Revert 'Arg Revision Workaround for TPU'

Turns out that file doesn't have access to arg, reverting. TPU revision support will have to wait until we have the proper value fixed.
This commit is contained in:
Henk
2023-01-31 19:16:00 +01:00
parent e555a70a38
commit a80027384d

View File

@@ -1461,48 +1461,48 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True): with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
if(os.path.isdir(koboldai_vars.custmodpth)): if(os.path.isdir(koboldai_vars.custmodpth)):
try: try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache", use_fast=False) tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except Exception as e: except Exception as e:
try: try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
try: try:
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
try: try:
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))): elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
try: try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache", use_fast=False) tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except Exception as e: except Exception as e:
try: try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
try: try:
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
try: try:
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
else: else:
try: try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache", use_fast=False) tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except Exception as e: except Exception as e:
try: try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
try: try:
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
try: try:
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: except Exception as e:
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica)) #network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))