Accelerate: Remove HAS_ACCELERATE

Accelerate has been a dependency for a while, and as such we probably
shouldn't be lugging around code that assumes it isn't present.
This commit is contained in:
somebody
2023-02-26 12:18:06 -06:00
parent 5e3b0062ee
commit a73804ca1e
5 changed files with 29 additions and 48 deletions

View File

@@ -1458,8 +1458,6 @@ def get_model_info(model, directory=""):
pass
#elif model == 'customhuggingface':
# show_custom_model_box = True
elif not utils.HAS_ACCELERATE and not torch.cuda.is_available():
pass
elif args.cpu:
pass
else:
@@ -1486,13 +1484,13 @@ def get_model_info(model, directory=""):
break_values += [0] * (gpu_count - len(break_values))
emit('from_server', {'cmd': 'selected_model_info', 'key_value': key_value, 'key':key, 'multi_online_models': multi_online_models, 'default_url': default_url,
'gpu':gpu, 'layer_count':layer_count, 'breakmodel':breakmodel,
'disk_break_value': disk_blocks, 'accelerate': utils.HAS_ACCELERATE,
'disk_break_value': disk_blocks, 'accelerate': True,
'break_values': break_values, 'gpu_count': gpu_count,
'url': url, 'gpu_names': gpu_names, 'models_on_url': models_on_url,
'show_custom_model_box': show_custom_model_box}, broadcast=True, room="UI_1")
emit('selected_model_info', {'key_value': key_value, 'key':key,
'gpu':gpu, 'layer_count':layer_count, 'breakmodel':breakmodel, 'multi_online_models': multi_online_models, 'default_url': default_url,
'disk_break_value': disk_blocks, 'disk_break': utils.HAS_ACCELERATE,
'disk_break_value': disk_blocks, 'disk_break': True,
'break_values': break_values, 'gpu_count': gpu_count,
'url': url, 'gpu_names': gpu_names, 'models_on_url': models_on_url, 'show_online_model_select': show_online_model_select,
'bit_8_available': koboldai_vars.bit_8_available if koboldai_vars.experimental_features else False,
@@ -1525,7 +1523,7 @@ def get_layer_count(model, directory=""):
else:
model_config = AutoConfig.from_pretrained(model, revision=koboldai_vars.revision, cache_dir="cache")
try:
if ((utils.HAS_ACCELERATE and model_config.model_type != 'gpt2') or model_config.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not koboldai_vars.nobreakmodel:
if (model_config.model_type != 'gpt2' or model_config.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not koboldai_vars.nobreakmodel:
return utils.num_layers(model_config)
else:
return None
@@ -1819,12 +1817,12 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
# loadsettings()
logger.init("GPU support", status="Searching")
koboldai_vars.hascuda = torch.cuda.is_available() and not args.cpu
koboldai_vars.bmsupported = ((utils.HAS_ACCELERATE and koboldai_vars.model_type != 'gpt2') or koboldai_vars.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not koboldai_vars.nobreakmodel
koboldai_vars.bmsupported = ((koboldai_vars.model_type != 'gpt2') or koboldai_vars.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not koboldai_vars.nobreakmodel
if(args.breakmodel is not None and args.breakmodel):
logger.warning("--breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --breakmodel_gpulayers is used (see --help for details).")
if(args.breakmodel_layers is not None):
logger.warning("--breakmodel_layers is deprecated. Use --breakmodel_gpulayers instead (see --help for details).")
if(args.model and koboldai_vars.bmsupported and not args.breakmodel_gpulayers and not args.breakmodel_layers and (not utils.HAS_ACCELERATE or not args.breakmodel_disklayers)):
if(args.model and koboldai_vars.bmsupported and not args.breakmodel_gpulayers and not args.breakmodel_layers and (not args.breakmodel_disklayers)):
logger.warning("Model launched without the --breakmodel_gpulayers argument, defaulting to GPU only mode.")
koboldai_vars.bmsupported = False
if(not koboldai_vars.bmsupported and (args.breakmodel_gpulayers is not None or args.breakmodel_layers is not None or args.breakmodel_disklayers is not None)):
@@ -2206,7 +2204,7 @@ def lua_decode(tokens):
from transformers import GPT2Tokenizer
global tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
return utils.decodenewlines(tokenizer.decode(tokens))
return utils.decodenewlines(mtokenizer.decode(tokens))
#==================================================================#
# Encode string into list of token IDs using current tokenizer
@@ -3053,8 +3051,6 @@ def get_message(msg):
if not os.path.exists("settings/"):
os.mkdir("settings")
changed = True
if not utils.HAS_ACCELERATE:
msg['disk_layers'] = "0"
if os.path.exists("settings/" + koboldai_vars.model_selected.replace('/', '_') + ".breakmodel"):
with open("settings/" + koboldai_vars.model_selected.replace('/', '_') + ".breakmodel", "r") as file:
data = file.read().split('\n')[:2]
@@ -3995,7 +3991,7 @@ def generate(txt, minimum, maximum, found_entries=None):
if not koboldai_vars.quiet:
logger.debug(f"Prompt Min:{minimum}, Max:{maximum}")
logger.prompt(utils.decodenewlines(tokenizer.decode(txt)).encode("unicode_escape").decode("utf-8"))
logger.prompt(utils.decodenewlines(model.tokenizer.decode(txt)).encode("unicode_escape").decode("utf-8"))
# Store context in memory to use it for comparison with generated content
koboldai_vars.lastctx = utils.decodenewlines(tokenizer.decode(txt))
@@ -6384,8 +6380,6 @@ def UI_2_load_model(data):
if not os.path.exists("settings/"):
os.mkdir("settings")
changed = True
if not utils.HAS_ACCELERATE:
data['disk_layers'] = "0"
if os.path.exists("settings/" + data['model'].replace('/', '_') + ".breakmodel"):
with open("settings/" + data['model'].replace('/', '_') + ".breakmodel", "r") as file:
file_data = file.read().split('\n')[:2]

View File

@@ -235,11 +235,9 @@ gpu_blocks = []
disk_blocks = 0
primary_device = 0 if torch.cuda.device_count() > 0 else "cpu"
if utils.HAS_ACCELERATE:
from accelerate.hooks import attach_align_device_hook_on_blocks
from accelerate.utils import OffloadedWeightsLoader, check_device_map, extract_submodules_state_dict, offload_state_dict
from accelerate import dispatch_model
from accelerate.hooks import attach_align_device_hook_on_blocks
from accelerate.utils import OffloadedWeightsLoader, check_device_map, extract_submodules_state_dict, offload_state_dict
from accelerate import dispatch_model
def dispatch_model_ex(
model: nn.Module,

View File

@@ -1779,18 +1779,17 @@ class HFTorchInferenceModel(InferenceModel):
if utils.num_shards is None or utils.current_shard == 0:
utils.offload_index = {}
if utils.HAS_ACCELERATE:
if os.path.isdir("accelerate-disk-cache"):
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
# (the folder doesn't contain any subfolders so os.remove will do just fine)
for filename in os.listdir("accelerate-disk-cache"):
try:
os.remove(
os.path.join("accelerate-disk-cache", filename)
)
except OSError:
pass
os.makedirs("accelerate-disk-cache", exist_ok=True)
if os.path.isdir("accelerate-disk-cache"):
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
# (the folder doesn't contain any subfolders so os.remove will do just fine)
for filename in os.listdir("accelerate-disk-cache"):
try:
os.remove(
os.path.join("accelerate-disk-cache", filename)
)
except OSError:
pass
os.makedirs("accelerate-disk-cache", exist_ok=True)
if utils.num_shards is not None:
num_tensors = len(
utils.get_sharded_checkpoint_num_tensors(
@@ -1883,7 +1882,7 @@ class HFTorchInferenceModel(InferenceModel):
model_dict[key] = model_dict[key].to(torch.float32)
if device == "shared":
model_dict[key] = model_dict[key].to("cpu").detach_()
if able_to_pin_layers and utils.HAS_ACCELERATE:
if able_to_pin_layers:
try:
model_dict[key] = model_dict[key].pin_memory()
except:
@@ -1987,10 +1986,9 @@ class HFTorchInferenceModel(InferenceModel):
)
row_color = colors.END
sep_color = colors.YELLOW
if utils.HAS_ACCELERATE:
print(
f"{row_color}{colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){colors.END}"
)
print(
f"{row_color}{colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){colors.END}"
)
print(
f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}"
)
@@ -2007,9 +2005,7 @@ class HFTorchInferenceModel(InferenceModel):
breakmodel.gpu_blocks = [0] * n_layers
return
elif utils.args.breakmodel_gpulayers is not None or (
utils.HAS_ACCELERATE and utils.args.breakmodel_disklayers is not None
):
elif utils.args.breakmodel_gpulayers is not None or utils.args.breakmodel_disklayers is not None:
try:
if not utils.args.breakmodel_gpulayers:
breakmodel.gpu_blocks = []
@@ -2117,7 +2113,7 @@ class HFTorchInferenceModel(InferenceModel):
if n_layers == 0:
break
if utils.HAS_ACCELERATE and n_layers > 0:
if n_layers > 0:
self.breakmodel_device_list(
n_layers, primary=breakmodel.primary_device, selected=-1
)

View File

@@ -303,7 +303,7 @@ def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None, demate
torch.load = torch_load
if dematerialized_modules:
if use_accelerate_init_empty_weights and utils.HAS_ACCELERATE:
if use_accelerate_init_empty_weights:
import accelerate
init_empty_weights = accelerate.init_empty_weights()
init_empty_weights.__enter__()
@@ -334,7 +334,7 @@ def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None, demate
torch._utils._rebuild_tensor = old_rebuild_tensor
torch.load = old_torch_load
if dematerialized_modules:
if use_accelerate_init_empty_weights and utils.HAS_ACCELERATE:
if use_accelerate_init_empty_weights:
init_empty_weights.__exit__(None, None, None)
else:
torch.nn.Linear.__init__ = old_linear_init

View File

@@ -9,7 +9,6 @@ import requests
import requests.adapters
import time
import breakmodel
from transformers import __version__ as transformers_version
from transformers import PreTrainedModel
import packaging.version
from tqdm.auto import tqdm
@@ -21,12 +20,6 @@ import packaging.version
from pathlib import Path
from typing import List, Optional
HAS_ACCELERATE = packaging.version.parse(transformers_version) >= packaging.version.parse("4.20.0.dev0")
try:
import accelerate
except ImportError:
HAS_ACCELERATE = False
koboldai_vars = None
args = None
num_shards: Optional[int] = None