mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Model: Successful load implementation
The goal of this series of commits is to have an implementation-agnostic interface for models, thus being less reliant on HF Transformers for model support. A model object will have a method for generation, a list of callbacks to be run on every token generation, a list of samplers that will modify probabilities, etc. Basically anything HF can do should be easily implementable with the new interface :^) Currently I've tested the loading of pre-downloaded models with breakmodel between GPUs and that works, though essentially no testing has been done in the larger scheme of things. Currently this is about the only supported configuration, and generation isn't very functional.
This commit is contained in:
674
aiserver.py
674
aiserver.py
@@ -66,6 +66,7 @@ import lupa
|
||||
# KoboldAI
|
||||
import fileops
|
||||
import gensettings
|
||||
import breakmodel
|
||||
from utils import debounce
|
||||
import utils
|
||||
import koboldai_settings
|
||||
@@ -80,6 +81,7 @@ except:
|
||||
|
||||
from transformers import GenerationMixin
|
||||
|
||||
from model import GenericHFTorchInferenceModel, CustomGPT2HFTorchInferenceModel
|
||||
# Text2img
|
||||
import base64
|
||||
from PIL import Image
|
||||
@@ -327,23 +329,6 @@ model_menu = {
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
|
||||
class Send_to_socketio(object):
|
||||
def write(self, bar):
|
||||
bar = bar.replace("\r", "").replace("\n", "").replace(chr(0), "")
|
||||
if bar != "" and [ord(num) for num in bar] != [27, 91, 65]: #No idea why we're getting the 27, 1, 65 character set, just killing to so we can move on
|
||||
#logger.info(bar)
|
||||
print('\r' + bar, end='')
|
||||
time.sleep(0.01)
|
||||
try:
|
||||
socketio.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True, room="UI_1")
|
||||
except:
|
||||
pass
|
||||
|
||||
def flush(self):
|
||||
pass
|
||||
|
||||
@dataclass
|
||||
class ImportBuffer:
|
||||
# Singleton!!!
|
||||
@@ -969,214 +954,7 @@ def getmodelname():
|
||||
def get_hidden_size_from_model(model):
|
||||
return model.get_input_embeddings().embedding_dim
|
||||
|
||||
#==================================================================#
|
||||
# Breakmodel configuration functions
|
||||
#==================================================================#
|
||||
def device_list(n_layers, primary=None, selected=None):
|
||||
device_count = torch.cuda.device_count()
|
||||
if(device_count < 2):
|
||||
primary = None
|
||||
gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0]
|
||||
print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
|
||||
for i in range(device_count):
|
||||
name = torch.cuda.get_device_name(i)
|
||||
if(len(name) > 47):
|
||||
name = "..." + name[-44:]
|
||||
row_color = colors.END
|
||||
sep_color = colors.YELLOW
|
||||
print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}")
|
||||
row_color = colors.END
|
||||
sep_color = colors.YELLOW
|
||||
if(utils.HAS_ACCELERATE):
|
||||
print(f"{row_color}{colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){colors.END}")
|
||||
print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}")
|
||||
|
||||
def device_config(config):
|
||||
global breakmodel, generator
|
||||
import breakmodel
|
||||
n_layers = utils.num_layers(config)
|
||||
if args.cpu:
|
||||
breakmodel.gpu_blocks = [0]*n_layers
|
||||
return
|
||||
elif(args.breakmodel_gpulayers is not None or (utils.HAS_ACCELERATE and args.breakmodel_disklayers is not None)):
|
||||
try:
|
||||
if(not args.breakmodel_gpulayers):
|
||||
breakmodel.gpu_blocks = []
|
||||
else:
|
||||
breakmodel.gpu_blocks = list(map(int, args.breakmodel_gpulayers.split(',')))
|
||||
assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count()
|
||||
s = n_layers
|
||||
for i in range(len(breakmodel.gpu_blocks)):
|
||||
if(breakmodel.gpu_blocks[i] <= -1):
|
||||
breakmodel.gpu_blocks[i] = s
|
||||
break
|
||||
else:
|
||||
s -= breakmodel.gpu_blocks[i]
|
||||
assert sum(breakmodel.gpu_blocks) <= n_layers
|
||||
n_layers -= sum(breakmodel.gpu_blocks)
|
||||
if(args.breakmodel_disklayers is not None):
|
||||
assert args.breakmodel_disklayers <= n_layers
|
||||
breakmodel.disk_blocks = args.breakmodel_disklayers
|
||||
n_layers -= args.breakmodel_disklayers
|
||||
except:
|
||||
logger.warning("--breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0.")
|
||||
breakmodel.gpu_blocks = [n_layers]
|
||||
n_layers = 0
|
||||
elif(args.breakmodel_layers is not None):
|
||||
breakmodel.gpu_blocks = [n_layers - max(0, min(n_layers, args.breakmodel_layers))]
|
||||
n_layers -= sum(breakmodel.gpu_blocks)
|
||||
elif(args.model is not None):
|
||||
logger.info("Breakmodel not specified, assuming GPU 0")
|
||||
breakmodel.gpu_blocks = [n_layers]
|
||||
n_layers = 0
|
||||
else:
|
||||
device_count = torch.cuda.device_count()
|
||||
if(device_count > 1):
|
||||
print(colors.CYAN + "\nPlease select one of your GPUs to be your primary GPU.")
|
||||
print("VRAM usage in your primary GPU will be higher than for your other ones.")
|
||||
print("It is recommended you make your fastest GPU your primary GPU.")
|
||||
device_list(n_layers)
|
||||
while(True):
|
||||
primaryselect = input("device ID> ")
|
||||
if(primaryselect.isnumeric() and 0 <= int(primaryselect) < device_count):
|
||||
breakmodel.primary_device = int(primaryselect)
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between 0 and {device_count-1}.{colors.END}")
|
||||
else:
|
||||
breakmodel.primary_device = 0
|
||||
|
||||
print(colors.PURPLE + "\nIf you don't have enough VRAM to run the model on a single GPU")
|
||||
print("you can split the model between your CPU and your GPU(s), or between")
|
||||
print("multiple GPUs if you have more than one.")
|
||||
print("By putting more 'layers' on a GPU or CPU, more computations will be")
|
||||
print("done on that device and more VRAM or RAM will be required on that device")
|
||||
print("(roughly proportional to number of layers).")
|
||||
print("It should be noted that GPUs are orders of magnitude faster than the CPU.")
|
||||
print(f"This model has{colors.YELLOW} {n_layers} {colors.PURPLE}layers.{colors.END}\n")
|
||||
|
||||
for i in range(device_count):
|
||||
device_list(n_layers, primary=breakmodel.primary_device, selected=i)
|
||||
print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n")
|
||||
while(True):
|
||||
layerselect = input("# of layers> ")
|
||||
if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers):
|
||||
layerselect = int(layerselect)
|
||||
layerselect = n_layers if layerselect == -1 else layerselect
|
||||
breakmodel.gpu_blocks.append(layerselect)
|
||||
n_layers -= layerselect
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
|
||||
if(n_layers == 0):
|
||||
break
|
||||
|
||||
if(utils.HAS_ACCELERATE and n_layers > 0):
|
||||
device_list(n_layers, primary=breakmodel.primary_device, selected=-1)
|
||||
print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into the disk cache?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n")
|
||||
while(True):
|
||||
layerselect = input("# of layers> ")
|
||||
if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers):
|
||||
layerselect = int(layerselect)
|
||||
layerselect = n_layers if layerselect == -1 else layerselect
|
||||
breakmodel.disk_blocks = layerselect
|
||||
n_layers -= layerselect
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
|
||||
|
||||
logger.init_ok("Final device configuration:", status="Info")
|
||||
device_list(n_layers, primary=breakmodel.primary_device)
|
||||
|
||||
# If all layers are on the same device, use the old GPU generation mode
|
||||
while(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0):
|
||||
breakmodel.gpu_blocks.pop()
|
||||
if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, utils.num_layers(config))):
|
||||
koboldai_vars.breakmodel = False
|
||||
koboldai_vars.usegpu = True
|
||||
koboldai_vars.gpu_device = len(breakmodel.gpu_blocks)-1
|
||||
return
|
||||
|
||||
if(not breakmodel.gpu_blocks):
|
||||
logger.warning("Nothing assigned to a GPU, reverting to CPU only mode")
|
||||
import breakmodel
|
||||
breakmodel.primary_device = "cpu"
|
||||
koboldai_vars.breakmodel = False
|
||||
koboldai_vars.usegpu = False
|
||||
return
|
||||
|
||||
def move_model_to_devices(model):
|
||||
global generator
|
||||
|
||||
if(not utils.HAS_ACCELERATE and not koboldai_vars.breakmodel):
|
||||
if(koboldai_vars.usegpu):
|
||||
model = model.half().to(koboldai_vars.gpu_device)
|
||||
else:
|
||||
model = model.to('cpu').float()
|
||||
generator = model.generate
|
||||
return
|
||||
|
||||
import breakmodel
|
||||
|
||||
if(utils.HAS_ACCELERATE):
|
||||
import accelerate.utils
|
||||
for key, value in model.state_dict().items():
|
||||
target_dtype = torch.float32 if breakmodel.primary_device == "cpu" else torch.float16
|
||||
if(value.dtype is not target_dtype):
|
||||
accelerate.utils.set_module_tensor_to_device(model, key, target_dtype)
|
||||
disk_blocks = breakmodel.disk_blocks
|
||||
gpu_blocks = breakmodel.gpu_blocks
|
||||
ram_blocks = len(utils.layers_module_names) - sum(gpu_blocks)
|
||||
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
|
||||
device_map = {}
|
||||
for name in utils.layers_module_names:
|
||||
layer = int(name.rsplit(".", 1)[1])
|
||||
device = ("disk" if layer < disk_blocks else "cpu") if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
|
||||
device_map[name] = device
|
||||
for name in utils.get_missing_module_names(model, list(device_map.keys())):
|
||||
device_map[name] = breakmodel.primary_device
|
||||
breakmodel.dispatch_model_ex(model, device_map, main_device=breakmodel.primary_device, offload_buffers=True, offload_dir="accelerate-disk-cache")
|
||||
gc.collect()
|
||||
generator = model.generate
|
||||
return
|
||||
|
||||
model.half()
|
||||
gc.collect()
|
||||
|
||||
if(hasattr(model, "transformer")):
|
||||
model.transformer.wte.to(breakmodel.primary_device)
|
||||
model.transformer.ln_f.to(breakmodel.primary_device)
|
||||
if(hasattr(model, 'lm_head')):
|
||||
model.lm_head.to(breakmodel.primary_device)
|
||||
if(hasattr(model.transformer, 'wpe')):
|
||||
model.transformer.wpe.to(breakmodel.primary_device)
|
||||
elif(not hasattr(model.model, "decoder")):
|
||||
model.model.embed_tokens.to(breakmodel.primary_device)
|
||||
model.model.layer_norm.to(breakmodel.primary_device)
|
||||
model.lm_head.to(breakmodel.primary_device)
|
||||
model.model.embed_positions.to(breakmodel.primary_device)
|
||||
else:
|
||||
model.model.decoder.embed_tokens.to(breakmodel.primary_device)
|
||||
if(model.model.decoder.project_in is not None):
|
||||
model.model.decoder.project_in.to(breakmodel.primary_device)
|
||||
if(model.model.decoder.project_out is not None):
|
||||
model.model.decoder.project_out.to(breakmodel.primary_device)
|
||||
model.model.decoder.embed_positions.to(breakmodel.primary_device)
|
||||
gc.collect()
|
||||
GPTNeoModel.forward = breakmodel.new_forward_neo
|
||||
if("GPTJModel" in globals()):
|
||||
GPTJModel.forward = breakmodel.new_forward_neo # type: ignore
|
||||
if("XGLMModel" in globals()):
|
||||
XGLMModel.forward = breakmodel.new_forward_xglm # type: ignore
|
||||
if("OPTDecoder" in globals()):
|
||||
OPTDecoder.forward = breakmodel.new_forward_opt # type: ignore
|
||||
generator = model.generate
|
||||
if(hasattr(model, "transformer")):
|
||||
breakmodel.move_hidden_layers(model.transformer)
|
||||
elif(not hasattr(model.model, "decoder")):
|
||||
breakmodel.move_hidden_layers(model.model, model.model.layers)
|
||||
else:
|
||||
breakmodel.move_hidden_layers(model.model.decoder, model.model.decoder.layers)
|
||||
|
||||
#==================================================================#
|
||||
# Allow the models to override some settings
|
||||
@@ -1962,33 +1740,6 @@ def get_cluster_models(msg):
|
||||
emit('from_server', {'cmd': 'oai_engines', 'data': engines, 'online_model': online_model}, broadcast=True)
|
||||
|
||||
|
||||
# Function to patch transformers to use our soft prompt
|
||||
def patch_causallm(model):
|
||||
from torch.nn import Embedding
|
||||
if(getattr(Embedding, "_koboldai_patch_causallm_model", None)):
|
||||
Embedding._koboldai_patch_causallm_model = model
|
||||
return model
|
||||
old_embedding_call = Embedding.__call__
|
||||
def new_embedding_call(self, input_ids, *args, **kwargs):
|
||||
if(Embedding._koboldai_patch_causallm_model.get_input_embeddings() is not self):
|
||||
return old_embedding_call(self, input_ids, *args, **kwargs)
|
||||
assert input_ids is not None
|
||||
if(koboldai_vars.sp is not None):
|
||||
shifted_input_ids = input_ids - model.config.vocab_size
|
||||
input_ids.clamp_(max=model.config.vocab_size-1)
|
||||
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
|
||||
if(koboldai_vars.sp is not None):
|
||||
koboldai_vars.sp = koboldai_vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
|
||||
inputs_embeds = torch.where(
|
||||
(shifted_input_ids >= 0)[..., None],
|
||||
koboldai_vars.sp[shifted_input_ids.clamp(min=0)],
|
||||
inputs_embeds,
|
||||
)
|
||||
return inputs_embeds
|
||||
Embedding.__call__ = new_embedding_call
|
||||
Embedding._koboldai_patch_causallm_model = model
|
||||
return model
|
||||
|
||||
def patch_transformers_download():
|
||||
global transformers
|
||||
import copy, requests, tqdm, time
|
||||
@@ -2751,44 +2502,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
|
||||
|
||||
# If transformers model was selected & GPU available, ask to use CPU or GPU
|
||||
if(koboldai_vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"] and not koboldai_vars.model.startswith("RWKV")):
|
||||
koboldai_vars.allowsp = True
|
||||
# Test for GPU support
|
||||
|
||||
# Make model path the same as the model name to make this consistent with the other loading method if it isn't a known model type
|
||||
# This code is not just a workaround for below, it is also used to make the behavior consistent with other loading methods - Henk717
|
||||
if(not koboldai_vars.model in ["NeoCustom", "GPT2Custom"]):
|
||||
koboldai_vars.custmodpth = koboldai_vars.model
|
||||
elif(koboldai_vars.model == "NeoCustom"):
|
||||
koboldai_vars.model = os.path.basename(os.path.normpath(koboldai_vars.custmodpth))
|
||||
|
||||
# Get the model_type from the config or assume a model type if it isn't present
|
||||
from transformers import AutoConfig
|
||||
if(os.path.isdir(koboldai_vars.custmodpth.replace('/', '_'))):
|
||||
try:
|
||||
model_config = AutoConfig.from_pretrained(koboldai_vars.custmodpth.replace('/', '_'), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
koboldai_vars.model_type = model_config.model_type
|
||||
except ValueError as e:
|
||||
koboldai_vars.model_type = "not_found"
|
||||
elif(os.path.isdir("models/{}".format(koboldai_vars.custmodpth.replace('/', '_')))):
|
||||
try:
|
||||
model_config = AutoConfig.from_pretrained("models/{}".format(koboldai_vars.custmodpth.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
koboldai_vars.model_type = model_config.model_type
|
||||
except ValueError as e:
|
||||
koboldai_vars.model_type = "not_found"
|
||||
else:
|
||||
try:
|
||||
model_config = AutoConfig.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
koboldai_vars.model_type = model_config.model_type
|
||||
except ValueError as e:
|
||||
koboldai_vars.model_type = "not_found"
|
||||
if(koboldai_vars.model_type == "not_found" and koboldai_vars.model == "NeoCustom"):
|
||||
koboldai_vars.model_type = "gpt_neo"
|
||||
elif(koboldai_vars.model_type == "not_found" and koboldai_vars.model == "GPT2Custom"):
|
||||
koboldai_vars.model_type = "gpt2"
|
||||
elif(koboldai_vars.model_type == "not_found"):
|
||||
logger.warning("No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
|
||||
koboldai_vars.model_type = "gpt_neo"
|
||||
# if(koboldai_vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"] and not koboldai_vars.model.startswith("RWKV")):
|
||||
|
||||
if(not koboldai_vars.use_colab_tpu and koboldai_vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
loadmodelsettings()
|
||||
@@ -2893,363 +2607,30 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
except:
|
||||
pass
|
||||
|
||||
# Lazy loader
|
||||
import torch_lazy_loader
|
||||
def get_lazy_load_callback(n_layers, convert_to_float16=True):
|
||||
if not koboldai_vars.lazy_load:
|
||||
return
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
global breakmodel
|
||||
import breakmodel
|
||||
|
||||
if utils.HAS_ACCELERATE:
|
||||
import accelerate.utils
|
||||
|
||||
if args.breakmodel_disklayers is not None:
|
||||
breakmodel.disk_blocks = args.breakmodel_disklayers
|
||||
|
||||
disk_blocks = breakmodel.disk_blocks
|
||||
gpu_blocks = breakmodel.gpu_blocks
|
||||
ram_blocks = ram_blocks = n_layers - sum(gpu_blocks)
|
||||
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
|
||||
|
||||
def lazy_load_callback(model_dict: Dict[str, Union[torch_lazy_loader.LazyTensor, torch.Tensor]], f, **_):
|
||||
if lazy_load_callback.nested:
|
||||
return
|
||||
lazy_load_callback.nested = True
|
||||
|
||||
device_map: Dict[str, Union[str, int]] = {}
|
||||
|
||||
@functools.lru_cache(maxsize=None)
|
||||
def get_original_key(key):
|
||||
return max((original_key for original_key in utils.module_names if original_key.endswith(key)), key=len)
|
||||
|
||||
for key, value in model_dict.items():
|
||||
original_key = get_original_key(key)
|
||||
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(original_key.startswith(n) for n in utils.layers_module_names):
|
||||
device_map[key] = koboldai_vars.gpu_device if koboldai_vars.hascuda and koboldai_vars.usegpu else "cpu" if not koboldai_vars.hascuda or not koboldai_vars.breakmodel else breakmodel.primary_device
|
||||
else:
|
||||
layer = int(max((n for n in utils.layers_module_names if original_key.startswith(n)), key=len).rsplit(".", 1)[1])
|
||||
device = koboldai_vars.gpu_device if koboldai_vars.hascuda and koboldai_vars.usegpu else "disk" if layer < disk_blocks and layer < ram_blocks else "cpu" if not koboldai_vars.hascuda or not koboldai_vars.breakmodel else "shared" if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
|
||||
device_map[key] = device
|
||||
|
||||
if utils.num_shards is None or utils.current_shard == 0:
|
||||
utils.offload_index = {}
|
||||
if utils.HAS_ACCELERATE:
|
||||
if os.path.isdir("accelerate-disk-cache"):
|
||||
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
|
||||
# (the folder doesn't contain any subfolders so os.remove will do just fine)
|
||||
for filename in os.listdir("accelerate-disk-cache"):
|
||||
try:
|
||||
os.remove(os.path.join("accelerate-disk-cache", filename))
|
||||
except OSError:
|
||||
pass
|
||||
os.makedirs("accelerate-disk-cache", exist_ok=True)
|
||||
if utils.num_shards is not None:
|
||||
num_tensors = len(utils.get_sharded_checkpoint_num_tensors(utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs))
|
||||
else:
|
||||
num_tensors = len(device_map)
|
||||
print(flush=True)
|
||||
koboldai_vars.status_message = "Loading model"
|
||||
koboldai_vars.total_layers = num_tensors
|
||||
koboldai_vars.loaded_layers = 0
|
||||
utils.bar = tqdm(total=num_tensors, desc="Loading model tensors", file=Send_to_socketio())
|
||||
|
||||
with zipfile.ZipFile(f, "r") as z:
|
||||
try:
|
||||
last_storage_key = None
|
||||
zipfolder = os.path.basename(os.path.normpath(f)).split('.')[0]
|
||||
f = None
|
||||
current_offset = 0
|
||||
able_to_pin_layers = True
|
||||
if utils.num_shards is not None:
|
||||
utils.current_shard += 1
|
||||
for key in sorted(device_map.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
|
||||
storage_key = model_dict[key].key
|
||||
if storage_key != last_storage_key or model_dict[key].seek_offset < current_offset:
|
||||
last_storage_key = storage_key
|
||||
if isinstance(f, zipfile.ZipExtFile):
|
||||
f.close()
|
||||
try:
|
||||
f = z.open(f"archive/data/{storage_key}")
|
||||
except:
|
||||
f = z.open(f"{zipfolder}/data/{storage_key}")
|
||||
current_offset = 0
|
||||
if current_offset != model_dict[key].seek_offset:
|
||||
f.read(model_dict[key].seek_offset - current_offset)
|
||||
current_offset = model_dict[key].seek_offset
|
||||
device = device_map[key]
|
||||
size = functools.reduce(lambda x, y: x * y, model_dict[key].shape, 1)
|
||||
dtype = model_dict[key].dtype
|
||||
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
|
||||
#print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
|
||||
model_dict[key] = model_dict[key].materialize(f, map_location="cpu")
|
||||
if model_dict[key].dtype is torch.float32:
|
||||
koboldai_vars.fp32_model = True
|
||||
if convert_to_float16 and breakmodel.primary_device != "cpu" and koboldai_vars.hascuda and (koboldai_vars.breakmodel or koboldai_vars.usegpu) and model_dict[key].dtype is torch.float32:
|
||||
model_dict[key] = model_dict[key].to(torch.float16)
|
||||
if breakmodel.primary_device == "cpu" or (not koboldai_vars.usegpu and not koboldai_vars.breakmodel and model_dict[key].dtype is torch.float16):
|
||||
model_dict[key] = model_dict[key].to(torch.float32)
|
||||
if device == "shared":
|
||||
model_dict[key] = model_dict[key].to("cpu").detach_()
|
||||
if able_to_pin_layers and utils.HAS_ACCELERATE:
|
||||
try:
|
||||
model_dict[key] = model_dict[key].pin_memory()
|
||||
except:
|
||||
able_to_pin_layers = False
|
||||
elif device == "disk":
|
||||
accelerate.utils.offload_weight(model_dict[key], get_original_key(key), "accelerate-disk-cache", index=utils.offload_index)
|
||||
model_dict[key] = model_dict[key].to("meta")
|
||||
else:
|
||||
model_dict[key] = model_dict[key].to(device)
|
||||
#print("OK", flush=True)
|
||||
current_offset += nbytes
|
||||
utils.bar.update(1)
|
||||
koboldai_vars.loaded_layers += 1
|
||||
finally:
|
||||
if utils.num_shards is None or utils.current_shard >= utils.num_shards:
|
||||
if utils.offload_index:
|
||||
for name, tensor in utils.named_buffers:
|
||||
dtype = tensor.dtype
|
||||
if convert_to_float16 and breakmodel.primary_device != "cpu" and koboldai_vars.hascuda and (koboldai_vars.breakmodel or koboldai_vars.usegpu):
|
||||
dtype = torch.float16
|
||||
if breakmodel.primary_device == "cpu" or (not koboldai_vars.usegpu and not koboldai_vars.breakmodel):
|
||||
dtype = torch.float32
|
||||
if name in model_dict and model_dict[name].dtype is not dtype:
|
||||
model_dict[name] = model_dict[name].to(dtype)
|
||||
if tensor.dtype is not dtype:
|
||||
tensor = tensor.to(dtype)
|
||||
if name not in utils.offload_index:
|
||||
accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index)
|
||||
accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache")
|
||||
utils.bar.close()
|
||||
utils.bar = None
|
||||
koboldai_vars.status_message = ""
|
||||
lazy_load_callback.nested = False
|
||||
if isinstance(f, zipfile.ZipExtFile):
|
||||
f.close()
|
||||
|
||||
lazy_load_callback.nested = False
|
||||
return lazy_load_callback
|
||||
|
||||
|
||||
def maybe_low_cpu_mem_usage() -> Dict[str, Any]:
|
||||
if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")):
|
||||
logger.warning(f"Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.")
|
||||
return {}
|
||||
return {"low_cpu_mem_usage": True}
|
||||
|
||||
@contextlib.contextmanager
|
||||
def maybe_use_float16(always_use=False):
|
||||
if(always_use or (koboldai_vars.hascuda and args.lowmem and (koboldai_vars.usegpu or koboldai_vars.breakmodel))):
|
||||
original_dtype = torch.get_default_dtype()
|
||||
torch.set_default_dtype(torch.float16)
|
||||
yield True
|
||||
torch.set_default_dtype(original_dtype)
|
||||
else:
|
||||
yield False
|
||||
|
||||
# If custom GPT2 model was chosen
|
||||
if(koboldai_vars.model_type == "gpt2"):
|
||||
koboldai_vars.lazy_load = False
|
||||
if os.path.exists(koboldai_vars.custmodpth):
|
||||
model_config = json.load(open(koboldai_vars.custmodpth + "/config.json", "r"))
|
||||
elif os.path.exists(os.path.join("models/", koboldai_vars.custmodpth)):
|
||||
config_path = os.path.join("models/", koboldai_vars.custmodpth)
|
||||
config_path = os.path.join(config_path, "config.json").replace("\\", "//")
|
||||
model_config = json.load(open(config_path, "r"))
|
||||
with(maybe_use_float16()):
|
||||
try:
|
||||
if os.path.exists(koboldai_vars.custmodpth):
|
||||
model = GPT2LMHeadModel.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
elif os.path.exists(os.path.join("models/", koboldai_vars.custmodpth)):
|
||||
model = GPT2LMHeadModel.from_pretrained(os.path.join("models/", koboldai_vars.custmodpth), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(os.path.join("models/", koboldai_vars.custmodpth), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
else:
|
||||
model = GPT2LMHeadModel.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
if("out of memory" in traceback.format_exc().lower()):
|
||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||
raise e
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
model.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), max_shard_size="500MiB")
|
||||
tokenizer.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')))
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
if(koboldai_vars.hascuda and koboldai_vars.usegpu):
|
||||
model = model.half().to(koboldai_vars.gpu_device)
|
||||
generator = model.generate
|
||||
else:
|
||||
model = model.to('cpu').float()
|
||||
generator = model.generate
|
||||
patch_causallm(model)
|
||||
# Use the Generic implementation
|
||||
if koboldai_vars.model_type == "gpt2":
|
||||
model = CustomGPT2HFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
model._load(
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel
|
||||
)
|
||||
else:
|
||||
lowmem = maybe_low_cpu_mem_usage()
|
||||
# We must disable low_cpu_mem_usage (by setting lowmem to {}) if
|
||||
# using a GPT-2 model because GPT-2 is not compatible with this
|
||||
# feature yet
|
||||
if(koboldai_vars.model_type == "gpt2"):
|
||||
lowmem = {}
|
||||
koboldai_vars.lazy_load = False # Also, lazy loader doesn't support GPT-2 models
|
||||
|
||||
# If we're using torch_lazy_loader, we need to get breakmodel config
|
||||
# early so that it knows where to load the individual model tensors
|
||||
if (utils.HAS_ACCELERATE or koboldai_vars.lazy_load and koboldai_vars.hascuda and koboldai_vars.breakmodel) and not koboldai_vars.nobreakmodel:
|
||||
device_config(model_config)
|
||||
|
||||
# Download model from Huggingface if it does not exist, otherwise load locally
|
||||
|
||||
#If we specify a model and it's in the root directory, we need to move it to the models directory (legacy folder structure to new)
|
||||
if os.path.isdir(koboldai_vars.model.replace('/', '_')):
|
||||
import shutil
|
||||
shutil.move(koboldai_vars.model.replace('/', '_'), "models/{}".format(koboldai_vars.model.replace('/', '_')))
|
||||
if(koboldai_vars.lazy_load): # If we're using lazy loader, we need to figure out what the model's hidden layers are called
|
||||
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(model_config)
|
||||
except Exception as e:
|
||||
metamodel = GPTNeoForCausalLM.from_config(model_config)
|
||||
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
||||
utils.module_names = list(metamodel.state_dict().keys())
|
||||
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
||||
with maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(enable=koboldai_vars.lazy_load, callback=get_lazy_load_callback(utils.num_layers(model_config)) if koboldai_vars.lazy_load else None, dematerialized_modules=True):
|
||||
if(koboldai_vars.lazy_load): # torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
|
||||
lowmem = {}
|
||||
if(os.path.isdir(koboldai_vars.custmodpth)):
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||
except Exception as e:
|
||||
if("out of memory" in traceback.format_exc().lower()):
|
||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||
except Exception as e:
|
||||
if("out of memory" in traceback.format_exc().lower()):
|
||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||
else:
|
||||
old_rebuild_tensor = torch._utils._rebuild_tensor
|
||||
def new_rebuild_tensor(storage: Union[torch_lazy_loader.LazyTensor, torch.Storage], storage_offset, shape, stride):
|
||||
if(not isinstance(storage, torch_lazy_loader.LazyTensor)):
|
||||
dtype = storage.dtype
|
||||
else:
|
||||
dtype = storage.storage_type.dtype
|
||||
if(not isinstance(dtype, torch.dtype)):
|
||||
dtype = storage.storage_type(0).dtype
|
||||
if(dtype is torch.float32 and len(shape) >= 2):
|
||||
koboldai_vars.fp32_model = True
|
||||
return old_rebuild_tensor(storage, storage_offset, shape, stride)
|
||||
torch._utils._rebuild_tensor = new_rebuild_tensor
|
||||
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||
except Exception as e:
|
||||
if("out of memory" in traceback.format_exc().lower()):
|
||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||
|
||||
torch._utils._rebuild_tensor = old_rebuild_tensor
|
||||
|
||||
if not (args.colab or args.cacheonly) or args.savemodel:
|
||||
import shutil
|
||||
tokenizer.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')))
|
||||
if(koboldai_vars.fp32_model and ("breakmodel" not in globals() or not breakmodel.disk_blocks)): # Use save_pretrained to convert fp32 models to fp16, unless we are using disk cache because save_pretrained is not supported in that case
|
||||
model = model.half()
|
||||
model.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), max_shard_size="500MiB")
|
||||
else: # For fp16 models, we can just copy the model files directly
|
||||
import transformers.configuration_utils
|
||||
import transformers.modeling_utils
|
||||
import transformers.file_utils
|
||||
import huggingface_hub
|
||||
legacy = packaging.version.parse(transformers_version) < packaging.version.parse("4.22.0.dev0")
|
||||
# Save the config.json
|
||||
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, transformers.configuration_utils.CONFIG_NAME, revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.configuration_utils.CONFIG_NAME))
|
||||
if(utils.num_shards is None):
|
||||
# Save the pytorch_model.bin of an unsharded model
|
||||
try:
|
||||
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, transformers.modeling_utils.WEIGHTS_NAME, revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.modeling_utils.WEIGHTS_NAME))
|
||||
except:
|
||||
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, "model.safetensors", revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), "model.safetensors"))
|
||||
else:
|
||||
with open(utils.from_pretrained_index_filename) as f:
|
||||
map_data = json.load(f)
|
||||
filenames = set(map_data["weight_map"].values())
|
||||
# Save the pytorch_model.bin.index.json of a sharded model
|
||||
shutil.move(os.path.realpath(utils.from_pretrained_index_filename), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.modeling_utils.WEIGHTS_INDEX_NAME))
|
||||
# Then save the pytorch_model-#####-of-#####.bin files
|
||||
for filename in filenames:
|
||||
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, filename, revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), filename))
|
||||
shutil.rmtree("cache/")
|
||||
|
||||
if(koboldai_vars.badwordsids is koboldai_settings.badwordsids_default and koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")):
|
||||
koboldai_vars.badwordsids = [[v] for k, v in tokenizer.get_vocab().items() if any(c in str(k) for c in "<>[]") if koboldai_vars.newlinemode != "s" or str(k) != "</s>"]
|
||||
|
||||
patch_causallm(model)
|
||||
|
||||
if(koboldai_vars.hascuda):
|
||||
if(koboldai_vars.usegpu):
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
model = model.half().to(koboldai_vars.gpu_device)
|
||||
generator = model.generate
|
||||
elif(koboldai_vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
if(not koboldai_vars.lazy_load):
|
||||
device_config(model.config)
|
||||
move_model_to_devices(model)
|
||||
elif(utils.HAS_ACCELERATE and __import__("breakmodel").disk_blocks > 0):
|
||||
move_model_to_devices(model)
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
generator = model.generate
|
||||
else:
|
||||
model = model.to('cpu').float()
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
generator = model.generate
|
||||
elif(utils.HAS_ACCELERATE and __import__("breakmodel").disk_blocks > 0):
|
||||
move_model_to_devices(model)
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
generator = model.generate
|
||||
else:
|
||||
model.to('cpu').float()
|
||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||
generator = model.generate
|
||||
model = GenericHFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
model._load(
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel
|
||||
)
|
||||
|
||||
# TODO: Convert everywhere to use model.tokenizer
|
||||
tokenizer = model.tokenizer
|
||||
print("Cool")
|
||||
# Use the Generic implementation
|
||||
# END
|
||||
|
||||
# Suppress Author's Note by flagging square brackets (Old implementation)
|
||||
#vocab = tokenizer.get_vocab()
|
||||
#vocab_keys = vocab.keys()
|
||||
@@ -5492,7 +4873,7 @@ def core_generate(text: list, _min: int, _max: int, found_entries: set, is_core:
|
||||
found_entries = found_entries or set()
|
||||
|
||||
if model:
|
||||
model.kai_scanner_excluded_world_info = found_entries
|
||||
model.model.kai_scanner_excluded_world_info = found_entries
|
||||
|
||||
koboldai_vars._prompt = koboldai_vars.prompt
|
||||
|
||||
@@ -5833,7 +5214,8 @@ def torch_raw_generate(
|
||||
|
||||
with torch.no_grad():
|
||||
start_time = time.time()
|
||||
genout = generator(
|
||||
# HACK: raw_generate functions should be in the model itself
|
||||
genout = model.model.generate(
|
||||
gen_in,
|
||||
do_sample=True,
|
||||
max_length=min(len(prompt_tokens) + max_new, koboldai_vars.max_length),
|
||||
|
950
model.py
Normal file
950
model.py
Normal file
@@ -0,0 +1,950 @@
|
||||
# TODO:
|
||||
# - Intertwine stoppers and streaming and such
|
||||
# - Add raw_generate functions to this
|
||||
# - Support TPU
|
||||
# - Support APIs
|
||||
# - Support RWKV
|
||||
|
||||
import bisect
|
||||
import gc
|
||||
import shutil
|
||||
import contextlib
|
||||
import functools
|
||||
import itertools
|
||||
import json
|
||||
import os
|
||||
import traceback
|
||||
import zipfile
|
||||
import utils
|
||||
import breakmodel
|
||||
|
||||
import torch
|
||||
from torch.nn import Embedding
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
from logger import logger
|
||||
import torch_lazy_loader
|
||||
from typing import Dict, List, Optional, Union
|
||||
from transformers import StoppingCriteria, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel, modeling_utils, AutoModelForTokenClassification, AutoConfig
|
||||
|
||||
# Previously under condition HAS_ACCELERATE, but I'm quite sure accelerate
|
||||
# is now a dependency.
|
||||
import accelerate.utils
|
||||
|
||||
import koboldai_settings
|
||||
|
||||
class InferenceModel:
|
||||
def __init__(self) -> None:
|
||||
self.gen_config = {}
|
||||
self.token_gen_hooks = []
|
||||
|
||||
def generate(
|
||||
self,
|
||||
prompt_tokens: Union[List[int], torch.Tensor],
|
||||
max_new_tokens: int,
|
||||
do_streaming: bool = False,
|
||||
do_dynamic_wi: bool = False,
|
||||
single_line: bool = False,
|
||||
batch_count: int = 1,
|
||||
) -> torch.Tensor:
|
||||
raise NotImplementedError("generate() was not overridden")
|
||||
|
||||
def _post_token_gen(self, input_ids: torch.LongTensor) -> None:
|
||||
for hook in self.token_gen_hooks:
|
||||
hook(input_ids)
|
||||
|
||||
|
||||
class HFTorchInferenceModel:
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
lazy_load: bool,
|
||||
low_mem: bool,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.model_name = model_name
|
||||
self.lazy_load = lazy_load
|
||||
self.low_mem = low_mem
|
||||
|
||||
self.model = None
|
||||
self.tokenizer = None
|
||||
self.model_config = None
|
||||
|
||||
def generate(
|
||||
self,
|
||||
prompt_tokens: Union[List[int], torch.Tensor],
|
||||
max_new_tokens: int,
|
||||
do_streaming: bool = False,
|
||||
do_dynamic_wi: bool = False,
|
||||
single_line: bool = False,
|
||||
batch_count: int = 1,
|
||||
) -> torch.Tensor:
|
||||
raise NotImplementedError("AHHHH")
|
||||
|
||||
self.gen_config = {
|
||||
"do_streaming": do_streaming,
|
||||
"do_dynamic_wi": do_dynamic_wi,
|
||||
"stop_at_genamt": do_dynamic_wi,
|
||||
}
|
||||
|
||||
def _get_model(self, location: str, tf_kwargs: Dict):
|
||||
try:
|
||||
return AutoModelForCausalLM.from_pretrained(
|
||||
location,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
**tf_kwargs
|
||||
)
|
||||
except Exception as e:
|
||||
if "out of memory" in traceback.format_exc().lower():
|
||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||
return GPTNeoForCausalLM.from_pretrained(
|
||||
location,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
**tf_kwargs
|
||||
)
|
||||
|
||||
def _get_tokenizer(self, location: str):
|
||||
std_kwargs = {"revision": utils.koboldai_vars.revision, "cache_dir": "cache"}
|
||||
|
||||
suppliers = [
|
||||
# Fast tokenizer disabled by default as per HF docs:
|
||||
# > Note: Make sure to pass use_fast=False when loading
|
||||
# OPT’s tokenizer with AutoTokenizer to get the correct
|
||||
# tokenizer.
|
||||
lambda: AutoTokenizer.from_pretrained(location, use_fast=False, **std_kwargs),
|
||||
lambda: AutoTokenizer.from_pretrained(location, **std_kwargs),
|
||||
|
||||
# Fallback to GPT2Tokenizer
|
||||
lambda: GPT2Tokenizer.from_pretrained(location, **std_kwargs),
|
||||
lambda: GPT2Tokenizer.from_pretrained("gpt2", **std_kwargs),
|
||||
]
|
||||
|
||||
for i, try_get_tokenizer in enumerate(suppliers):
|
||||
try:
|
||||
return try_get_tokenizer()
|
||||
except Exception as e:
|
||||
# If we error on each attempt, raise the last one
|
||||
if i == len(suppliers) - 1:
|
||||
raise e
|
||||
|
||||
def get_local_model_path(
|
||||
self,
|
||||
legacy: bool = False,
|
||||
ignore_existance: bool = False
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Returns a string of the model's path locally, or None if it is not downloaded.
|
||||
If ignore_existance is true, it will always return a path.
|
||||
"""
|
||||
|
||||
basename = utils.koboldai_vars.model.replace("/", "_")
|
||||
if legacy:
|
||||
ret = basename
|
||||
else:
|
||||
ret = os.path.join("models", basename)
|
||||
|
||||
if os.path.isdir(ret) or ignore_existance:
|
||||
return ret
|
||||
return None
|
||||
|
||||
|
||||
def get_hidden_size(self) -> int:
|
||||
return self.model.get_input_embeddings().embedding_dim
|
||||
|
||||
|
||||
def _move_to_devices(self) -> None:
|
||||
if not utils.koboldai_vars.breakmodel:
|
||||
if utils.koboldai_vars.usegpu:
|
||||
self.model = self.model.half().to(utils.koboldai_vars.gpu_device)
|
||||
else:
|
||||
self.model = self.model.to('cpu').float()
|
||||
return
|
||||
|
||||
for key, value in self.model.state_dict().items():
|
||||
target_dtype = torch.float32 if breakmodel.primary_device == "cpu" else torch.float16
|
||||
if value.dtype is not target_dtype:
|
||||
accelerate.utils.set_module_tensor_to_device(self.model, key, target_dtype)
|
||||
|
||||
disk_blocks = breakmodel.disk_blocks
|
||||
gpu_blocks = breakmodel.gpu_blocks
|
||||
ram_blocks = len(utils.layers_module_names) - sum(gpu_blocks)
|
||||
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
|
||||
device_map = {}
|
||||
|
||||
for name in utils.layers_module_names:
|
||||
layer = int(name.rsplit(".", 1)[1])
|
||||
device = ("disk" if layer < disk_blocks else "cpu") if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
|
||||
device_map[name] = device
|
||||
|
||||
for name in utils.get_missing_module_names(self.model, list(device_map.keys())):
|
||||
device_map[name] = breakmodel.primary_device
|
||||
|
||||
breakmodel.dispatch_model_ex(
|
||||
self.model,
|
||||
device_map,
|
||||
main_device=breakmodel.primary_device,
|
||||
offload_buffers=True,
|
||||
offload_dir="accelerate-disk-cache"
|
||||
)
|
||||
|
||||
gc.collect()
|
||||
return
|
||||
|
||||
# == Old non-accelerate stuff
|
||||
# model.half()
|
||||
# gc.collect()
|
||||
|
||||
# if(hasattr(model, "transformer")):
|
||||
# model.transformer.wte.to(breakmodel.primary_device)
|
||||
# model.transformer.ln_f.to(breakmodel.primary_device)
|
||||
# if(hasattr(model, 'lm_head')):
|
||||
# model.lm_head.to(breakmodel.primary_device)
|
||||
# if(hasattr(model.transformer, 'wpe')):
|
||||
# model.transformer.wpe.to(breakmodel.primary_device)
|
||||
# elif(not hasattr(model.model, "decoder")):
|
||||
# model.model.embed_tokens.to(breakmodel.primary_device)
|
||||
# model.model.layer_norm.to(breakmodel.primary_device)
|
||||
# model.lm_head.to(breakmodel.primary_device)
|
||||
# model.model.embed_positions.to(breakmodel.primary_device)
|
||||
# else:
|
||||
# model.model.decoder.embed_tokens.to(breakmodel.primary_device)
|
||||
# if(model.model.decoder.project_in is not None):
|
||||
# model.model.decoder.project_in.to(breakmodel.primary_device)
|
||||
# if(model.model.decoder.project_out is not None):
|
||||
# model.model.decoder.project_out.to(breakmodel.primary_device)
|
||||
# model.model.decoder.embed_positions.to(breakmodel.primary_device)
|
||||
# gc.collect()
|
||||
# GPTNeoModel.forward = breakmodel.new_forward_neo
|
||||
# if("GPTJModel" in globals()):
|
||||
# GPTJModel.forward = breakmodel.new_forward_neo # type: ignore
|
||||
# if("XGLMModel" in globals()):
|
||||
# XGLMModel.forward = breakmodel.new_forward_xglm # type: ignore
|
||||
# if("OPTDecoder" in globals()):
|
||||
# OPTDecoder.forward = breakmodel.new_forward_opt # type: ignore
|
||||
# generator = model.generate
|
||||
# if(hasattr(model, "transformer")):
|
||||
# breakmodel.move_hidden_layers(model.transformer)
|
||||
# elif(not hasattr(model.model, "decoder")):
|
||||
# breakmodel.move_hidden_layers(model.model, model.model.layers)
|
||||
# else:
|
||||
# breakmodel.move_hidden_layers(model.model.decoder, model.model.decoder.layers)
|
||||
|
||||
# Function to patch transformers to use our soft prompt
|
||||
def patch_embedding(self) -> None:
|
||||
if getattr(Embedding, "_koboldai_patch_causallm_model", None):
|
||||
Embedding._koboldai_patch_causallm_model = self.model
|
||||
return
|
||||
|
||||
old_embedding_call = Embedding.__call__
|
||||
|
||||
kai_model = self
|
||||
def new_embedding_call(self, input_ids, *args, **kwargs):
|
||||
# Don't touch embeddings for models other than the core inference model (that's us!)
|
||||
if Embedding._koboldai_patch_causallm_model.get_input_embeddings() is not self:
|
||||
return old_embedding_call(self, input_ids, *args, **kwargs)
|
||||
|
||||
assert input_ids is not None
|
||||
|
||||
if utils.koboldai_vars.sp is not None:
|
||||
shifted_input_ids = input_ids - kai_model.model.config.vocab_size
|
||||
|
||||
input_ids.clamp_(max=kai_model.model.config.vocab_size - 1)
|
||||
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
|
||||
|
||||
if utils.koboldai_vars.sp is not None:
|
||||
utils.koboldai_vars.sp = utils.koboldai_vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
|
||||
inputs_embeds = torch.where(
|
||||
(shifted_input_ids >= 0)[..., None],
|
||||
utils.koboldai_vars.sp[shifted_input_ids.clamp(min=0)],
|
||||
inputs_embeds,
|
||||
)
|
||||
|
||||
return inputs_embeds
|
||||
|
||||
Embedding.__call__ = new_embedding_call
|
||||
Embedding._koboldai_patch_causallm_model = self.model
|
||||
|
||||
|
||||
def _get_lazy_load_callback(self, n_layers: int, convert_to_float16: bool = True):
|
||||
if not self.lazy_load:
|
||||
return
|
||||
|
||||
if utils.args.breakmodel_disklayers is not None:
|
||||
breakmodel.disk_blocks = utils.args.breakmodel_disklayers
|
||||
|
||||
disk_blocks = breakmodel.disk_blocks
|
||||
gpu_blocks = breakmodel.gpu_blocks
|
||||
ram_blocks = ram_blocks = n_layers - sum(gpu_blocks)
|
||||
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
|
||||
|
||||
def lazy_load_callback(
|
||||
model_dict: Dict[str, Union[torch_lazy_loader.LazyTensor, torch.Tensor]],
|
||||
f,
|
||||
**_,
|
||||
):
|
||||
if lazy_load_callback.nested:
|
||||
return
|
||||
lazy_load_callback.nested = True
|
||||
|
||||
device_map: Dict[str, Union[str, int]] = {}
|
||||
|
||||
@functools.lru_cache(maxsize=None)
|
||||
def get_original_key(key):
|
||||
return max(
|
||||
(
|
||||
original_key
|
||||
for original_key in utils.module_names
|
||||
if original_key.endswith(key)
|
||||
),
|
||||
key=len,
|
||||
)
|
||||
|
||||
for key, value in model_dict.items():
|
||||
original_key = get_original_key(key)
|
||||
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(
|
||||
original_key.startswith(n) for n in utils.layers_module_names
|
||||
):
|
||||
device_map[key] = (
|
||||
utils.koboldai_vars.gpu_device
|
||||
if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu
|
||||
else "cpu"
|
||||
if not utils.koboldai_vars.hascuda or not utils.koboldai_vars.breakmodel
|
||||
else breakmodel.primary_device
|
||||
)
|
||||
else:
|
||||
layer = int(
|
||||
max(
|
||||
(
|
||||
n
|
||||
for n in utils.layers_module_names
|
||||
if original_key.startswith(n)
|
||||
),
|
||||
key=len,
|
||||
).rsplit(".", 1)[1]
|
||||
)
|
||||
device = (
|
||||
utils.koboldai_vars.gpu_device
|
||||
if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu
|
||||
else "disk"
|
||||
if layer < disk_blocks and layer < ram_blocks
|
||||
else "cpu"
|
||||
if not utils.koboldai_vars.hascuda or not utils.koboldai_vars.breakmodel
|
||||
else "shared"
|
||||
if layer < ram_blocks
|
||||
else bisect.bisect_right(
|
||||
cumulative_gpu_blocks, layer - ram_blocks
|
||||
)
|
||||
)
|
||||
device_map[key] = device
|
||||
|
||||
if utils.num_shards is None or utils.current_shard == 0:
|
||||
utils.offload_index = {}
|
||||
if utils.HAS_ACCELERATE:
|
||||
if os.path.isdir("accelerate-disk-cache"):
|
||||
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
|
||||
# (the folder doesn't contain any subfolders so os.remove will do just fine)
|
||||
for filename in os.listdir("accelerate-disk-cache"):
|
||||
try:
|
||||
os.remove(
|
||||
os.path.join("accelerate-disk-cache", filename)
|
||||
)
|
||||
except OSError:
|
||||
pass
|
||||
os.makedirs("accelerate-disk-cache", exist_ok=True)
|
||||
if utils.num_shards is not None:
|
||||
num_tensors = len(
|
||||
utils.get_sharded_checkpoint_num_tensors(
|
||||
utils.from_pretrained_model_name,
|
||||
utils.from_pretrained_index_filename,
|
||||
**utils.from_pretrained_kwargs,
|
||||
)
|
||||
)
|
||||
else:
|
||||
num_tensors = len(device_map)
|
||||
print(flush=True)
|
||||
utils.koboldai_vars.status_message = "Loading model"
|
||||
utils.koboldai_vars.total_layers = num_tensors
|
||||
utils.koboldai_vars.loaded_layers = 0
|
||||
utils.bar = tqdm(
|
||||
total=num_tensors,
|
||||
desc="Loading model tensors",
|
||||
file=utils.UIProgressBarFile(),
|
||||
)
|
||||
|
||||
with zipfile.ZipFile(f, "r") as z:
|
||||
try:
|
||||
last_storage_key = None
|
||||
zipfolder = os.path.basename(os.path.normpath(f)).split(".")[0]
|
||||
f = None
|
||||
current_offset = 0
|
||||
able_to_pin_layers = True
|
||||
if utils.num_shards is not None:
|
||||
utils.current_shard += 1
|
||||
for key in sorted(
|
||||
device_map.keys(),
|
||||
key=lambda k: (model_dict[k].key, model_dict[k].seek_offset),
|
||||
):
|
||||
storage_key = model_dict[key].key
|
||||
if (
|
||||
storage_key != last_storage_key
|
||||
or model_dict[key].seek_offset < current_offset
|
||||
):
|
||||
last_storage_key = storage_key
|
||||
if isinstance(f, zipfile.ZipExtFile):
|
||||
f.close()
|
||||
try:
|
||||
f = z.open(f"archive/data/{storage_key}")
|
||||
except:
|
||||
f = z.open(f"{zipfolder}/data/{storage_key}")
|
||||
current_offset = 0
|
||||
if current_offset != model_dict[key].seek_offset:
|
||||
f.read(model_dict[key].seek_offset - current_offset)
|
||||
current_offset = model_dict[key].seek_offset
|
||||
device = device_map[key]
|
||||
size = functools.reduce(
|
||||
lambda x, y: x * y, model_dict[key].shape, 1
|
||||
)
|
||||
dtype = model_dict[key].dtype
|
||||
nbytes = (
|
||||
size
|
||||
if dtype is torch.bool
|
||||
else size
|
||||
* (
|
||||
(
|
||||
torch.finfo
|
||||
if dtype.is_floating_point
|
||||
else torch.iinfo
|
||||
)(dtype).bits
|
||||
>> 3
|
||||
)
|
||||
)
|
||||
# print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
|
||||
model_dict[key] = model_dict[key].materialize(
|
||||
f, map_location="cpu"
|
||||
)
|
||||
if model_dict[key].dtype is torch.float32:
|
||||
utils.koboldai_vars.fp32_model = True
|
||||
if (
|
||||
convert_to_float16
|
||||
and breakmodel.primary_device != "cpu"
|
||||
and utils.koboldai_vars.hascuda
|
||||
and (utils.koboldai_vars.breakmodel or utils.koboldai_vars.usegpu)
|
||||
and model_dict[key].dtype is torch.float32
|
||||
):
|
||||
model_dict[key] = model_dict[key].to(torch.float16)
|
||||
if breakmodel.primary_device == "cpu" or (
|
||||
not utils.koboldai_vars.usegpu
|
||||
and not utils.koboldai_vars.breakmodel
|
||||
and model_dict[key].dtype is torch.float16
|
||||
):
|
||||
model_dict[key] = model_dict[key].to(torch.float32)
|
||||
if device == "shared":
|
||||
model_dict[key] = model_dict[key].to("cpu").detach_()
|
||||
if able_to_pin_layers and utils.HAS_ACCELERATE:
|
||||
try:
|
||||
model_dict[key] = model_dict[key].pin_memory()
|
||||
except:
|
||||
able_to_pin_layers = False
|
||||
elif device == "disk":
|
||||
accelerate.utils.offload_weight(
|
||||
model_dict[key],
|
||||
get_original_key(key),
|
||||
"accelerate-disk-cache",
|
||||
index=utils.offload_index,
|
||||
)
|
||||
model_dict[key] = model_dict[key].to("meta")
|
||||
else:
|
||||
model_dict[key] = model_dict[key].to(device)
|
||||
# print("OK", flush=True)
|
||||
current_offset += nbytes
|
||||
utils.bar.update(1)
|
||||
utils.koboldai_vars.loaded_layers += 1
|
||||
finally:
|
||||
if (
|
||||
utils.num_shards is None
|
||||
or utils.current_shard >= utils.num_shards
|
||||
):
|
||||
if utils.offload_index:
|
||||
for name, tensor in utils.named_buffers:
|
||||
dtype = tensor.dtype
|
||||
if (
|
||||
convert_to_float16
|
||||
and breakmodel.primary_device != "cpu"
|
||||
and utils.koboldai_vars.hascuda
|
||||
and (
|
||||
utils.koboldai_vars.breakmodel or utils.koboldai_vars.usegpu
|
||||
)
|
||||
):
|
||||
dtype = torch.float16
|
||||
if breakmodel.primary_device == "cpu" or (
|
||||
not utils.koboldai_vars.usegpu
|
||||
and not utils.koboldai_vars.breakmodel
|
||||
):
|
||||
dtype = torch.float32
|
||||
if (
|
||||
name in model_dict
|
||||
and model_dict[name].dtype is not dtype
|
||||
):
|
||||
model_dict[name] = model_dict[name].to(dtype)
|
||||
if tensor.dtype is not dtype:
|
||||
tensor = tensor.to(dtype)
|
||||
if name not in utils.offload_index:
|
||||
accelerate.utils.offload_weight(
|
||||
tensor,
|
||||
name,
|
||||
"accelerate-disk-cache",
|
||||
index=utils.offload_index,
|
||||
)
|
||||
accelerate.utils.save_offload_index(
|
||||
utils.offload_index, "accelerate-disk-cache"
|
||||
)
|
||||
utils.bar.close()
|
||||
utils.bar = None
|
||||
utils.koboldai_vars.status_message = ""
|
||||
lazy_load_callback.nested = False
|
||||
if isinstance(f, zipfile.ZipExtFile):
|
||||
f.close()
|
||||
|
||||
lazy_load_callback.nested = False
|
||||
return lazy_load_callback
|
||||
|
||||
@contextlib.contextmanager
|
||||
def _maybe_use_float16(self, always_use: bool = False):
|
||||
if always_use or (utils.koboldai_vars.hascuda and self.low_mem and (utils.koboldai_vars.usegpu or utils.koboldai_vars.breakmodel)):
|
||||
original_dtype = torch.get_default_dtype()
|
||||
torch.set_default_dtype(torch.float16)
|
||||
yield True
|
||||
torch.set_default_dtype(original_dtype)
|
||||
else:
|
||||
yield False
|
||||
|
||||
def breakmodel_device_list(self, n_layers, primary=None, selected=None):
|
||||
# TODO: Find a better place for this or rework this
|
||||
|
||||
# HACK: Tttttttterrrible structure_hack
|
||||
class colors:
|
||||
PURPLE = '\033[95m'
|
||||
BLUE = '\033[94m'
|
||||
CYAN = '\033[96m'
|
||||
GREEN = '\033[92m'
|
||||
YELLOW = '\033[93m'
|
||||
RED = '\033[91m'
|
||||
END = '\033[0m'
|
||||
UNDERLINE = '\033[4m'
|
||||
|
||||
device_count = torch.cuda.device_count()
|
||||
if(device_count < 2):
|
||||
primary = None
|
||||
gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0]
|
||||
print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
|
||||
for i in range(device_count):
|
||||
name = torch.cuda.get_device_name(i)
|
||||
if(len(name) > 47):
|
||||
name = "..." + name[-44:]
|
||||
row_color = colors.END
|
||||
sep_color = colors.YELLOW
|
||||
print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}")
|
||||
row_color = colors.END
|
||||
sep_color = colors.YELLOW
|
||||
if(utils.HAS_ACCELERATE):
|
||||
print(f"{row_color}{colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){colors.END}")
|
||||
print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}")
|
||||
|
||||
def breakmodel_device_config(self, config):
|
||||
# TODO: Find a better place for this or rework this
|
||||
|
||||
# HACK: Tttttttterrrible structure_hack
|
||||
class colors:
|
||||
PURPLE = '\033[95m'
|
||||
BLUE = '\033[94m'
|
||||
CYAN = '\033[96m'
|
||||
GREEN = '\033[92m'
|
||||
YELLOW = '\033[93m'
|
||||
RED = '\033[91m'
|
||||
END = '\033[0m'
|
||||
UNDERLINE = '\033[4m'
|
||||
|
||||
global breakmodel, generator
|
||||
import breakmodel
|
||||
n_layers = utils.num_layers(config)
|
||||
|
||||
if utils.args.cpu:
|
||||
breakmodel.gpu_blocks = [0]*n_layers
|
||||
return
|
||||
|
||||
elif(utils.args.breakmodel_gpulayers is not None or (utils.HAS_ACCELERATE and utils.args.breakmodel_disklayers is not None)):
|
||||
try:
|
||||
if(not utils.args.breakmodel_gpulayers):
|
||||
breakmodel.gpu_blocks = []
|
||||
else:
|
||||
breakmodel.gpu_blocks = list(map(int, utils.args.breakmodel_gpulayers.split(',')))
|
||||
assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count()
|
||||
s = n_layers
|
||||
for i in range(len(breakmodel.gpu_blocks)):
|
||||
if(breakmodel.gpu_blocks[i] <= -1):
|
||||
breakmodel.gpu_blocks[i] = s
|
||||
break
|
||||
else:
|
||||
s -= breakmodel.gpu_blocks[i]
|
||||
assert sum(breakmodel.gpu_blocks) <= n_layers
|
||||
n_layers -= sum(breakmodel.gpu_blocks)
|
||||
if(utils.args.breakmodel_disklayers is not None):
|
||||
assert utils.args.breakmodel_disklayers <= n_layers
|
||||
breakmodel.disk_blocks = utils.args.breakmodel_disklayers
|
||||
n_layers -= utils.args.breakmodel_disklayers
|
||||
except:
|
||||
logger.warning("--breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0.")
|
||||
breakmodel.gpu_blocks = [n_layers]
|
||||
n_layers = 0
|
||||
elif(utils.args.breakmodel_layers is not None):
|
||||
breakmodel.gpu_blocks = [n_layers - max(0, min(n_layers, utils.args.breakmodel_layers))]
|
||||
n_layers -= sum(breakmodel.gpu_blocks)
|
||||
elif(utils.args.model is not None):
|
||||
logger.info("Breakmodel not specified, assuming GPU 0")
|
||||
breakmodel.gpu_blocks = [n_layers]
|
||||
n_layers = 0
|
||||
else:
|
||||
device_count = torch.cuda.device_count()
|
||||
if(device_count > 1):
|
||||
print(colors.CYAN + "\nPlease select one of your GPUs to be your primary GPU.")
|
||||
print("VRAM usage in your primary GPU will be higher than for your other ones.")
|
||||
print("It is recommended you make your fastest GPU your primary GPU.")
|
||||
self.breakmodel_device_list(n_layers)
|
||||
while(True):
|
||||
primaryselect = input("device ID> ")
|
||||
if(primaryselect.isnumeric() and 0 <= int(primaryselect) < device_count):
|
||||
breakmodel.primary_device = int(primaryselect)
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between 0 and {device_count-1}.{colors.END}")
|
||||
else:
|
||||
breakmodel.primary_device = 0
|
||||
|
||||
print(colors.PURPLE + "\nIf you don't have enough VRAM to run the model on a single GPU")
|
||||
print("you can split the model between your CPU and your GPU(s), or between")
|
||||
print("multiple GPUs if you have more than one.")
|
||||
print("By putting more 'layers' on a GPU or CPU, more computations will be")
|
||||
print("done on that device and more VRAM or RAM will be required on that device")
|
||||
print("(roughly proportional to number of layers).")
|
||||
print("It should be noted that GPUs are orders of magnitude faster than the CPU.")
|
||||
print(f"This model has{colors.YELLOW} {n_layers} {colors.PURPLE}layers.{colors.END}\n")
|
||||
|
||||
for i in range(device_count):
|
||||
self.breakmodel_device_list(n_layers, primary=breakmodel.primary_device, selected=i)
|
||||
print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n")
|
||||
while(True):
|
||||
layerselect = input("# of layers> ")
|
||||
if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers):
|
||||
layerselect = int(layerselect)
|
||||
layerselect = n_layers if layerselect == -1 else layerselect
|
||||
breakmodel.gpu_blocks.append(layerselect)
|
||||
n_layers -= layerselect
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
|
||||
if(n_layers == 0):
|
||||
break
|
||||
|
||||
if(utils.HAS_ACCELERATE and n_layers > 0):
|
||||
self.breakmodel_device_list(n_layers, primary=breakmodel.primary_device, selected=-1)
|
||||
print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into the disk cache?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n")
|
||||
while(True):
|
||||
layerselect = input("# of layers> ")
|
||||
if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers):
|
||||
layerselect = int(layerselect)
|
||||
layerselect = n_layers if layerselect == -1 else layerselect
|
||||
breakmodel.disk_blocks = layerselect
|
||||
n_layers -= layerselect
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
|
||||
|
||||
logger.init_ok("Final device configuration:", status="Info")
|
||||
self.breakmodel_device_list(n_layers, primary=breakmodel.primary_device)
|
||||
|
||||
# If all layers are on the same device, use the old GPU generation mode
|
||||
while(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0):
|
||||
breakmodel.gpu_blocks.pop()
|
||||
if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, utils.num_layers(config))):
|
||||
utils.koboldai_vars.breakmodel = False
|
||||
utils.koboldai_vars.usegpu = True
|
||||
utils.koboldai_vars.gpu_device = len(breakmodel.gpu_blocks)-1
|
||||
return
|
||||
|
||||
if(not breakmodel.gpu_blocks):
|
||||
logger.warning("Nothing assigned to a GPU, reverting to CPU only mode")
|
||||
import breakmodel
|
||||
breakmodel.primary_device = "cpu"
|
||||
utils.koboldai_vars.breakmodel = False
|
||||
utils.koboldai_vars.usegpu = False
|
||||
return
|
||||
|
||||
|
||||
class GenericHFTorchInferenceModel(HFTorchInferenceModel):
|
||||
def _load(self, save_model: bool) -> None:
|
||||
utils.koboldai_vars.allowsp = True
|
||||
|
||||
# Make model path the same as the model name to make this consistent
|
||||
# with the other loading method if it isn't a known model type. This
|
||||
# code is not just a workaround for below, it is also used to make the
|
||||
# behavior consistent with other loading methods - Henk717
|
||||
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
|
||||
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
|
||||
|
||||
if utils.koboldai_vars.model == "NeoCustom":
|
||||
utils.koboldai_vars.model = os.path.basename(os.path.normpath(utils.koboldai_vars.custmodpth))
|
||||
|
||||
# If we specify a model and it's in the root directory, we need to move
|
||||
# it to the models directory (legacy folder structure to new)
|
||||
if self.get_local_model_path(legacy=True):
|
||||
shutil.move(
|
||||
self.get_local_model_path(legacy=True, ignore_existance=True),
|
||||
self.get_local_model_path(ignore_existance=True)
|
||||
)
|
||||
|
||||
# Get the model_type from the config or assume a model type if it isn't present
|
||||
try:
|
||||
model_config = AutoConfig.from_pretrained(self.get_local_model_path() or utils.koboldai_vars.model, revision=utils.koboldai_vars.revision, cache_dir="cache")
|
||||
utils.koboldai_vars.model_type = model_config.model_type
|
||||
except ValueError as e:
|
||||
utils.koboldai_vars.model_type = {
|
||||
"NeoCustom": "gpt_neo",
|
||||
"GPT2Custom": "gpt2",
|
||||
}.get(utils.koboldai_vars.model)
|
||||
|
||||
if not utils.koboldai_vars.model_type:
|
||||
logger.warning("No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
|
||||
utils.koboldai_vars.model_type = "gpt_neo"
|
||||
|
||||
|
||||
tf_kwargs = {
|
||||
"low_cpu_mem_usage": True,
|
||||
}
|
||||
|
||||
if utils.koboldai_vars.model_type == "gpt2":
|
||||
# We must disable low_cpu_mem_usage and if using a GPT-2 model
|
||||
# because GPT-2 is not compatible with this feature yet.
|
||||
tf_kwargs.pop("low_cpu_mem_usage", None)
|
||||
|
||||
# Also, lazy loader doesn't support GPT-2 models
|
||||
utils.koboldai_vars.lazy_load = False
|
||||
|
||||
# If we're using torch_lazy_loader, we need to get breakmodel config
|
||||
# early so that it knows where to load the individual model tensors
|
||||
if utils.koboldai_vars.lazy_load and utils.koboldai_vars.hascuda and utils.koboldai_vars.breakmodel and not utils.koboldai_vars.nobreakmodel:
|
||||
self.breakmodel_device_config(model_config)
|
||||
|
||||
if utils.koboldai_vars.lazy_load:
|
||||
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
|
||||
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(model_config)
|
||||
except Exception as e:
|
||||
metamodel = GPTNeoForCausalLM.from_config(model_config)
|
||||
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
||||
utils.module_names = list(metamodel.state_dict().keys())
|
||||
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
||||
|
||||
# Download model from Huggingface if it does not exist, otherwise load locally
|
||||
with self._maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(
|
||||
enable=utils.koboldai_vars.lazy_load,
|
||||
callback=self._get_lazy_load_callback(utils.num_layers(model_config)) if utils.koboldai_vars.lazy_load else None,
|
||||
dematerialized_modules=True
|
||||
):
|
||||
if utils.koboldai_vars.lazy_load:
|
||||
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
|
||||
tf_kwargs.pop("low_cpu_mem_usage", None)
|
||||
|
||||
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
|
||||
|
||||
if self.get_local_model_path():
|
||||
# Model is stored locally, load it.
|
||||
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
|
||||
else:
|
||||
# Model not stored locally, we need to download it.
|
||||
|
||||
# _rebuild_tensor patch for casting dtype and supporting LazyTensors
|
||||
old_rebuild_tensor = torch._utils._rebuild_tensor
|
||||
def new_rebuild_tensor(
|
||||
storage: Union[torch_lazy_loader.LazyTensor, torch.Storage],
|
||||
storage_offset,
|
||||
shape,
|
||||
stride
|
||||
):
|
||||
if not isinstance(storage, torch_lazy_loader.LazyTensor):
|
||||
dtype = storage.dtype
|
||||
else:
|
||||
dtype = storage.storage_type.dtype
|
||||
if not isinstance(dtype, torch.dtype):
|
||||
dtype = storage.storage_type(0).dtype
|
||||
if dtype is torch.float32 and len(shape) >= 2:
|
||||
utils.koboldai_vars.fp32_model = True
|
||||
return old_rebuild_tensor(storage, storage_offset, shape, stride)
|
||||
|
||||
torch._utils._rebuild_tensor = new_rebuild_tensor
|
||||
self.model = self._get_model(utils.koboldai_vars.model, tf_kwargs)
|
||||
torch._utils._rebuild_tensor = old_rebuild_tensor
|
||||
|
||||
if save_model:
|
||||
self.tokenizer.save_pretrained(self.get_local_model_path(ignore_existance=True))
|
||||
|
||||
if utils.koboldai_vars.fp32_model and not breakmodel.disk_blocks:
|
||||
# Use save_pretrained to convert fp32 models to fp16,
|
||||
# unless we are using disk cache because save_pretrained
|
||||
# is not supported in that case
|
||||
model = model.half()
|
||||
model.save_pretrained(self.get_local_model_path(ignore_existance=True), max_shard_size="500MiB")
|
||||
|
||||
else:
|
||||
# For fp16 models, we can just copy the model files directly
|
||||
import transformers.configuration_utils
|
||||
import transformers.modeling_utils
|
||||
import transformers.file_utils
|
||||
import huggingface_hub
|
||||
|
||||
legacy = packaging.version.parse(transformers_version) < packaging.version.parse("4.22.0.dev0")
|
||||
# Save the config.json
|
||||
shutil.move(
|
||||
os.path.realpath(huggingface_hub.hf_hub_download(
|
||||
utils.koboldai_vars.model,
|
||||
transformers.configuration_utils.CONFIG_NAME,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
local_files_only=True,
|
||||
legacy_cache_layout=legacy
|
||||
)),
|
||||
os.path.join(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
transformers.configuration_utils.CONFIG_NAME
|
||||
)
|
||||
)
|
||||
|
||||
if utils.num_shards is None:
|
||||
# Save the pytorch_model.bin or model.safetensors of an unsharded model
|
||||
for possible_weight_name in [transformers.modeling_utils.WEIGHTS_NAME, "model.safetensors"]:
|
||||
try:
|
||||
shutil.move(
|
||||
os.path.realpath(huggingface_hub.hf_hub_download(
|
||||
utils.koboldai_vars.model,
|
||||
possible_weight_name,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
local_files_only=True,
|
||||
legacy_cache_layout=legacy
|
||||
)),
|
||||
os.path.join(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
possible_weight_name,
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
if possible_weight_name == "model.safetensors":
|
||||
raise e
|
||||
else:
|
||||
# Handle saving sharded models
|
||||
|
||||
with open(utils.from_pretrained_index_filename) as f:
|
||||
map_data = json.load(f)
|
||||
filenames = set(map_data["weight_map"].values())
|
||||
# Save the pytorch_model.bin.index.json of a sharded model
|
||||
shutil.move(
|
||||
os.path.realpath(utils.from_pretrained_index_filename),
|
||||
os.path.join(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
transformers.modeling_utils.WEIGHTS_INDEX_NAME
|
||||
)
|
||||
)
|
||||
# Then save the pytorch_model-#####-of-#####.bin files
|
||||
for filename in filenames:
|
||||
shutil.move(
|
||||
os.path.realpath(huggingface_hub.hf_hub_download(
|
||||
utils.koboldai_vars.model,
|
||||
filename,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
local_files_only=True,
|
||||
legacy_cache_layout=legacy
|
||||
)),
|
||||
os.path.join(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
filename
|
||||
)
|
||||
)
|
||||
shutil.rmtree("cache/")
|
||||
|
||||
if utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj"):
|
||||
utils.koboldai_vars.badwordsids = [[v] for k, v in self.tokenizer.get_vocab().items() if any(c in str(k) for c in "<>[]") if utils.koboldai_vars.newlinemode != "s" or str(k) != "</s>"]
|
||||
|
||||
self.patch_embedding()
|
||||
|
||||
if utils.koboldai_vars.hascuda:
|
||||
if utils.koboldai_vars.usegpu:
|
||||
# Use just VRAM
|
||||
model = model.half().to(utils.koboldai_vars.gpu_device)
|
||||
elif utils.koboldai_vars.breakmodel:
|
||||
# Use both RAM and VRAM (breakmodel)
|
||||
if not utils.koboldai_vars.lazy_load:
|
||||
self.breakmodel_device_config(model.config)
|
||||
self._move_to_devices()
|
||||
elif breakmodel.disk_blocks > 0:
|
||||
# Use disk
|
||||
self._move_to_devices()
|
||||
elif breakmodel.disk_blocks > 0:
|
||||
self._move_to_devices()
|
||||
else:
|
||||
# Use CPU
|
||||
self.model = self.model.to('cpu').float()
|
||||
elif breakmodel.disk_blocks > 0:
|
||||
self._move_to_devices()
|
||||
else:
|
||||
self.model = self.model.to('cpu').float()
|
||||
utils.koboldai_vars.modeldim = self.get_hidden_size()
|
||||
|
||||
|
||||
class CustomGPT2HFTorchInferenceModel(HFTorchInferenceModel):
|
||||
def _load(self, save_model: bool) -> None:
|
||||
utils.koboldai_vars.lazy_load = False
|
||||
|
||||
model_path = None
|
||||
|
||||
for possible_config_path in [
|
||||
utils.koboldai_vars.custmodpth,
|
||||
os.path.join("models", utils.koboldai_vars.custmodpth)
|
||||
]:
|
||||
try:
|
||||
with open(os.path.join(possible_config_path, "config.json"), "r") as file:
|
||||
# Unused?
|
||||
self.model_config = json.load(file)
|
||||
model_path = possible_config_path
|
||||
break
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
if not model_path:
|
||||
raise RuntimeError("Empty model_path!")
|
||||
|
||||
with self._maybe_use_float16():
|
||||
try:
|
||||
self.model = GPT2LMHeadModel.from_pretrained(utils.koboldai_vars.custmodpth, revision=utils.koboldai_vars.revision, cache_dir="cache")
|
||||
self.tokenizer = GPT2Tokenizer.from_pretrained(utils.koboldai_vars.custmodpth, revision=utils.koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
if "out of memory" in traceback.format_exc().lower():
|
||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||
raise e
|
||||
|
||||
if save_model:
|
||||
self.model.save_pretrained(self.get_local_model_path(ignore_existance=True), max_shard_size="500MiB")
|
||||
self.tokenizer.save_pretrained(self.get_local_model_path(ignore_existance=True))
|
||||
|
||||
utils.koboldai_vars.modeldim = self.get_hidden_size()
|
||||
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu:
|
||||
self.model = self.model.half().to(utils.koboldai_vars.gpu_device)
|
||||
else:
|
||||
self.model = self.model.to("cpu").float()
|
||||
|
||||
self.patch_causal_lm()
|
18
utils.py
18
utils.py
@@ -633,4 +633,20 @@ def get_missing_module_names(model: PreTrainedModel, names: List[str]) -> List[s
|
||||
else:
|
||||
recurse(c[1], head=name + ".")
|
||||
recurse(model)
|
||||
return missing_names
|
||||
return missing_names
|
||||
|
||||
class UIProgressBarFile(object):
|
||||
"""Write TQDM progress to the UI."""
|
||||
def write(self, bar):
|
||||
bar = bar.replace("\r", "").replace("\n", "").replace(chr(0), "")
|
||||
if bar != "" and [ord(num) for num in bar] != [27, 91, 65]: #No idea why we're getting the 27, 1, 65 character set, just killing to so we can move on
|
||||
#logger.info(bar)
|
||||
print('\r' + bar, end='')
|
||||
time.sleep(0.01)
|
||||
try:
|
||||
emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True, room="UI_1")
|
||||
except:
|
||||
pass
|
||||
|
||||
def flush(self):
|
||||
pass
|
Reference in New Issue
Block a user