diff --git a/tpu_mtj_backend.py b/tpu_mtj_backend.py index d292de0e..02754d95 100644 --- a/tpu_mtj_backend.py +++ b/tpu_mtj_backend.py @@ -1461,48 +1461,48 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True): if(os.path.isdir(koboldai_vars.custmodpth)): try: - tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache", use_fast=False) + tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: - tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") + tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: try: - tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: - tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache") try: - model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") + model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: - model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") + model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache") elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))): try: - tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache", use_fast=False) + tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: - tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") + tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: try: - tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: - tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache") try: - model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") + model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: - model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") + model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache") else: try: - tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache", use_fast=False) + tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: - tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") + tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: try: - tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: - tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache") try: - model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") + model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache") except Exception as e: - model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") + model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache") #network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))