mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Revert 'Arg Revision Workaround for TPU'
Turns out that file doesn't have access to arg, reverting. TPU revision support will have to wait until we have the proper value fixed.
This commit is contained in:
@@ -1461,48 +1461,48 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
|||||||
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
|
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
|
||||||
if(os.path.isdir(koboldai_vars.custmodpth)):
|
if(os.path.isdir(koboldai_vars.custmodpth)):
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
|
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
|
|
||||||
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
|
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
|
||||||
|
Reference in New Issue
Block a user