Zero-Shot Speech Editing and Text-to-Speech in the Wild
Go to file
pgosar 1e0eaeba2b add files 2024-04-17 16:32:50 -05:00
data extraction,training,data,weights 2024-03-24 19:43:37 -07:00
demo weights, notebook working 2024-03-28 16:21:30 -07:00
models fixed masking to be compatible with torch 2.1.0; fix crop ops 2024-04-05 13:33:03 -07:00
pretrained_models weights, notebook working 2024-03-28 16:21:30 -07:00
steps init 2024-03-21 11:02:20 -07:00
z_scripts extraction,training,data,weights 2024-03-24 19:43:37 -07:00
.gitignore docker for inference, works on linux and windows 2024-03-30 11:32:09 -07:00
Dockerfile modify the Dockerfile, download correct lib versions 2024-04-04 12:49:37 -07:00
LICENSE-CODE init 2024-03-21 11:02:20 -07:00
LICENSE-MODEL init 2024-03-21 11:02:20 -07:00
README.md upload TTS finetuned 330M model 2024-04-05 16:42:59 -07:00
RealEdit.txt add RealEdit.txt; fixed masking warning to be compatible with torch 2.1.0 2024-04-05 12:52:28 -07:00
config.py init 2024-03-21 11:02:20 -07:00
edit_utils.py init 2024-03-21 11:02:20 -07:00
environment.yml extraction,training,data,weights 2024-03-24 19:43:37 -07:00
inference_demo.py add files 2024-04-17 16:32:50 -05:00
inference_speech_editing.ipynb Update inference_speech_editing.ipynb 2024-04-05 12:12:01 -04:00
inference_speech_editing_scale.py init 2024-03-21 11:02:20 -07:00
inference_tts.ipynb upload TTS finetuned 330M model 2024-04-05 16:42:59 -07:00
inference_tts_scale.py Empty cuda cache between inferences 2024-04-06 00:05:06 +00:00
main.py init 2024-03-21 11:02:20 -07:00
speech_editing_demo.py add files 2024-04-17 16:32:50 -05:00
start-jupyter.bat update start jupyter script 2024-04-03 14:23:28 +02:00
start-jupyter.sh update start jupyter script 2024-04-03 14:23:28 +02:00

README.md

VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild

Demo Paper

TL;DR

VoiceCraft is a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on in-the-wild data including audiobooks, internet videos, and podcasts.

To clone or edit an unseen voice, VoiceCraft needs only a few seconds of reference.

How to run inference

There are three ways:

  1. with Google Colab. see quickstart colab
  2. with docker. see quickstart docker
  3. without docker. see environment setup

When you are inside the docker image or you have installed all dependencies, Checkout inference_tts.ipynb.

If you want to do model development such as training/finetuning, I recommend following envrionment setup and training.

News

03/28/2024: Model weights for giga330M and giga830M are up on HuggingFace🤗 here!

04/05/2024: I finetuned giga330M with the TTS objective on gigaspeech and 1/5 of librilight, the model outperforms giga830M on TTS. Weights are here. Make sure maximal prompt + generation length <= 16 seconds (due to our limited compute, we had to drop utterances longer than 16s in training data)

TODO

  • Codebase upload
  • Environment setup
  • Inference demo for speech editing and TTS
  • Training guidance
  • RealEdit dataset and training manifest
  • Model weights (giga330M.pth, giga830M.pth, and gigaHalfLibri330M_TTSEnhanced_max16s.pth)
  • Write colab notebooks for better hands-on experience
  • HuggingFace Spaces demo
  • Better guidance on training/finetuning

QuickStart Colab

To try out speech editing or TTS Inference with VoiceCraft, the simplest way is using Google Colab. Instructions to run are on the Colab itself.

  1. To try Speech Editing
  2. To try TTS Inference

QuickStart Docker

To try out TTS inference with VoiceCraft, you can also use docker. Thank @ubergarm and @jayc88 for making this happen.

Tested on Linux and Windows and should work with any host with docker installed.

# 1. clone the repo on in a directory on a drive with plenty of free space
git clone git@github.com:jasonppy/VoiceCraft.git
cd VoiceCraft

# 2. assumes you have docker installed with nvidia container container-toolkit (windows has this built into the driver)
# https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/1.13.5/install-guide.html
# sudo apt-get install -y nvidia-container-toolkit-base || yay -Syu nvidia-container-toolkit || echo etc...

# 3. First build the docker image
docker build --tag "voicecraft" .

# 4. Try to start an existing container otherwise create a new one passing in all GPUs
./start-jupyter.sh  # linux
start-jupyter.bat   # windows

# 5. now open a webpage on the host box to the URL shown at the bottom of:
docker logs jupyter

# 6. optionally look inside from another terminal
docker exec -it jupyter /bin/bash
export USER=(your_linux_username_used_above)
export HOME=/home/$USER
sudo apt-get update

# 7. confirm video card(s) are visible inside container
nvidia-smi

# 8. Now in browser, open inference_tts.ipynb and work through one cell at a time
echo GOOD LUCK

Environment setup

conda create -n voicecraft python=3.9.16
conda activate voicecraft

pip install -e git+https://github.com/facebookresearch/audiocraft.git@c5157b5bf14bf83449c17ea1eeb66c19fb4bc7f0#egg=audiocraft
pip install xformers==0.0.22
pip install torchaudio==2.0.2 torch==2.0.1 # this assumes your system is compatible with CUDA 11.7, otherwise checkout https://pytorch.org/get-started/previous-versions/#v201
apt-get install ffmpeg # if you don't already have ffmpeg installed
apt-get install espeak-ng # backend for the phonemizer installed below
pip install tensorboard==2.16.2
pip install phonemizer==3.2.1
pip install datasets==2.16.0
pip install torchmetrics==0.11.1
# install MFA for getting forced-alignment, this could take a few minutes
conda install -c conda-forge montreal-forced-aligner=2.2.17 openfst=1.8.2 kaldi=5.5.1068
# conda install pocl # above gives an warning for installing pocl, not sure if really need this

# to run ipynb
conda install -n voicecraft ipykernel --no-deps --force-reinstall

If you have encountered version issues when running things, checkout environment.yml for exact matching.

Inference Examples

Checkout inference_speech_editing.ipynb and inference_tts.ipynb

Training

To train an VoiceCraft model, you need to prepare the following parts:

  1. utterances and their transcripts
  2. encode the utterances into codes using e.g. Encodec
  3. convert transcripts into phoneme sequence, and a phoneme set (we named it vocab.txt)
  4. manifest (i.e. metadata)

Step 1,2,3 are handled in ./data/phonemize_encodec_encode_hf.py, where

  1. Gigaspeech is downloaded through HuggingFace. Note that you need to sign an agreement in order to download the dataset (it needs your auth token)
  2. phoneme sequence and encodec codes are also extracted using the script.

An example run:

conda activate voicecraft
export CUDA_VISIBLE_DEVICES=0
cd ./data
python phonemize_encodec_encode_hf.py \
--dataset_size xs \
--download_to path/to/store_huggingface_downloads \
--save_dir path/to/store_extracted_codes_and_phonemes \
--encodec_model_path path/to/encodec_model \
--mega_batch_size 120 \
--batch_size 32 \
--max_len 30000

where encodec_model_path is avaliable here. This model is trained on Gigaspeech XL, it has 56M parameters, 4 codebooks, each codebook has 2048 codes. Details are described in our paper. If you encounter OOM during extraction, try decrease the batch_size and/or max_len. The extracted codes, phonemes, and vocab.txt will be stored at path/to/store_extracted_codes_and_phonemes/${dataset_size}/{encodec_16khz_4codebooks,phonemes,vocab.txt}.

As for manifest, please download train.txt and validation.txt from here, and put them under path/to/store_extracted_codes_and_phonemes/manifest/. Please also download vocab.txt from here if you want to use our pretrained VoiceCraft model (so that the phoneme-to-token matching is the same).

Now, you are good to start training!

conda activate voicecraft
cd ./z_scripts
bash e830M.sh

License

The codebase is under CC BY-NC-SA 4.0 (LICENSE-CODE), and the model weights are under Coqui Public Model License 1.0.0 (LICENSE-MODEL). Note that we use some of the code from other repository that are under different licenses: ./models/codebooks_patterns.py is under MIT license; ./models/modules, ./steps/optim.py, data/tokenizer.py are under Apache License, Version 2.0; the phonemizer we used is under GNU 3.0 License.

Acknowledgement

We thank Feiteng for his VALL-E reproduction, and we thank audiocraft team for open-sourcing encodec.

Citation

@article{peng2024voicecraft,
  author    = {Peng, Puyuan and Huang, Po-Yao and Li, Daniel and Mohamed, Abdelrahman and Harwath, David},
  title     = {VoiceCraft: Zero-Shot Speech Editing and Text-to-Speech in the Wild},
  journal   = {arXiv},
  year      = {2024},
}

Disclaimer

Any organization or individual is prohibited from using any technology mentioned in this paper to generate or edit someone's speech without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws.