diff --git a/aiserver.py b/aiserver.py index 82992461..2365f58b 100644 --- a/aiserver.py +++ b/aiserver.py @@ -3144,6 +3144,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal if offload_4bit: koboldai_vars.lazy_load = False + print("4-bit CPU offloader active") # If we're using torch_lazy_loader, we need to get breakmodel config # early so that it knows where to load the individual model tensors @@ -3176,10 +3177,16 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal print(f"Trying to load {koboldai_vars.model_type} model in 4-bit") if koboldai_vars.model_type == "gptj": - model = gptj_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) + if offload_4bit: + model = load_quant_offload(gptj_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list) + else: + model = gptj_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth) elif koboldai_vars.model_type == "gpt_neox": - model = gptneox_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) + if offload_4bit: + model = load_quant_offload(gptneox_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list) + else: + model = gptneox_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth) elif koboldai_vars.model_type == "llama": if offload_4bit: @@ -3188,7 +3195,10 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal model = llama_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) tokenizer = LlamaTokenizer.from_pretrained(koboldai_vars.custmodpth) elif koboldai_vars.model_type == "opt": - model = opt_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) + if offload_4bit: + model = load_quant_offload(opt_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list) + else: + model = opt_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize) tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth) else: raise RuntimeError(f"4-bit load failed. Model type {koboldai_vars.model_type} not supported in 4-bit")