mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Model: Add GenericTokenizer
Because Hugging Face doesnt have a consistant API across their own libraries
This commit is contained in:
@@ -12,6 +12,7 @@ from transformers import (
|
||||
GPT2Tokenizer,
|
||||
AutoTokenizer,
|
||||
)
|
||||
from modeling.tokenizer import GenericTokenizer
|
||||
|
||||
import utils
|
||||
|
||||
@@ -180,7 +181,7 @@ class InferenceModel:
|
||||
selected device(s) and preparing it for inference should be implemented here."""
|
||||
raise NotImplementedError
|
||||
|
||||
def _get_tokenizer(self, location: str) -> AutoTokenizer:
|
||||
def _get_tokenizer(self, location: str) -> GenericTokenizer:
|
||||
"""Returns the appropiate tokenizer for the location. Should be ran once and result stored in `tokenizer`.
|
||||
|
||||
Args:
|
||||
@@ -214,7 +215,7 @@ class InferenceModel:
|
||||
|
||||
for i, try_get_tokenizer in enumerate(suppliers):
|
||||
try:
|
||||
return try_get_tokenizer()
|
||||
return GenericTokenizer(try_get_tokenizer())
|
||||
except:
|
||||
# If we error on each attempt, raise the last one
|
||||
if i == len(suppliers) - 1:
|
||||
|
23
modeling/tokenizer.py
Normal file
23
modeling/tokenizer.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from typing import List, Union
|
||||
from tokenizers import Tokenizer
|
||||
import torch
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
|
||||
class GenericTokenizer:
|
||||
"""Bridges the gap between Transformers tokenizers and Tokenizers tokenizers. Why they aren't the same, I don't know."""
|
||||
|
||||
def __init__(self, tokenizer: Union[Tokenizer, PreTrainedTokenizer]) -> None:
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
# TODO: Get rid of this
|
||||
self._koboldai_header = []
|
||||
|
||||
def encode(self, text: str) -> list:
|
||||
return self.tokenizer.encode(text).ids
|
||||
|
||||
def decode(self, tokens: Union[int, List[int], torch.Tensor]) -> str:
|
||||
if isinstance(tokens, int):
|
||||
tokens = [tokens]
|
||||
|
||||
return self.tokenizer.decode(tokens)
|
Reference in New Issue
Block a user