Disable `low_cpu_mem_usage` when using GPT-2
Attempting to use transformers 4.11.0's experimental `low_cpu_mem_usage` feature with GPT-2 models usually results in the output repeating a token over and over or otherwise containing an incoherent response.
This commit is contained in:
parent
7b56940ed7
commit
caef3b7460
13
aiserver.py
13
aiserver.py
|
@ -846,7 +846,7 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
|||
model_config = open(vars.custmodpth + "/config.json", "r")
|
||||
js = json.load(model_config)
|
||||
with(maybe_use_float16()):
|
||||
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
|
@ -858,17 +858,24 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
|||
generator = model.generate
|
||||
# If base HuggingFace model was chosen
|
||||
else:
|
||||
lowmem = maybe_low_cpu_mem_usage()
|
||||
# We must disable low_cpu_mem_usage (by setting lowmem to {}) if
|
||||
# using a GPT-2 model because GPT-2 is not compatible with this
|
||||
# feature yet
|
||||
if("/" not in vars.model and vars.model.lower().startswith("gpt2")):
|
||||
lowmem = {}
|
||||
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
|
||||
if(os.path.isdir(vars.model.replace('/', '_'))):
|
||||
with(maybe_use_float16()):
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/")
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model.replace('/', '_'), cache_dir="cache/", **lowmem)
|
||||
else:
|
||||
print("Model does not exist locally, attempting to download from Huggingface...")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, cache_dir="cache/")
|
||||
with(maybe_use_float16()):
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **lowmem)
|
||||
model = model.half()
|
||||
import shutil
|
||||
shutil.rmtree("cache/")
|
||||
|
|
Loading…
Reference in New Issue