was redirected + WriteFile(hcon, msg, (DWORD)len, &written, NULL); + } + else { + // finally fall back to fputs after all + fputs(msg, stderr); + } + } + } +} + + +//---------------------------------------------------------------- +// Environment +//---------------------------------------------------------------- + +// On Windows use GetEnvironmentVariable instead of getenv to work +// reliably even when this is invoked before the C runtime is initialized. +// i.e. when `_mi_preloading() == true`. +// Note: on windows, environment names are not case sensitive. +bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { + result[0] = 0; + size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size); + return (len > 0 && len < result_size); +} + + + +//---------------------------------------------------------------- +// Random +//---------------------------------------------------------------- + +#if defined(MI_USE_RTLGENRANDOM) // || defined(__cplusplus) +// We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using +// dynamic overriding, we observed it can raise an exception when compiled with C++, and +// sometimes deadlocks when also running under the VS debugger. +// In contrast, issue #623 implies that on Windows Server 2019 we need to use BCryptGenRandom. +// To be continued.. +#pragma comment (lib,"advapi32.lib") +#define RtlGenRandom SystemFunction036 +mi_decl_externc BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength); + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + return (RtlGenRandom(buf, (ULONG)buf_len) != 0); +} + +#else + +#ifndef BCRYPT_USE_SYSTEM_PREFERRED_RNG +#define BCRYPT_USE_SYSTEM_PREFERRED_RNG 0x00000002 +#endif + +typedef LONG (NTAPI *PBCryptGenRandom)(HANDLE, PUCHAR, ULONG, ULONG); +static PBCryptGenRandom pBCryptGenRandom = NULL; + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + if (pBCryptGenRandom == NULL) { + HINSTANCE hDll = LoadLibrary(TEXT("bcrypt.dll")); + if (hDll != NULL) { + pBCryptGenRandom = (PBCryptGenRandom)(void (*)(void))GetProcAddress(hDll, "BCryptGenRandom"); + } + if (pBCryptGenRandom == NULL) return false; + } + return (pBCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0); +} + +#endif // MI_USE_RTLGENRANDOM + +//---------------------------------------------------------------- +// Thread init/done +//---------------------------------------------------------------- + +#if !defined(MI_SHARED_LIB) + +// use thread local storage keys to detect thread ending +#include +#if (_WIN32_WINNT < 0x600) // before Windows Vista +WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback ); +WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex ); +WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData ); +WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex); +#endif + +static DWORD mi_fls_key = (DWORD)(-1); + +static void NTAPI mi_fls_done(PVOID value) { + mi_heap_t* heap = (mi_heap_t*)value; + if (heap != NULL) { + _mi_thread_done(heap); + FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672 + } +} + +void _mi_prim_thread_init_auto_done(void) { + mi_fls_key = FlsAlloc(&mi_fls_done); +} + +void _mi_prim_thread_done_auto_done(void) { + // call thread-done on all threads (except the main thread) to prevent + // dangling callback pointer if statically linked with a DLL; Issue #208 + FlsFree(mi_fls_key); +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + mi_assert_internal(mi_fls_key != (DWORD)(-1)); + FlsSetValue(mi_fls_key, heap); +} + +#else + +// Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event. + +void _mi_prim_thread_init_auto_done(void) { +} + +void _mi_prim_thread_done_auto_done(void) { +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + MI_UNUSED(heap); +} + +#endif diff --git a/3rdparty/mimalloc/src/prim/windows/readme.md b/3rdparty/mimalloc/src/prim/windows/readme.md new file mode 100644 index 00000000..217c3d17 --- /dev/null +++ b/3rdparty/mimalloc/src/prim/windows/readme.md @@ -0,0 +1,17 @@ +## Primitives: + +- `prim.c` contains Windows primitives for OS allocation. + +## Event Tracing for Windows (ETW) + +- `etw.h` is generated from `etw.man` which contains the manifest for mimalloc events. + (100 is an allocation, 101 is for a free) + +- `etw-mimalloc.wprp` is a profile for the Windows Performance Recorder (WPR). + In an admin prompt, you can use: + ``` + > wpr -start src\prim\windows\etw-mimalloc.wprp -filemode + > + > wpr -stop test.etl + ``` + and then open `test.etl` in the Windows Performance Analyzer (WPA). \ No newline at end of file diff --git a/3rdparty/mimalloc/src/random.c b/3rdparty/mimalloc/src/random.c new file mode 100644 index 00000000..4fc8b2f8 --- /dev/null +++ b/3rdparty/mimalloc/src/random.c @@ -0,0 +1,254 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2019-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" // _mi_prim_random_buf +#include // memset + +/* ---------------------------------------------------------------------------- +We use our own PRNG to keep predictable performance of random number generation +and to avoid implementations that use a lock. We only use the OS provided +random source to initialize the initial seeds. Since we do not need ultimate +performance but we do rely on the security (for secret cookies in secure mode) +we use a cryptographically secure generator (chacha20). +-----------------------------------------------------------------------------*/ + +#define MI_CHACHA_ROUNDS (20) // perhaps use 12 for better performance? + + +/* ---------------------------------------------------------------------------- +Chacha20 implementation as the original algorithm with a 64-bit nonce +and counter: https://en.wikipedia.org/wiki/Salsa20 +The input matrix has sixteen 32-bit values: +Position 0 to 3: constant key +Position 4 to 11: the key +Position 12 to 13: the counter. +Position 14 to 15: the nonce. + +The implementation uses regular C code which compiles very well on modern compilers. +(gcc x64 has no register spills, and clang 6+ uses SSE instructions) +-----------------------------------------------------------------------------*/ + +static inline uint32_t rotl(uint32_t x, uint32_t shift) { + return (x << shift) | (x >> (32 - shift)); +} + +static inline void qround(uint32_t x[16], size_t a, size_t b, size_t c, size_t d) { + x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 16); + x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 12); + x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 8); + x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 7); +} + +static void chacha_block(mi_random_ctx_t* ctx) +{ + // scramble into `x` + uint32_t x[16]; + for (size_t i = 0; i < 16; i++) { + x[i] = ctx->input[i]; + } + for (size_t i = 0; i < MI_CHACHA_ROUNDS; i += 2) { + qround(x, 0, 4, 8, 12); + qround(x, 1, 5, 9, 13); + qround(x, 2, 6, 10, 14); + qround(x, 3, 7, 11, 15); + qround(x, 0, 5, 10, 15); + qround(x, 1, 6, 11, 12); + qround(x, 2, 7, 8, 13); + qround(x, 3, 4, 9, 14); + } + + // add scrambled data to the initial state + for (size_t i = 0; i < 16; i++) { + ctx->output[i] = x[i] + ctx->input[i]; + } + ctx->output_available = 16; + + // increment the counter for the next round + ctx->input[12] += 1; + if (ctx->input[12] == 0) { + ctx->input[13] += 1; + if (ctx->input[13] == 0) { // and keep increasing into the nonce + ctx->input[14] += 1; + } + } +} + +static uint32_t chacha_next32(mi_random_ctx_t* ctx) { + if (ctx->output_available <= 0) { + chacha_block(ctx); + ctx->output_available = 16; // (assign again to suppress static analysis warning) + } + const uint32_t x = ctx->output[16 - ctx->output_available]; + ctx->output[16 - ctx->output_available] = 0; // reset once the data is handed out + ctx->output_available--; + return x; +} + +static inline uint32_t read32(const uint8_t* p, size_t idx32) { + const size_t i = 4*idx32; + return ((uint32_t)p[i+0] | (uint32_t)p[i+1] << 8 | (uint32_t)p[i+2] << 16 | (uint32_t)p[i+3] << 24); +} + +static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce) +{ + // since we only use chacha for randomness (and not encryption) we + // do not _need_ to read 32-bit values as little endian but we do anyways + // just for being compatible :-) + memset(ctx, 0, sizeof(*ctx)); + for (size_t i = 0; i < 4; i++) { + const uint8_t* sigma = (uint8_t*)"expand 32-byte k"; + ctx->input[i] = read32(sigma,i); + } + for (size_t i = 0; i < 8; i++) { + ctx->input[i + 4] = read32(key,i); + } + ctx->input[12] = 0; + ctx->input[13] = 0; + ctx->input[14] = (uint32_t)nonce; + ctx->input[15] = (uint32_t)(nonce >> 32); +} + +static void chacha_split(mi_random_ctx_t* ctx, uint64_t nonce, mi_random_ctx_t* ctx_new) { + memset(ctx_new, 0, sizeof(*ctx_new)); + _mi_memcpy(ctx_new->input, ctx->input, sizeof(ctx_new->input)); + ctx_new->input[12] = 0; + ctx_new->input[13] = 0; + ctx_new->input[14] = (uint32_t)nonce; + ctx_new->input[15] = (uint32_t)(nonce >> 32); + mi_assert_internal(ctx->input[14] != ctx_new->input[14] || ctx->input[15] != ctx_new->input[15]); // do not reuse nonces! + chacha_block(ctx_new); +} + + +/* ---------------------------------------------------------------------------- +Random interface +-----------------------------------------------------------------------------*/ + +#if MI_DEBUG>1 +static bool mi_random_is_initialized(mi_random_ctx_t* ctx) { + return (ctx != NULL && ctx->input[0] != 0); +} +#endif + +void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* ctx_new) { + mi_assert_internal(mi_random_is_initialized(ctx)); + mi_assert_internal(ctx != ctx_new); + chacha_split(ctx, (uintptr_t)ctx_new /*nonce*/, ctx_new); +} + +uintptr_t _mi_random_next(mi_random_ctx_t* ctx) { + mi_assert_internal(mi_random_is_initialized(ctx)); + #if MI_INTPTR_SIZE <= 4 + return chacha_next32(ctx); + #elif MI_INTPTR_SIZE == 8 + return (((uintptr_t)chacha_next32(ctx) << 32) | chacha_next32(ctx)); + #else + # error "define mi_random_next for this platform" + #endif +} + + +/* ---------------------------------------------------------------------------- +To initialize a fresh random context. +If we cannot get good randomness, we fall back to weak randomness based on a timer and ASLR. +-----------------------------------------------------------------------------*/ + +uintptr_t _mi_os_random_weak(uintptr_t extra_seed) { + uintptr_t x = (uintptr_t)&_mi_os_random_weak ^ extra_seed; // ASLR makes the address random + x ^= _mi_prim_clock_now(); + // and do a few randomization steps + uintptr_t max = ((x ^ (x >> 17)) & 0x0F) + 1; + for (uintptr_t i = 0; i < max; i++) { + x = _mi_random_shuffle(x); + } + mi_assert_internal(x != 0); + return x; +} + +static void mi_random_init_ex(mi_random_ctx_t* ctx, bool use_weak) { + uint8_t key[32]; + if (use_weak || !_mi_prim_random_buf(key, sizeof(key))) { + // if we fail to get random data from the OS, we fall back to a + // weak random source based on the current time + #if !defined(__wasi__) + if (!use_weak) { _mi_warning_message("unable to use secure randomness\n"); } + #endif + uintptr_t x = _mi_os_random_weak(0); + for (size_t i = 0; i < 8; i++) { // key is eight 32-bit words. + x = _mi_random_shuffle(x); + ((uint32_t*)key)[i] = (uint32_t)x; + } + ctx->weak = true; + } + else { + ctx->weak = false; + } + chacha_init(ctx, key, (uintptr_t)ctx /*nonce*/ ); +} + +void _mi_random_init(mi_random_ctx_t* ctx) { + mi_random_init_ex(ctx, false); +} + +void _mi_random_init_weak(mi_random_ctx_t * ctx) { + mi_random_init_ex(ctx, true); +} + +void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx) { + if (ctx->weak) { + _mi_random_init(ctx); + } +} + +/* -------------------------------------------------------- +test vectors from +----------------------------------------------------------- */ +/* +static bool array_equals(uint32_t* x, uint32_t* y, size_t n) { + for (size_t i = 0; i < n; i++) { + if (x[i] != y[i]) return false; + } + return true; +} +static void chacha_test(void) +{ + uint32_t x[4] = { 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 }; + uint32_t x_out[4] = { 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb }; + qround(x, 0, 1, 2, 3); + mi_assert_internal(array_equals(x, x_out, 4)); + + uint32_t y[16] = { + 0x879531e0, 0xc5ecf37d, 0x516461b1, 0xc9a62f8a, + 0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0x2a5f714c, + 0x53372767, 0xb00a5631, 0x974c541a, 0x359e9963, + 0x5c971061, 0x3d631689, 0x2098d9d6, 0x91dbd320 }; + uint32_t y_out[16] = { + 0x879531e0, 0xc5ecf37d, 0xbdb886dc, 0xc9a62f8a, + 0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0xcfacafd2, + 0xe46bea80, 0xb00a5631, 0x974c541a, 0x359e9963, + 0x5c971061, 0xccc07c79, 0x2098d9d6, 0x91dbd320 }; + qround(y, 2, 7, 8, 13); + mi_assert_internal(array_equals(y, y_out, 16)); + + mi_random_ctx_t r = { + { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574, + 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c, + 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c, + 0x00000001, 0x09000000, 0x4a000000, 0x00000000 }, + {0}, + 0 + }; + uint32_t r_out[16] = { + 0xe4e7f110, 0x15593bd1, 0x1fdd0f50, 0xc47120a3, + 0xc7f4d1c7, 0x0368c033, 0x9aaa2204, 0x4e6cd4c3, + 0x466482d2, 0x09aa9f07, 0x05d7c214, 0xa2028bd9, + 0xd19c12b5, 0xb94e16de, 0xe883d0cb, 0x4e3c50a2 }; + chacha_block(&r); + mi_assert_internal(array_equals(r.output, r_out, 16)); +} +*/ diff --git a/3rdparty/mimalloc/src/segment-map.c b/3rdparty/mimalloc/src/segment-map.c new file mode 100644 index 00000000..4c2104bd --- /dev/null +++ b/3rdparty/mimalloc/src/segment-map.c @@ -0,0 +1,153 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2019-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ----------------------------------------------------------- + The following functions are to reliably find the segment or + block that encompasses any pointer p (or NULL if it is not + in any of our segments). + We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB) + set to 1 if it contains the segment meta data. +----------------------------------------------------------- */ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" + +#if (MI_INTPTR_SIZE==8) +#define MI_MAX_ADDRESS ((size_t)40 << 40) // 40TB (to include huge page areas) +#else +#define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb +#endif + +#define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE) +#define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8) +#define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE) + +static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE + 1]; // 2KiB per TB with 64MiB segments + +static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) { + mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE? + if ((uintptr_t)segment >= MI_MAX_ADDRESS) { + *bitidx = 0; + return MI_SEGMENT_MAP_WSIZE; + } + else { + const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_SIZE; + *bitidx = segindex % MI_INTPTR_BITS; + const size_t mapindex = segindex / MI_INTPTR_BITS; + mi_assert_internal(mapindex < MI_SEGMENT_MAP_WSIZE); + return mapindex; + } +} + +void _mi_segment_map_allocated_at(const mi_segment_t* segment) { + size_t bitidx; + size_t index = mi_segment_map_index_of(segment, &bitidx); + mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); + if (index==MI_SEGMENT_MAP_WSIZE) return; + uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); + uintptr_t newmask; + do { + newmask = (mask | ((uintptr_t)1 << bitidx)); + } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); +} + +void _mi_segment_map_freed_at(const mi_segment_t* segment) { + size_t bitidx; + size_t index = mi_segment_map_index_of(segment, &bitidx); + mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); + if (index == MI_SEGMENT_MAP_WSIZE) return; + uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); + uintptr_t newmask; + do { + newmask = (mask & ~((uintptr_t)1 << bitidx)); + } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); +} + +// Determine the segment belonging to a pointer or NULL if it is not in a valid segment. +static mi_segment_t* _mi_segment_of(const void* p) { + if (p == NULL) return NULL; + mi_segment_t* segment = _mi_ptr_segment(p); + mi_assert_internal(segment != NULL); + size_t bitidx; + size_t index = mi_segment_map_index_of(segment, &bitidx); + // fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge + const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); + if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) { + return segment; // yes, allocated by us + } + if (index==MI_SEGMENT_MAP_WSIZE) return NULL; + + // TODO: maintain max/min allocated range for efficiency for more efficient rejection of invalid pointers? + + // search downwards for the first segment in case it is an interior pointer + // could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough + // valid huge objects + // note: we could maintain a lowest index to speed up the path for invalid pointers? + size_t lobitidx; + size_t loindex; + uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1); + if (lobits != 0) { + loindex = index; + lobitidx = mi_bsr(lobits); // lobits != 0 + } + else if (index == 0) { + return NULL; + } + else { + mi_assert_internal(index > 0); + uintptr_t lomask = mask; + loindex = index; + do { + loindex--; + lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex]); + } while (lomask != 0 && loindex > 0); + if (lomask == 0) return NULL; + lobitidx = mi_bsr(lomask); // lomask != 0 + } + mi_assert_internal(loindex < MI_SEGMENT_MAP_WSIZE); + // take difference as the addresses could be larger than the MAX_ADDRESS space. + size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE; + segment = (mi_segment_t*)((uint8_t*)segment - diff); + + if (segment == NULL) return NULL; + mi_assert_internal((void*)segment < p); + bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie); + mi_assert_internal(cookie_ok); + if mi_unlikely(!cookie_ok) return NULL; + if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range + mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment)); + return segment; +} + +// Is this a valid pointer in our heap? +static bool mi_is_valid_pointer(const void* p) { + return ((_mi_segment_of(p) != NULL) || (_mi_arena_contains(p))); +} + +mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { + return mi_is_valid_pointer(p); +} + +/* +// Return the full segment range belonging to a pointer +static void* mi_segment_range_of(const void* p, size_t* size) { + mi_segment_t* segment = _mi_segment_of(p); + if (segment == NULL) { + if (size != NULL) *size = 0; + return NULL; + } + else { + if (size != NULL) *size = segment->segment_size; + return segment; + } + mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); + mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size); + mi_reset_delayed(tld); + mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld)); + return page; +} +*/ diff --git a/3rdparty/mimalloc/src/segment.c b/3rdparty/mimalloc/src/segment.c new file mode 100644 index 00000000..28685f21 --- /dev/null +++ b/3rdparty/mimalloc/src/segment.c @@ -0,0 +1,1619 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" + +#include // memset +#include + +#define MI_PAGE_HUGE_ALIGN (256*1024) + +static void mi_segment_try_purge(mi_segment_t* segment, bool force, mi_stats_t* stats); + + +// ------------------------------------------------------------------- +// commit mask +// ------------------------------------------------------------------- + +static bool mi_commit_mask_all_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + if ((commit->mask[i] & cm->mask[i]) != cm->mask[i]) return false; + } + return true; +} + +static bool mi_commit_mask_any_set(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + if ((commit->mask[i] & cm->mask[i]) != 0) return true; + } + return false; +} + +static void mi_commit_mask_create_intersect(const mi_commit_mask_t* commit, const mi_commit_mask_t* cm, mi_commit_mask_t* res) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + res->mask[i] = (commit->mask[i] & cm->mask[i]); + } +} + +static void mi_commit_mask_clear(mi_commit_mask_t* res, const mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + res->mask[i] &= ~(cm->mask[i]); + } +} + +static void mi_commit_mask_set(mi_commit_mask_t* res, const mi_commit_mask_t* cm) { + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + res->mask[i] |= cm->mask[i]; + } +} + +static void mi_commit_mask_create(size_t bitidx, size_t bitcount, mi_commit_mask_t* cm) { + mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS); + mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS); + if (bitcount == MI_COMMIT_MASK_BITS) { + mi_assert_internal(bitidx==0); + mi_commit_mask_create_full(cm); + } + else if (bitcount == 0) { + mi_commit_mask_create_empty(cm); + } + else { + mi_commit_mask_create_empty(cm); + size_t i = bitidx / MI_COMMIT_MASK_FIELD_BITS; + size_t ofs = bitidx % MI_COMMIT_MASK_FIELD_BITS; + while (bitcount > 0) { + mi_assert_internal(i < MI_COMMIT_MASK_FIELD_COUNT); + size_t avail = MI_COMMIT_MASK_FIELD_BITS - ofs; + size_t count = (bitcount > avail ? avail : bitcount); + size_t mask = (count >= MI_COMMIT_MASK_FIELD_BITS ? ~((size_t)0) : (((size_t)1 << count) - 1) << ofs); + cm->mask[i] = mask; + bitcount -= count; + ofs = 0; + i++; + } + } +} + +size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total) { + mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0); + size_t count = 0; + for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { + size_t mask = cm->mask[i]; + if (~mask == 0) { + count += MI_COMMIT_MASK_FIELD_BITS; + } + else { + for (; mask != 0; mask >>= 1) { // todo: use popcount + if ((mask&1)!=0) count++; + } + } + } + // we use total since for huge segments each commit bit may represent a larger size + return ((total / MI_COMMIT_MASK_BITS) * count); +} + + +size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx) { + size_t i = (*idx) / MI_COMMIT_MASK_FIELD_BITS; + size_t ofs = (*idx) % MI_COMMIT_MASK_FIELD_BITS; + size_t mask = 0; + // find first ones + while (i < MI_COMMIT_MASK_FIELD_COUNT) { + mask = cm->mask[i]; + mask >>= ofs; + if (mask != 0) { + while ((mask&1) == 0) { + mask >>= 1; + ofs++; + } + break; + } + i++; + ofs = 0; + } + if (i >= MI_COMMIT_MASK_FIELD_COUNT) { + // not found + *idx = MI_COMMIT_MASK_BITS; + return 0; + } + else { + // found, count ones + size_t count = 0; + *idx = (i*MI_COMMIT_MASK_FIELD_BITS) + ofs; + do { + mi_assert_internal(ofs < MI_COMMIT_MASK_FIELD_BITS && (mask&1) == 1); + do { + count++; + mask >>= 1; + } while ((mask&1) == 1); + if ((((*idx + count) % MI_COMMIT_MASK_FIELD_BITS) == 0)) { + i++; + if (i >= MI_COMMIT_MASK_FIELD_COUNT) break; + mask = cm->mask[i]; + ofs = 0; + } + } while ((mask&1) == 1); + mi_assert_internal(count > 0); + return count; + } +} + + +/* -------------------------------------------------------------------------------- + Segment allocation + + If a thread ends, it "abandons" pages with used blocks + and there is an abandoned segment list whose segments can + be reclaimed by still running threads, much like work-stealing. +-------------------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------- + Slices +----------------------------------------------------------- */ + + +static const mi_slice_t* mi_segment_slices_end(const mi_segment_t* segment) { + return &segment->slices[segment->slice_entries]; +} + +static uint8_t* mi_slice_start(const mi_slice_t* slice) { + mi_segment_t* segment = _mi_ptr_segment(slice); + mi_assert_internal(slice >= segment->slices && slice < mi_segment_slices_end(segment)); + return ((uint8_t*)segment + ((slice - segment->slices)*MI_SEGMENT_SLICE_SIZE)); +} + + +/* ----------------------------------------------------------- + Bins +----------------------------------------------------------- */ +// Use bit scan forward to quickly find the first zero bit if it is available + +static inline size_t mi_slice_bin8(size_t slice_count) { + if (slice_count<=1) return slice_count; + mi_assert_internal(slice_count <= MI_SLICES_PER_SEGMENT); + slice_count--; + size_t s = mi_bsr(slice_count); // slice_count > 1 + if (s <= 2) return slice_count + 1; + size_t bin = ((s << 2) | ((slice_count >> (s - 2))&0x03)) - 4; + return bin; +} + +static inline size_t mi_slice_bin(size_t slice_count) { + mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_SEGMENT_SIZE); + mi_assert_internal(mi_slice_bin8(MI_SLICES_PER_SEGMENT) <= MI_SEGMENT_BIN_MAX); + size_t bin = mi_slice_bin8(slice_count); + mi_assert_internal(bin <= MI_SEGMENT_BIN_MAX); + return bin; +} + +static inline size_t mi_slice_index(const mi_slice_t* slice) { + mi_segment_t* segment = _mi_ptr_segment(slice); + ptrdiff_t index = slice - segment->slices; + mi_assert_internal(index >= 0 && index < (ptrdiff_t)segment->slice_entries); + return index; +} + + +/* ----------------------------------------------------------- + Slice span queues +----------------------------------------------------------- */ + +static void mi_span_queue_push(mi_span_queue_t* sq, mi_slice_t* slice) { + // todo: or push to the end? + mi_assert_internal(slice->prev == NULL && slice->next==NULL); + slice->prev = NULL; // paranoia + slice->next = sq->first; + sq->first = slice; + if (slice->next != NULL) slice->next->prev = slice; + else sq->last = slice; + slice->xblock_size = 0; // free +} + +static mi_span_queue_t* mi_span_queue_for(size_t slice_count, mi_segments_tld_t* tld) { + size_t bin = mi_slice_bin(slice_count); + mi_span_queue_t* sq = &tld->spans[bin]; + mi_assert_internal(sq->slice_count >= slice_count); + return sq; +} + +static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) { + mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0); + // should work too if the queue does not contain slice (which can happen during reclaim) + if (slice->prev != NULL) slice->prev->next = slice->next; + if (slice == sq->first) sq->first = slice->next; + if (slice->next != NULL) slice->next->prev = slice->prev; + if (slice == sq->last) sq->last = slice->prev; + slice->prev = NULL; + slice->next = NULL; + slice->xblock_size = 1; // no more free +} + + +/* ----------------------------------------------------------- + Invariant checking +----------------------------------------------------------- */ + +static bool mi_slice_is_used(const mi_slice_t* slice) { + return (slice->xblock_size > 0); +} + + +#if (MI_DEBUG>=3) +static bool mi_span_queue_contains(mi_span_queue_t* sq, mi_slice_t* slice) { + for (mi_slice_t* s = sq->first; s != NULL; s = s->next) { + if (s==slice) return true; + } + return false; +} + +static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) { + mi_assert_internal(segment != NULL); + mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); + mi_assert_internal(segment->abandoned <= segment->used); + mi_assert_internal(segment->thread_id == 0 || segment->thread_id == _mi_thread_id()); + mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); // can only decommit committed blocks + //mi_assert_internal(segment->segment_info_size % MI_SEGMENT_SLICE_SIZE == 0); + mi_slice_t* slice = &segment->slices[0]; + const mi_slice_t* end = mi_segment_slices_end(segment); + size_t used_count = 0; + mi_span_queue_t* sq; + while(slice < end) { + mi_assert_internal(slice->slice_count > 0); + mi_assert_internal(slice->slice_offset == 0); + size_t index = mi_slice_index(slice); + size_t maxindex = (index + slice->slice_count >= segment->slice_entries ? segment->slice_entries : index + slice->slice_count) - 1; + if (mi_slice_is_used(slice)) { // a page in use, we need at least MAX_SLICE_OFFSET valid back offsets + used_count++; + for (size_t i = 0; i <= MI_MAX_SLICE_OFFSET && index + i <= maxindex; i++) { + mi_assert_internal(segment->slices[index + i].slice_offset == i*sizeof(mi_slice_t)); + mi_assert_internal(i==0 || segment->slices[index + i].slice_count == 0); + mi_assert_internal(i==0 || segment->slices[index + i].xblock_size == 1); + } + // and the last entry as well (for coalescing) + const mi_slice_t* last = slice + slice->slice_count - 1; + if (last > slice && last < mi_segment_slices_end(segment)) { + mi_assert_internal(last->slice_offset == (slice->slice_count-1)*sizeof(mi_slice_t)); + mi_assert_internal(last->slice_count == 0); + mi_assert_internal(last->xblock_size == 1); + } + } + else { // free range of slices; only last slice needs a valid back offset + mi_slice_t* last = &segment->slices[maxindex]; + if (segment->kind != MI_SEGMENT_HUGE || slice->slice_count <= (segment->slice_entries - segment->segment_info_slices)) { + mi_assert_internal((uint8_t*)slice == (uint8_t*)last - last->slice_offset); + } + mi_assert_internal(slice == last || last->slice_count == 0 ); + mi_assert_internal(last->xblock_size == 0 || (segment->kind==MI_SEGMENT_HUGE && last->xblock_size==1)); + if (segment->kind != MI_SEGMENT_HUGE && segment->thread_id != 0) { // segment is not huge or abandoned + sq = mi_span_queue_for(slice->slice_count,tld); + mi_assert_internal(mi_span_queue_contains(sq,slice)); + } + } + slice = &segment->slices[maxindex+1]; + } + mi_assert_internal(slice == end); + mi_assert_internal(used_count == segment->used + 1); + return true; +} +#endif + +/* ----------------------------------------------------------- + Segment size calculations +----------------------------------------------------------- */ + +static size_t mi_segment_info_size(mi_segment_t* segment) { + return segment->segment_info_slices * MI_SEGMENT_SLICE_SIZE; +} + +static uint8_t* _mi_segment_page_start_from_slice(const mi_segment_t* segment, const mi_slice_t* slice, size_t xblock_size, size_t* page_size) +{ + ptrdiff_t idx = slice - segment->slices; + size_t psize = (size_t)slice->slice_count * MI_SEGMENT_SLICE_SIZE; + // make the start not OS page aligned for smaller blocks to avoid page/cache effects + // note: the offset must always be an xblock_size multiple since we assume small allocations + // are aligned (see `mi_heap_malloc_aligned`). + size_t start_offset = 0; + if (xblock_size >= MI_INTPTR_SIZE) { + if (xblock_size <= 64) { start_offset = 3*xblock_size; } + else if (xblock_size <= 512) { start_offset = xblock_size; } + } + if (page_size != NULL) { *page_size = psize - start_offset; } + return (uint8_t*)segment + ((idx*MI_SEGMENT_SLICE_SIZE) + start_offset); +} + +// Start of the page available memory; can be used on uninitialized pages +uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) +{ + const mi_slice_t* slice = mi_page_to_slice((mi_page_t*)page); + uint8_t* p = _mi_segment_page_start_from_slice(segment, slice, page->xblock_size, page_size); + mi_assert_internal(page->xblock_size > 0 || _mi_ptr_page(p) == page); + mi_assert_internal(_mi_ptr_segment(p) == segment); + return p; +} + + +static size_t mi_segment_calculate_slices(size_t required, size_t* pre_size, size_t* info_slices) { + size_t page_size = _mi_os_page_size(); + size_t isize = _mi_align_up(sizeof(mi_segment_t), page_size); + size_t guardsize = 0; + + if (MI_SECURE>0) { + // in secure mode, we set up a protected page in between the segment info + // and the page data (and one at the end of the segment) + guardsize = page_size; + if (required > 0) { + required = _mi_align_up(required, MI_SEGMENT_SLICE_SIZE) + page_size; + } + } + + if (pre_size != NULL) *pre_size = isize; + isize = _mi_align_up(isize + guardsize, MI_SEGMENT_SLICE_SIZE); + if (info_slices != NULL) *info_slices = isize / MI_SEGMENT_SLICE_SIZE; + size_t segment_size = (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + guardsize, MI_SEGMENT_SLICE_SIZE) ); + mi_assert_internal(segment_size % MI_SEGMENT_SLICE_SIZE == 0); + return (segment_size / MI_SEGMENT_SLICE_SIZE); +} + + +/* ---------------------------------------------------------------------------- +Segment caches +We keep a small segment cache per thread to increase local +reuse and avoid setting/clearing guard pages in secure mode. +------------------------------------------------------------------------------- */ + +static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) { + if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1); + else _mi_stat_decrease(&tld->stats->segments,1); + tld->count += (segment_size >= 0 ? 1 : -1); + if (tld->count > tld->peak_count) tld->peak_count = tld->count; + tld->current_size += segment_size; + if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size; +} + +static void mi_segment_os_free(mi_segment_t* segment, mi_segments_tld_t* tld) { + segment->thread_id = 0; + _mi_segment_map_freed_at(segment); + mi_segments_track_size(-((long)mi_segment_size(segment)),tld); + if (MI_SECURE>0) { + // _mi_os_unprotect(segment, mi_segment_size(segment)); // ensure no more guard pages are set + // unprotect the guard pages; we cannot just unprotect the whole segment size as part may be decommitted + size_t os_pagesize = _mi_os_page_size(); + _mi_os_unprotect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize); + uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize; + _mi_os_unprotect(end, os_pagesize); + } + + // purge delayed decommits now? (no, leave it to the arena) + // mi_segment_try_purge(segment,true,tld->stats); + + const size_t size = mi_segment_size(segment); + const size_t csize = _mi_commit_mask_committed_size(&segment->commit_mask, size); + + _mi_abandoned_await_readers(); // wait until safe to free + _mi_arena_free(segment, mi_segment_size(segment), csize, segment->memid, tld->stats); +} + +// called by threads that are terminating +void _mi_segment_thread_collect(mi_segments_tld_t* tld) { + MI_UNUSED(tld); + // nothing to do +} + + +/* ----------------------------------------------------------- + Commit/Decommit ranges +----------------------------------------------------------- */ + +static void mi_segment_commit_mask(mi_segment_t* segment, bool conservative, uint8_t* p, size_t size, uint8_t** start_p, size_t* full_size, mi_commit_mask_t* cm) { + mi_assert_internal(_mi_ptr_segment(p + 1) == segment); + mi_assert_internal(segment->kind != MI_SEGMENT_HUGE); + mi_commit_mask_create_empty(cm); + if (size == 0 || size > MI_SEGMENT_SIZE || segment->kind == MI_SEGMENT_HUGE) return; + const size_t segstart = mi_segment_info_size(segment); + const size_t segsize = mi_segment_size(segment); + if (p >= (uint8_t*)segment + segsize) return; + + size_t pstart = (p - (uint8_t*)segment); + mi_assert_internal(pstart + size <= segsize); + + size_t start; + size_t end; + if (conservative) { + // decommit conservative + start = _mi_align_up(pstart, MI_COMMIT_SIZE); + end = _mi_align_down(pstart + size, MI_COMMIT_SIZE); + mi_assert_internal(start >= segstart); + mi_assert_internal(end <= segsize); + } + else { + // commit liberal + start = _mi_align_down(pstart, MI_MINIMAL_COMMIT_SIZE); + end = _mi_align_up(pstart + size, MI_MINIMAL_COMMIT_SIZE); + } + if (pstart >= segstart && start < segstart) { // note: the mask is also calculated for an initial commit of the info area + start = segstart; + } + if (end > segsize) { + end = segsize; + } + + mi_assert_internal(start <= pstart && (pstart + size) <= end); + mi_assert_internal(start % MI_COMMIT_SIZE==0 && end % MI_COMMIT_SIZE == 0); + *start_p = (uint8_t*)segment + start; + *full_size = (end > start ? end - start : 0); + if (*full_size == 0) return; + + size_t bitidx = start / MI_COMMIT_SIZE; + mi_assert_internal(bitidx < MI_COMMIT_MASK_BITS); + + size_t bitcount = *full_size / MI_COMMIT_SIZE; // can be 0 + if (bitidx + bitcount > MI_COMMIT_MASK_BITS) { + _mi_warning_message("commit mask overflow: idx=%zu count=%zu start=%zx end=%zx p=0x%p size=%zu fullsize=%zu\n", bitidx, bitcount, start, end, p, size, *full_size); + } + mi_assert_internal((bitidx + bitcount) <= MI_COMMIT_MASK_BITS); + mi_commit_mask_create(bitidx, bitcount, cm); +} + +static bool mi_segment_commit(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { + mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); + + // commit liberal + uint8_t* start = NULL; + size_t full_size = 0; + mi_commit_mask_t mask; + mi_segment_commit_mask(segment, false /* conservative? */, p, size, &start, &full_size, &mask); + if (mi_commit_mask_is_empty(&mask) || full_size == 0) return true; + + if (!mi_commit_mask_all_set(&segment->commit_mask, &mask)) { + // committing + bool is_zero = false; + mi_commit_mask_t cmask; + mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); + _mi_stat_decrease(&_mi_stats_main.committed, _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for overlap + if (!_mi_os_commit(start, full_size, &is_zero, stats)) return false; + mi_commit_mask_set(&segment->commit_mask, &mask); + } + + // increase purge expiration when using part of delayed purges -- we assume more allocations are coming soon. + if (mi_commit_mask_any_set(&segment->purge_mask, &mask)) { + segment->purge_expire = _mi_clock_now() + mi_option_get(mi_option_purge_delay); + } + + // always clear any delayed purges in our range (as they are either committed now) + mi_commit_mask_clear(&segment->purge_mask, &mask); + return true; +} + +static bool mi_segment_ensure_committed(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { + mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); + // note: assumes commit_mask is always full for huge segments as otherwise the commit mask bits can overflow + if (mi_commit_mask_is_full(&segment->commit_mask) && mi_commit_mask_is_empty(&segment->purge_mask)) return true; // fully committed + mi_assert_internal(segment->kind != MI_SEGMENT_HUGE); + return mi_segment_commit(segment, p, size, stats); +} + +static bool mi_segment_purge(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { + mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->purge_mask)); + if (!segment->allow_purge) return true; + + // purge conservative + uint8_t* start = NULL; + size_t full_size = 0; + mi_commit_mask_t mask; + mi_segment_commit_mask(segment, true /* conservative? */, p, size, &start, &full_size, &mask); + if (mi_commit_mask_is_empty(&mask) || full_size==0) return true; + + if (mi_commit_mask_any_set(&segment->commit_mask, &mask)) { + // purging + mi_assert_internal((void*)start != (void*)segment); + mi_assert_internal(segment->allow_decommit); + const bool decommitted = _mi_os_purge(start, full_size, stats); // reset or decommit + if (decommitted) { + mi_commit_mask_t cmask; + mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); + _mi_stat_increase(&_mi_stats_main.committed, full_size - _mi_commit_mask_committed_size(&cmask, MI_SEGMENT_SIZE)); // adjust for double counting + mi_commit_mask_clear(&segment->commit_mask, &mask); + } + } + + // always clear any scheduled purges in our range + mi_commit_mask_clear(&segment->purge_mask, &mask); + return true; +} + +static void mi_segment_schedule_purge(mi_segment_t* segment, uint8_t* p, size_t size, mi_stats_t* stats) { + if (!segment->allow_purge) return; + + if (mi_option_get(mi_option_purge_delay) == 0) { + mi_segment_purge(segment, p, size, stats); + } + else { + // register for future purge in the purge mask + uint8_t* start = NULL; + size_t full_size = 0; + mi_commit_mask_t mask; + mi_segment_commit_mask(segment, true /*conservative*/, p, size, &start, &full_size, &mask); + if (mi_commit_mask_is_empty(&mask) || full_size==0) return; + + // update delayed commit + mi_assert_internal(segment->purge_expire > 0 || mi_commit_mask_is_empty(&segment->purge_mask)); + mi_commit_mask_t cmask; + mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); // only purge what is committed; span_free may try to decommit more + mi_commit_mask_set(&segment->purge_mask, &cmask); + mi_msecs_t now = _mi_clock_now(); + if (segment->purge_expire == 0) { + // no previous purgess, initialize now + segment->purge_expire = now + mi_option_get(mi_option_purge_delay); + } + else if (segment->purge_expire <= now) { + // previous purge mask already expired + if (segment->purge_expire + mi_option_get(mi_option_purge_extend_delay) <= now) { + mi_segment_try_purge(segment, true, stats); + } + else { + segment->purge_expire = now + mi_option_get(mi_option_purge_extend_delay); // (mi_option_get(mi_option_purge_delay) / 8); // wait a tiny bit longer in case there is a series of free's + } + } + else { + // previous purge mask is not yet expired, increase the expiration by a bit. + segment->purge_expire += mi_option_get(mi_option_purge_extend_delay); + } + } +} + +static void mi_segment_try_purge(mi_segment_t* segment, bool force, mi_stats_t* stats) { + if (!segment->allow_purge || mi_commit_mask_is_empty(&segment->purge_mask)) return; + mi_msecs_t now = _mi_clock_now(); + if (!force && now < segment->purge_expire) return; + + mi_commit_mask_t mask = segment->purge_mask; + segment->purge_expire = 0; + mi_commit_mask_create_empty(&segment->purge_mask); + + size_t idx; + size_t count; + mi_commit_mask_foreach(&mask, idx, count) { + // if found, decommit that sequence + if (count > 0) { + uint8_t* p = (uint8_t*)segment + (idx*MI_COMMIT_SIZE); + size_t size = count * MI_COMMIT_SIZE; + mi_segment_purge(segment, p, size, stats); + } + } + mi_commit_mask_foreach_end() + mi_assert_internal(mi_commit_mask_is_empty(&segment->purge_mask)); +} + + +/* ----------------------------------------------------------- + Span free +----------------------------------------------------------- */ + +static bool mi_segment_is_abandoned(mi_segment_t* segment) { + return (segment->thread_id == 0); +} + +// note: can be called on abandoned segments +static void mi_segment_span_free(mi_segment_t* segment, size_t slice_index, size_t slice_count, bool allow_purge, mi_segments_tld_t* tld) { + mi_assert_internal(slice_index < segment->slice_entries); + mi_span_queue_t* sq = (segment->kind == MI_SEGMENT_HUGE || mi_segment_is_abandoned(segment) + ? NULL : mi_span_queue_for(slice_count,tld)); + if (slice_count==0) slice_count = 1; + mi_assert_internal(slice_index + slice_count - 1 < segment->slice_entries); + + // set first and last slice (the intermediates can be undetermined) + mi_slice_t* slice = &segment->slices[slice_index]; + slice->slice_count = (uint32_t)slice_count; + mi_assert_internal(slice->slice_count == slice_count); // no overflow? + slice->slice_offset = 0; + if (slice_count > 1) { + mi_slice_t* last = &segment->slices[slice_index + slice_count - 1]; + last->slice_count = 0; + last->slice_offset = (uint32_t)(sizeof(mi_page_t)*(slice_count - 1)); + last->xblock_size = 0; + } + + // perhaps decommit + if (allow_purge) { + mi_segment_schedule_purge(segment, mi_slice_start(slice), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats); + } + + // and push it on the free page queue (if it was not a huge page) + if (sq != NULL) mi_span_queue_push( sq, slice ); + else slice->xblock_size = 0; // mark huge page as free anyways +} + +/* +// called from reclaim to add existing free spans +static void mi_segment_span_add_free(mi_slice_t* slice, mi_segments_tld_t* tld) { + mi_segment_t* segment = _mi_ptr_segment(slice); + mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0); + size_t slice_index = mi_slice_index(slice); + mi_segment_span_free(segment,slice_index,slice->slice_count,tld); +} +*/ + +static void mi_segment_span_remove_from_queue(mi_slice_t* slice, mi_segments_tld_t* tld) { + mi_assert_internal(slice->slice_count > 0 && slice->slice_offset==0 && slice->xblock_size==0); + mi_assert_internal(_mi_ptr_segment(slice)->kind != MI_SEGMENT_HUGE); + mi_span_queue_t* sq = mi_span_queue_for(slice->slice_count, tld); + mi_span_queue_delete(sq, slice); +} + +// note: can be called on abandoned segments +static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_tld_t* tld) { + mi_assert_internal(slice != NULL && slice->slice_count > 0 && slice->slice_offset == 0); + mi_segment_t* segment = _mi_ptr_segment(slice); + bool is_abandoned = mi_segment_is_abandoned(segment); + + // for huge pages, just mark as free but don't add to the queues + if (segment->kind == MI_SEGMENT_HUGE) { + // issue #691: segment->used can be 0 if the huge page block was freed while abandoned (reclaim will get here in that case) + mi_assert_internal((segment->used==0 && slice->xblock_size==0) || segment->used == 1); // decreased right after this call in `mi_segment_page_clear` + slice->xblock_size = 0; // mark as free anyways + // we should mark the last slice `xblock_size=0` now to maintain invariants but we skip it to + // avoid a possible cache miss (and the segment is about to be freed) + return slice; + } + + // otherwise coalesce the span and add to the free span queues + size_t slice_count = slice->slice_count; + mi_slice_t* next = slice + slice->slice_count; + mi_assert_internal(next <= mi_segment_slices_end(segment)); + if (next < mi_segment_slices_end(segment) && next->xblock_size==0) { + // free next block -- remove it from free and merge + mi_assert_internal(next->slice_count > 0 && next->slice_offset==0); + slice_count += next->slice_count; // extend + if (!is_abandoned) { mi_segment_span_remove_from_queue(next, tld); } + } + if (slice > segment->slices) { + mi_slice_t* prev = mi_slice_first(slice - 1); + mi_assert_internal(prev >= segment->slices); + if (prev->xblock_size==0) { + // free previous slice -- remove it from free and merge + mi_assert_internal(prev->slice_count > 0 && prev->slice_offset==0); + slice_count += prev->slice_count; + if (!is_abandoned) { mi_segment_span_remove_from_queue(prev, tld); } + slice = prev; + } + } + + // and add the new free page + mi_segment_span_free(segment, mi_slice_index(slice), slice_count, true, tld); + return slice; +} + + + +/* ----------------------------------------------------------- + Page allocation +----------------------------------------------------------- */ + +// Note: may still return NULL if committing the memory failed +static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) { + mi_assert_internal(slice_index < segment->slice_entries); + mi_slice_t* const slice = &segment->slices[slice_index]; + mi_assert_internal(slice->xblock_size==0 || slice->xblock_size==1); + + // commit before changing the slice data + if (!mi_segment_ensure_committed(segment, _mi_segment_page_start_from_slice(segment, slice, 0, NULL), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats)) { + return NULL; // commit failed! + } + + // convert the slices to a page + slice->slice_offset = 0; + slice->slice_count = (uint32_t)slice_count; + mi_assert_internal(slice->slice_count == slice_count); + const size_t bsize = slice_count * MI_SEGMENT_SLICE_SIZE; + slice->xblock_size = (uint32_t)(bsize >= MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : bsize); + mi_page_t* page = mi_slice_to_page(slice); + mi_assert_internal(mi_page_block_size(page) == bsize); + + // set slice back pointers for the first MI_MAX_SLICE_OFFSET entries + size_t extra = slice_count-1; + if (extra > MI_MAX_SLICE_OFFSET) extra = MI_MAX_SLICE_OFFSET; + if (slice_index + extra >= segment->slice_entries) extra = segment->slice_entries - slice_index - 1; // huge objects may have more slices than avaiable entries in the segment->slices + + mi_slice_t* slice_next = slice + 1; + for (size_t i = 1; i <= extra; i++, slice_next++) { + slice_next->slice_offset = (uint32_t)(sizeof(mi_slice_t)*i); + slice_next->slice_count = 0; + slice_next->xblock_size = 1; + } + + // and also for the last one (if not set already) (the last one is needed for coalescing and for large alignments) + // note: the cast is needed for ubsan since the index can be larger than MI_SLICES_PER_SEGMENT for huge allocations (see #543) + mi_slice_t* last = slice + slice_count - 1; + mi_slice_t* end = (mi_slice_t*)mi_segment_slices_end(segment); + if (last > end) last = end; + if (last > slice) { + last->slice_offset = (uint32_t)(sizeof(mi_slice_t) * (last - slice)); + last->slice_count = 0; + last->xblock_size = 1; + } + + // and initialize the page + page->is_committed = true; + segment->used++; + return page; +} + +static void mi_segment_slice_split(mi_segment_t* segment, mi_slice_t* slice, size_t slice_count, mi_segments_tld_t* tld) { + mi_assert_internal(_mi_ptr_segment(slice) == segment); + mi_assert_internal(slice->slice_count >= slice_count); + mi_assert_internal(slice->xblock_size > 0); // no more in free queue + if (slice->slice_count <= slice_count) return; + mi_assert_internal(segment->kind != MI_SEGMENT_HUGE); + size_t next_index = mi_slice_index(slice) + slice_count; + size_t next_count = slice->slice_count - slice_count; + mi_segment_span_free(segment, next_index, next_count, false /* don't purge left-over part */, tld); + slice->slice_count = (uint32_t)slice_count; +} + +static mi_page_t* mi_segments_page_find_and_allocate(size_t slice_count, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld) { + mi_assert_internal(slice_count*MI_SEGMENT_SLICE_SIZE <= MI_LARGE_OBJ_SIZE_MAX); + // search from best fit up + mi_span_queue_t* sq = mi_span_queue_for(slice_count, tld); + if (slice_count == 0) slice_count = 1; + while (sq <= &tld->spans[MI_SEGMENT_BIN_MAX]) { + for (mi_slice_t* slice = sq->first; slice != NULL; slice = slice->next) { + if (slice->slice_count >= slice_count) { + // found one + mi_segment_t* segment = _mi_ptr_segment(slice); + if (_mi_arena_memid_is_suitable(segment->memid, req_arena_id)) { + // found a suitable page span + mi_span_queue_delete(sq, slice); + + if (slice->slice_count > slice_count) { + mi_segment_slice_split(segment, slice, slice_count, tld); + } + mi_assert_internal(slice != NULL && slice->slice_count == slice_count && slice->xblock_size > 0); + mi_page_t* page = mi_segment_span_allocate(segment, mi_slice_index(slice), slice->slice_count, tld); + if (page == NULL) { + // commit failed; return NULL but first restore the slice + mi_segment_span_free_coalesce(slice, tld); + return NULL; + } + return page; + } + } + } + sq++; + } + // could not find a page.. + return NULL; +} + + +/* ----------------------------------------------------------- + Segment allocation +----------------------------------------------------------- */ + +static mi_segment_t* mi_segment_os_alloc( size_t required, size_t page_alignment, bool eager_delayed, mi_arena_id_t req_arena_id, + size_t* psegment_slices, size_t* ppre_size, size_t* pinfo_slices, + bool commit, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) + +{ + mi_memid_t memid; + bool allow_large = (!eager_delayed && (MI_SECURE == 0)); // only allow large OS pages once we are no longer lazy + size_t align_offset = 0; + size_t alignment = MI_SEGMENT_ALIGN; + + if (page_alignment > 0) { + // mi_assert_internal(huge_page != NULL); + mi_assert_internal(page_alignment >= MI_SEGMENT_ALIGN); + alignment = page_alignment; + const size_t info_size = (*pinfo_slices) * MI_SEGMENT_SLICE_SIZE; + align_offset = _mi_align_up( info_size, MI_SEGMENT_ALIGN ); + const size_t extra = align_offset - info_size; + // recalculate due to potential guard pages + *psegment_slices = mi_segment_calculate_slices(required + extra, ppre_size, pinfo_slices); + } + + const size_t segment_size = (*psegment_slices) * MI_SEGMENT_SLICE_SIZE; + mi_segment_t* segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, alignment, align_offset, commit, allow_large, req_arena_id, &memid, os_tld); + if (segment == NULL) { + return NULL; // failed to allocate + } + + // ensure metadata part of the segment is committed + mi_commit_mask_t commit_mask; + if (memid.initially_committed) { + mi_commit_mask_create_full(&commit_mask); + } + else { + // at least commit the info slices + const size_t commit_needed = _mi_divide_up((*pinfo_slices)*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE); + mi_assert_internal(commit_needed>0); + mi_commit_mask_create(0, commit_needed, &commit_mask); + mi_assert_internal(commit_needed*MI_COMMIT_SIZE >= (*pinfo_slices)*MI_SEGMENT_SLICE_SIZE); + if (!_mi_os_commit(segment, commit_needed*MI_COMMIT_SIZE, NULL, tld->stats)) { + _mi_arena_free(segment,segment_size,0,memid,tld->stats); + return NULL; + } + } + mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0); + + segment->memid = memid; + segment->allow_decommit = !memid.is_pinned; + segment->allow_purge = segment->allow_decommit && (mi_option_get(mi_option_purge_delay) >= 0); + segment->segment_size = segment_size; + segment->commit_mask = commit_mask; + segment->purge_expire = 0; + mi_commit_mask_create_empty(&segment->purge_mask); + mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); // tsan + + mi_segments_track_size((long)(segment_size), tld); + _mi_segment_map_allocated_at(segment); + return segment; +} + + +// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` . +static mi_segment_t* mi_segment_alloc(size_t required, size_t page_alignment, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld, mi_os_tld_t* os_tld, mi_page_t** huge_page) +{ + mi_assert_internal((required==0 && huge_page==NULL) || (required>0 && huge_page != NULL)); + + // calculate needed sizes first + size_t info_slices; + size_t pre_size; + size_t segment_slices = mi_segment_calculate_slices(required, &pre_size, &info_slices); + + // Commit eagerly only if not the first N lazy segments (to reduce impact of many threads that allocate just a little) + const bool eager_delay = (// !_mi_os_has_overcommit() && // never delay on overcommit systems + _mi_current_thread_count() > 1 && // do not delay for the first N threads + tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay)); + const bool eager = !eager_delay && mi_option_is_enabled(mi_option_eager_commit); + bool commit = eager || (required > 0); + + // Allocate the segment from the OS + mi_segment_t* segment = mi_segment_os_alloc(required, page_alignment, eager_delay, req_arena_id, + &segment_slices, &pre_size, &info_slices, commit, tld, os_tld); + if (segment == NULL) return NULL; + + // zero the segment info? -- not always needed as it may be zero initialized from the OS + if (!segment->memid.initially_zero) { + ptrdiff_t ofs = offsetof(mi_segment_t, next); + size_t prefix = offsetof(mi_segment_t, slices) - ofs; + size_t zsize = prefix + (sizeof(mi_slice_t) * (segment_slices + 1)); // one more + _mi_memzero((uint8_t*)segment + ofs, zsize); + } + + // initialize the rest of the segment info + const size_t slice_entries = (segment_slices > MI_SLICES_PER_SEGMENT ? MI_SLICES_PER_SEGMENT : segment_slices); + segment->segment_slices = segment_slices; + segment->segment_info_slices = info_slices; + segment->thread_id = _mi_thread_id(); + segment->cookie = _mi_ptr_cookie(segment); + segment->slice_entries = slice_entries; + segment->kind = (required == 0 ? MI_SEGMENT_NORMAL : MI_SEGMENT_HUGE); + + // _mi_memzero(segment->slices, sizeof(mi_slice_t)*(info_slices+1)); + _mi_stat_increase(&tld->stats->page_committed, mi_segment_info_size(segment)); + + // set up guard pages + size_t guard_slices = 0; + if (MI_SECURE>0) { + // in secure mode, we set up a protected page in between the segment info + // and the page data, and at the end of the segment. + size_t os_pagesize = _mi_os_page_size(); + mi_assert_internal(mi_segment_info_size(segment) - os_pagesize >= pre_size); + _mi_os_protect((uint8_t*)segment + mi_segment_info_size(segment) - os_pagesize, os_pagesize); + uint8_t* end = (uint8_t*)segment + mi_segment_size(segment) - os_pagesize; + mi_segment_ensure_committed(segment, end, os_pagesize, tld->stats); + _mi_os_protect(end, os_pagesize); + if (slice_entries == segment_slices) segment->slice_entries--; // don't use the last slice :-( + guard_slices = 1; + } + + // reserve first slices for segment info + mi_page_t* page0 = mi_segment_span_allocate(segment, 0, info_slices, tld); + mi_assert_internal(page0!=NULL); if (page0==NULL) return NULL; // cannot fail as we always commit in advance + mi_assert_internal(segment->used == 1); + segment->used = 0; // don't count our internal slices towards usage + + // initialize initial free pages + if (segment->kind == MI_SEGMENT_NORMAL) { // not a huge page + mi_assert_internal(huge_page==NULL); + mi_segment_span_free(segment, info_slices, segment->slice_entries - info_slices, false /* don't purge */, tld); + } + else { + mi_assert_internal(huge_page!=NULL); + mi_assert_internal(mi_commit_mask_is_empty(&segment->purge_mask)); + mi_assert_internal(mi_commit_mask_is_full(&segment->commit_mask)); + *huge_page = mi_segment_span_allocate(segment, info_slices, segment_slices - info_slices - guard_slices, tld); + mi_assert_internal(*huge_page != NULL); // cannot fail as we commit in advance + } + + mi_assert_expensive(mi_segment_is_valid(segment,tld)); + return segment; +} + + +static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) { + MI_UNUSED(force); + mi_assert_internal(segment != NULL); + mi_assert_internal(segment->next == NULL); + mi_assert_internal(segment->used == 0); + + // Remove the free pages + mi_slice_t* slice = &segment->slices[0]; + const mi_slice_t* end = mi_segment_slices_end(segment); + #if MI_DEBUG>1 + size_t page_count = 0; + #endif + while (slice < end) { + mi_assert_internal(slice->slice_count > 0); + mi_assert_internal(slice->slice_offset == 0); + mi_assert_internal(mi_slice_index(slice)==0 || slice->xblock_size == 0); // no more used pages .. + if (slice->xblock_size == 0 && segment->kind != MI_SEGMENT_HUGE) { + mi_segment_span_remove_from_queue(slice, tld); + } + #if MI_DEBUG>1 + page_count++; + #endif + slice = slice + slice->slice_count; + } + mi_assert_internal(page_count == 2); // first page is allocated by the segment itself + + // stats + _mi_stat_decrease(&tld->stats->page_committed, mi_segment_info_size(segment)); + + // return it to the OS + mi_segment_os_free(segment, tld); +} + + +/* ----------------------------------------------------------- + Page Free +----------------------------------------------------------- */ + +static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld); + +// note: can be called on abandoned pages +static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld) { + mi_assert_internal(page->xblock_size > 0); + mi_assert_internal(mi_page_all_free(page)); + mi_segment_t* segment = _mi_ptr_segment(page); + mi_assert_internal(segment->used > 0); + + size_t inuse = page->capacity * mi_page_block_size(page); + _mi_stat_decrease(&tld->stats->page_committed, inuse); + _mi_stat_decrease(&tld->stats->pages, 1); + + // reset the page memory to reduce memory pressure? + if (segment->allow_decommit && mi_option_is_enabled(mi_option_deprecated_page_reset)) { + size_t psize; + uint8_t* start = _mi_page_start(segment, page, &psize); + _mi_os_reset(start, psize, tld->stats); + } + + // zero the page data, but not the segment fields + page->is_zero_init = false; + ptrdiff_t ofs = offsetof(mi_page_t, capacity); + _mi_memzero((uint8_t*)page + ofs, sizeof(*page) - ofs); + page->xblock_size = 1; + + // and free it + mi_slice_t* slice = mi_segment_span_free_coalesce(mi_page_to_slice(page), tld); + segment->used--; + // cannot assert segment valid as it is called during reclaim + // mi_assert_expensive(mi_segment_is_valid(segment, tld)); + return slice; +} + +void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld) +{ + mi_assert(page != NULL); + + mi_segment_t* segment = _mi_page_segment(page); + mi_assert_expensive(mi_segment_is_valid(segment,tld)); + + // mark it as free now + mi_segment_page_clear(page, tld); + mi_assert_expensive(mi_segment_is_valid(segment, tld)); + + if (segment->used == 0) { + // no more used pages; remove from the free list and free the segment + mi_segment_free(segment, force, tld); + } + else if (segment->used == segment->abandoned) { + // only abandoned pages; remove from free list and abandon + mi_segment_abandon(segment,tld); + } +} + + +/* ----------------------------------------------------------- +Abandonment + +When threads terminate, they can leave segments with +live blocks (reachable through other threads). Such segments +are "abandoned" and will be reclaimed by other threads to +reuse their pages and/or free them eventually + +We maintain a global list of abandoned segments that are +reclaimed on demand. Since this is shared among threads +the implementation needs to avoid the A-B-A problem on +popping abandoned segments: +We use tagged pointers to avoid accidentally identifying +reused segments, much like stamped references in Java. +Secondly, we maintain a reader counter to avoid resetting +or decommitting segments that have a pending read operation. + +Note: the current implementation is one possible design; +another way might be to keep track of abandoned segments +in the arenas/segment_cache's. This would have the advantage of keeping +all concurrent code in one place and not needing to deal +with ABA issues. The drawback is that it is unclear how to +scan abandoned segments efficiently in that case as they +would be spread among all other segments in the arenas. +----------------------------------------------------------- */ + +// Use the bottom 20-bits (on 64-bit) of the aligned segment pointers +// to put in a tag that increments on update to avoid the A-B-A problem. +#define MI_TAGGED_MASK MI_SEGMENT_MASK +typedef uintptr_t mi_tagged_segment_t; + +static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) { + return (mi_segment_t*)(ts & ~MI_TAGGED_MASK); +} + +static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) { + mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0); + uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK; + return ((uintptr_t)segment | tag); +} + +// This is a list of visited abandoned pages that were full at the time. +// this list migrates to `abandoned` when that becomes NULL. The use of +// this list reduces contention and the rate at which segments are visited. +static mi_decl_cache_align _Atomic(mi_segment_t*) abandoned_visited; // = NULL + +// The abandoned page list (tagged as it supports pop) +static mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned; // = NULL + +// Maintain these for debug purposes (these counts may be a bit off) +static mi_decl_cache_align _Atomic(size_t) abandoned_count; +static mi_decl_cache_align _Atomic(size_t) abandoned_visited_count; + +// We also maintain a count of current readers of the abandoned list +// in order to prevent resetting/decommitting segment memory if it might +// still be read. +static mi_decl_cache_align _Atomic(size_t) abandoned_readers; // = 0 + +// Push on the visited list +static void mi_abandoned_visited_push(mi_segment_t* segment) { + mi_assert_internal(segment->thread_id == 0); + mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL); + mi_assert_internal(segment->next == NULL); + mi_assert_internal(segment->used > 0); + mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited); + do { + mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext); + } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &abandoned_visited, &anext, segment)); + mi_atomic_increment_relaxed(&abandoned_visited_count); +} + +// Move the visited list to the abandoned list. +static bool mi_abandoned_visited_revisit(void) +{ + // quick check if the visited list is empty + if (mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited) == NULL) return false; + + // grab the whole visited list + mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &abandoned_visited, NULL); + if (first == NULL) return false; + + // first try to swap directly if the abandoned list happens to be NULL + mi_tagged_segment_t afirst; + mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); + if (mi_tagged_segment_ptr(ts)==NULL) { + size_t count = mi_atomic_load_relaxed(&abandoned_visited_count); + afirst = mi_tagged_segment(first, ts); + if (mi_atomic_cas_strong_acq_rel(&abandoned, &ts, afirst)) { + mi_atomic_add_relaxed(&abandoned_count, count); + mi_atomic_sub_relaxed(&abandoned_visited_count, count); + return true; + } + } + + // find the last element of the visited list: O(n) + mi_segment_t* last = first; + mi_segment_t* next; + while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) { + last = next; + } + + // and atomically prepend to the abandoned list + // (no need to increase the readers as we don't access the abandoned segments) + mi_tagged_segment_t anext = mi_atomic_load_relaxed(&abandoned); + size_t count; + do { + count = mi_atomic_load_relaxed(&abandoned_visited_count); + mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext)); + afirst = mi_tagged_segment(first, anext); + } while (!mi_atomic_cas_weak_release(&abandoned, &anext, afirst)); + mi_atomic_add_relaxed(&abandoned_count, count); + mi_atomic_sub_relaxed(&abandoned_visited_count, count); + return true; +} + +// Push on the abandoned list. +static void mi_abandoned_push(mi_segment_t* segment) { + mi_assert_internal(segment->thread_id == 0); + mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); + mi_assert_internal(segment->next == NULL); + mi_assert_internal(segment->used > 0); + mi_tagged_segment_t next; + mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); + do { + mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts)); + next = mi_tagged_segment(segment, ts); + } while (!mi_atomic_cas_weak_release(&abandoned, &ts, next)); + mi_atomic_increment_relaxed(&abandoned_count); +} + +// Wait until there are no more pending reads on segments that used to be in the abandoned list +// called for example from `arena.c` before decommitting +void _mi_abandoned_await_readers(void) { + size_t n; + do { + n = mi_atomic_load_acquire(&abandoned_readers); + if (n != 0) mi_atomic_yield(); + } while (n != 0); +} + +// Pop from the abandoned list +static mi_segment_t* mi_abandoned_pop(void) { + mi_segment_t* segment; + // Check efficiently if it is empty (or if the visited list needs to be moved) + mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); + segment = mi_tagged_segment_ptr(ts); + if mi_likely(segment == NULL) { + if mi_likely(!mi_abandoned_visited_revisit()) { // try to swap in the visited list on NULL + return NULL; + } + } + + // Do a pop. We use a reader count to prevent + // a segment to be decommitted while a read is still pending, + // and a tagged pointer to prevent A-B-A link corruption. + // (this is called from `region.c:_mi_mem_free` for example) + mi_atomic_increment_relaxed(&abandoned_readers); // ensure no segment gets decommitted + mi_tagged_segment_t next = 0; + ts = mi_atomic_load_acquire(&abandoned); + do { + segment = mi_tagged_segment_ptr(ts); + if (segment != NULL) { + mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next); + next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted + } + } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&abandoned, &ts, next)); + mi_atomic_decrement_relaxed(&abandoned_readers); // release reader lock + if (segment != NULL) { + mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); + mi_atomic_decrement_relaxed(&abandoned_count); + } + return segment; +} + +/* ----------------------------------------------------------- + Abandon segment/page +----------------------------------------------------------- */ + +static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) { + mi_assert_internal(segment->used == segment->abandoned); + mi_assert_internal(segment->used > 0); + mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); + mi_assert_internal(segment->abandoned_visits == 0); + mi_assert_expensive(mi_segment_is_valid(segment,tld)); + + // remove the free pages from the free page queues + mi_slice_t* slice = &segment->slices[0]; + const mi_slice_t* end = mi_segment_slices_end(segment); + while (slice < end) { + mi_assert_internal(slice->slice_count > 0); + mi_assert_internal(slice->slice_offset == 0); + if (slice->xblock_size == 0) { // a free page + mi_segment_span_remove_from_queue(slice,tld); + slice->xblock_size = 0; // but keep it free + } + slice = slice + slice->slice_count; + } + + // perform delayed decommits (forcing is much slower on mstress) + mi_segment_try_purge(segment, mi_option_is_enabled(mi_option_abandoned_page_purge) /* force? */, tld->stats); + + // all pages in the segment are abandoned; add it to the abandoned list + _mi_stat_increase(&tld->stats->segments_abandoned, 1); + mi_segments_track_size(-((long)mi_segment_size(segment)), tld); + segment->thread_id = 0; + mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); + segment->abandoned_visits = 1; // from 0 to 1 to signify it is abandoned + mi_abandoned_push(segment); +} + +void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) { + mi_assert(page != NULL); + mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); + mi_assert_internal(mi_page_heap(page) == NULL); + mi_segment_t* segment = _mi_page_segment(page); + + mi_assert_expensive(mi_segment_is_valid(segment,tld)); + segment->abandoned++; + + _mi_stat_increase(&tld->stats->pages_abandoned, 1); + mi_assert_internal(segment->abandoned <= segment->used); + if (segment->used == segment->abandoned) { + // all pages are abandoned, abandon the entire segment + mi_segment_abandon(segment, tld); + } +} + +/* ----------------------------------------------------------- + Reclaim abandoned pages +----------------------------------------------------------- */ + +static mi_slice_t* mi_slices_start_iterate(mi_segment_t* segment, const mi_slice_t** end) { + mi_slice_t* slice = &segment->slices[0]; + *end = mi_segment_slices_end(segment); + mi_assert_internal(slice->slice_count>0 && slice->xblock_size>0); // segment allocated page + slice = slice + slice->slice_count; // skip the first segment allocated page + return slice; +} + +// Possibly free pages and check if free space is available +static bool mi_segment_check_free(mi_segment_t* segment, size_t slices_needed, size_t block_size, mi_segments_tld_t* tld) +{ + mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE); + mi_assert_internal(mi_segment_is_abandoned(segment)); + bool has_page = false; + + // for all slices + const mi_slice_t* end; + mi_slice_t* slice = mi_slices_start_iterate(segment, &end); + while (slice < end) { + mi_assert_internal(slice->slice_count > 0); + mi_assert_internal(slice->slice_offset == 0); + if (mi_slice_is_used(slice)) { // used page + // ensure used count is up to date and collect potential concurrent frees + mi_page_t* const page = mi_slice_to_page(slice); + _mi_page_free_collect(page, false); + if (mi_page_all_free(page)) { + // if this page is all free now, free it without adding to any queues (yet) + mi_assert_internal(page->next == NULL && page->prev==NULL); + _mi_stat_decrease(&tld->stats->pages_abandoned, 1); + segment->abandoned--; + slice = mi_segment_page_clear(page, tld); // re-assign slice due to coalesce! + mi_assert_internal(!mi_slice_is_used(slice)); + if (slice->slice_count >= slices_needed) { + has_page = true; + } + } + else { + if (page->xblock_size == block_size && mi_page_has_any_available(page)) { + // a page has available free blocks of the right size + has_page = true; + } + } + } + else { + // empty span + if (slice->slice_count >= slices_needed) { + has_page = true; + } + } + slice = slice + slice->slice_count; + } + return has_page; +} + +// Reclaim an abandoned segment; returns NULL if the segment was freed +// set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full. +static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) { + mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); + mi_assert_expensive(mi_segment_is_valid(segment, tld)); + if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; } + + segment->thread_id = _mi_thread_id(); + segment->abandoned_visits = 0; + mi_segments_track_size((long)mi_segment_size(segment), tld); + mi_assert_internal(segment->next == NULL); + _mi_stat_decrease(&tld->stats->segments_abandoned, 1); + + // for all slices + const mi_slice_t* end; + mi_slice_t* slice = mi_slices_start_iterate(segment, &end); + while (slice < end) { + mi_assert_internal(slice->slice_count > 0); + mi_assert_internal(slice->slice_offset == 0); + if (mi_slice_is_used(slice)) { + // in use: reclaim the page in our heap + mi_page_t* page = mi_slice_to_page(slice); + mi_assert_internal(page->is_committed); + mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); + mi_assert_internal(mi_page_heap(page) == NULL); + mi_assert_internal(page->next == NULL && page->prev==NULL); + _mi_stat_decrease(&tld->stats->pages_abandoned, 1); + segment->abandoned--; + // set the heap again and allow delayed free again + mi_page_set_heap(page, heap); + _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set) + _mi_page_free_collect(page, false); // ensure used count is up to date + if (mi_page_all_free(page)) { + // if everything free by now, free the page + slice = mi_segment_page_clear(page, tld); // set slice again due to coalesceing + } + else { + // otherwise reclaim it into the heap + _mi_page_reclaim(heap, page); + if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) { + if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; } + } + } + } + else { + // the span is free, add it to our page queues + slice = mi_segment_span_free_coalesce(slice, tld); // set slice again due to coalesceing + } + mi_assert_internal(slice->slice_count>0 && slice->slice_offset==0); + slice = slice + slice->slice_count; + } + + mi_assert(segment->abandoned == 0); + if (segment->used == 0) { // due to page_clear + mi_assert_internal(right_page_reclaimed == NULL || !(*right_page_reclaimed)); + mi_segment_free(segment, false, tld); + return NULL; + } + else { + return segment; + } +} + + +void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) { + mi_segment_t* segment; + while ((segment = mi_abandoned_pop()) != NULL) { + mi_segment_reclaim(segment, heap, 0, NULL, tld); + } +} + +static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t needed_slices, size_t block_size, bool* reclaimed, mi_segments_tld_t* tld) +{ + *reclaimed = false; + mi_segment_t* segment; + long max_tries = mi_option_get_clamp(mi_option_max_segment_reclaim, 8, 1024); // limit the work to bound allocation times + while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) { + segment->abandoned_visits++; + // todo: an arena exclusive heap will potentially visit many abandoned unsuitable segments + // and push them into the visited list and use many tries. Perhaps we can skip non-suitable ones in a better way? + bool is_suitable = _mi_heap_memid_is_suitable(heap, segment->memid); + bool has_page = mi_segment_check_free(segment,needed_slices,block_size,tld); // try to free up pages (due to concurrent frees) + if (segment->used == 0) { + // free the segment (by forced reclaim) to make it available to other threads. + // note1: we prefer to free a segment as that might lead to reclaiming another + // segment that is still partially used. + // note2: we could in principle optimize this by skipping reclaim and directly + // freeing but that would violate some invariants temporarily) + mi_segment_reclaim(segment, heap, 0, NULL, tld); + } + else if (has_page && is_suitable) { + // found a large enough free span, or a page of the right block_size with free space + // we return the result of reclaim (which is usually `segment`) as it might free + // the segment due to concurrent frees (in which case `NULL` is returned). + return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld); + } + else if (segment->abandoned_visits > 3 && is_suitable) { + // always reclaim on 3rd visit to limit the abandoned queue length. + mi_segment_reclaim(segment, heap, 0, NULL, tld); + } + else { + // otherwise, push on the visited list so it gets not looked at too quickly again + mi_segment_try_purge(segment, true /* force? */, tld->stats); // force purge if needed as we may not visit soon again + mi_abandoned_visited_push(segment); + } + } + return NULL; +} + + +void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld) +{ + mi_segment_t* segment; + int max_tries = (force ? 16*1024 : 1024); // limit latency + if (force) { + mi_abandoned_visited_revisit(); + } + while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) { + mi_segment_check_free(segment,0,0,tld); // try to free up pages (due to concurrent frees) + if (segment->used == 0) { + // free the segment (by forced reclaim) to make it available to other threads. + // note: we could in principle optimize this by skipping reclaim and directly + // freeing but that would violate some invariants temporarily) + mi_segment_reclaim(segment, heap, 0, NULL, tld); + } + else { + // otherwise, purge if needed and push on the visited list + // note: forced purge can be expensive if many threads are destroyed/created as in mstress. + mi_segment_try_purge(segment, force, tld->stats); + mi_abandoned_visited_push(segment); + } + } +} + +/* ----------------------------------------------------------- + Reclaim or allocate +----------------------------------------------------------- */ + +static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t needed_slices, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) +{ + mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE); + mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX); + + // 1. try to reclaim an abandoned segment + bool reclaimed; + mi_segment_t* segment = mi_segment_try_reclaim(heap, needed_slices, block_size, &reclaimed, tld); + if (reclaimed) { + // reclaimed the right page right into the heap + mi_assert_internal(segment != NULL); + return NULL; // pretend out-of-memory as the page will be in the page queue of the heap with available blocks + } + else if (segment != NULL) { + // reclaimed a segment with a large enough empty span in it + return segment; + } + // 2. otherwise allocate a fresh segment + return mi_segment_alloc(0, 0, heap->arena_id, tld, os_tld, NULL); +} + + +/* ----------------------------------------------------------- + Page allocation +----------------------------------------------------------- */ + +static mi_page_t* mi_segments_page_alloc(mi_heap_t* heap, mi_page_kind_t page_kind, size_t required, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) +{ + mi_assert_internal(required <= MI_LARGE_OBJ_SIZE_MAX && page_kind <= MI_PAGE_LARGE); + + // find a free page + size_t page_size = _mi_align_up(required, (required > MI_MEDIUM_PAGE_SIZE ? MI_MEDIUM_PAGE_SIZE : MI_SEGMENT_SLICE_SIZE)); + size_t slices_needed = page_size / MI_SEGMENT_SLICE_SIZE; + mi_assert_internal(slices_needed * MI_SEGMENT_SLICE_SIZE == page_size); + mi_page_t* page = mi_segments_page_find_and_allocate(slices_needed, heap->arena_id, tld); //(required <= MI_SMALL_SIZE_MAX ? 0 : slices_needed), tld); + if (page==NULL) { + // no free page, allocate a new segment and try again + if (mi_segment_reclaim_or_alloc(heap, slices_needed, block_size, tld, os_tld) == NULL) { + // OOM or reclaimed a good page in the heap + return NULL; + } + else { + // otherwise try again + return mi_segments_page_alloc(heap, page_kind, required, block_size, tld, os_tld); + } + } + mi_assert_internal(page != NULL && page->slice_count*MI_SEGMENT_SLICE_SIZE == page_size); + mi_assert_internal(_mi_ptr_segment(page)->thread_id == _mi_thread_id()); + mi_segment_try_purge(_mi_ptr_segment(page), false, tld->stats); + return page; +} + + + +/* ----------------------------------------------------------- + Huge page allocation +----------------------------------------------------------- */ + +static mi_page_t* mi_segment_huge_page_alloc(size_t size, size_t page_alignment, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) +{ + mi_page_t* page = NULL; + mi_segment_t* segment = mi_segment_alloc(size,page_alignment,req_arena_id,tld,os_tld,&page); + if (segment == NULL || page==NULL) return NULL; + mi_assert_internal(segment->used==1); + mi_assert_internal(mi_page_block_size(page) >= size); + #if MI_HUGE_PAGE_ABANDON + segment->thread_id = 0; // huge segments are immediately abandoned + #endif + + // for huge pages we initialize the xblock_size as we may + // overallocate to accommodate large alignments. + size_t psize; + uint8_t* start = _mi_segment_page_start(segment, page, &psize); + page->xblock_size = (psize > MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : (uint32_t)psize); + + // decommit the part of the prefix of a page that will not be used; this can be quite large (close to MI_SEGMENT_SIZE) + if (page_alignment > 0 && segment->allow_decommit) { + uint8_t* aligned_p = (uint8_t*)_mi_align_up((uintptr_t)start, page_alignment); + mi_assert_internal(_mi_is_aligned(aligned_p, page_alignment)); + mi_assert_internal(psize - (aligned_p - start) >= size); + uint8_t* decommit_start = start + sizeof(mi_block_t); // for the free list + ptrdiff_t decommit_size = aligned_p - decommit_start; + _mi_os_reset(decommit_start, decommit_size, &_mi_stats_main); // note: cannot use segment_decommit on huge segments + } + + return page; +} + +#if MI_HUGE_PAGE_ABANDON +// free huge block from another thread +void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) { + // huge page segments are always abandoned and can be freed immediately by any thread + mi_assert_internal(segment->kind==MI_SEGMENT_HUGE); + mi_assert_internal(segment == _mi_page_segment(page)); + mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id)==0); + + // claim it and free + mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized. + // paranoia: if this it the last reference, the cas should always succeed + size_t expected_tid = 0; + if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) { + mi_block_set_next(page, block, page->free); + page->free = block; + page->used--; + page->is_zero = false; + mi_assert(page->used == 0); + mi_tld_t* tld = heap->tld; + _mi_segment_page_free(page, true, &tld->segments); + } +#if (MI_DEBUG!=0) + else { + mi_assert_internal(false); + } +#endif +} + +#else +// reset memory of a huge block from another thread +void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) { + MI_UNUSED(page); + mi_assert_internal(segment->kind == MI_SEGMENT_HUGE); + mi_assert_internal(segment == _mi_page_segment(page)); + mi_assert_internal(page->used == 1); // this is called just before the free + mi_assert_internal(page->free == NULL); + if (segment->allow_decommit) { + size_t csize = mi_usable_size(block); + if (csize > sizeof(mi_block_t)) { + csize = csize - sizeof(mi_block_t); + uint8_t* p = (uint8_t*)block + sizeof(mi_block_t); + _mi_os_reset(p, csize, &_mi_stats_main); // note: cannot use segment_decommit on huge segments + } + } +} +#endif + +/* ----------------------------------------------------------- + Page allocation and free +----------------------------------------------------------- */ +mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { + mi_page_t* page; + if mi_unlikely(page_alignment > MI_ALIGNMENT_MAX) { + mi_assert_internal(_mi_is_power_of_two(page_alignment)); + mi_assert_internal(page_alignment >= MI_SEGMENT_SIZE); + if (page_alignment < MI_SEGMENT_SIZE) { page_alignment = MI_SEGMENT_SIZE; } + page = mi_segment_huge_page_alloc(block_size,page_alignment,heap->arena_id,tld,os_tld); + } + else if (block_size <= MI_SMALL_OBJ_SIZE_MAX) { + page = mi_segments_page_alloc(heap,MI_PAGE_SMALL,block_size,block_size,tld,os_tld); + } + else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) { + page = mi_segments_page_alloc(heap,MI_PAGE_MEDIUM,MI_MEDIUM_PAGE_SIZE,block_size,tld, os_tld); + } + else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) { + page = mi_segments_page_alloc(heap,MI_PAGE_LARGE,block_size,block_size,tld, os_tld); + } + else { + page = mi_segment_huge_page_alloc(block_size,page_alignment,heap->arena_id,tld,os_tld); + } + mi_assert_internal(page == NULL || _mi_heap_memid_is_suitable(heap, _mi_page_segment(page)->memid)); + mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); + return page; +} + + diff --git a/3rdparty/mimalloc/src/static.c b/3rdparty/mimalloc/src/static.c new file mode 100644 index 00000000..bc05dd72 --- /dev/null +++ b/3rdparty/mimalloc/src/static.c @@ -0,0 +1,40 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#ifndef _DEFAULT_SOURCE +#define _DEFAULT_SOURCE +#endif +#if defined(__sun) +// same remarks as os.c for the static's context. +#undef _XOPEN_SOURCE +#undef _POSIX_C_SOURCE +#endif + +#include "mimalloc.h" +#include "mimalloc/internal.h" + +// For a static override we create a single object file +// containing the whole library. If it is linked first +// it will override all the standard library allocation +// functions (on Unix's). +#include "alloc.c" // includes alloc-override.c +#include "alloc-aligned.c" +#include "alloc-posix.c" +#include "arena.c" +#include "bitmap.c" +#include "heap.c" +#include "init.c" +#include "options.c" +#include "os.c" +#include "page.c" // includes page-queue.c +#include "random.c" +#include "segment.c" +#include "segment-map.c" +#include "stats.c" +#include "prim/prim.c" +#if MI_OSX_ZONE +#include "prim/osx/alloc-override-zone.c" +#endif diff --git a/3rdparty/mimalloc/src/stats.c b/3rdparty/mimalloc/src/stats.c new file mode 100644 index 00000000..300956ce --- /dev/null +++ b/3rdparty/mimalloc/src/stats.c @@ -0,0 +1,467 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" + +#include // snprintf +#include // memset + +#if defined(_MSC_VER) && (_MSC_VER < 1920) +#pragma warning(disable:4204) // non-constant aggregate initializer +#endif + +/* ----------------------------------------------------------- + Statistics operations +----------------------------------------------------------- */ + +static bool mi_is_in_main(void* stat) { + return ((uint8_t*)stat >= (uint8_t*)&_mi_stats_main + && (uint8_t*)stat < ((uint8_t*)&_mi_stats_main + sizeof(mi_stats_t))); +} + +static void mi_stat_update(mi_stat_count_t* stat, int64_t amount) { + if (amount == 0) return; + if (mi_is_in_main(stat)) + { + // add atomically (for abandoned pages) + int64_t current = mi_atomic_addi64_relaxed(&stat->current, amount); + mi_atomic_maxi64_relaxed(&stat->peak, current + amount); + if (amount > 0) { + mi_atomic_addi64_relaxed(&stat->allocated,amount); + } + else { + mi_atomic_addi64_relaxed(&stat->freed, -amount); + } + } + else { + // add thread local + stat->current += amount; + if (stat->current > stat->peak) stat->peak = stat->current; + if (amount > 0) { + stat->allocated += amount; + } + else { + stat->freed += -amount; + } + } +} + +void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount) { + if (mi_is_in_main(stat)) { + mi_atomic_addi64_relaxed( &stat->count, 1 ); + mi_atomic_addi64_relaxed( &stat->total, (int64_t)amount ); + } + else { + stat->count++; + stat->total += amount; + } +} + +void _mi_stat_increase(mi_stat_count_t* stat, size_t amount) { + mi_stat_update(stat, (int64_t)amount); +} + +void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount) { + mi_stat_update(stat, -((int64_t)amount)); +} + +// must be thread safe as it is called from stats_merge +static void mi_stat_add(mi_stat_count_t* stat, const mi_stat_count_t* src, int64_t unit) { + if (stat==src) return; + if (src->allocated==0 && src->freed==0) return; + mi_atomic_addi64_relaxed( &stat->allocated, src->allocated * unit); + mi_atomic_addi64_relaxed( &stat->current, src->current * unit); + mi_atomic_addi64_relaxed( &stat->freed, src->freed * unit); + // peak scores do not work across threads.. + mi_atomic_addi64_relaxed( &stat->peak, src->peak * unit); +} + +static void mi_stat_counter_add(mi_stat_counter_t* stat, const mi_stat_counter_t* src, int64_t unit) { + if (stat==src) return; + mi_atomic_addi64_relaxed( &stat->total, src->total * unit); + mi_atomic_addi64_relaxed( &stat->count, src->count * unit); +} + +// must be thread safe as it is called from stats_merge +static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) { + if (stats==src) return; + mi_stat_add(&stats->segments, &src->segments,1); + mi_stat_add(&stats->pages, &src->pages,1); + mi_stat_add(&stats->reserved, &src->reserved, 1); + mi_stat_add(&stats->committed, &src->committed, 1); + mi_stat_add(&stats->reset, &src->reset, 1); + mi_stat_add(&stats->purged, &src->purged, 1); + mi_stat_add(&stats->page_committed, &src->page_committed, 1); + + mi_stat_add(&stats->pages_abandoned, &src->pages_abandoned, 1); + mi_stat_add(&stats->segments_abandoned, &src->segments_abandoned, 1); + mi_stat_add(&stats->threads, &src->threads, 1); + + mi_stat_add(&stats->malloc, &src->malloc, 1); + mi_stat_add(&stats->segments_cache, &src->segments_cache, 1); + mi_stat_add(&stats->normal, &src->normal, 1); + mi_stat_add(&stats->huge, &src->huge, 1); + mi_stat_add(&stats->large, &src->large, 1); + + mi_stat_counter_add(&stats->pages_extended, &src->pages_extended, 1); + mi_stat_counter_add(&stats->mmap_calls, &src->mmap_calls, 1); + mi_stat_counter_add(&stats->commit_calls, &src->commit_calls, 1); + mi_stat_counter_add(&stats->reset_calls, &src->reset_calls, 1); + mi_stat_counter_add(&stats->purge_calls, &src->purge_calls, 1); + + mi_stat_counter_add(&stats->page_no_retire, &src->page_no_retire, 1); + mi_stat_counter_add(&stats->searches, &src->searches, 1); + mi_stat_counter_add(&stats->normal_count, &src->normal_count, 1); + mi_stat_counter_add(&stats->huge_count, &src->huge_count, 1); + mi_stat_counter_add(&stats->large_count, &src->large_count, 1); +#if MI_STAT>1 + for (size_t i = 0; i <= MI_BIN_HUGE; i++) { + if (src->normal_bins[i].allocated > 0 || src->normal_bins[i].freed > 0) { + mi_stat_add(&stats->normal_bins[i], &src->normal_bins[i], 1); + } + } +#endif +} + +/* ----------------------------------------------------------- + Display statistics +----------------------------------------------------------- */ + +// unit > 0 : size in binary bytes +// unit == 0: count as decimal +// unit < 0 : count in binary +static void mi_printf_amount(int64_t n, int64_t unit, mi_output_fun* out, void* arg, const char* fmt) { + char buf[32]; buf[0] = 0; + int len = 32; + const char* suffix = (unit <= 0 ? " " : "B"); + const int64_t base = (unit == 0 ? 1000 : 1024); + if (unit>0) n *= unit; + + const int64_t pos = (n < 0 ? -n : n); + if (pos < base) { + if (n!=1 || suffix[0] != 'B') { // skip printing 1 B for the unit column + snprintf(buf, len, "%d %-3s", (int)n, (n==0 ? "" : suffix)); + } + } + else { + int64_t divider = base; + const char* magnitude = "K"; + if (pos >= divider*base) { divider *= base; magnitude = "M"; } + if (pos >= divider*base) { divider *= base; magnitude = "G"; } + const int64_t tens = (n / (divider/10)); + const long whole = (long)(tens/10); + const long frac1 = (long)(tens%10); + char unitdesc[8]; + snprintf(unitdesc, 8, "%s%s%s", magnitude, (base==1024 ? "i" : ""), suffix); + snprintf(buf, len, "%ld.%ld %-3s", whole, (frac1 < 0 ? -frac1 : frac1), unitdesc); + } + _mi_fprintf(out, arg, (fmt==NULL ? "%12s" : fmt), buf); +} + + +static void mi_print_amount(int64_t n, int64_t unit, mi_output_fun* out, void* arg) { + mi_printf_amount(n,unit,out,arg,NULL); +} + +static void mi_print_count(int64_t n, int64_t unit, mi_output_fun* out, void* arg) { + if (unit==1) _mi_fprintf(out, arg, "%12s"," "); + else mi_print_amount(n,0,out,arg); +} + +static void mi_stat_print_ex(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg, const char* notok ) { + _mi_fprintf(out, arg,"%10s:", msg); + if (unit > 0) { + mi_print_amount(stat->peak, unit, out, arg); + mi_print_amount(stat->allocated, unit, out, arg); + mi_print_amount(stat->freed, unit, out, arg); + mi_print_amount(stat->current, unit, out, arg); + mi_print_amount(unit, 1, out, arg); + mi_print_count(stat->allocated, unit, out, arg); + if (stat->allocated > stat->freed) { + _mi_fprintf(out, arg, " "); + _mi_fprintf(out, arg, (notok == NULL ? "not all freed" : notok)); + _mi_fprintf(out, arg, "\n"); + } + else { + _mi_fprintf(out, arg, " ok\n"); + } + } + else if (unit<0) { + mi_print_amount(stat->peak, -1, out, arg); + mi_print_amount(stat->allocated, -1, out, arg); + mi_print_amount(stat->freed, -1, out, arg); + mi_print_amount(stat->current, -1, out, arg); + if (unit==-1) { + _mi_fprintf(out, arg, "%24s", ""); + } + else { + mi_print_amount(-unit, 1, out, arg); + mi_print_count((stat->allocated / -unit), 0, out, arg); + } + if (stat->allocated > stat->freed) + _mi_fprintf(out, arg, " not all freed!\n"); + else + _mi_fprintf(out, arg, " ok\n"); + } + else { + mi_print_amount(stat->peak, 1, out, arg); + mi_print_amount(stat->allocated, 1, out, arg); + _mi_fprintf(out, arg, "%11s", " "); // no freed + mi_print_amount(stat->current, 1, out, arg); + _mi_fprintf(out, arg, "\n"); + } +} + +static void mi_stat_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg) { + mi_stat_print_ex(stat, msg, unit, out, arg, NULL); +} + +static void mi_stat_peak_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg) { + _mi_fprintf(out, arg, "%10s:", msg); + mi_print_amount(stat->peak, unit, out, arg); + _mi_fprintf(out, arg, "\n"); +} + +static void mi_stat_counter_print(const mi_stat_counter_t* stat, const char* msg, mi_output_fun* out, void* arg ) { + _mi_fprintf(out, arg, "%10s:", msg); + mi_print_amount(stat->total, -1, out, arg); + _mi_fprintf(out, arg, "\n"); +} + + +static void mi_stat_counter_print_avg(const mi_stat_counter_t* stat, const char* msg, mi_output_fun* out, void* arg) { + const int64_t avg_tens = (stat->count == 0 ? 0 : (stat->total*10 / stat->count)); + const long avg_whole = (long)(avg_tens/10); + const long avg_frac1 = (long)(avg_tens%10); + _mi_fprintf(out, arg, "%10s: %5ld.%ld avg\n", msg, avg_whole, avg_frac1); +} + + +static void mi_print_header(mi_output_fun* out, void* arg ) { + _mi_fprintf(out, arg, "%10s: %11s %11s %11s %11s %11s %11s\n", "heap stats", "peak ", "total ", "freed ", "current ", "unit ", "count "); +} + +#if MI_STAT>1 +static void mi_stats_print_bins(const mi_stat_count_t* bins, size_t max, const char* fmt, mi_output_fun* out, void* arg) { + bool found = false; + char buf[64]; + for (size_t i = 0; i <= max; i++) { + if (bins[i].allocated > 0) { + found = true; + int64_t unit = _mi_bin_size((uint8_t)i); + snprintf(buf, 64, "%s %3lu", fmt, (long)i); + mi_stat_print(&bins[i], buf, unit, out, arg); + } + } + if (found) { + _mi_fprintf(out, arg, "\n"); + mi_print_header(out, arg); + } +} +#endif + + + +//------------------------------------------------------------ +// Use an output wrapper for line-buffered output +// (which is nice when using loggers etc.) +//------------------------------------------------------------ +typedef struct buffered_s { + mi_output_fun* out; // original output function + void* arg; // and state + char* buf; // local buffer of at least size `count+1` + size_t used; // currently used chars `used <= count` + size_t count; // total chars available for output +} buffered_t; + +static void mi_buffered_flush(buffered_t* buf) { + buf->buf[buf->used] = 0; + _mi_fputs(buf->out, buf->arg, NULL, buf->buf); + buf->used = 0; +} + +static void mi_cdecl mi_buffered_out(const char* msg, void* arg) { + buffered_t* buf = (buffered_t*)arg; + if (msg==NULL || buf==NULL) return; + for (const char* src = msg; *src != 0; src++) { + char c = *src; + if (buf->used >= buf->count) mi_buffered_flush(buf); + mi_assert_internal(buf->used < buf->count); + buf->buf[buf->used++] = c; + if (c == '\n') mi_buffered_flush(buf); + } +} + +//------------------------------------------------------------ +// Print statistics +//------------------------------------------------------------ + +static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0) mi_attr_noexcept { + // wrap the output function to be line buffered + char buf[256]; + buffered_t buffer = { out0, arg0, NULL, 0, 255 }; + buffer.buf = buf; + mi_output_fun* out = &mi_buffered_out; + void* arg = &buffer; + + // and print using that + mi_print_header(out,arg); + #if MI_STAT>1 + mi_stats_print_bins(stats->normal_bins, MI_BIN_HUGE, "normal",out,arg); + #endif + #if MI_STAT + mi_stat_print(&stats->normal, "normal", (stats->normal_count.count == 0 ? 1 : -(stats->normal.allocated / stats->normal_count.count)), out, arg); + mi_stat_print(&stats->large, "large", (stats->large_count.count == 0 ? 1 : -(stats->large.allocated / stats->large_count.count)), out, arg); + mi_stat_print(&stats->huge, "huge", (stats->huge_count.count == 0 ? 1 : -(stats->huge.allocated / stats->huge_count.count)), out, arg); + mi_stat_count_t total = { 0,0,0,0 }; + mi_stat_add(&total, &stats->normal, 1); + mi_stat_add(&total, &stats->large, 1); + mi_stat_add(&total, &stats->huge, 1); + mi_stat_print(&total, "total", 1, out, arg); + #endif + #if MI_STAT>1 + mi_stat_print(&stats->malloc, "malloc req", 1, out, arg); + _mi_fprintf(out, arg, "\n"); + #endif + mi_stat_print_ex(&stats->reserved, "reserved", 1, out, arg, ""); + mi_stat_print_ex(&stats->committed, "committed", 1, out, arg, ""); + mi_stat_peak_print(&stats->reset, "reset", 1, out, arg ); + mi_stat_peak_print(&stats->purged, "purged", 1, out, arg ); + mi_stat_print(&stats->page_committed, "touched", 1, out, arg); + mi_stat_print(&stats->segments, "segments", -1, out, arg); + mi_stat_print(&stats->segments_abandoned, "-abandoned", -1, out, arg); + mi_stat_print(&stats->segments_cache, "-cached", -1, out, arg); + mi_stat_print(&stats->pages, "pages", -1, out, arg); + mi_stat_print(&stats->pages_abandoned, "-abandoned", -1, out, arg); + mi_stat_counter_print(&stats->pages_extended, "-extended", out, arg); + mi_stat_counter_print(&stats->page_no_retire, "-noretire", out, arg); + mi_stat_counter_print(&stats->mmap_calls, "mmaps", out, arg); + mi_stat_counter_print(&stats->commit_calls, "commits", out, arg); + mi_stat_counter_print(&stats->reset_calls, "resets", out, arg); + mi_stat_counter_print(&stats->purge_calls, "purges", out, arg); + mi_stat_print(&stats->threads, "threads", -1, out, arg); + mi_stat_counter_print_avg(&stats->searches, "searches", out, arg); + _mi_fprintf(out, arg, "%10s: %5zu\n", "numa nodes", _mi_os_numa_node_count()); + + size_t elapsed; + size_t user_time; + size_t sys_time; + size_t current_rss; + size_t peak_rss; + size_t current_commit; + size_t peak_commit; + size_t page_faults; + mi_process_info(&elapsed, &user_time, &sys_time, ¤t_rss, &peak_rss, ¤t_commit, &peak_commit, &page_faults); + _mi_fprintf(out, arg, "%10s: %5ld.%03ld s\n", "elapsed", elapsed/1000, elapsed%1000); + _mi_fprintf(out, arg, "%10s: user: %ld.%03ld s, system: %ld.%03ld s, faults: %lu, rss: ", "process", + user_time/1000, user_time%1000, sys_time/1000, sys_time%1000, (unsigned long)page_faults ); + mi_printf_amount((int64_t)peak_rss, 1, out, arg, "%s"); + if (peak_commit > 0) { + _mi_fprintf(out, arg, ", commit: "); + mi_printf_amount((int64_t)peak_commit, 1, out, arg, "%s"); + } + _mi_fprintf(out, arg, "\n"); +} + +static mi_msecs_t mi_process_start; // = 0 + +static mi_stats_t* mi_stats_get_default(void) { + mi_heap_t* heap = mi_heap_get_default(); + return &heap->tld->stats; +} + +static void mi_stats_merge_from(mi_stats_t* stats) { + if (stats != &_mi_stats_main) { + mi_stats_add(&_mi_stats_main, stats); + memset(stats, 0, sizeof(mi_stats_t)); + } +} + +void mi_stats_reset(void) mi_attr_noexcept { + mi_stats_t* stats = mi_stats_get_default(); + if (stats != &_mi_stats_main) { memset(stats, 0, sizeof(mi_stats_t)); } + memset(&_mi_stats_main, 0, sizeof(mi_stats_t)); + if (mi_process_start == 0) { mi_process_start = _mi_clock_start(); }; +} + +void mi_stats_merge(void) mi_attr_noexcept { + mi_stats_merge_from( mi_stats_get_default() ); +} + +void _mi_stats_done(mi_stats_t* stats) { // called from `mi_thread_done` + mi_stats_merge_from(stats); +} + +void mi_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept { + mi_stats_merge_from(mi_stats_get_default()); + _mi_stats_print(&_mi_stats_main, out, arg); +} + +void mi_stats_print(void* out) mi_attr_noexcept { + // for compatibility there is an `out` parameter (which can be `stdout` or `stderr`) + mi_stats_print_out((mi_output_fun*)out, NULL); +} + +void mi_thread_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept { + _mi_stats_print(mi_stats_get_default(), out, arg); +} + + +// ---------------------------------------------------------------- +// Basic timer for convenience; use milli-seconds to avoid doubles +// ---------------------------------------------------------------- + +static mi_msecs_t mi_clock_diff; + +mi_msecs_t _mi_clock_now(void) { + return _mi_prim_clock_now(); +} + +mi_msecs_t _mi_clock_start(void) { + if (mi_clock_diff == 0.0) { + mi_msecs_t t0 = _mi_clock_now(); + mi_clock_diff = _mi_clock_now() - t0; + } + return _mi_clock_now(); +} + +mi_msecs_t _mi_clock_end(mi_msecs_t start) { + mi_msecs_t end = _mi_clock_now(); + return (end - start - mi_clock_diff); +} + + +// -------------------------------------------------------- +// Basic process statistics +// -------------------------------------------------------- + +mi_decl_export void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_msecs, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults) mi_attr_noexcept +{ + mi_process_info_t pinfo; + _mi_memzero_var(pinfo); + pinfo.elapsed = _mi_clock_end(mi_process_start); + pinfo.current_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.current)); + pinfo.peak_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.peak)); + pinfo.current_rss = pinfo.current_commit; + pinfo.peak_rss = pinfo.peak_commit; + pinfo.utime = 0; + pinfo.stime = 0; + pinfo.page_faults = 0; + + _mi_prim_process_info(&pinfo); + + if (elapsed_msecs!=NULL) *elapsed_msecs = (pinfo.elapsed < 0 ? 0 : (pinfo.elapsed < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.elapsed : PTRDIFF_MAX)); + if (user_msecs!=NULL) *user_msecs = (pinfo.utime < 0 ? 0 : (pinfo.utime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.utime : PTRDIFF_MAX)); + if (system_msecs!=NULL) *system_msecs = (pinfo.stime < 0 ? 0 : (pinfo.stime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.stime : PTRDIFF_MAX)); + if (current_rss!=NULL) *current_rss = pinfo.current_rss; + if (peak_rss!=NULL) *peak_rss = pinfo.peak_rss; + if (current_commit!=NULL) *current_commit = pinfo.current_commit; + if (peak_commit!=NULL) *peak_commit = pinfo.peak_commit; + if (page_faults!=NULL) *page_faults = pinfo.page_faults; +} diff --git a/CMakeLists.txt b/CMakeLists.txt index 9095c2d3..f8f26e0a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -49,8 +49,22 @@ set(CMAKE_C_STANDARD_REQUIRED ON) set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED ON) +if(LINUX OR MSVC) + set(USE_MIMALLOC_DEFAULT ON) +else() + set(USE_MIMALLOC_DEFAULT OFF) +endif() +option(USE_MIMALLOC "Use mimalloc" ${USE_MIMALLOC_DEFAULT}) + if(MSVC) list(APPEND COMPILE_OPTIONS /MP) + if(USE_MIMALLOC) + if(CMAKE_BUILD_TYPE MATCHES "Release" OR CMAKE_BUILD_TYPE MATCHES "release" OR CMAKE_BUILD_TYPE MATCHES "RelWithDebInfo") + list(APPEND COMPILE_OPTIONS /MD) + else() + list(APPEND COMPILE_OPTIONS /MDd) + endif() + endif() else() list(APPEND COMPILE_OPTIONS $<$:-std=c11> @@ -108,6 +122,10 @@ find_package(Backtrace) if(Backtrace_FOUND) set(HAVE_BACKTRACE ON) endif() +if(USE_MIMALLOC AND MSVC) + find_package(mimalloc REQUIRED) + set(HAVE_MIMALLOC ON) +endif() if(USE_ICU) find_package(ICU COMPONENTS uc i18n REQUIRED) if(ICU_FOUND) @@ -299,6 +317,13 @@ if(NOT TAGLIB_FOUND AND NOT TAGPARSER_FOUND) message(FATAL_ERROR "You need either TagLib or TagParser!") endif() +# mimalloc +if(USE_MIMALLOC AND NOT MSVC) + set(HAVE_MIMALLOC ON) + add_subdirectory(3rdparty/mimalloc) + set(MIMALLOC_INCLUDE_DIRS ${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/mimalloc/include) +endif() + # SingleApplication if(QT_VERSION_MAJOR EQUAL 5) set(KDSINGLEAPPLICATION_NAME "KDSingleApplication") diff --git a/dist/windows/strawberry.nsi.in b/dist/windows/strawberry.nsi.in index 3f4a8cac..c80e52c6 100644 --- a/dist/windows/strawberry.nsi.in +++ b/dist/windows/strawberry.nsi.in @@ -48,6 +48,9 @@ !define build_type "-Debug" !endif +!if "@HAVE_MIMALLOC@" == "1" + !define mimalloc +!endif !ifndef compiler !error "Missing compiler." @@ -469,6 +472,10 @@ Section "Strawberry" Strawberry File "pcre2-16.dll" File "twolame.dll" File "zlib.dll" + !ifdef mimalloc + File "mimalloc.dll" + File "mimalloc-redirect.dll" + !endif !endif !ifdef debug File "freetyped.dll" @@ -480,6 +487,10 @@ Section "Strawberry" Strawberry File "pcre2-16d.dll" File "twolamed.dll" File "zlibd.dll" + !ifdef mimalloc + File "mimalloc-debug.dll" + File "mimalloc-redirect.dll" + !endif !endif ; Used by libfftw3-3.dll because fftw is compiled with MinGW. diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index b695dd6b..f6519431 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -1096,6 +1096,15 @@ target_include_directories(strawberry_lib PUBLIC ${SINGLEAPPLICATION_INCLUDE_DIRS} ) +if(USE_MIMALLOC) + if(MSVC) + target_link_libraries(strawberry_lib PUBLIC mimalloc) + else() + target_include_directories(strawberry_lib PUBLIC ${MIMALLOC_INCLUDE_DIRS}) + target_link_libraries(strawberry_lib PUBLIC ${CMAKE_BINARY_DIR}/3rdparty/mimalloc/mimalloc.o) + endif() +endif() + target_link_libraries(strawberry_lib PUBLIC ${CMAKE_THREAD_LIBS_INIT} ${GLIB_LIBRARIES} diff --git a/src/config.h.in b/src/config.h.in index ef8ac505..202faf7f 100644 --- a/src/config.h.in +++ b/src/config.h.in @@ -6,6 +6,7 @@ #define CMAKE_EXECUTABLE_SUFFIX "${CMAKE_EXECUTABLE_SUFFIX}" #cmakedefine HAVE_BACKTRACE +#cmakedefine HAVE_MIMALLOC #cmakedefine HAVE_GIO #cmakedefine HAVE_GIO_UNIX #cmakedefine HAVE_DBUS diff --git a/src/internet/localredirectserver.h b/src/internet/localredirectserver.h index da9d18dc..a360eb67 100644 --- a/src/internet/localredirectserver.h +++ b/src/internet/localredirectserver.h @@ -57,7 +57,6 @@ class LocalRedirectServer : public QTcpServer { void ReadyRead(); private: - bool GenerateCertificate(); void WriteTemplate() const; QUrl ParseUrlFromRequest(const QByteArray &request) const; diff --git a/src/main.cpp b/src/main.cpp index a0e78cca..20eaab97 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -44,6 +44,10 @@ #include +#ifdef HAVE_MIMALLOC +# include +#endif + #include #include #include @@ -119,6 +123,10 @@ using std::make_shared; int main(int argc, char *argv[]) { +#ifdef HAVE_MIMALLOC + mi_version(); +#endif + #ifdef Q_OS_MACOS // Do Mac specific startup to get media keys working. // This must go before QApplication initialization.