mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-01-09 14:53:28 +01:00
(torch_lazy_loader.py) Add dematerialized modules setting
This commit is contained in:
parent
1ecc452dc8
commit
8e6e04be5f
@ -1,11 +1,62 @@
|
||||
'''
|
||||
This file is AGPL-licensed.
|
||||
|
||||
Some of the code in this file is copied from PyTorch.
|
||||
|
||||
The license for PyTorch is shown below:
|
||||
|
||||
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
||||
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
||||
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
||||
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
||||
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
||||
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
||||
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
|
||||
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
|
||||
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
|
||||
and IDIAP Research Institute nor the names of its contributors may be
|
||||
used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
'''
|
||||
|
||||
|
||||
import contextlib
|
||||
from functools import reduce
|
||||
import itertools
|
||||
import zipfile
|
||||
import pickle
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
|
||||
|
||||
|
||||
_EXTRA_STATE_KEY_SUFFIX = '_extra_state'
|
||||
|
||||
|
||||
class LazyTensor:
|
||||
def __init__(self, storage_type: Type[torch._StorageBase], key: str, location: str, storage_offset: Optional[int] = None, shape: Optional[Tuple[int, ...]] = None, stride: Optional[Tuple[int, ...]] = None, requires_grad=False, backward_hooks: Any = None):
|
||||
self.storage_type = storage_type
|
||||
@ -73,8 +124,77 @@ def _rebuild_tensor(lazy_storage: LazyTensor, storage_offset, shape, stride):
|
||||
return lazy_storage
|
||||
|
||||
|
||||
# Modified version of https://github.com/pytorch/pytorch/blob/v1.11.0-rc4/torch/nn/modules/module.py#L1346-L1438
|
||||
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
||||
for hook in self._load_state_dict_pre_hooks.values():
|
||||
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
||||
|
||||
persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set}
|
||||
local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items())
|
||||
local_state = {k: v for k, v in local_name_params if v is not None}
|
||||
|
||||
for name, param in local_state.items():
|
||||
key = prefix + name
|
||||
if key in state_dict:
|
||||
input_param = state_dict[key]
|
||||
if not torch.overrides.is_tensor_like(input_param):
|
||||
error_msgs.append('While copying the parameter named "{}", '
|
||||
'expected torch.Tensor or Tensor-like object from checkpoint but '
|
||||
'received {}'
|
||||
.format(key, type(input_param)))
|
||||
continue
|
||||
|
||||
# This is used to avoid copying uninitialized parameters into
|
||||
# non-lazy modules, since they dont have the hook to do the checks
|
||||
# in such case, it will error when accessing the .shape attribute.
|
||||
is_param_lazy = torch.nn.parameter.is_lazy(param)
|
||||
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
|
||||
if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1:
|
||||
input_param = input_param[0]
|
||||
|
||||
if not is_param_lazy and input_param.shape != param.shape:
|
||||
# local shape should match the one in checkpoint
|
||||
error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
|
||||
'the shape in current model is {}.'
|
||||
.format(key, input_param.shape, param.shape))
|
||||
continue
|
||||
try:
|
||||
with torch.no_grad():
|
||||
#param.copy_(input_param)
|
||||
new_param = torch.nn.Parameter(input_param, requires_grad=param.requires_grad) # This line is new
|
||||
if name in self._parameters: # This line is new
|
||||
self._parameters[name] = new_param # This line is new
|
||||
if name in persistent_buffers: # This line is new
|
||||
self._buffers[name] = new_param # This line is new
|
||||
except Exception as ex:
|
||||
error_msgs.append('While copying the parameter named "{}", '
|
||||
'whose dimensions in the model are {} and '
|
||||
'whose dimensions in the checkpoint are {}, '
|
||||
'an exception occurred : {}.'
|
||||
.format(key, param.size(), input_param.size(), ex.args))
|
||||
elif strict:
|
||||
missing_keys.append(key)
|
||||
|
||||
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
||||
if getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state:
|
||||
if extra_state_key in state_dict:
|
||||
self.set_extra_state(state_dict[extra_state_key])
|
||||
elif strict:
|
||||
missing_keys.append(extra_state_key)
|
||||
elif strict and (extra_state_key in state_dict):
|
||||
unexpected_keys.append(extra_state_key)
|
||||
|
||||
if strict:
|
||||
for key in state_dict.keys():
|
||||
if key.startswith(prefix) and key != extra_state_key:
|
||||
input_name = key[len(prefix):]
|
||||
input_name = input_name.split('.', 1)[0] # get the name of param/buffer/child
|
||||
if input_name not in self._modules and input_name not in local_state:
|
||||
unexpected_keys.append(key)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None):
|
||||
def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None, dematerialized_modules=False):
|
||||
if not enable:
|
||||
yield False
|
||||
return
|
||||
@ -96,9 +216,42 @@ def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None):
|
||||
|
||||
torch.load = torch_load
|
||||
|
||||
def torch_load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
|
||||
retval = old_torch_load(f=f, map_location=map_location, pickle_module=pickle_module, **pickle_load_args)
|
||||
if callback is not None:
|
||||
callback(retval, f=f, map_location=map_location, pickle_module=pickle_module, **pickle_load_args)
|
||||
return retval
|
||||
|
||||
torch.load = torch_load
|
||||
|
||||
if dematerialized_modules:
|
||||
old_linear_init = torch.nn.Linear.__init__
|
||||
old_embedding_init = torch.nn.Embedding.__init__
|
||||
old_layernorm_init = torch.nn.LayerNorm.__init__
|
||||
|
||||
def linear_init(self, *args, device=None, **kwargs):
|
||||
return old_linear_init(self, *args, device="meta", **kwargs)
|
||||
|
||||
def embedding_init(self, *args, device=None, **kwargs):
|
||||
return old_embedding_init(self, *args, device="meta", **kwargs)
|
||||
|
||||
def layernorm_init(self, *args, device=None, **kwargs):
|
||||
return old_layernorm_init(self, *args, device="meta", **kwargs)
|
||||
|
||||
torch.nn.Linear.__init__ = linear_init
|
||||
torch.nn.Embedding.__init__ = embedding_init
|
||||
torch.nn.LayerNorm.__init__ = layernorm_init
|
||||
old_load_from_state_dict = torch.nn.Module._load_from_state_dict
|
||||
torch.nn.Module._load_from_state_dict = _load_from_state_dict
|
||||
|
||||
yield True
|
||||
|
||||
finally:
|
||||
pickle.Unpickler = old_unpickler
|
||||
torch._utils._rebuild_tensor = old_rebuild_tensor
|
||||
torch.load = old_torch_load
|
||||
if dematerialized_modules:
|
||||
torch.nn.Linear.__init__ = old_linear_init
|
||||
torch.nn.Embedding.__init__ = old_embedding_init
|
||||
torch.nn.LayerNorm.__init__ = old_layernorm_init
|
||||
torch.nn.Module._load_from_state_dict = old_load_from_state_dict
|
||||
|
Loading…
Reference in New Issue
Block a user