Zero-Shot Speech Editing and Text-to-Speech in the Wild
Go to file
jason-on-salt-a40 2c3aaa8305 Merge branch 'master' of github.com:jasonppy/VoiceCraft 2024-03-28 16:22:11 -07:00
data extraction,training,data,weights 2024-03-24 19:43:37 -07:00
demo weights, notebook working 2024-03-28 16:21:30 -07:00
models extraction,training,data,weights 2024-03-24 19:43:37 -07:00
pretrained_models weights, notebook working 2024-03-28 16:21:30 -07:00
steps init 2024-03-21 11:02:20 -07:00
z_scripts extraction,training,data,weights 2024-03-24 19:43:37 -07:00
.gitignore weights, notebook working 2024-03-28 16:21:30 -07:00
LICENSE-CODE init 2024-03-21 11:02:20 -07:00
LICENSE-MODEL init 2024-03-21 11:02:20 -07:00
README.md Merge branch 'master' of github.com:jasonppy/VoiceCraft 2024-03-28 16:22:11 -07:00
config.py init 2024-03-21 11:02:20 -07:00
edit_utils.py init 2024-03-21 11:02:20 -07:00
environment.yml extraction,training,data,weights 2024-03-24 19:43:37 -07:00
inference_speech_editing.ipynb weights, notebook working 2024-03-28 16:21:30 -07:00
inference_speech_editing_scale.py init 2024-03-21 11:02:20 -07:00
inference_tts.ipynb weights, notebook working 2024-03-28 16:21:30 -07:00
inference_tts_scale.py init 2024-03-21 11:02:20 -07:00
main.py init 2024-03-21 11:02:20 -07:00

README.md

VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild

Demo Paper

TL;DR

VoiceCraft is a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on in-the-wild data including audiobooks, internet videos, and podcasts.

To clone or edit an unseen voice, VoiceCraft needs only a few seconds of reference.

News

03/28/2024: Model weights are up on HuggingFace🤗 here!

TODO

The TODOs left will be completed by the end of March 2024.

  • Codebase upload
  • Environment setup
  • Inference demo for speech editing and TTS
  • Training guidance
  • RealEdit dataset and training manifest
  • Model weights (both 330M and 830M, the former seems to be just as good but way faster)
  • More

Environment setup

conda create -n voicecraft python=3.9.16
conda activate voicecraft

pip install torch==2.0.1 # this assumes your system is compatible with CUDA 11.7, otherwise checkout https://pytorch.org/get-started/previous-versions/#v201
apt-get install ffmpeg # if you don't already have ffmpeg installed
pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft
apt-get install espeak-ng # backend for the phonemizer installed below
pip install tensorboard==2.16.2
pip install phonemizer==3.2.1
pip install torchaudio==2.0.2
pip install datasets==2.16.0
pip install torchmetrics==0.11.1
# install MFA for getting forced-alignment, this could take a few minutes
conda install -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi=5.5.1068
# conda install pocl # above gives an warning for installing pocl, not sure if really need this

# to run ipynb
conda install -n voicecraft ipykernel --update-deps --force-reinstall

If you have encountered version issues when running things, checkout environment.yml for exact matching.

Inference Examples

Checkout inference_speech_editing.ipynb and inference_tts.ipynb

Training

To train an VoiceCraft model, you need to prepare the following parts:

  1. utterances and their transcripts
  2. encode the utterances into codes using e.g. Encodec
  3. convert transcripts into phoneme sequence, and a phoneme set (we named it vocab.txt)
  4. manifest (i.e. metadata)

Step 1,2,3 are handled in ./data/phonemize_encodec_encode_hf.py, where

  1. Gigaspeech is downloaded through HuggingFace. Note that you need to sign an agreement in order to download the dataset (it needs your auth token)
  2. phoneme sequence and encodec codes are also extracted using the script.

An example run:

conda activate voicecraft
export CUDA_VISIBLE_DEVICES=0
cd ./data
python phonemize_encodec_encode_hf.py \
--dataset_size xs \
--download_to path/to/store_huggingface_downloads \
--save_dir path/to/store_extracted_codes_and_phonemes \
--encodec_model_path path/to/encodec_model \
--mega_batch_size 120 \
--batch_size 32 \
--max_len 30000

where encodec_model_path is avaliable here. This model is trained on Gigaspeech XL, it has 56M parameters, 4 codebooks, each codebook has 2048 codes. Details are described in our paper. If you encounter OOM during extraction, try decrease the batch_size and/or max_len. The extracted codes, phonemes, and vocab.txt will be stored at path/to/store_extracted_codes_and_phonemes/${dataset_size}/{encodec_16khz_4codebooks,phonemes,vocab.txt}.

As for manifest, please download train.txt and validation.txt from here, and put them under path/to/store_extracted_codes_and_phonemes/manifest/. Please also download vocab.txt from here if you want to use our pretrained VoiceCraft model (so that the phoneme-to-token matching is the same).

Now, you are good to start training!

conda activate voicecraft
cd ./z_scripts
bash e830M.sh

License

The codebase is under CC BY-NC-SA 4.0 (LICENSE-CODE), and the model weights are under Coqui Public Model License 1.0.0 (LICENSE-MODEL). Note that we use some of the code from other repository that are under different licenses: ./models/codebooks_patterns.py is under MIT license; ./models/modules, ./steps/optim.py, data/tokenizer.py are under Apache License, Version 2.0; the phonemizer we used is under GNU 3.0 License. For drop-in replacement of the phonemizer (i.e. text to IPA phoneme mapping), try g2p (MIT License) or OpenPhonemizer (BSD-3-Clause Clear), although these are not tested.

Acknowledgement

We thank Feiteng for his VALL-E reproduction, and we thank audiocraft team for open-sourcing encodec.

Citation

@article{peng2024voicecraft,
  author    = {Peng, Puyuan and Huang, Po-Yao and Li, Daniel and Mohamed, Abdelrahman and Harwath, David},
  title     = {VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild},
  journal   = {arXiv},
  year      = {2024},
}

Disclaimer

Any organization or individual is prohibited from using any technology mentioned in this paper to generate or edit someone's speech without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws.