mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Add CPU offloading support for GPT-NeoX, GPT-J and OPT
This commit is contained in:
10
aiserver.py
10
aiserver.py
@@ -3144,6 +3144,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
|
|
||||||
if offload_4bit:
|
if offload_4bit:
|
||||||
koboldai_vars.lazy_load = False
|
koboldai_vars.lazy_load = False
|
||||||
|
print("4-bit CPU offloader active")
|
||||||
|
|
||||||
# If we're using torch_lazy_loader, we need to get breakmodel config
|
# If we're using torch_lazy_loader, we need to get breakmodel config
|
||||||
# early so that it knows where to load the individual model tensors
|
# early so that it knows where to load the individual model tensors
|
||||||
@@ -3176,9 +3177,15 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
|
|
||||||
print(f"Trying to load {koboldai_vars.model_type} model in 4-bit")
|
print(f"Trying to load {koboldai_vars.model_type} model in 4-bit")
|
||||||
if koboldai_vars.model_type == "gptj":
|
if koboldai_vars.model_type == "gptj":
|
||||||
|
if offload_4bit:
|
||||||
|
model = load_quant_offload(gptj_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||||
|
else:
|
||||||
model = gptj_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
model = gptj_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
||||||
elif koboldai_vars.model_type == "gpt_neox":
|
elif koboldai_vars.model_type == "gpt_neox":
|
||||||
|
if offload_4bit:
|
||||||
|
model = load_quant_offload(gptneox_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||||
|
else:
|
||||||
model = gptneox_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
model = gptneox_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
||||||
elif koboldai_vars.model_type == "llama":
|
elif koboldai_vars.model_type == "llama":
|
||||||
@@ -3188,6 +3195,9 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
model = llama_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
model = llama_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||||
tokenizer = LlamaTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
tokenizer = LlamaTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
||||||
elif koboldai_vars.model_type == "opt":
|
elif koboldai_vars.model_type == "opt":
|
||||||
|
if offload_4bit:
|
||||||
|
model = load_quant_offload(opt_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||||
|
else:
|
||||||
model = opt_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
model = opt_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
|
||||||
else:
|
else:
|
||||||
|
Reference in New Issue
Block a user