Fix for custom huggingface model menu entry

This commit is contained in:
ebolam
2023-05-19 14:28:36 -04:00
parent a1036465af
commit 9df1f03b12
4 changed files with 139 additions and 97 deletions

View File

@@ -233,7 +233,7 @@ model_menu = {
"mainmenu": [
MenuPath("Load a model from its directory", "NeoCustom"),
MenuPath("Load an old GPT-2 model (eg CloverEdition)", "GPT2Custom"),
MenuFolder("Load custom model from Hugging Face", "customhuggingface"),
MenuModel("Load custom model from Hugging Face", "customhuggingface", ""),
MenuFolder("Adventure Models", "adventurelist"),
MenuFolder("Novel Models", "novellist"),
MenuFolder("Chat Models", "chatlist"),
@@ -6135,7 +6135,7 @@ def UI_2_select_model(data):
valid_loaders = {}
for model_backend in set([item.model_backend for sublist in model_menu for item in model_menu[sublist] if item.name == data['id']]):
valid_loaders[model_backend] = model_backends[model_backend].get_requested_parameters(data["name"], data["path"] if 'path' in data else None, data["menu"])
emit("selected_model_info", {"model_backends": valid_loaders, "preselected": "Huggingface"})
emit("selected_model_info", {"model_backends": valid_loaders})
else:
#Get directories
paths, breadcrumbs = get_folder_path_info(data['path'])
@@ -6149,24 +6149,20 @@ def UI_2_select_model(data):
output.append({'label': path[1], 'name': path[0], 'size': "", "menu": "Custom", 'path': path[0], 'isMenu': not valid})
emit("open_model_load_menu", {"items": output+[{'label': 'Return to Main Menu', 'name':'mainmenu', 'size': "", "menu": "Custom", 'isMenu': True}], 'breadcrumbs': breadcrumbs})
return
#We've selected a menu
if data['model'] in model_menu:
sendModelSelection(menu=data['model'])
#We've selected a custom line
elif data['menu'] in ("NeoCustom", "GPT2Custom"):
get_model_info(data['menu'], directory=data['display_name'])
#We've selected a custom menu folder
elif data['model'] in ("NeoCustom", "GPT2Custom") and 'path' in data:
sendModelSelection(menu=data['model'], folder=data['path'])
#We've selected a custom menu
elif data['model'] in ("NeoCustom", "GPT2Custom", "customhuggingface"):
sendModelSelection(menu=data['model'], folder="./models")
else:
#We now have some model we want to potentially load.
#First we need to send the client the model parameters (layers, etc)
get_model_info(data['model'])
#==================================================================#
# Event triggered when user changes a model parameter and it's set to resubmit
#==================================================================#
@socketio.on('resubmit_model_info')
@logger.catch
def UI_2_resubmit_model_info(data):
valid_loaders = {}
for model_backend in set([item.model_backend for sublist in model_menu for item in model_menu[sublist] if item.name == data['id']]):
valid_loaders[model_backend] = model_backends[model_backend].get_requested_parameters(data["name"], data["path"] if 'path' in data else None, data["menu"], parameters=data)
emit("selected_model_info", {"model_backends": valid_loaders})
#==================================================================#
# Event triggered when user loads a model

View File

@@ -33,95 +33,111 @@ class HFInferenceModel(InferenceModel):
except:
return False
def get_requested_parameters(self, model_name, model_path, menu_path):
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
requested_parameters = []
if not self.hf_torch:
return []
if model_path is not None and os.path.exists(model_path):
self.model_config = AutoConfig.from_pretrained(model_path)
elif(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
self.model_config = AutoConfig.from_pretrained("models/{}".format(model_name.replace('/', '_')), revision=utils.koboldai_vars.revision, cache_dir="cache")
else:
self.model_config = AutoConfig.from_pretrained(model_name, revision=utils.koboldai_vars.revision, cache_dir="cache")
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
if layer_count is not None and layer_count >= 0 and not self.nobreakmodel:
if os.path.exists("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_"))) and 'base_url' not in vars(self):
with open("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_")), "r") as f:
temp = json.load(f)
break_values = temp['layers'] if 'layers' in temp else [layer_count]
disk_blocks = temp['disk_layers'] if 'disk_layers' in temp else 0
if model_name == 'customhuggingface':
requested_parameters.append({
"uitype": "text",
"unit": "text",
"label": "Huggingface Model Name",
"id": "custom_model_name",
"default": parameters["custom_model_name"] if "custom_model_name" in parameters and parameters["custom_model_name"] != "" else "",
"check": {"value": "", 'check': "!="},
"tooltip": "Model name from https://huggingface.co/",
"menu_path": "",
"refresh_model_inputs": True,
"extra_classes": ""
})
if model_name != 'customhuggingface' or "custom_model_name" in parameters:
model_name = parameters["custom_model_name"] if "custom_model_name" in parameters and parameters["custom_model_name"] != "" else model_name
if model_path is not None and os.path.exists(model_path):
self.model_config = AutoConfig.from_pretrained(model_path)
elif(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
self.model_config = AutoConfig.from_pretrained("models/{}".format(model_name.replace('/', '_')), revision=utils.koboldai_vars.revision, cache_dir="cache")
else:
break_values = [layer_count]
disk_blocks = 0
break_values = [int(x) for x in break_values if x != '' and x is not None]
gpu_count = torch.cuda.device_count()
break_values += [0] * (gpu_count - len(break_values))
if disk_blocks is not None:
break_values += [int(disk_blocks)]
for i in range(gpu_count):
self.model_config = AutoConfig.from_pretrained(model_name, revision=utils.koboldai_vars.revision, cache_dir="cache")
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
if layer_count is not None and layer_count >= 0 and not self.nobreakmodel:
if os.path.exists("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_"))) and 'base_url' not in vars(self):
with open("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_")), "r") as f:
temp = json.load(f)
break_values = temp['layers'] if 'layers' in temp else [layer_count]
disk_blocks = temp['disk_layers'] if 'disk_layers' in temp else 0
else:
break_values = [layer_count]
disk_blocks = 0
break_values = [int(x) for x in break_values if x != '' and x is not None]
gpu_count = torch.cuda.device_count()
break_values += [0] * (gpu_count - len(break_values))
if disk_blocks is not None:
break_values += [int(disk_blocks)]
for i in range(gpu_count):
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "{} Layers".format(torch.cuda.get_device_name(i)),
"id": "{}_Layers".format(i),
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": break_values[i],
"tooltip": "The number of layers to put on {}.".format(torch.cuda.get_device_name(i)),
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "{} Layers".format(torch.cuda.get_device_name(i)),
"id": "{}_Layers".format(i),
"label": "CPU Layers",
"id": "CPU_Layers",
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": break_values[i],
"tooltip": "The number of layers to put on {}.".format(torch.cuda.get_device_name(i)),
"default": layer_count - sum(break_values),
"tooltip": "The number of layers to put on the CPU. This will use your system RAM. It will also do inference partially on CPU. Use if you must.",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "CPU Layers",
"id": "CPU_Layers",
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": layer_count - sum(break_values),
"tooltip": "The number of layers to put on the CPU. This will use your system RAM. It will also do inference partially on CPU. Use if you must.",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
if disk_blocks is not None:
if disk_blocks is not None:
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "Disk Layers",
"id": "Disk_Layers",
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": disk_blocks,
"tooltip": "The number of layers to put on the disk. This will use your hard drive. The is VERY slow in comparison to GPU or CPU. Use as a last resort.",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
else:
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "Disk Layers",
"id": "Disk_Layers",
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": disk_blocks,
"tooltip": "The number of layers to put on the disk. This will use your hard drive. The is VERY slow in comparison to GPU or CPU. Use as a last resort.",
"uitype": "toggle",
"unit": "bool",
"label": "Use GPU",
"id": "use_gpu",
"default": False,
"tooltip": "Whether or not to use the GPU",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
else:
requested_parameters.append({
"uitype": "toggle",
"unit": "bool",
"label": "Use GPU",
"id": "use_gpu",
"default": False,
"tooltip": "Whether or not to use the GPU",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
return requested_parameters
@@ -153,7 +169,7 @@ class HFInferenceModel(InferenceModel):
self.usegpu = parameters['use_gpu'] if 'use_gpu' in parameters else None
self.model_type = self.get_model_type()
self.breakmodel = ((self.model_type != 'gpt2') or self.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not self.nobreakmodel
self.model_name = parameters['id']
self.model_name = parameters['custom_model_name'] if 'custom_model_name' in parameters else parameters['id']
self.path = parameters['path'] if 'path' in parameters else None
def unload(self):

View File

@@ -4009,7 +4009,25 @@ function model_settings_checker() {
if (valid || missing_element) {
//if we are supposed to refresh when this value changes we'll resubmit
if ((this.getAttribute("refresh_model_inputs") == "true") && !missing_element && !this.noresubmit) {
console.log("resubmit");
//get an object of all the input settings from the user
data = {}
settings_area = document.getElementById(document.getElementById("modelplugin").value + "_settings_area");
for (const element of settings_area.querySelectorAll(".model_settings_input:not(.hidden)")) {
var element_data = element.value;
if (element.getAttribute("data_type") == "int") {
element_data = parseInt(element_data);
} else if (element.getAttribute("data_type") == "float") {
element_data = parseFloat(element_data);
} else if (element.getAttribute("data_type") == "bool") {
element_data = (element_data == 'on');
}
data[element.id.split("|")[1].replace("_value", "")] = element_data;
}
data = {...data, ...selected_model_data};
data['plugin'] = document.getElementById("modelplugin").value;
socket.emit("resubmit_model_info", data);
}
if ('sum' in this.check_data) {
for (const temp of this.check_data['sum']) {
@@ -4099,9 +4117,6 @@ function selected_model_info(sent_data) {
modelpluginoption.innerText = loader;
modelpluginoption.value = loader;
modelplugin.append(modelpluginoption);
if (loader == sent_data['preselected']) {
modelplugin.value = sent_data['preselected'];
}
//create the user input for each requested input
for (item of items) {

View File

@@ -1683,7 +1683,25 @@ function model_settings_checker() {
if (valid || missing_element) {
//if we are supposed to refresh when this value changes we'll resubmit
if ((this.getAttribute("refresh_model_inputs") == "true") && !missing_element && !this.noresubmit) {
console.log("resubmit");
//get an object of all the input settings from the user
data = {}
settings_area = document.getElementById(document.getElementById("modelplugin").value + "_settings_area");
for (const element of settings_area.querySelectorAll(".model_settings_input:not(.hidden)")) {
var element_data = element.value;
if (element.getAttribute("data_type") == "int") {
element_data = parseInt(element_data);
} else if (element.getAttribute("data_type") == "float") {
element_data = parseFloat(element_data);
} else if (element.getAttribute("data_type") == "bool") {
element_data = (element_data == 'on');
}
data[element.id.split("|")[1].replace("_value", "")] = element_data;
}
data = {...data, ...selected_model_data};
data['plugin'] = document.getElementById("modelplugin").value;
socket.emit("resubmit_model_info", data);
}
if ('sum' in this.check_data) {
for (const temp of this.check_data['sum']) {
@@ -1773,9 +1791,6 @@ function selected_model_info(sent_data) {
modelpluginoption.innerText = loader;
modelpluginoption.value = loader;
modelplugin.append(modelpluginoption);
if (loader == sent_data['preselected']) {
modelplugin.value = sent_data['preselected'];
}
//create the user input for each requested input
for (item of items) {