really really really sketchy breakmodel implementation

im gonna go lie down for an extended period of time
This commit is contained in:
somebody
2023-07-24 17:15:59 -05:00
parent ec040620ec
commit a73420c49c

View File

@@ -82,6 +82,79 @@ def get_gptq_version(fpath):
logger.warning(f"GPTQ model identified as v0, but v1={v1} and v2={v2}")
return 0, False
def load_quant_offload_device_map(
load_quant_func, model, checkpoint, wbits, groupsize, device_map, offload_type=0, force_bias=False,
):
from gptq.offload import (
find_layers,
llama_offload_forward,
gptneox_offload_forward,
gptj_offload_forward,
opt_offload_forward,
bigcode_offload_forward
)
from transformers.models.llama.modeling_llama import LlamaModel
from transformers.models.opt.modeling_opt import OPTModel
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXModel
from transformers.models.gptj.modeling_gptj import GPTJModel
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeModel
model = load_quant_func(model, checkpoint, wbits, groupsize, force_bias=force_bias)
print(device_map)
m, layers, remaining = find_layers(model)
type(m).non_offload_forward = type(m).forward
# Hook offload_forward into found model
if type(m) == LlamaModel:
type(m).forward = llama_offload_forward
elif type(m) == GPTNeoXModel:
type(m).forward = gptneox_offload_forward
elif type(m) == GPTJModel:
type(m).forward = gptj_offload_forward
elif type(m) == OPTModel:
type(m).forward = opt_offload_forward
elif type(m) == GPTBigCodeModel:
type(m).forward = bigcode_offload_forward
else:
raise RuntimeError(f"Model type {type(m)} not supported by CPU offloader")
layers_done = len([1 for v in device_map.values() if v != "cpu"])
print("LDone", layers_done)
m.cpu_device = torch.device("cpu")
m.fast_offload = layers_done > len(layers) // 2
m.layer_count = len(layers)
m.cpu_layers = len(layers) - layers_done
m.gpu_layers = layers_done
m.offload_type = offload_type
# HACK
m.primary_gpu = list(device_map.values())[0]
if "layers" not in dir(m):
m.layers = layers
print(len(layers))
print(len(device_map))
print(m.primary_gpu)
for i in range(len(layers)):
dev = None
for key, device in device_map.items():
key = int(*[x for x in key.split(".") if x.isdecimal()])
if key == i:
dev = device
break
if dev is None:
raise ValueError
layers[key].to(dev, torch.float16, False)
for module in remaining:
module.to(m.primary_gpu)
return model
class model_backend(HFTorchInferenceModel):
def is_valid(self, model_name, model_path, menu_path):
@@ -166,7 +239,7 @@ class model_backend(HFTorchInferenceModel):
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _patch_quant(self) -> None:
def _patch_quant(self, device_map) -> None:
# QuantLinear loads on the CPU by default, using a lot of RAM! If we
# load it to the same device that the weights are gonna be on, it
# mysteriously uses no additional VRAM
@@ -175,14 +248,54 @@ class model_backend(HFTorchInferenceModel):
from gptq import quant_v2
from gptq import quant_v1
def _ql_init_(self, *args, **kwargs):
ret = type(self)._unpatched_init(self, *args, **kwargs)
self.to("cuda:0")
return ret
def make_quant(module, names, bits, groupsize, name='', force_bias=False):
if isinstance(module, quant_v3.QuantLinear):
return
for quant_module in [quant_v3, quant_v2, quant_v1]:
quant_module.QuantLinear._unpatched_init = quant_module.QuantLinear.__init__
quant_module.QuantLinear.__init__ = _ql_init_
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
parts = name1.split(".")
device = None
for i in reversed(range(len(parts))):
maybe_key = ".".join(parts[:i])
if maybe_key in device_map:
device = device_map[maybe_key]
break
if device is None:
print(name1)
print(device_map)
raise ValueError
print("[ql]", name1, device)
delattr(module, attr)
ql = quant_v3.QuantLinear(
bits,
groupsize,
tmp.in_features,
tmp.out_features,
force_bias or tmp.bias is not None
)
ql = ql.to(device)
setattr(module, attr, ql)
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1, force_bias=force_bias)
quant_v3.make_quant = make_quant
# def _ql_init_(self, *args, **kwargs):
# ret = type(self)._unpatched_init(self, *args, **kwargs)
# self.to("cuda:0")
# return ret
# for quant_module in [quant_v3, quant_v2, quant_v1]:
# quant_module.QuantLinear._unpatched_init = quant_module.QuantLinear.__init__
# quant_module.QuantLinear.__init__ = _ql_init_
def _get_model(self, location: str, tf_kwargs: Dict):
@@ -193,9 +306,12 @@ class model_backend(HFTorchInferenceModel):
from gptq.opt import load_quant as opt_load_quant
from gptq.bigcode import load_quant as bigcode_load_quant
from gptq.mpt import load_quant as mpt_load_quant
from gptq.offload import load_quant_offload
self._patch_quant()
try:
import hf_bleeding_edge
from hf_bleeding_edge import AutoModelForCausalLM
except ImportError:
from transformers import AutoModelForCausalLM
gptq_model, gptq_bits, gptq_groupsize, gptq_file, gptq_version = load_model_gptq_settings(location)
v2_bias = False
@@ -208,22 +324,43 @@ class model_backend(HFTorchInferenceModel):
logger.info(f"Using GPTQ file: {gptq_file}, {gptq_bits}-bit model, type {model_type}, version {gptq_version}{' (with bias)' if v2_bias else ''}, groupsize {gptq_groupsize}")
device_map = {}
if self.lazy_load:
with lazy_loader.use_lazy_load(dematerialized_modules=True):
metamodel = AutoModelForCausalLM.from_config(self.model_config)
if utils.args.cpu:
device_map = {name: "cpu" for name in utils.layers_module_names}
for name in utils.get_missing_module_names(
metamodel, list(device_map.keys())
):
device_map[name] = "cpu"
else:
device_map = self.breakmodel_config.get_device_map(
metamodel
)
self._patch_quant(device_map)
with lazy_loader.use_lazy_load(
enable=self.lazy_load,
dematerialized_modules=False,
):
if model_type == "gptj":
model = load_quant_offload(gptj_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
model = load_quant_offload_device_map(gptj_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, device_map, force_bias=v2_bias)
elif model_type == "gpt_neox":
model = load_quant_offload(gptneox_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
model = load_quant_offload_device_map(gptneox_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, device_map, force_bias=v2_bias)
elif model_type == "llama":
model = load_quant_offload(llama_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
print("YE LAMA")
# model = llama_load_quant(location, gptq_file, gptq_bits, gptq_groupsize, force_bias=v2_bias)
model = load_quant_offload_device_map(llama_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, device_map, force_bias=v2_bias)
elif model_type == "opt":
model = load_quant_offload(opt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
model = load_quant_offload_device_map(opt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, device_map, force_bias=v2_bias)
elif model_type == "mpt":
model = load_quant_offload(mpt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias)
model = load_quant_offload_device_map(mpt_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, device_map, force_bias=v2_bias)
elif model_type == "gpt_bigcode":
model = load_quant_offload(bigcode_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, self.gpu_layers_list, force_bias=v2_bias).half()
model = load_quant_offload_device_map(bigcode_load_quant, location, gptq_file, gptq_bits, gptq_groupsize, device_map, force_bias=v2_bias).half()
else:
try:
import auto_gptq
@@ -231,12 +368,6 @@ class model_backend(HFTorchInferenceModel):
except ImportError:
raise RuntimeError(f"4-bit load failed. Model type {model_type} not supported in 4-bit")
try:
import hf_bleeding_edge
from hf_bleeding_edge import AutoModelForCausalLM
except ImportError:
from transformers import AutoModelForCausalLM
# Monkey patch in hf_bleeding_edge to avoid having to trust remote code
auto_gptq.modeling._utils.AutoConfig = hf_bleeding_edge.AutoConfig
auto_gptq.modeling._base.AutoConfig = hf_bleeding_edge.AutoConfig