mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Work on model download support
This commit is contained in:
32
aiserver.py
32
aiserver.py
@@ -50,6 +50,8 @@ import multiprocessing
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Callable, TypeVar, Tuple, Union, Dict, Set, List, Optional, Type
|
||||
import glob
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
import html
|
||||
@@ -86,18 +88,6 @@ allowed_ips = set() # empty set
|
||||
enable_whitelist = False
|
||||
|
||||
|
||||
# 4-bit dependencies
|
||||
from pathlib import Path
|
||||
import glob
|
||||
sys.path.insert(0, os.path.abspath(Path("repos/gptq")))
|
||||
from gptj import load_quant as gptj_load_quant
|
||||
from gptneox import load_quant as gptneox_load_quant
|
||||
from llama import load_quant as llama_load_quant
|
||||
from opt import load_quant as opt_load_quant
|
||||
from offload import load_quant_offload
|
||||
monkey_patched_4bit = False
|
||||
|
||||
|
||||
if lupa.LUA_VERSION[:2] != (5, 4):
|
||||
logger.error(f"Please install lupa==1.10. You have lupa {lupa.__version__}.")
|
||||
|
||||
@@ -1974,6 +1964,16 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
except:
|
||||
pass
|
||||
|
||||
if not koboldai_vars.gptq_model:
|
||||
# Run generic HF model load_config first to check what model it is
|
||||
from modeling.inference_models.generic_hf_torch import GenericHFTorchInferenceModel
|
||||
model = GenericHFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
model.load_config()
|
||||
|
||||
if koboldai_vars.gptq_model:
|
||||
from modeling.inference_models.hf_torch_4bit import HFTorch4BitInferenceModel
|
||||
model = HFTorch4BitInferenceModel(
|
||||
@@ -1981,14 +1981,6 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
else:
|
||||
from modeling.inference_models.generic_hf_torch import GenericHFTorchInferenceModel
|
||||
model = GenericHFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
|
||||
model.load(
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel,
|
||||
initial_load=initial_load,
|
||||
|
@@ -24,7 +24,7 @@ from modeling.inference_models.hf_torch import HFTorchInferenceModel
|
||||
|
||||
|
||||
class GenericHFTorchInferenceModel(HFTorchInferenceModel):
|
||||
def _load(self, save_model: bool, initial_load: bool) -> None:
|
||||
def load_config(self) -> None:
|
||||
utils.koboldai_vars.allowsp = True
|
||||
|
||||
# Make model path the same as the model name to make this consistent
|
||||
@@ -50,6 +50,9 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
|
||||
|
||||
self.init_model_config()
|
||||
|
||||
def _load(self, save_model: bool, initial_load: bool) -> None:
|
||||
self.load_config()
|
||||
|
||||
tf_kwargs = {
|
||||
"low_cpu_mem_usage": True,
|
||||
}
|
||||
|
@@ -61,6 +61,14 @@ class HFInferenceModel(InferenceModel):
|
||||
cache_dir="cache",
|
||||
)
|
||||
utils.koboldai_vars.model_type = self.model_config.model_type
|
||||
|
||||
if "gptq_bits" in dir(self.model_config):
|
||||
utils.koboldai_vars.gptq_model = True
|
||||
utils.koboldai_vars.gptq_bits = self.model_config.gptq_bits
|
||||
utils.koboldai_vars.gptq_groupsize = self.model_config.gptq_groupsize
|
||||
utils.koboldai_vars.gptq_file = None
|
||||
else:
|
||||
utils.koboldai_vars.gptq_model = False
|
||||
except ValueError:
|
||||
utils.koboldai_vars.model_type = {
|
||||
"NeoCustom": "gpt_neo",
|
||||
|
@@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import glob
|
||||
import json
|
||||
import torch
|
||||
import re
|
||||
@@ -9,7 +10,6 @@ import sys
|
||||
from typing import Union
|
||||
|
||||
from transformers import AutoModelForCausalLM, GPTNeoForCausalLM, AutoTokenizer, LlamaTokenizer
|
||||
from modeling.inference_model import SuperLegacyModelError
|
||||
|
||||
import utils
|
||||
import modeling.lazy_loader as lazy_loader
|
||||
@@ -33,6 +33,66 @@ from gptneox import load_quant as gptneox_load_quant
|
||||
from llama import load_quant as llama_load_quant
|
||||
from opt import load_quant as opt_load_quant
|
||||
from offload import load_quant_offload
|
||||
monkey_patched_4bit = False
|
||||
|
||||
|
||||
def prepare_4bit_load(modelpath):
|
||||
path_4bit = os.path.join(modelpath, "model.safetensors")
|
||||
if os.path.isfile(path_4bit):
|
||||
return path_4bit, False
|
||||
|
||||
path_4bit = os.path.join(modelpath, "model.ckpt")
|
||||
if os.path.isfile(path_4bit):
|
||||
return path_4bit, False
|
||||
|
||||
# Legacy format support
|
||||
paths_4bit = ["4bit*.safetensors", "4bit*.pt"]
|
||||
paths_4bit_old = ["4bit-old.pt", "4bit-old.safetensors"]
|
||||
result = False
|
||||
groupsize = -1
|
||||
for p in paths_4bit:
|
||||
p = os.path.join(modelpath, p)
|
||||
val = [v for v in glob.glob(p) if "4bit-old" not in v]
|
||||
if val:
|
||||
result = val[0]
|
||||
fname = Path(result).parts[-1]
|
||||
g = re.findall("^(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
|
||||
if g:
|
||||
groupsize = int(g[0])
|
||||
break
|
||||
|
||||
global monkey_patched_4bit
|
||||
|
||||
# Monkey-patch in old-format pt-file support
|
||||
if not result:
|
||||
print("4-bit file not found, falling back to old format.")
|
||||
for p in paths_4bit_old:
|
||||
p = os.path.join(modelpath, p)
|
||||
if os.path.isfile(p):
|
||||
result = p
|
||||
break
|
||||
|
||||
if not result:
|
||||
print("4-bit old-format file not found, loading failed.")
|
||||
raise RuntimeError("4-bit load failed. PT/Safetensors-File not found.")
|
||||
|
||||
import llama, opt, gptneox, gptj, old_quant
|
||||
llama.make_quant = old_quant.old_make_quant
|
||||
opt.make_quant = old_quant.old_make_quant
|
||||
gptneox.make_quant = old_quant.old_make_quant
|
||||
gptj.make_quant = old_quant.old_make_quant
|
||||
monkey_patched_4bit = True
|
||||
elif monkey_patched_4bit:
|
||||
# Undo monkey patch
|
||||
print("Undoing 4-bit old format monkey patch")
|
||||
import llama, opt, gptneox, gptj, quant
|
||||
llama.make_quant = quant.make_quant
|
||||
opt.make_quant = quant.make_quant
|
||||
gptneox.make_quant = quant.make_quant
|
||||
gptj.make_quant = quant.make_quant
|
||||
monkey_patched_4bit = False
|
||||
|
||||
return result, groupsize
|
||||
|
||||
|
||||
class HFTorch4BitInferenceModel(HFTorchInferenceModel):
|
||||
@@ -87,17 +147,12 @@ class HFTorch4BitInferenceModel(HFTorchInferenceModel):
|
||||
):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(self.model_config)
|
||||
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
||||
utils.module_names = list(metamodel.state_dict().keys())
|
||||
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
||||
except Exception as e:
|
||||
logger.error(f"Fell back to neo for metamodel due to {e}")
|
||||
try:
|
||||
metamodel = GPTNeoForCausalLM.from_config(self.model_config)
|
||||
except Exception as e:
|
||||
logger.error(f"Falling back again due to {e}")
|
||||
raise SuperLegacyModelError
|
||||
|
||||
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
||||
utils.module_names = list(metamodel.state_dict().keys())
|
||||
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
||||
logger.warning(f"Gave up on lazy loading due to {e}")
|
||||
self.lazy_load = False
|
||||
|
||||
# Download model from Huggingface if it does not exist, otherwise load locally
|
||||
with self._maybe_use_float16(), lazy_loader.use_lazy_load(
|
||||
@@ -276,8 +331,15 @@ class HFTorch4BitInferenceModel(HFTorchInferenceModel):
|
||||
utils.koboldai_vars.modeldim = self.get_hidden_size()
|
||||
|
||||
def _get_model(self, location: str, tf_kwargs: Dict):
|
||||
path_4bit = utils.koboldai_vars.gptq_file
|
||||
if not utils.koboldai_vars.custmodpth:
|
||||
pass
|
||||
groupsize = utils.koboldai_vars.gptq_groupsize
|
||||
|
||||
path_4bit, legacy_groupsize = prepare_4bit_load(utils.koboldai_vars.custmodpth)
|
||||
|
||||
if legacy_groupsize is not False:
|
||||
groupsize = legacy_groupsize
|
||||
|
||||
print(f"Using 4-bit file: {path_4bit}, groupsize {groupsize}")
|
||||
|
||||
print(f"Trying to load {utils.koboldai_vars.model_type} model in 4-bit")
|
||||
|
Reference in New Issue
Block a user