Add 4bit plugin

This commit is contained in:
0cc4m
2023-05-28 22:54:36 +02:00
parent d71a63fa49
commit e49d35afc9
5 changed files with 233 additions and 404 deletions

View File

@@ -623,7 +623,6 @@ utils.socketio = socketio
# Weird import position to steal koboldai_vars from utils
from modeling.patches import patch_transformers
from modeling.inference_models.hf_torch_4bit import load_model_gptq_settings
#Load all of the model importers
import importlib

View File

@@ -0,0 +1,227 @@
from __future__ import annotations
import os
import glob
import json
import torch
import re
import shutil
import sys
from typing import Union
from transformers import GPTNeoForCausalLM, AutoTokenizer, LlamaTokenizer
from hf_bleeding_edge import AutoModelForCausalLM
import utils
import modeling.lazy_loader as lazy_loader
import koboldai_settings
from logger import logger, set_logger_verbosity
try:
import breakmodel
except ModuleNotFoundError as e:
# Breakmodel is only expected to work on GPU
if not utils.koboldai_vars.use_colab_tpu:
raise e
from modeling.inference_models.hf_torch import HFTorchInferenceModel
from modeling.tokenizer import GenericTokenizer
# 4-bit dependencies
import gptq
from pathlib import Path
from gptq.gptj import load_quant as gptj_load_quant
from gptq.gptneox import load_quant as gptneox_load_quant
from gptq.llama import load_quant as llama_load_quant
from gptq.opt import load_quant as opt_load_quant
from gptq.mpt import load_quant as mpt_load_quant
from gptq.offload import load_quant_offload
model_backend_name = "Huggingface GPTQ"
def load_model_gptq_settings(path):
try:
js = json.load(open(path + "/config.json", "r"))
except Exception as e:
return False, -1, -1, False, -1
gptq_model = False
gptq_bits = -1
gptq_groupsize = -1
gptq_file = False
gptq_version = -1
gptq_legacy_files = glob.glob(os.path.join(path, "4bit*.pt")) + glob.glob(os.path.join(path, "4bit*.safetensors"))
if "gptq_bits" in js:
gptq_model = True
gptq_bits = js["gptq_bits"]
gptq_groupsize = js.get("gptq_groupsize", -1)
safetensors_file = os.path.join(path, "model.safetensors")
pt_file = os.path.join(path, "model.ckpt")
gptq_file = safetensors_file if os.path.isfile(safetensors_file) else pt_file
gptq_version = js.get("gptq_version", -1)
elif gptq_legacy_files:
gptq_model = True
gptq_bits = 4
gptq_file = gptq_legacy_files[0]
fname = Path(gptq_file).parts[-1]
g = re.findall("^(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
gptq_groupsize = int(g[0]) if g else -1
gptq_version = -1
return gptq_model, gptq_bits, gptq_groupsize, gptq_file, gptq_version
def get_gptq_version(fpath):
v1_strings = ["zeros", "scales", "bias", "qweight"]
v2_strings = ["qzeros", "scales", "bias", "qweight"]
v3_strings = ["qzeros", "scales", "g_idx", "qweight"]
with open(fpath, "rb") as f:
data = str(f.read(1024*1024))
v0 = all([s in data for s in v1_strings]) and not "qzeros" in data
v1 = all([s in data for s in v2_strings])
v2 = all([s in data for s in v3_strings])
if v2:
if v0 or v1:
logger.warning(f"GPTQ model identified as v2, but v0={v0} and v1={v1}")
return 2
if v1:
if v0 or v2:
logger.warning(f"GPTQ model identified as v1, but v0={v0} and v2={v2}")
return 1
if v0:
if v1 or v2:
logger.warning(f"GPTQ model identified as v0, but v1={v1} and v2={v2}")
return 0
class model_backend(HFTorchInferenceModel):
def is_valid(self, model_name, model_path, menu_path):
gptq_model, _, _, _, _ = load_model_gptq_settings(model_path)
return gptq_model
def _load(self, save_model: bool, initial_load: bool) -> None:
# Make model path the same as the model name to make this consistent
# with the other loading method if it isn't a known model type. This
# code is not just a workaround for below, it is also used to make the
# behavior consistent with other loading methods - Henk717
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
self.init_model_config()
self.lazy_load = False
gpulayers = breakmodel.gpu_blocks
try:
self.gpu_layers_list = [int(l) for l in gpulayers.split(",")]
except (ValueError, AttributeError):
self.gpu_layers_list = [utils.num_layers(self.model_config)]
tf_kwargs = {
"low_cpu_mem_usage": True,
}
# If we're using torch_lazy_loader, we need to get breakmodel config
# early so that it knows where to load the individual model tensors
logger.debug("lazy_load: {} hascuda: {} breakmodel: {} nobreakmode: {}".format(self.lazy_load, utils.koboldai_vars.hascuda, self.breakmodel, self.nobreakmodel))
if (
self.lazy_load
and utils.koboldai_vars.hascuda
and utils.koboldai_vars.breakmodel
and not utils.koboldai_vars.nobreakmodel
):
self.breakmodel_device_config(self.model_config)
if self.lazy_load:
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
with lazy_loader.use_lazy_load(
dematerialized_modules=True, use_accelerate_init_empty_weights=True
):
try:
metamodel = AutoModelForCausalLM.from_config(self.model_config)
utils.layers_module_names = utils.get_layers_module_names(metamodel)
utils.module_names = list(metamodel.state_dict().keys())
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
except Exception as e:
logger.warning(f"Gave up on lazy loading due to {e}")
self.lazy_load = False
# Download model from Huggingface if it does not exist, otherwise load locally
with self._maybe_use_float16(), lazy_loader.use_lazy_load(
enable=self.lazy_load,
callback=self._get_lazy_load_callback(utils.num_layers(self.model_config))
if self.lazy_load
else None,
dematerialized_modules=True,
):
if self.lazy_load:
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
tf_kwargs.pop("low_cpu_mem_usage", None)
if self.get_local_model_path():
# Model is stored locally, load it.
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
else:
raise NotImplementedError("GPTQ Model downloading not implemented")
if not self.lazy_load:
utils.layers_module_names = utils.get_layers_module_names(self.model)
utils.module_names = list(self.model.state_dict().keys())
utils.named_buffers = list(self.model.named_buffers(recurse=True))
if (
utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
):
utils.koboldai_vars.badwordsids = [
[v]
for k, v in self.tokenizer.get_vocab().items()
if any(c in str(k) for c in "[]")
]
self.patch_embedding()
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _get_model(self, location: str, tf_kwargs: Dict):
gptq_model, gptq_bits, gptq_groupsize, gptq_file, gptq_version = load_model_gptq_settings(location)
if gptq_version < 0:
gptq_version = get_gptq_version(gptq_file)
gptq.modelutils.set_gptq_version(gptq_version)
model_type = self.get_model_type()
logger.info(f"Using GPTQ file: {gptq_file}, {gptq_bits}-bit model, type {model_type}, version {gptq_version}, groupsize {gptq_groupsize}")
if model_type == "gptj":
model = load_quant_offload(gptj_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list)
elif model_type == "gpt_neox":
model = load_quant_offload(gptneox_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list)
elif model_type == "llama":
model = load_quant_offload(llama_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list)
elif model_type == "opt":
model = load_quant_offload(opt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list)
elif model_type == "mpt":
model = load_quant_offload(mpt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list)
else:
raise RuntimeError(f"4-bit load failed. Model type {model_type} not supported in 4-bit")
return model
def _get_tokenizer(self, location: str):
model_type = self.get_model_type()
if model_type == "llama":
tokenizer = LlamaTokenizer.from_pretrained(location)
else:
tokenizer = AutoTokenizer.from_pretrained(location)
return GenericTokenizer(tokenizer)

View File

@@ -25,8 +25,12 @@ from modeling.inference_models.hf_torch import HFTorchInferenceModel
model_backend_name = "Huggingface"
class GenericHFTorchInferenceModel(HFTorchInferenceModel):
def load_config(self) -> None:
class model_backend(HFTorchInferenceModel):
def _initialize_model(self):
return
def _load(self, save_model: bool, initial_load: bool) -> None:
utils.koboldai_vars.allowsp = True
# Make model path the same as the model name to make this consistent
@@ -243,11 +247,6 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
)
shutil.rmtree("cache/")
if not self.lazy_load:
utils.layers_module_names = utils.get_layers_module_names(self.model)
utils.module_names = list(self.model.state_dict().keys())
utils.named_buffers = list(self.model.named_buffers(recurse=True))
self.patch_embedding()

View File

@@ -1,12 +1,8 @@
import os, sys
from typing import Optional
<<<<<<< HEAD
from hf_bleeding_edge import AutoConfig
=======
from transformers import AutoConfig
import warnings
>>>>>>> ebolam/Model_Plugins
import utils
import json
import koboldai_settings

View File

@@ -1,392 +0,0 @@
from __future__ import annotations
import os
import glob
import json
import torch
import re
import shutil
import sys
from typing import Union
from transformers import GPTNeoForCausalLM, AutoTokenizer, LlamaTokenizer
from hf_bleeding_edge import AutoModelForCausalLM
import utils
import modeling.lazy_loader as lazy_loader
import koboldai_settings
from logger import logger, set_logger_verbosity
try:
import breakmodel
except ModuleNotFoundError as e:
# Breakmodel is only expected to work on GPU
if not utils.koboldai_vars.use_colab_tpu:
raise e
from modeling.inference_models.hf_torch import HFTorchInferenceModel
from modeling.tokenizer import GenericTokenizer
# 4-bit dependencies
import gptq
from pathlib import Path
from gptq.gptj import load_quant as gptj_load_quant
from gptq.gptneox import load_quant as gptneox_load_quant
from gptq.llama import load_quant as llama_load_quant
from gptq.opt import load_quant as opt_load_quant
from gptq.mpt import load_quant as mpt_load_quant
from gptq.offload import load_quant_offload
def prepare_4bit_load(modelpath):
path_4bit = os.path.join(modelpath, "model.safetensors")
if os.path.isfile(path_4bit):
return path_4bit, False
path_4bit = os.path.join(modelpath, "model.ckpt")
if os.path.isfile(path_4bit):
return path_4bit, False
# Legacy format support
paths_4bit = ["4bit*.safetensors", "4bit*.pt", "4bit-old.safetensors", "4bit-old.pt"]
result = False
groupsize = -1
for p in paths_4bit:
p = os.path.join(modelpath, p)
val = [v for v in glob.glob(p) if "4bit-old" not in v]
if val:
result = val[0]
fname = Path(result).parts[-1]
g = re.findall("^(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
groupsize = -1
if g:
groupsize = int(g[0])
break
return result, groupsize
def load_model_gptq_settings():
try:
js = json.loads(str(model.model_config).partition(' ')[2])
except Exception as e:
try:
try:
js = json.load(open(utils.koboldai_vars.custmodpth + "/config.json", "r"))
except Exception as e:
js = json.load(open(utils.koboldai_vars.custmodpth.replace('/', '_') + "/config.json", "r"))
except Exception as e:
utils.koboldai_vars.gptq_model = False
return
gptq_legacy_files = glob.glob(os.path.join(utils.koboldai_vars.custmodpth, "4bit*.pt")) + glob.glob(os.path.join(utils.koboldai_vars.custmodpth, "4bit*.safetensors"))
if "gptq_bits" in js:
utils.koboldai_vars.gptq_model = True
utils.koboldai_vars.gptq_bits = js["gptq_bits"]
utils.koboldai_vars.gptq_groupsize = js.get("gptq_groupsize", -1)
safetensors_file = os.path.join(utils.koboldai_vars.custmodpth, "model.safetensors")
pt_file = os.path.join(utils.koboldai_vars.custmodpth, "model.ckpt")
utils.koboldai_vars.gptq_file = safetensors_file if os.path.isfile(safetensors_file) else pt_file
utils.koboldai_vars.gptq_version = js.get("gptq_version", -1)
elif gptq_legacy_files:
utils.koboldai_vars.gptq_model = True
utils.koboldai_vars.gptq_bits = 4
utils.koboldai_vars.gptq_file = gptq_legacy_files[0]
fname = Path(utils.koboldai_vars.gptq_file).parts[-1]
g = re.findall("^(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
utils.koboldai_vars.gptq_groupsize = int(g[0]) if g else -1
utils.koboldai_vars.gptq_version = -1
else:
utils.koboldai_vars.gptq_model = False
def get_gptq_version(fpath):
v1_strings = ["zeros", "scales", "bias", "qweight"]
v2_strings = ["qzeros", "scales", "bias", "qweight"]
v3_strings = ["qzeros", "scales", "g_idx", "qweight"]
with open(fpath, "rb") as f:
data = str(f.read(1024*1024))
v0 = all([s in data for s in v1_strings]) and not "qzeros" in data
v1 = all([s in data for s in v2_strings])
v2 = all([s in data for s in v3_strings])
if v2:
if v0 or v1:
logger.warning(f"GPTQ model identified as v2, but v0={v0} and v1={v1}")
return 2
if v1:
if v0 or v2:
logger.warning(f"GPTQ model identified as v1, but v0={v0} and v2={v2}")
return 1
if v0:
if v1 or v2:
logger.warning(f"GPTQ model identified as v0, but v1={v1} and v2={v2}")
return 0
class HFTorch4BitInferenceModel(HFTorchInferenceModel):
def _load(self, save_model: bool, initial_load: bool) -> None:
utils.koboldai_vars.allowsp = True
# Make model path the same as the model name to make this consistent
# with the other loading method if it isn't a known model type. This
# code is not just a workaround for below, it is also used to make the
# behavior consistent with other loading methods - Henk717
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
if self.model_name == "NeoCustom":
self.model_name = os.path.basename(
os.path.normpath(utils.koboldai_vars.custmodpth)
)
utils.koboldai_vars.model = self.model_name
self.init_model_config()
gpulayers = utils.args.breakmodel_gpulayers
try:
self.gpu_layers_list = [int(l) for l in gpulayers.split(",")]
except (ValueError, AttributeError):
self.gpu_layers_list = [utils.num_layers(self.model_config)]
tf_kwargs = {
"low_cpu_mem_usage": True,
}
# If we're using torch_lazy_loader, we need to get breakmodel config
# early so that it knows where to load the individual model tensors
if (
self.lazy_load
and utils.koboldai_vars.hascuda
and utils.koboldai_vars.breakmodel
and not utils.koboldai_vars.nobreakmodel
):
self.breakmodel_device_config(self.model_config)
if self.lazy_load:
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
with lazy_loader.use_lazy_load(
dematerialized_modules=True, use_accelerate_init_empty_weights=True
):
try:
metamodel = AutoModelForCausalLM.from_config(self.model_config)
utils.layers_module_names = utils.get_layers_module_names(metamodel)
utils.module_names = list(metamodel.state_dict().keys())
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
except Exception as e:
logger.warning(f"Gave up on lazy loading due to {e}")
self.lazy_load = False
# Download model from Huggingface if it does not exist, otherwise load locally
with self._maybe_use_float16(), lazy_loader.use_lazy_load(
enable=self.lazy_load,
callback=self._get_lazy_load_callback(utils.num_layers(self.model_config))
if self.lazy_load
else None,
dematerialized_modules=True,
):
if self.lazy_load:
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
tf_kwargs.pop("low_cpu_mem_usage", None)
if self.get_local_model_path():
# Model is stored locally, load it.
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
else:
# Model not stored locally, we need to download it.
# _rebuild_tensor patch for casting dtype and supporting LazyTensors
old_rebuild_tensor = torch._utils._rebuild_tensor
def new_rebuild_tensor(
storage: Union[lazy_loader.LazyTensor, torch.Storage],
storage_offset,
shape,
stride,
):
if not isinstance(storage, lazy_loader.LazyTensor):
dtype = storage.dtype
else:
dtype = storage.storage_type.dtype
if not isinstance(dtype, torch.dtype):
dtype = storage.storage_type(0).dtype
if dtype is torch.float32 and len(shape) >= 2:
utils.koboldai_vars.fp32_model = True
return old_rebuild_tensor(storage, storage_offset, shape, stride)
torch._utils._rebuild_tensor = new_rebuild_tensor
self.model = self._get_model(self.model_name, tf_kwargs)
self.tokenizer = self._get_tokenizer(self.model_name)
torch._utils._rebuild_tensor = old_rebuild_tensor
if save_model:
self.tokenizer.save_pretrained(
self.get_local_model_path(ignore_existance=True)
)
if utils.koboldai_vars.fp32_model and not breakmodel.disk_blocks:
# Use save_pretrained to convert fp32 models to fp16,
# unless we are using disk cache because save_pretrained
# is not supported in that case
self.model = self.model.half()
self.model.save_pretrained(
self.get_local_model_path(ignore_existance=True),
max_shard_size="500MiB",
)
else:
# For fp16 models, we can just copy the model files directly
import transformers.configuration_utils
import transformers.modeling_utils
import transformers.file_utils
import huggingface_hub
# Save the config.json
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
transformers.configuration_utils.CONFIG_NAME,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(ignore_existance=True),
transformers.configuration_utils.CONFIG_NAME,
),
)
if utils.num_shards is None:
# Save the pytorch_model.bin or model.safetensors of an unsharded model
any_success = False
possible_checkpoint_names = [
transformers.modeling_utils.WEIGHTS_NAME,
"model.safetensors",
]
for possible_checkpoint_name in possible_checkpoint_names:
try:
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
possible_checkpoint_name,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(
ignore_existance=True
),
possible_checkpoint_name,
),
)
any_success = True
except Exception:
pass
if not any_success:
raise RuntimeError(f"Couldn't find any of {possible_checkpoint_names} in cache for {self.model_name} @ '{utils.koboldai_vars.revisison}'")
else:
# Handle saving sharded models
with open(utils.from_pretrained_index_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
# Save the pytorch_model.bin.index.json of a sharded model
shutil.move(
os.path.realpath(utils.from_pretrained_index_filename),
os.path.join(
self.get_local_model_path(ignore_existance=True),
transformers.modeling_utils.WEIGHTS_INDEX_NAME,
),
)
# Then save the pytorch_model-#####-of-#####.bin files
for filename in filenames:
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
filename,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(
ignore_existance=True
),
filename,
),
)
shutil.rmtree("cache/")
if not self.lazy_load:
utils.layers_module_names = utils.get_layers_module_names(self.model)
utils.module_names = list(self.model.state_dict().keys())
utils.named_buffers = list(self.model.named_buffers(recurse=True))
if (
utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
):
utils.koboldai_vars.badwordsids = [
[v]
for k, v in self.tokenizer.get_vocab().items()
if any(c in str(k) for c in "[]")
]
self.patch_embedding()
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _get_model(self, location: str, tf_kwargs: Dict):
if not utils.koboldai_vars.custmodpth:
pass
groupsize = utils.koboldai_vars.gptq_groupsize
path_4bit, legacy_groupsize = prepare_4bit_load(utils.koboldai_vars.custmodpth)
if utils.koboldai_vars.gptq_version < 0:
utils.koboldai_vars.gptq_version = get_gptq_version(path_4bit)
gptq.modelutils.set_gptq_version(utils.koboldai_vars.gptq_version)
if legacy_groupsize is not False:
groupsize = legacy_groupsize
logger.info(f"Using GPTQ file: {path_4bit}, {utils.koboldai_vars.gptq_bits}-bit model, type {utils.koboldai_vars.model_type}, version {utils.koboldai_vars.gptq_version}, groupsize {groupsize}")
if utils.koboldai_vars.model_type == "gptj":
model = load_quant_offload(gptj_load_quant, utils.koboldai_vars.custmodpth, path_4bit, utils.koboldai_vars.gptq_bits, groupsize, self.gpu_layers_list)
elif utils.koboldai_vars.model_type == "gpt_neox":
model = load_quant_offload(gptneox_load_quant, utils.koboldai_vars.custmodpth, path_4bit, utils.koboldai_vars.gptq_bits, groupsize, self.gpu_layers_list)
elif utils.koboldai_vars.model_type == "llama":
model = load_quant_offload(llama_load_quant, utils.koboldai_vars.custmodpth, path_4bit, utils.koboldai_vars.gptq_bits, groupsize, self.gpu_layers_list)
elif utils.koboldai_vars.model_type == "opt":
model = load_quant_offload(opt_load_quant, utils.koboldai_vars.custmodpth, path_4bit, utils.koboldai_vars.gptq_bits, groupsize, self.gpu_layers_list)
elif utils.koboldai_vars.model_type == "mpt":
model = load_quant_offload(mpt_load_quant, utils.koboldai_vars.custmodpth, path_4bit, utils.koboldai_vars.gptq_bits, groupsize, self.gpu_layers_list)
else:
raise RuntimeError(f"4-bit load failed. Model type {utils.koboldai_vars.model_type} not supported in 4-bit")
return model
def _get_tokenizer(self, location: str):
if utils.koboldai_vars.model_type == "llama":
tokenizer = LlamaTokenizer.from_pretrained(utils.koboldai_vars.custmodpth)
else:
tokenizer = AutoTokenizer.from_pretrained(utils.koboldai_vars.custmodpth)
return GenericTokenizer(tokenizer)