KoboldAI-Client/aiserver.py

2123 lines
86 KiB
Python

#==================================================================#
# KoboldAI Client
# Version: 1.15.0
# By: KoboldAIDev
#==================================================================#
# External packages
from os import path, getcwd
import re
import tkinter as tk
from tkinter import messagebox
import json
import requests
import html
import argparse
import sys
import gc
# KoboldAI
import fileops
import gensettings
from utils import debounce
import utils
import breakmodel
#==================================================================#
# Variables & Storage
#==================================================================#
# Terminal tags for colored text
class colors:
PURPLE = '\033[95m'
BLUE = '\033[94m'
CYAN = '\033[96m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
END = '\033[0m'
UNDERLINE = '\033[4m'
# AI models
modellist = [
["GPT Neo 1.3B", "EleutherAI/gpt-neo-1.3B", "8GB"],
["GPT Neo 2.7B", "EleutherAI/gpt-neo-2.7B", "16GB"],
["GPT-2", "gpt2", "1.2GB"],
["GPT-2 Med", "gpt2-medium", "2GB"],
["GPT-2 Large", "gpt2-large", "16GB"],
["GPT-2 XL", "gpt2-xl", "16GB"],
["InferKit API (requires API key)", "InferKit", ""],
["Custom Neo (eg Neo-horni)", "NeoCustom", ""],
["Custom GPT-2 (eg CloverEdition)", "GPT2Custom", ""],
["Google Colab", "Colab", ""],
["OpenAI API (requires API key)", "OAI", ""],
["Read Only (No AI)", "ReadOnly", ""]
]
# Variables
class vars:
lastact = "" # The last action received from the user
lastctx = "" # The last context submitted to the generator
model = "" # Model ID string chosen at startup
noai = False # Runs the script without starting up the transformers pipeline
aibusy = False # Stops submissions while the AI is working
max_length = 1024 # Maximum number of tokens to submit per action
ikmax = 3000 # Maximum number of characters to submit to InferKit
genamt = 80 # Amount of text for each action to generate
ikgen = 200 # Number of characters for InferKit to generate
rep_pen = 1.1 # Default generator repetition_penalty
temp = 0.5 # Default generator temperature
top_p = 0.9 # Default generator top_p
top_k = 0 # Default generator top_k
tfs = 1.0 # Default generator tfs (tail-free sampling)
numseqs = 1 # Number of sequences to ask the generator to create
gamestarted = False # Whether the game has started (disables UI elements)
prompt = "" # Prompt
memory = "" # Text submitted to memory field
authornote = "" # Text submitted to Author's Note field
andepth = 3 # How far back in history to append author's note
actions = [] # Array of actions submitted by user and AI
worldinfo = [] # Array of World Info key/value objects
badwords = [] # Array of str/chr values that should be removed from output
badwordsids = [] # Tokenized array of badwords
deletewi = -1 # Temporary storage for index to delete
wirmvwhtsp = False # Whether to remove leading whitespace from WI entries
widepth = 3 # How many historical actions to scan for WI hits
mode = "play" # Whether the interface is in play, memory, or edit mode
editln = 0 # Which line was last selected in Edit Mode
url = "https://api.inferkit.com/v1/models/standard/generate" # InferKit API URL
oaiurl = "" # OpenAI API URL
oaiengines = "https://api.openai.com/v1/engines"
colaburl = "" # Ngrok url for Google Colab mode
apikey = "" # API key to use for InferKit API calls
oaiapikey = "" # API key to use for OpenAI API calls
savedir = getcwd()+"\stories"
hascuda = False # Whether torch has detected CUDA on the system
usegpu = False # Whether to launch pipeline with GPU support
custmodpth = "" # Filesystem location of custom model to run
formatoptns = {} # Container for state of formatting options
importnum = -1 # Selection on import popup list
importjs = {} # Temporary storage for import data
loadselect = "" # Temporary storage for filename to load
svowname = "" # Filename that was flagged for overwrite confirm
saveow = False # Whether or not overwrite confirm has been displayed
genseqs = [] # Temporary storage for generated sequences
useprompt = True # Whether to send the full prompt with every submit action
breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J only, currently)
acregex_ai = re.compile(r'\n* *>(.|\n)*') # Pattern for matching adventure actions from the AI so we can remove them
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
actionmode = 1
adventure = False
remote = False
#==================================================================#
# Function to get model selection at startup
#==================================================================#
def getModelSelection():
print(" # Model V/RAM\n =========================================")
i = 1
for m in modellist:
print(" {0} - {1}\t\t{2}".format("{:<2}".format(i), m[0].ljust(15), m[2]))
i += 1
print(" ");
modelsel = 0
vars.model = ''
while(vars.model == ''):
modelsel = input("Model #> ")
if(modelsel.isnumeric() and int(modelsel) > 0 and int(modelsel) <= len(modellist)):
vars.model = modellist[int(modelsel)-1][1]
else:
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
# If custom model was selected, get the filesystem location and store it
if(vars.model == "NeoCustom" or vars.model == "GPT2Custom"):
print("{0}Please choose the folder where pytorch_model.bin is located:{1}\n".format(colors.CYAN, colors.END))
modpath = fileops.getdirpath(getcwd(), "Select Model Folder")
if(modpath):
# Save directory to vars
vars.custmodpth = modpath
else:
# Print error and retry model selection
print("{0}Model select cancelled!{1}".format(colors.RED, colors.END))
print("{0}Select an AI model to continue:{1}\n".format(colors.CYAN, colors.END))
getModelSelection()
#==================================================================#
# Return all keys in tokenizer dictionary containing char
#==================================================================#
def gettokenids(char):
keys = []
for key in vocab_keys:
if(key.find(char) != -1):
keys.append(key)
return keys
#==================================================================#
# Startup
#==================================================================#
# Parsing Parameters
parser = argparse.ArgumentParser(description="KoboldAI Server")
parser.add_argument("--remote", action='store_true', help="Optimizes KoboldAI for Remote Play")
parser.add_argument("--model", help="Specify the Model Type to skip the Menu")
parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)")
parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.")
parser.add_argument("--breakmodel", action='store_true', help="For models that support GPU-CPU hybrid generation, use this feature instead of GPU or CPU generation")
parser.add_argument("--breakmodel_layers", type=int, help="Specify the number of layers to commit to system RAM if --breakmodel is used")
args = parser.parse_args()
vars.model = args.model;
if args.remote:
vars.remote = True;
# Select a model to run
if args.model:
print("Welcome to KoboldAI!\nYou have selected the following Model:", vars.model)
if args.path:
print("You have selected the following path for your Model :", args.path)
vars.custmodpth = args.path;
vars.colaburl = args.path + "/request"; # Lets just use the same parameter to keep it simple
else:
print("{0}Welcome to the KoboldAI Client!\nSelect an AI model to continue:{1}\n".format(colors.CYAN, colors.END))
getModelSelection()
# If transformers model was selected & GPU available, ask to use CPU or GPU
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
# Test for GPU support
import torch
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
vars.hascuda = torch.cuda.is_available()
vars.bmsupported = vars.model in ("EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B", "NeoCustom")
if(vars.hascuda):
print("{0}FOUND!{1}".format(colors.GREEN, colors.END))
else:
print("{0}NOT FOUND!{1}".format(colors.YELLOW, colors.END))
if args.model:
if(vars.hascuda):
genselected = True
vars.usegpu = True
vars.breakmodel = False
if(args.cpu):
vars.usegpu = False
vars.breakmodel = False
if(vars.bmsupported and args.breakmodel):
vars.usegpu = False
vars.breakmodel = True
elif(vars.hascuda):
if(vars.bmsupported):
print(colors.YELLOW + "You're using a model that supports GPU-CPU hybrid generation!\nCurrently only GPT-Neo models and GPT-J-6B support this feature.")
print("{0}Use GPU or CPU for generation?: (Default GPU){1}".format(colors.CYAN, colors.END))
if(vars.bmsupported):
print(f" 1 - GPU\n 2 - CPU\n 3 - Both (slower than GPU-only but uses less VRAM)\n")
else:
print(" 1 - GPU\n 2 - CPU\n")
genselected = False
if(vars.hascuda):
while(genselected == False):
genselect = input("Mode> ")
if(genselect == ""):
vars.breakmodel = False
vars.usegpu = True
genselected = True
elif(genselect.isnumeric() and int(genselect) == 1):
vars.breakmodel = False
vars.usegpu = True
genselected = True
elif(genselect.isnumeric() and int(genselect) == 2):
vars.breakmodel = False
vars.usegpu = False
genselected = True
elif(vars.bmsupported and genselect.isnumeric() and int(genselect) == 3):
vars.breakmodel = True
vars.usegpu = False
genselected = True
else:
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
# Ask for API key if InferKit was selected
if(vars.model == "InferKit"):
if(not path.exists("client.settings")):
# If the client settings file doesn't exist, create it
print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END))
vars.apikey = input("Key> ")
# Write API key to file
file = open("client.settings", "w")
try:
js = {"apikey": vars.apikey}
file.write(json.dumps(js, indent=3))
finally:
file.close()
else:
# Otherwise open it up
file = open("client.settings", "r")
# Check if API key exists
js = json.load(file)
if("apikey" in js and js["apikey"] != ""):
# API key exists, grab it and close the file
vars.apikey = js["apikey"]
file.close()
else:
# Get API key, add it to settings object, and write it to disk
print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END))
vars.apikey = input("Key> ")
js["apikey"] = vars.apikey
# Write API key to file
file = open("client.settings", "w")
try:
file.write(json.dumps(js, indent=3))
finally:
file.close()
# Ask for API key if OpenAI was selected
if(vars.model == "OAI"):
if(not path.exists("client.settings")):
# If the client settings file doesn't exist, create it
print("{0}Please enter your OpenAI API key:{1}\n".format(colors.CYAN, colors.END))
vars.oaiapikey = input("Key> ")
# Write API key to file
file = open("client.settings", "w")
try:
js = {"oaiapikey": vars.oaiapikey}
file.write(json.dumps(js, indent=3))
finally:
file.close()
else:
# Otherwise open it up
file = open("client.settings", "r")
# Check if API key exists
js = json.load(file)
if("oaiapikey" in js and js["oaiapikey"] != ""):
# API key exists, grab it and close the file
vars.oaiapikey = js["oaiapikey"]
file.close()
else:
# Get API key, add it to settings object, and write it to disk
print("{0}Please enter your OpenAI API key:{1}\n".format(colors.CYAN, colors.END))
vars.oaiapikey = input("Key> ")
js["oaiapikey"] = vars.oaiapikey
# Write API key to file
file = open("client.settings", "w")
try:
file.write(json.dumps(js, indent=3))
finally:
file.close()
# Get list of models from OAI
print("{0}Retrieving engine list...{1}".format(colors.PURPLE, colors.END), end="")
req = requests.get(
vars.oaiengines,
headers = {
'Authorization': 'Bearer '+vars.oaiapikey
}
)
if(req.status_code == 200):
print("{0}OK!{1}".format(colors.GREEN, colors.END))
print("{0}Please select an engine to use:{1}\n".format(colors.CYAN, colors.END))
engines = req.json()["data"]
# Print list of engines
i = 0
for en in engines:
print(" {0} - {1} ({2})".format(i, en["id"], "\033[92mready\033[0m" if en["ready"] == True else "\033[91mnot ready\033[0m"))
i += 1
# Get engine to use
print("")
engselected = False
while(engselected == False):
engine = input("Engine #> ")
if(engine.isnumeric() and int(engine) < len(engines)):
vars.oaiurl = "https://api.openai.com/v1/engines/{0}/completions".format(engines[int(engine)]["id"])
engselected = True
else:
print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END))
else:
# Something went wrong, print the message and quit since we can't initialize an engine
print("{0}ERROR!{1}".format(colors.RED, colors.END))
print(req.json())
quit()
# Ask for ngrok url if Google Colab was selected
if(vars.model == "Colab"):
if(vars.colaburl == ""):
print("{0}Please enter the ngrok.io or trycloudflare.com URL displayed in Google Colab:{1}\n".format(colors.CYAN, colors.END))
vars.colaburl = input("URL> ") + "/request"
if(vars.model == "ReadOnly"):
vars.noai = True
# Set logging level to reduce chatter from Flask
import logging
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
# Start flask & SocketIO
print("{0}Initializing Flask... {1}".format(colors.PURPLE, colors.END), end="")
from flask import Flask, render_template
from flask_socketio import SocketIO, emit
app = Flask(__name__)
app.config['SECRET KEY'] = 'secret!'
socketio = SocketIO(app)
print("{0}OK!{1}".format(colors.GREEN, colors.END))
# Start transformers and create pipeline
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
if(not vars.noai):
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModel
# If custom GPT Neo model was chosen
if(vars.model == "NeoCustom"):
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth)
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth)
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
if(vars.hascuda):
if(vars.usegpu):
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=0)
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
n_layers = model.config.num_layers
breakmodel.total_blocks = n_layers
model.half().to('cpu')
gc.collect()
model.transformer.wte.to(breakmodel.gpu_device)
model.transformer.ln_f.to(breakmodel.gpu_device)
if(hasattr(model, 'lm_head')):
model.lm_head.to(breakmodel.gpu_device)
if(not hasattr(model.config, 'rotary') or not model.config.rotary):
model.transformer.wpe.to(breakmodel.gpu_device)
gc.collect()
if(args.breakmodel_layers is not None):
breakmodel.ram_blocks = max(0, min(n_layers, args.breakmodel_layers))
else:
print(colors.CYAN + "\nHow many layers would you like to put into system RAM?")
print("The more of them you put into system RAM, the slower it will run,")
print("but it will require less VRAM")
print("(roughly proportional to number of layers).")
print(f"This model has{colors.YELLOW} {n_layers} {colors.CYAN}layers.{colors.END}\n")
while(True):
layerselect = input("# of layers> ")
if(layerselect.isnumeric() and 0 <= int(layerselect) <= n_layers):
breakmodel.ram_blocks = int(layerselect)
break
else:
print(f"{colors.RED}Please enter an integer between 0 and {n_layers}.{colors.END}")
print(f"{colors.PURPLE}Will commit{colors.YELLOW} {breakmodel.ram_blocks} {colors.PURPLE}of{colors.YELLOW} {n_layers} {colors.PURPLE}layers to system RAM.{colors.END}")
GPTNeoModel.forward = breakmodel.new_forward
generator = model.generate
else:
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
else:
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# If custom GPT2 model was chosen
elif(vars.model == "GPT2Custom"):
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth)
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth)
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
if(vars.hascuda and vars.usegpu):
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=0)
else:
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# If base HuggingFace model was chosen
else:
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
tokenizer = GPT2Tokenizer.from_pretrained(vars.model)
if(vars.hascuda):
if(vars.usegpu):
generator = pipeline('text-generation', model=vars.model, device=0)
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
model = AutoModel.from_pretrained(vars.model)
n_layers = model.config.num_layers
breakmodel.total_blocks = n_layers
model.half().to('cpu')
gc.collect()
model.transformer.wte.to(breakmodel.gpu_device)
model.transformer.ln_f.to(breakmodel.gpu_device)
if(hasattr(model, 'lm_head')):
model.lm_head.to(breakmodel.gpu_device)
if(not hasattr(model.config, 'rotary') or not model.config.rotary):
model.transformer.wpe.to(breakmodel.gpu_device)
gc.collect()
if(args.breakmodel_layers is not None):
breakmodel.ram_blocks = max(0, min(n_layers, args.breakmodel_layers))
else:
print(colors.CYAN + "\nHow many layers would you like to put into system RAM?")
print("The more of them you put into system RAM, the slower it will run,")
print("but it will require less VRAM")
print("(roughly proportional to number of layers).")
print(f"This model has{colors.YELLOW} {n_layers} {colors.CYAN}layers.{colors.END}\n")
while(True):
layerselect = input("# of layers> ")
if(layerselect.isnumeric() and 0 <= int(layerselect) <= n_layers):
breakmodel.ram_blocks = int(layerselect)
break
else:
print(f"{colors.RED}Please enter an integer between 0 and {n_layers}.{colors.END}")
print(f"{colors.PURPLE}Will commit{colors.YELLOW} {breakmodel.ram_blocks} {colors.PURPLE}of{colors.YELLOW} {n_layers} {colors.PURPLE}layers to system RAM.{colors.END}")
GPTNeoModel.forward = breakmodel.new_forward
generator = model.generate
else:
generator = pipeline('text-generation', model=vars.model)
else:
generator = pipeline('text-generation', model=vars.model)
# Suppress Author's Note by flagging square brackets
vocab = tokenizer.get_vocab()
vocab_keys = vocab.keys()
vars.badwords = gettokenids("[")
for key in vars.badwords:
vars.badwordsids.append([vocab[key]])
print("{0}OK! {1} pipeline created!{2}".format(colors.GREEN, vars.model, colors.END))
else:
# If we're running Colab or OAI, we still need a tokenizer.
if(vars.model == "Colab"):
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
elif(vars.model == "OAI"):
from transformers import GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# Set up Flask routes
@app.route('/')
@app.route('/index')
def index():
return render_template('index.html')
#============================ METHODS =============================#
#==================================================================#
# Event triggered when browser SocketIO is loaded and connects to server
#==================================================================#
@socketio.on('connect')
def do_connect():
print("{0}Client connected!{1}".format(colors.GREEN, colors.END))
emit('from_server', {'cmd': 'connected'})
if(vars.remote):
emit('from_server', {'cmd': 'runs_remotely'})
if(not vars.gamestarted):
setStartState()
sendsettings()
refresh_settings()
sendwi()
vars.mode = "play"
else:
# Game in session, send current game data and ready state to browser
refresh_story()
sendsettings()
refresh_settings()
sendwi()
if(vars.mode == "play"):
if(not vars.aibusy):
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
else:
emit('from_server', {'cmd': 'setgamestate', 'data': 'wait'}, broadcast=True)
elif(vars.mode == "edit"):
emit('from_server', {'cmd': 'editmode', 'data': 'true'}, broadcast=True)
elif(vars.mode == "memory"):
emit('from_server', {'cmd': 'memmode', 'data': 'true'}, broadcast=True)
elif(vars.mode == "wi"):
emit('from_server', {'cmd': 'wimode', 'data': 'true'}, broadcast=True)
#==================================================================#
# Event triggered when browser SocketIO sends data to the server
#==================================================================#
@socketio.on('message')
def get_message(msg):
print("{0}Data recieved:{1}{2}".format(colors.GREEN, msg, colors.END))
# Submit action
if(msg['cmd'] == 'submit'):
if(vars.mode == "play"):
actionsubmit(msg['data'], actionmode=msg['actionmode'])
elif(vars.mode == "edit"):
editsubmit(msg['data'])
elif(vars.mode == "memory"):
memsubmit(msg['data'])
# Retry Action
elif(msg['cmd'] == 'retry'):
actionretry(msg['data'])
# Back/Undo Action
elif(msg['cmd'] == 'back'):
actionback()
# EditMode Action (old)
elif(msg['cmd'] == 'edit'):
if(vars.mode == "play"):
vars.mode = "edit"
emit('from_server', {'cmd': 'editmode', 'data': 'true'}, broadcast=True)
elif(vars.mode == "edit"):
vars.mode = "play"
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
# EditLine Action (old)
elif(msg['cmd'] == 'editline'):
editrequest(int(msg['data']))
# Inline edit
elif(msg['cmd'] == 'inlineedit'):
inlineedit(msg['chunk'], msg['data'])
elif(msg['cmd'] == 'inlinedelete'):
inlinedelete(msg['data'])
# DeleteLine Action (old)
elif(msg['cmd'] == 'delete'):
deleterequest()
elif(msg['cmd'] == 'memory'):
togglememorymode()
elif(msg['cmd'] == 'savetofile'):
savetofile()
elif(msg['cmd'] == 'loadfromfile'):
loadfromfile()
elif(msg['cmd'] == 'import'):
importRequest()
elif(msg['cmd'] == 'newgame'):
newGameRequest()
elif(msg['cmd'] == 'rndgame'):
randomGameRequest(msg['data'])
elif(msg['cmd'] == 'settemp'):
vars.temp = float(msg['data'])
emit('from_server', {'cmd': 'setlabeltemp', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'settopp'):
vars.top_p = float(msg['data'])
emit('from_server', {'cmd': 'setlabeltopp', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'settopk'):
vars.top_k = int(msg['data'])
emit('from_server', {'cmd': 'setlabeltopk', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'settfs'):
vars.tfs = float(msg['data'])
emit('from_server', {'cmd': 'setlabeltfs', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'setreppen'):
vars.rep_pen = float(msg['data'])
emit('from_server', {'cmd': 'setlabelreppen', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'setoutput'):
vars.genamt = int(msg['data'])
emit('from_server', {'cmd': 'setlabeloutput', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'settknmax'):
vars.max_length = int(msg['data'])
emit('from_server', {'cmd': 'setlabeltknmax', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'setikgen'):
vars.ikgen = int(msg['data'])
emit('from_server', {'cmd': 'setlabelikgen', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
# Author's Note field update
elif(msg['cmd'] == 'anote'):
anotesubmit(msg['data'])
# Author's Note depth update
elif(msg['cmd'] == 'anotedepth'):
vars.andepth = int(msg['data'])
emit('from_server', {'cmd': 'setlabelanotedepth', 'data': msg['data']}, broadcast=True)
settingschanged()
refresh_settings()
# Format - Trim incomplete sentences
elif(msg['cmd'] == 'frmttriminc'):
if('frmttriminc' in vars.formatoptns):
vars.formatoptns["frmttriminc"] = msg['data']
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'frmtrmblln'):
if('frmtrmblln' in vars.formatoptns):
vars.formatoptns["frmtrmblln"] = msg['data']
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'frmtrmspch'):
if('frmtrmspch' in vars.formatoptns):
vars.formatoptns["frmtrmspch"] = msg['data']
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'frmtadsnsp'):
if('frmtadsnsp' in vars.formatoptns):
vars.formatoptns["frmtadsnsp"] = msg['data']
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'importselect'):
vars.importnum = int(msg["data"].replace("import", ""))
elif(msg['cmd'] == 'importcancel'):
emit('from_server', {'cmd': 'popupshow', 'data': False})
vars.importjs = {}
elif(msg['cmd'] == 'importaccept'):
emit('from_server', {'cmd': 'popupshow', 'data': False})
importgame()
elif(msg['cmd'] == 'wi'):
togglewimode()
elif(msg['cmd'] == 'wiinit'):
if(int(msg['data']) < len(vars.worldinfo)):
vars.worldinfo[msg['data']]["init"] = True
addwiitem()
elif(msg['cmd'] == 'widelete'):
deletewi(msg['data'])
elif(msg['cmd'] == 'wiselon'):
vars.worldinfo[msg['data']]["selective"] = True
elif(msg['cmd'] == 'wiseloff'):
vars.worldinfo[msg['data']]["selective"] = False
elif(msg['cmd'] == 'sendwilist'):
commitwi(msg['data'])
elif(msg['cmd'] == 'aidgimport'):
importAidgRequest(msg['data'])
elif(msg['cmd'] == 'saveasrequest'):
saveas(msg['data'])
elif(msg['cmd'] == 'saverequest'):
save()
elif(msg['cmd'] == 'loadlistrequest'):
getloadlist()
elif(msg['cmd'] == 'loadselect'):
vars.loadselect = msg["data"]
elif(msg['cmd'] == 'loadrequest'):
loadRequest(getcwd()+"/stories/"+vars.loadselect+".json")
elif(msg['cmd'] == 'clearoverwrite'):
vars.svowname = ""
vars.saveow = False
elif(msg['cmd'] == 'seqsel'):
selectsequence(msg['data'])
elif(msg['cmd'] == 'setnumseq'):
vars.numseqs = int(msg['data'])
emit('from_server', {'cmd': 'setlabelnumseq', 'data': msg['data']})
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'setwidepth'):
vars.widepth = int(msg['data'])
emit('from_server', {'cmd': 'setlabelwidepth', 'data': msg['data']})
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'setuseprompt'):
vars.useprompt = msg['data']
settingschanged()
refresh_settings()
elif(msg['cmd'] == 'setadventure'):
vars.adventure = msg['data']
settingschanged()
refresh_settings()
refresh_story()
elif(msg['cmd'] == 'importwi'):
wiimportrequest()
#==================================================================#
# Send start message and tell Javascript to set UI state
#==================================================================#
def setStartState():
txt = "<span>Welcome to <span class=\"color_cyan\">KoboldAI Client</span>! You are running <span class=\"color_green\">"+vars.model+"</span>.<br/>"
if(not vars.noai):
txt = txt + "Please load a game or enter a prompt below to begin!</span>"
else:
txt = txt + "Please load or import a story to read. There is no AI in this mode."
emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': txt}, broadcast=True)
emit('from_server', {'cmd': 'setgamestate', 'data': 'start'}, broadcast=True)
#==================================================================#
# Transmit applicable settings to SocketIO to build UI sliders/toggles
#==================================================================#
def sendsettings():
# Send settings for selected AI type
if(vars.model != "InferKit"):
for set in gensettings.gensettingstf:
emit('from_server', {'cmd': 'addsetting', 'data': set})
else:
for set in gensettings.gensettingsik:
emit('from_server', {'cmd': 'addsetting', 'data': set})
# Send formatting options
for frm in gensettings.formatcontrols:
emit('from_server', {'cmd': 'addformat', 'data': frm})
# Add format key to vars if it wasn't loaded with client.settings
if(not frm["id"] in vars.formatoptns):
vars.formatoptns[frm["id"]] = False;
#==================================================================#
# Take settings from vars and write them to client settings file
#==================================================================#
def savesettings():
# Build json to write
js = {}
js["apikey"] = vars.apikey
js["andepth"] = vars.andepth
js["temp"] = vars.temp
js["top_p"] = vars.top_p
js["top_k"] = vars.top_k
js["tfs"] = vars.tfs
js["rep_pen"] = vars.rep_pen
js["genamt"] = vars.genamt
js["max_length"] = vars.max_length
js["ikgen"] = vars.ikgen
js["formatoptns"] = vars.formatoptns
js["numseqs"] = vars.numseqs
js["widepth"] = vars.widepth
js["useprompt"] = vars.useprompt
js["adventure"] = vars.adventure
# Write it
file = open("client.settings", "w")
try:
file.write(json.dumps(js, indent=3))
finally:
file.close()
#==================================================================#
# Read settings from client file JSON and send to vars
#==================================================================#
def loadsettings():
if(path.exists("client.settings")):
# Read file contents into JSON object
file = open("client.settings", "r")
js = json.load(file)
# Copy file contents to vars
if("apikey" in js):
vars.apikey = js["apikey"]
if("andepth" in js):
vars.andepth = js["andepth"]
if("temp" in js):
vars.temp = js["temp"]
if("top_p" in js):
vars.top_p = js["top_p"]
if("top_k" in js):
vars.top_k = js["top_k"]
if("tfs" in js):
vars.tfs = js["tfs"]
if("rep_pen" in js):
vars.rep_pen = js["rep_pen"]
if("genamt" in js):
vars.genamt = js["genamt"]
if("max_length" in js):
vars.max_length = js["max_length"]
if("ikgen" in js):
vars.ikgen = js["ikgen"]
if("formatoptns" in js):
vars.formatoptns = js["formatoptns"]
if("numseqs" in js):
vars.numseqs = js["numseqs"]
if("widepth" in js):
vars.widepth = js["widepth"]
if("useprompt" in js):
vars.useprompt = js["useprompt"]
if("adventure" in js):
vars.adventure = js["adventure"]
file.close()
#==================================================================#
# Don't save settings unless 2 seconds have passed without modification
#==================================================================#
@debounce(2)
def settingschanged():
print("{0}Saving settings!{1}".format(colors.GREEN, colors.END))
savesettings()
#==================================================================#
# Take input text from SocketIO and decide what to do with it
#==================================================================#
def actionsubmit(data, actionmode=0):
# Ignore new submissions if the AI is currently busy
if(vars.aibusy):
return
set_aibusy(1)
vars.actionmode = actionmode
# "Action" mode
if(actionmode == 1):
data = data.strip().lstrip('>')
data = re.sub(r'\n+', ' ', data)
data = f"\n\n> {data}\n"
# If we're not continuing, store a copy of the raw input
if(data != ""):
vars.lastact = data
if(not vars.gamestarted):
# Start the game
vars.gamestarted = True
# Save this first action as the prompt
vars.prompt = data
if(not vars.noai):
# Clear the startup text from game screen
emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': 'Please wait, generating story...'}, broadcast=True)
calcsubmit(data) # Run the first action through the generator
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
else:
refresh_story()
set_aibusy(0)
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
else:
# Dont append submission if it's a blank/continue action
if(data != ""):
# Apply input formatting & scripts before sending to tokenizer
if(vars.actionmode == 0):
data = applyinputformatting(data)
# Store the result in the Action log
vars.actions.append(data)
if(not vars.noai):
# Off to the tokenizer!
calcsubmit(data)
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
else:
refresh_story()
set_aibusy(0)
emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True)
#==================================================================#
#
#==================================================================#
def actionretry(data):
if(vars.noai):
emit('from_server', {'cmd': 'errmsg', 'data': "Retry function unavailable in Read Only mode."})
return
if(vars.aibusy):
return
# Remove last action if possible and resubmit
if(vars.gamestarted if vars.useprompt else len(vars.actions) > 0):
set_aibusy(1)
if(len(vars.actions) != 0 and len(vars.genseqs) == 0): # Don't pop if we're in the "Select sequence to keep" menu or if there are no non-prompt actions
vars.actions.pop()
vars.genseqs = []
refresh_story()
calcsubmit('')
elif(not vars.useprompt):
emit('from_server', {'cmd': 'errmsg', 'data': "Please enable \"Always Add Prompt\" to retry with your prompt."})
#==================================================================#
#
#==================================================================#
def actionback():
if(vars.aibusy):
return
# Remove last index of actions and refresh game screen
if(len(vars.genseqs) == 0 and len(vars.actions) > 0):
vars.actions.pop()
refresh_story()
elif(len(vars.genseqs) == 0):
emit('from_server', {'cmd': 'errmsg', 'data': "Cannot delete the prompt."})
else:
vars.genseqs = []
#==================================================================#
# Take submitted text and build the text to be given to generator
#==================================================================#
def calcsubmit(txt):
anotetxt = "" # Placeholder for Author's Note text
lnanote = 0 # Placeholder for Author's Note length
forceanote = False # In case we don't have enough actions to hit A.N. depth
anoteadded = False # In case our budget runs out before we hit A.N. depth
actionlen = len(vars.actions)
# Scan for WorldInfo matches
winfo = checkworldinfo(txt)
# Add a newline to the end of memory
if(vars.memory != "" and vars.memory[-1] != "\n"):
mem = vars.memory + "\n"
else:
mem = vars.memory
# Build Author's Note if set
if(vars.authornote != ""):
anotetxt = "\n[Author's note: "+vars.authornote+"]\n"
# For all transformers models
if(vars.model != "InferKit"):
anotetkns = [] # Placeholder for Author's Note tokens
# Calculate token budget
prompttkns = tokenizer.encode(vars.prompt)
lnprompt = len(prompttkns)
memtokens = tokenizer.encode(mem)
lnmem = len(memtokens)
witokens = tokenizer.encode(winfo)
lnwi = len(witokens)
if(anotetxt != ""):
anotetkns = tokenizer.encode(anotetxt)
lnanote = len(anotetkns)
if(vars.useprompt):
budget = vars.max_length - lnprompt - lnmem - lnanote - lnwi - vars.genamt
else:
budget = vars.max_length - lnmem - lnanote - lnwi - vars.genamt
if(actionlen == 0):
# First/Prompt action
subtxt = vars.memory + winfo + anotetxt + vars.prompt
lnsub = lnmem + lnwi + lnprompt + lnanote
if(not vars.model in ["Colab", "OAI"]):
generate(subtxt, lnsub+1, lnsub+vars.genamt)
elif(vars.model == "Colab"):
sendtocolab(subtxt, lnsub+1, lnsub+vars.genamt)
elif(vars.model == "OAI"):
oairequest(subtxt, lnsub+1, lnsub+vars.genamt)
else:
tokens = []
# Check if we have the action depth to hit our A.N. depth
if(anotetxt != "" and actionlen < vars.andepth):
forceanote = True
# Get most recent action tokens up to our budget
for n in range(actionlen):
if(budget <= 0):
break
acttkns = tokenizer.encode(vars.actions[(-1-n)])
tknlen = len(acttkns)
if(tknlen < budget):
tokens = acttkns + tokens
budget -= tknlen
else:
count = budget * -1
tokens = acttkns[count:] + tokens
budget = 0
break
# Inject Author's Note if we've reached the desired depth
if(n == vars.andepth-1):
if(anotetxt != ""):
tokens = anotetkns + tokens # A.N. len already taken from bdgt
anoteadded = True
# If we're not using the prompt every time and there's still budget left,
# add some prompt.
if(not vars.useprompt):
if(budget > 0):
prompttkns = prompttkns[-budget:]
else:
prompttkns = []
# Did we get to add the A.N.? If not, do it here
if(anotetxt != ""):
if((not anoteadded) or forceanote):
tokens = memtokens + witokens + anotetkns + prompttkns + tokens
else:
tokens = memtokens + witokens + prompttkns + tokens
else:
# Prepend Memory, WI, and Prompt before action tokens
tokens = memtokens + witokens + prompttkns + tokens
# Send completed bundle to generator
ln = len(tokens)
if(not vars.model in ["Colab", "OAI"]):
generate (
tokenizer.decode(tokens),
ln+1,
ln+vars.genamt
)
elif(vars.model == "Colab"):
sendtocolab(
tokenizer.decode(tokens),
ln+1,
ln+vars.genamt
)
elif(vars.model == "OAI"):
oairequest(
tokenizer.decode(tokens),
ln+1,
ln+vars.genamt
)
# For InferKit web API
else:
# Check if we have the action depth to hit our A.N. depth
if(anotetxt != "" and actionlen < vars.andepth):
forceanote = True
if(vars.useprompt):
budget = vars.ikmax - len(vars.prompt) - len(anotetxt) - len(mem) - len(winfo) - 1
else:
budget = vars.ikmax - len(anotetxt) - len(mem) - len(winfo) - 1
subtxt = ""
prompt = vars.prompt
for n in range(actionlen):
if(budget <= 0):
break
actlen = len(vars.actions[(-1-n)])
if(actlen < budget):
subtxt = vars.actions[(-1-n)] + subtxt
budget -= actlen
else:
count = budget * -1
subtxt = vars.actions[(-1-n)][count:] + subtxt
budget = 0
break
# If we're not using the prompt every time and there's still budget left,
# add some prompt.
if(not vars.useprompt):
if(budget > 0):
prompt = vars.prompt[-budget:]
else:
prompt = ""
# Inject Author's Note if we've reached the desired depth
if(n == vars.andepth-1):
if(anotetxt != ""):
subtxt = anotetxt + subtxt # A.N. len already taken from bdgt
anoteadded = True
# Did we get to add the A.N.? If not, do it here
if(anotetxt != ""):
if((not anoteadded) or forceanote):
subtxt = mem + winfo + anotetxt + prompt + subtxt
else:
subtxt = mem + winfo + prompt + subtxt
else:
subtxt = mem + winfo + prompt + subtxt
# Send it!
ikrequest(subtxt)
#==================================================================#
# Send text to generator and deal with output
#==================================================================#
def generate(txt, min, max):
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, min, max, txt, colors.END))
# Store context in memory to use it for comparison with generated content
vars.lastctx = txt
# Clear CUDA cache if using GPU
if(vars.hascuda and (vars.usegpu or vars.breakmodel)):
gc.collect()
torch.cuda.empty_cache()
# Submit input text to generator
try:
top_p = vars.top_p if vars.top_p > 0.0 else None
top_k = vars.top_k if vars.top_k > 0 else None
tfs = vars.tfs if vars.tfs > 0.0 else None
# generator() only accepts a torch tensor of tokens (long datatype) as
# its first argument if we're using breakmodel, otherwise a string
# is fine
if(vars.hascuda and vars.breakmodel):
gen_in = tokenizer.encode(txt, return_tensors="pt", truncation=True).long().to(breakmodel.gpu_device)
else:
gen_in = txt
with torch.no_grad():
genout = generator(
gen_in,
do_sample=True,
min_length=min,
max_length=max,
repetition_penalty=vars.rep_pen,
top_p=top_p,
top_k=top_k,
tfs=tfs,
temperature=vars.temp,
bad_words_ids=vars.badwordsids,
use_cache=True,
return_full_text=False,
num_return_sequences=vars.numseqs
)
except Exception as e:
emit('from_server', {'cmd': 'errmsg', 'data': 'Error occured during generator call, please check console.'}, broadcast=True)
print("{0}{1}{2}".format(colors.RED, e, colors.END))
set_aibusy(0)
return
# Need to manually strip and decode tokens if we're not using a pipeline
if(vars.hascuda and vars.breakmodel):
genout = [{"generated_text": tokenizer.decode(tokens[len(gen_in[0])-len(tokens):])} for tokens in genout]
if(len(genout) == 1):
genresult(genout[0]["generated_text"])
else:
genselect(genout)
# Clear CUDA cache again if using GPU
if(vars.hascuda and (vars.usegpu or vars.breakmodel)):
del genout
gc.collect()
torch.cuda.empty_cache()
set_aibusy(0)
#==================================================================#
# Deal with a single return sequence from generate()
#==================================================================#
def genresult(genout):
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
# Format output before continuing
genout = applyoutputformatting(genout)
# Add formatted text to Actions array and refresh the game screen
vars.actions.append(genout)
refresh_story()
emit('from_server', {'cmd': 'texteffect', 'data': len(vars.actions)}, broadcast=True)
#==================================================================#
# Send generator sequences to the UI for selection
#==================================================================#
def genselect(genout):
i = 0
for result in genout:
# Apply output formatting rules to sequences
result["generated_text"] = applyoutputformatting(result["generated_text"])
print("{0}[Result {1}]\n{2}{3}".format(colors.CYAN, i, result["generated_text"], colors.END))
i += 1
# Store sequences in memory until selection is made
vars.genseqs = genout
# Send sequences to UI for selection
emit('from_server', {'cmd': 'genseqs', 'data': genout}, broadcast=True)
# Refresh story for any input text
refresh_story()
#==================================================================#
# Send selected sequence to action log and refresh UI
#==================================================================#
def selectsequence(n):
if(len(vars.genseqs) == 0):
return
vars.actions.append(vars.genseqs[int(n)]["generated_text"])
refresh_story()
emit('from_server', {'cmd': 'texteffect', 'data': len(vars.actions)}, broadcast=True)
emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True)
vars.genseqs = []
#==================================================================#
# Send transformers-style request to ngrok/colab host
#==================================================================#
def sendtocolab(txt, min, max):
# Log request to console
print("{0}Tokens:{1}, Txt:{2}{3}".format(colors.YELLOW, min-1, txt, colors.END))
# Store context in memory to use it for comparison with generated content
vars.lastctx = txt
# Build request JSON data
reqdata = {
'text': txt,
'min': min,
'max': max,
'rep_pen': vars.rep_pen,
'temperature': vars.temp,
'top_p': vars.top_p,
'top_k': vars.top_k,
'tfs': vars.tfs,
'numseqs': vars.numseqs,
'retfultxt': False
}
# Create request
req = requests.post(
vars.colaburl,
json = reqdata
)
# Deal with the response
if(req.status_code == 200):
js = req.json()["data"]
# Try to be backwards compatible with outdated colab
if("text" in js):
genout = [getnewcontent(js["text"])]
else:
genout = js["seqs"]
if(len(genout) == 1):
genresult(genout[0])
else:
# Convert torch output format to transformers
seqs = []
for seq in genout:
seqs.append({"generated_text": seq})
genselect(seqs)
# Format output before continuing
#genout = applyoutputformatting(getnewcontent(genout))
# Add formatted text to Actions array and refresh the game screen
#vars.actions.append(genout)
#refresh_story()
#emit('from_server', {'cmd': 'texteffect', 'data': len(vars.actions)})
set_aibusy(0)
else:
errmsg = "Colab API Error: Failed to get a reply from the server. Please check the colab console."
print("{0}{1}{2}".format(colors.RED, errmsg, colors.END))
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
#==================================================================#
# Replaces returns and newlines with HTML breaks
#==================================================================#
def formatforhtml(txt):
return txt.replace("\\r", "<br/>").replace("\\n", "<br/>").replace('\n', '<br/>').replace('\r', '<br/>')
#==================================================================#
# Strips submitted text from the text returned by the AI
#==================================================================#
def getnewcontent(txt):
# If the submitted context was blank, then everything is new
if(vars.lastctx == ""):
return txt
# Tokenize the last context and the generated content
ctxtokens = tokenizer.encode(vars.lastctx)
txttokens = tokenizer.encode(txt)
dif = (len(txttokens) - len(ctxtokens)) * -1
# Remove the context from the returned text
newtokens = txttokens[dif:]
return tokenizer.decode(newtokens)
#==================================================================#
# Applies chosen formatting options to text submitted to AI
#==================================================================#
def applyinputformatting(txt):
# Add sentence spacing
if(vars.formatoptns["frmtadsnsp"]):
txt = utils.addsentencespacing(txt, vars)
return txt
#==================================================================#
# Applies chosen formatting options to text returned from AI
#==================================================================#
def applyoutputformatting(txt):
# Use standard quotes and apostrophes
txt = utils.fixquotes(txt)
# Adventure mode clipping of all characters after '>'
if(vars.adventure):
txt = vars.acregex_ai.sub('', txt)
# Trim incomplete sentences
if(vars.formatoptns["frmttriminc"]):
txt = utils.trimincompletesentence(txt)
# Replace blank lines
if(vars.formatoptns["frmtrmblln"]):
txt = utils.replaceblanklines(txt)
# Remove special characters
if(vars.formatoptns["frmtrmspch"]):
txt = utils.removespecialchars(txt, vars)
return txt
#==================================================================#
# Sends the current story content to the Game Screen
#==================================================================#
def refresh_story():
text_parts = ['<chunk n="0" id="n0">', html.escape(vars.prompt), '</chunk>']
for idx, item in enumerate(vars.actions, start=1):
if vars.adventure: # Add special formatting to adventure actions
item = vars.acregex_ui.sub('<action>\\1</action>', html.escape(item))
text_parts.extend(('<chunk n="', str(idx), '" id="n', str(idx), '">', item, '</chunk>'))
emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': formatforhtml(''.join(text_parts))}, broadcast=True)
#==================================================================#
# Sends the current generator settings to the Game Menu
#==================================================================#
def refresh_settings():
# Suppress toggle change events while loading state
emit('from_server', {'cmd': 'allowtoggle', 'data': False}, broadcast=True)
if(vars.model != "InferKit"):
emit('from_server', {'cmd': 'updatetemp', 'data': vars.temp}, broadcast=True)
emit('from_server', {'cmd': 'updatetopp', 'data': vars.top_p}, broadcast=True)
emit('from_server', {'cmd': 'updatetopk', 'data': vars.top_k}, broadcast=True)
emit('from_server', {'cmd': 'updatetfs', 'data': vars.tfs}, broadcast=True)
emit('from_server', {'cmd': 'updatereppen', 'data': vars.rep_pen}, broadcast=True)
emit('from_server', {'cmd': 'updateoutlen', 'data': vars.genamt}, broadcast=True)
emit('from_server', {'cmd': 'updatetknmax', 'data': vars.max_length}, broadcast=True)
emit('from_server', {'cmd': 'updatenumseq', 'data': vars.numseqs}, broadcast=True)
else:
emit('from_server', {'cmd': 'updatetemp', 'data': vars.temp}, broadcast=True)
emit('from_server', {'cmd': 'updatetopp', 'data': vars.top_p}, broadcast=True)
emit('from_server', {'cmd': 'updateikgen', 'data': vars.ikgen}, broadcast=True)
emit('from_server', {'cmd': 'updateanotedepth', 'data': vars.andepth}, broadcast=True)
emit('from_server', {'cmd': 'updatewidepth', 'data': vars.widepth}, broadcast=True)
emit('from_server', {'cmd': 'updateuseprompt', 'data': vars.useprompt}, broadcast=True)
emit('from_server', {'cmd': 'updateadventure', 'data': vars.adventure}, broadcast=True)
emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True)
emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True)
emit('from_server', {'cmd': 'updatefrmtrmspch', 'data': vars.formatoptns["frmtrmspch"]}, broadcast=True)
emit('from_server', {'cmd': 'updatefrmtadsnsp', 'data': vars.formatoptns["frmtadsnsp"]}, broadcast=True)
# Allow toggle events again
emit('from_server', {'cmd': 'allowtoggle', 'data': True}, broadcast=True)
#==================================================================#
# Sets the logical and display states for the AI Busy condition
#==================================================================#
def set_aibusy(state):
if(state):
vars.aibusy = True
emit('from_server', {'cmd': 'setgamestate', 'data': 'wait'}, broadcast=True)
else:
vars.aibusy = False
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
#==================================================================#
#
#==================================================================#
def editrequest(n):
if(n == 0):
txt = vars.prompt
else:
txt = vars.actions[n-1]
vars.editln = n
emit('from_server', {'cmd': 'setinputtext', 'data': txt}, broadcast=True)
emit('from_server', {'cmd': 'enablesubmit', 'data': ''}, broadcast=True)
#==================================================================#
#
#==================================================================#
def editsubmit(data):
if(vars.editln == 0):
vars.prompt = data
else:
vars.actions[vars.editln-1] = data
vars.mode = "play"
refresh_story()
emit('from_server', {'cmd': 'texteffect', 'data': vars.editln}, broadcast=True)
emit('from_server', {'cmd': 'editmode', 'data': 'false'})
#==================================================================#
#
#==================================================================#
def deleterequest():
# Don't delete prompt
if(vars.editln == 0):
# Send error message
pass
else:
del vars.actions[vars.editln-1]
vars.mode = "play"
refresh_story()
emit('from_server', {'cmd': 'editmode', 'data': 'false'})
#==================================================================#
#
#==================================================================#
def inlineedit(chunk, data):
chunk = int(chunk)
if(chunk == 0):
vars.prompt = data
else:
vars.actions[chunk-1] = data
refresh_story()
emit('from_server', {'cmd': 'texteffect', 'data': chunk}, broadcast=True)
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
#==================================================================#
#
#==================================================================#
def inlinedelete(chunk):
chunk = int(chunk)
# Don't delete prompt
if(chunk == 0):
# Send error message
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
else:
del vars.actions[chunk-1]
refresh_story()
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
#==================================================================#
# Toggles the game mode for memory editing and sends UI commands
#==================================================================#
def togglememorymode():
if(vars.mode == "play"):
vars.mode = "memory"
emit('from_server', {'cmd': 'memmode', 'data': 'true'}, broadcast=True)
emit('from_server', {'cmd': 'setinputtext', 'data': vars.memory}, broadcast=True)
emit('from_server', {'cmd': 'setanote', 'data': vars.authornote})
elif(vars.mode == "memory"):
vars.mode = "play"
emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True)
#==================================================================#
# Toggles the game mode for WI editing and sends UI commands
#==================================================================#
def togglewimode():
if(vars.mode == "play"):
vars.mode = "wi"
emit('from_server', {'cmd': 'wimode', 'data': 'true'}, broadcast=True)
elif(vars.mode == "wi"):
# Commit WI fields first
requestwi()
# Then set UI state back to Play
vars.mode = "play"
emit('from_server', {'cmd': 'wimode', 'data': 'false'}, broadcast=True)
sendwi()
#==================================================================#
#
#==================================================================#
def addwiitem():
ob = {"key": "", "keysecondary": "", "content": "", "num": len(vars.worldinfo), "init": False, "selective": False}
vars.worldinfo.append(ob);
emit('from_server', {'cmd': 'addwiitem', 'data': ob}, broadcast=True)
#==================================================================#
#
#==================================================================#
def sendwi():
# Cache len of WI
ln = len(vars.worldinfo)
# Clear contents of WI container
emit('from_server', {'cmd': 'clearwi', 'data': ''}, broadcast=True)
# If there are no WI entries, send an empty WI object
if(ln == 0):
addwiitem()
else:
# Send contents of WI array
for wi in vars.worldinfo:
ob = wi
emit('from_server', {'cmd': 'addwiitem', 'data': ob}, broadcast=True)
# Make sure last WI item is uninitialized
if(vars.worldinfo[-1]["init"]):
addwiitem()
#==================================================================#
# Request current contents of all WI HTML elements
#==================================================================#
def requestwi():
list = []
for wi in vars.worldinfo:
list.append(wi["num"])
emit('from_server', {'cmd': 'requestwiitem', 'data': list}, broadcast=True)
#==================================================================#
# Renumber WI items consecutively
#==================================================================#
def organizewi():
if(len(vars.worldinfo) > 0):
count = 0
for wi in vars.worldinfo:
wi["num"] = count
count += 1
#==================================================================#
# Extract object from server and send it to WI objects
#==================================================================#
def commitwi(ar):
for ob in ar:
vars.worldinfo[ob["num"]]["key"] = ob["key"]
vars.worldinfo[ob["num"]]["keysecondary"] = ob["keysecondary"]
vars.worldinfo[ob["num"]]["content"] = ob["content"]
vars.worldinfo[ob["num"]]["selective"] = ob["selective"]
# Was this a deletion request? If so, remove the requested index
if(vars.deletewi >= 0):
del vars.worldinfo[vars.deletewi]
organizewi()
# Send the new WI array structure
sendwi()
# And reset deletewi index
vars.deletewi = -1
#==================================================================#
#
#==================================================================#
def deletewi(num):
if(num < len(vars.worldinfo)):
# Store index of deletion request
vars.deletewi = num
# Get contents of WI HTML inputs
requestwi()
#==================================================================#
# Look for WI keys in text to generator
#==================================================================#
def checkworldinfo(txt):
# Dont go any further if WI is empty
if(len(vars.worldinfo) == 0):
return
# Cache actions length
ln = len(vars.actions)
# Don't bother calculating action history if widepth is 0
if(vars.widepth > 0):
depth = vars.widepth
# If this is not a continue, add 1 to widepth since submitted
# text is already in action history @ -1
if(txt != "" and vars.prompt != txt):
txt = ""
depth += 1
if(ln >= depth):
txt = "".join(vars.actions[(depth*-1):])
elif(ln > 0):
txt = vars.prompt + "".join(vars.actions[(depth*-1):])
elif(ln == 0):
txt = vars.prompt
# Scan text for matches on WI keys
wimem = ""
for wi in vars.worldinfo:
if(wi["key"] != ""):
# Split comma-separated keys
keys = wi["key"].split(",")
keys_secondary = wi.get("keysecondary", "").split(",")
for k in keys:
ky = k
# Remove leading/trailing spaces if the option is enabled
if(vars.wirmvwhtsp):
ky = k.strip()
if ky in txt:
if wi.get("selective", False) and len(keys_secondary):
found = False
for ks in keys_secondary:
ksy = ks
if(vars.wirmvwhtsp):
ksy = ks.strip()
if ksy in txt:
wimem = wimem + wi["content"] + "\n"
found = True
break
if found:
break
else:
wimem = wimem + wi["content"] + "\n"
break
return wimem
#==================================================================#
# Commit changes to Memory storage
#==================================================================#
def memsubmit(data):
# Maybe check for length at some point
# For now just send it to storage
vars.memory = data
vars.mode = "play"
emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True)
# Ask for contents of Author's Note field
emit('from_server', {'cmd': 'getanote', 'data': ''}, broadcast=True)
#==================================================================#
# Commit changes to Author's Note
#==================================================================#
def anotesubmit(data):
# Maybe check for length at some point
# For now just send it to storage
vars.authornote = data
#==================================================================#
# Assembles game data into a request to InferKit API
#==================================================================#
def ikrequest(txt):
# Log request to console
print("{0}Len:{1}, Txt:{2}{3}".format(colors.YELLOW, len(txt), txt, colors.END))
# Build request JSON data
reqdata = {
'forceNoEnd': True,
'length': vars.ikgen,
'prompt': {
'isContinuation': False,
'text': txt
},
'startFromBeginning': False,
'streamResponse': False,
'temperature': vars.temp,
'topP': vars.top_p
}
# Create request
req = requests.post(
vars.url,
json = reqdata,
headers = {
'Authorization': 'Bearer '+vars.apikey
}
)
# Deal with the response
if(req.status_code == 200):
genout = req.json()["data"]["text"]
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
vars.actions.append(genout)
refresh_story()
emit('from_server', {'cmd': 'texteffect', 'data': len(vars.actions)}, broadcast=True)
set_aibusy(0)
else:
# Send error message to web client
er = req.json()
if("error" in er):
code = er["error"]["extensions"]["code"]
elif("errors" in er):
code = er["errors"][0]["extensions"]["code"]
errmsg = "InferKit API Error: {0} - {1}".format(req.status_code, code)
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
#==================================================================#
# Assembles game data into a request to OpenAI API
#==================================================================#
def oairequest(txt, min, max):
# Log request to console
print("{0}Len:{1}, Txt:{2}{3}".format(colors.YELLOW, len(txt), txt, colors.END))
# Store context in memory to use it for comparison with generated content
vars.lastctx = txt
# Build request JSON data
reqdata = {
'prompt': txt,
'max_tokens': max,
'temperature': vars.temp,
'top_p': vars.top_p,
'n': 1,
'stream': False
}
req = requests.post(
vars.oaiurl,
json = reqdata,
headers = {
'Authorization': 'Bearer '+vars.oaiapikey,
'Content-Type': 'application/json'
}
)
# Deal with the response
if(req.status_code == 200):
genout = req.json()["choices"][0]["text"]
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
vars.actions.append(genout)
refresh_story()
emit('from_server', {'cmd': 'texteffect', 'data': len(vars.actions)}, broadcast=True)
set_aibusy(0)
else:
# Send error message to web client
er = req.json()
if("error" in er):
type = er["error"]["type"]
message = er["error"]["message"]
errmsg = "OpenAI API Error: {0} - {1}".format(type, message)
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
#==================================================================#
# Forces UI to Play mode
#==================================================================#
def exitModes():
if(vars.mode == "edit"):
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True)
elif(vars.mode == "memory"):
emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True)
elif(vars.mode == "wi"):
emit('from_server', {'cmd': 'wimode', 'data': 'false'}, broadcast=True)
vars.mode = "play"
#==================================================================#
# Launch in-browser save prompt
#==================================================================#
def saveas(name):
# Check if filename exists already
name = utils.cleanfilename(name)
if(not fileops.saveexists(name) or (vars.saveow and vars.svowname == name)):
# All clear to save
saveRequest(getcwd()+"/stories/"+name+".json")
emit('from_server', {'cmd': 'hidesaveas', 'data': ''})
vars.saveow = False
vars.svowname = ""
else:
# File exists, prompt for overwrite
vars.saveow = True
vars.svowname = name
emit('from_server', {'cmd': 'askforoverwrite', 'data': ''})
#==================================================================#
# Save the currently running story
#==================================================================#
def save():
# Check if a file is currently open
if(".json" in vars.savedir):
saveRequest(vars.savedir)
else:
emit('from_server', {'cmd': 'saveas', 'data': ''})
#==================================================================#
# Save the story via file browser
#==================================================================#
def savetofile():
savpath = fileops.getsavepath(vars.savedir, "Save Story As", [("Json", "*.json")])
saveRequest(savpath)
#==================================================================#
# Save the story to specified path
#==================================================================#
def saveRequest(savpath):
if(savpath):
# Leave Edit/Memory mode before continuing
exitModes()
# Save path for future saves
vars.savedir = savpath
# Build json to write
js = {}
js["gamestarted"] = vars.gamestarted
js["prompt"] = vars.prompt
js["memory"] = vars.memory
js["authorsnote"] = vars.authornote
js["actions"] = vars.actions
js["worldinfo"] = []
# Extract only the important bits of WI
for wi in vars.worldinfo:
if(wi["key"] != ""):
js["worldinfo"].append({
"key": wi["key"],
"keysecondary": wi["keysecondary"],
"content": wi["content"],
"selective": wi["selective"]
})
# Write it
file = open(savpath, "w")
try:
file.write(json.dumps(js, indent=3))
finally:
file.close()
print("{0}Story saved to {1}!{2}".format(colors.GREEN, path.basename(savpath), colors.END))
#==================================================================#
# Load a saved story via file browser
#==================================================================#
def getloadlist():
emit('from_server', {'cmd': 'buildload', 'data': fileops.getstoryfiles()})
#==================================================================#
# Load a saved story via file browser
#==================================================================#
def loadfromfile():
loadpath = fileops.getloadpath(vars.savedir, "Select Story File", [("Json", "*.json")])
loadRequest(loadpath)
#==================================================================#
# Load a stored story from a file
#==================================================================#
def loadRequest(loadpath):
if(loadpath):
# Leave Edit/Memory mode before continuing
exitModes()
# Read file contents into JSON object
file = open(loadpath, "r")
js = json.load(file)
# Copy file contents to vars
vars.gamestarted = js["gamestarted"]
vars.prompt = js["prompt"]
vars.memory = js["memory"]
vars.actions = js["actions"]
vars.worldinfo = []
vars.lastact = ""
vars.lastctx = ""
# Try not to break older save files
if("authorsnote" in js):
vars.authornote = js["authorsnote"]
else:
vars.authornote = ""
if("worldinfo" in js):
num = 0
for wi in js["worldinfo"]:
vars.worldinfo.append({
"key": wi["key"],
"keysecondary": wi.get("keysecondary", ""),
"content": wi["content"],
"num": num,
"init": True,
"selective": wi.get("selective", False)
})
num += 1
file.close()
# Save path for save button
vars.savedir = loadpath
# Clear loadselect var
vars.loadselect = ""
# Refresh game screen
sendwi()
refresh_story()
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True)
print("{0}Story loaded from {1}!{2}".format(colors.GREEN, path.basename(loadpath), colors.END))
#==================================================================#
# Import an AIDungon game exported with Mimi's tool
#==================================================================#
def importRequest():
importpath = fileops.getloadpath(vars.savedir, "Select AID CAT File", [("Json", "*.json")])
if(importpath):
# Leave Edit/Memory mode before continuing
exitModes()
# Read file contents into JSON object
file = open(importpath, "rb")
vars.importjs = json.load(file)
# If a bundle file is being imported, select just the Adventures object
if type(vars.importjs) is dict and "stories" in vars.importjs:
vars.importjs = vars.importjs["stories"]
# Clear Popup Contents
emit('from_server', {'cmd': 'clearpopup', 'data': ''}, broadcast=True)
# Initialize vars
num = 0
vars.importnum = -1
# Get list of stories
for story in vars.importjs:
ob = {}
ob["num"] = num
if(story["title"] != "" and story["title"] != None):
ob["title"] = story["title"]
else:
ob["title"] = "(No Title)"
if(story["description"] != "" and story["description"] != None):
ob["descr"] = story["description"]
else:
ob["descr"] = "(No Description)"
if("actions" in story):
ob["acts"] = len(story["actions"])
elif("actionWindow" in story):
ob["acts"] = len(story["actionWindow"])
emit('from_server', {'cmd': 'addimportline', 'data': ob})
num += 1
# Show Popup
emit('from_server', {'cmd': 'popupshow', 'data': True})
#==================================================================#
# Import an AIDungon game selected in popup
#==================================================================#
def importgame():
if(vars.importnum >= 0):
# Cache reference to selected game
ref = vars.importjs[vars.importnum]
# Copy game contents to vars
vars.gamestarted = True
# Support for different versions of export script
if("actions" in ref):
if(len(ref["actions"]) > 0):
vars.prompt = ref["actions"][0]["text"]
else:
vars.prompt = ""
elif("actionWindow" in ref):
if(len(ref["actionWindow"]) > 0):
vars.prompt = ref["actionWindow"][0]["text"]
else:
vars.prompt = ""
else:
vars.prompt = ""
vars.memory = ref["memory"]
vars.authornote = ref["authorsNote"] if type(ref["authorsNote"]) is str else ""
vars.actions = []
vars.worldinfo = []
vars.lastact = ""
vars.lastctx = ""
# Get all actions except for prompt
if("actions" in ref):
if(len(ref["actions"]) > 1):
for act in ref["actions"][1:]:
vars.actions.append(act["text"])
elif("actionWindow" in ref):
if(len(ref["actionWindow"]) > 1):
for act in ref["actionWindow"][1:]:
vars.actions.append(act["text"])
# Get just the important parts of world info
if(ref["worldInfo"] != None):
if(len(ref["worldInfo"]) > 1):
num = 0
for wi in ref["worldInfo"]:
vars.worldinfo.append({
"key": wi["keys"],
"keysecondary": wi.get("keysecondary", ""),
"content": wi["entry"],
"num": num,
"init": True,
"selective": wi.get("selective", False)
})
num += 1
# Clear import data
vars.importjs = {}
# Reset current save
vars.savedir = getcwd()+"\stories"
# Refresh game screen
sendwi()
refresh_story()
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True)
#==================================================================#
# Import an aidg.club prompt and start a new game with it.
#==================================================================#
def importAidgRequest(id):
exitModes()
urlformat = "https://prompts.aidg.club/api/"
req = requests.get(urlformat+id)
if(req.status_code == 200):
js = req.json()
# Import game state
vars.gamestarted = True
vars.prompt = js["promptContent"]
vars.memory = js["memory"]
vars.authornote = js["authorsNote"]
vars.actions = []
vars.worldinfo = []
vars.lastact = ""
vars.lastctx = ""
num = 0
for wi in js["worldInfos"]:
vars.worldinfo.append({
"key": wi["keys"],
"keysecondary": wi.get("keysecondary", ""),
"content": wi["entry"],
"num": num,
"init": True,
"selective": wi.get("selective", False)
})
num += 1
# Reset current save
vars.savedir = getcwd()+"\stories"
# Refresh game screen
sendwi()
refresh_story()
emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True)
#==================================================================#
# Import World Info JSON file
#==================================================================#
def wiimportrequest():
importpath = fileops.getloadpath(vars.savedir, "Select World Info File", [("Json", "*.json")])
if(importpath):
file = open(importpath, "rb")
js = json.load(file)
if(len(js) > 0):
# If the most recent WI entry is blank, remove it.
if(not vars.worldinfo[-1]["init"]):
del vars.worldinfo[-1]
# Now grab the new stuff
num = len(vars.worldinfo)
for wi in js:
vars.worldinfo.append({
"key": wi["keys"],
"keysecondary": wi.get("keysecondary", ""),
"content": wi["entry"],
"num": num,
"init": True,
"selective": wi.get("selective", False)
})
num += 1
print("{0}".format(vars.worldinfo[0]))
# Refresh game screen
sendwi()
#==================================================================#
# Starts a new story
#==================================================================#
def newGameRequest():
# Leave Edit/Memory mode before continuing
exitModes()
# Clear vars values
vars.gamestarted = False
vars.prompt = ""
vars.memory = ""
vars.actions = []
vars.authornote = ""
vars.worldinfo = []
vars.lastact = ""
vars.lastctx = ""
# Reset current save
vars.savedir = getcwd()+"\stories"
# Refresh game screen
sendwi()
setStartState()
def randomGameRequest(topic):
newGameRequest()
vars.memory = "You generate the following " + topic + " story concept :"
actionsubmit("")
vars.memory = ""
#==================================================================#
# Final startup commands to launch Flask app
#==================================================================#
if __name__ == "__main__":
# Load settings from client.settings
loadsettings()
# Start Flask/SocketIO (Blocking, so this must be last method!)
print("{0}Server started!\rYou may now connect with a browser at http://127.0.0.1:5000/{1}".format(colors.GREEN, colors.END))
#socketio.run(app, host='0.0.0.0', port=5000)
if(vars.remote):
from flask_cloudflared import start_cloudflared
start_cloudflared(5000)
socketio.run(app, host='0.0.0.0', port=5000)
else:
import webbrowser
webbrowser.open_new('http://localhost:5000')
socketio.run(app)