mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Work on lazyload
This commit is contained in:
@@ -18,11 +18,11 @@ from modeling.inference_models.hf_torch import HFTorchInferenceModel
|
||||
|
||||
model_backend_name = "Huggingface"
|
||||
|
||||
|
||||
class model_backend(HFTorchInferenceModel):
|
||||
|
||||
def _initialize_model(self):
|
||||
return
|
||||
|
||||
|
||||
def _load(self, save_model: bool, initial_load: bool) -> None:
|
||||
utils.koboldai_vars.allowsp = True
|
||||
|
||||
@@ -34,9 +34,7 @@ class model_backend(HFTorchInferenceModel):
|
||||
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
|
||||
|
||||
if self.model_name == "NeoCustom":
|
||||
self.model_name = os.path.basename(
|
||||
os.path.normpath(self.path)
|
||||
)
|
||||
self.model_name = os.path.basename(os.path.normpath(self.path))
|
||||
utils.koboldai_vars.model = self.model_name
|
||||
|
||||
# If we specify a model and it's in the root directory, we need to move
|
||||
@@ -63,13 +61,18 @@ class model_backend(HFTorchInferenceModel):
|
||||
|
||||
# If we're using torch_lazy_loader, we need to get breakmodel config
|
||||
# early so that it knows where to load the individual model tensors
|
||||
logger.debug("lazy_load: {} hascuda: {} breakmodel: {} nobreakmode: {}".format(self.lazy_load, utils.koboldai_vars.hascuda, self.breakmodel, self.nobreakmodel))
|
||||
logger.debug(
|
||||
"lazy_load: {} hascuda: {} breakmodel: {} nobreakmode: {}".format(
|
||||
self.lazy_load,
|
||||
utils.koboldai_vars.hascuda,
|
||||
self.breakmodel,
|
||||
self.nobreakmodel,
|
||||
)
|
||||
)
|
||||
|
||||
if self.lazy_load:
|
||||
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
|
||||
with lazy_loader.use_lazy_load(
|
||||
dematerialized_modules=True, use_accelerate_init_empty_weights=True
|
||||
):
|
||||
with lazy_loader.use_lazy_load(dematerialized_modules=True):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(self.model_config)
|
||||
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
||||
@@ -195,7 +198,9 @@ class model_backend(HFTorchInferenceModel):
|
||||
pass
|
||||
|
||||
if not any_success:
|
||||
raise RuntimeError(f"Couldn't find any of {possible_checkpoint_names} in cache for {self.model_name} @ '{utils.koboldai_vars.revisison}'")
|
||||
raise RuntimeError(
|
||||
f"Couldn't find any of {possible_checkpoint_names} in cache for {self.model_name} @ '{utils.koboldai_vars.revisison}'"
|
||||
)
|
||||
else:
|
||||
# Handle saving sharded models
|
||||
|
||||
@@ -233,11 +238,24 @@ class model_backend(HFTorchInferenceModel):
|
||||
shutil.rmtree("cache/")
|
||||
|
||||
self.patch_embedding()
|
||||
|
||||
|
||||
|
||||
self.model.kai_model = self
|
||||
utils.koboldai_vars.modeldim = self.get_hidden_size()
|
||||
|
||||
def _save_settings(self):
|
||||
with open("settings/{}.generic_hf_torch.model_backend.settings".format(self.model_name.replace("/", "_")), "w") as f:
|
||||
json.dump({"layers": self.layers if 'layers' in vars(self) else [], "disk_layers": self.disk_layers if 'disk_layers' in vars(self) else 0}, f, indent="")
|
||||
with open(
|
||||
"settings/{}.generic_hf_torch.model_backend.settings".format(
|
||||
self.model_name.replace("/", "_")
|
||||
),
|
||||
"w",
|
||||
) as f:
|
||||
json.dump(
|
||||
{
|
||||
"layers": self.layers if "layers" in vars(self) else [],
|
||||
"disk_layers": self.disk_layers
|
||||
if "disk_layers" in vars(self)
|
||||
else 0,
|
||||
},
|
||||
f,
|
||||
indent="",
|
||||
)
|
||||
|
@@ -61,6 +61,7 @@ from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
|
||||
# support it yet.
|
||||
try:
|
||||
import safetensors
|
||||
|
||||
HAS_SAFETENSORS = True
|
||||
except ModuleNotFoundError:
|
||||
HAS_SAFETENSORS = False
|
||||
@@ -68,9 +69,6 @@ except ModuleNotFoundError:
|
||||
import utils
|
||||
|
||||
|
||||
_EXTRA_STATE_KEY_SUFFIX = "_extra_state"
|
||||
|
||||
|
||||
STORAGE_TYPE_MAP = {
|
||||
torch.float64: torch.DoubleStorage,
|
||||
torch.float32: torch.FloatStorage,
|
||||
@@ -84,6 +82,8 @@ STORAGE_TYPE_MAP = {
|
||||
torch.bfloat16: torch.BFloat16Storage,
|
||||
}
|
||||
|
||||
# Storage of zipfile handles for each shard
|
||||
torch_checkpoint_file_handles = {}
|
||||
|
||||
class LazyTensor:
|
||||
pass
|
||||
@@ -101,7 +101,6 @@ class TorchLazyTensor(LazyTensor):
|
||||
stride: Optional[Tuple[int, ...]] = None,
|
||||
requires_grad=False,
|
||||
backward_hooks: Any = None,
|
||||
file_handle: Any = None
|
||||
):
|
||||
self.storage_type = storage_type
|
||||
self.key = key
|
||||
@@ -112,7 +111,7 @@ class TorchLazyTensor(LazyTensor):
|
||||
self.stride = stride
|
||||
self.requires_grad = requires_grad
|
||||
self.backward_hooks = backward_hooks
|
||||
self.file_handle = file_handle
|
||||
self.file_name = None
|
||||
|
||||
def __view(self, f: Callable):
|
||||
return f"{type(self).__name__}(storage_type={f(self.storage_type)}, key={f(self.key)}, location={f(self.location)}, dtype={f(self.dtype)}, seek_offset={f(self.seek_offset)}, shape={f(self.shape)}, stride={f(self.stride)}, requires_grad={f(self.requires_grad)}, backward_hooks={f(self.backward_hooks)})"
|
||||
@@ -127,7 +126,29 @@ class TorchLazyTensor(LazyTensor):
|
||||
no_grad=True,
|
||||
filename="pytorch_model.bin",
|
||||
) -> torch.Tensor:
|
||||
checkpoint = checkpoint or self.file_handle
|
||||
|
||||
|
||||
|
||||
# if f not in torch_tensor_container_file_map:
|
||||
# torch_tensor_container_file_map[f] = []
|
||||
|
||||
# with zipfile.ZipFile(f, "r") as z:
|
||||
# paths = z.namelist()
|
||||
|
||||
# for name in paths:
|
||||
# val = name.split("/data/")[-1]
|
||||
# if not val.isdecimal():
|
||||
# continue
|
||||
# torch_tensor_container_file_map[f].append(int(val))
|
||||
# torch_tensor_container_file_map[f].sort()
|
||||
# print(torch_tensor_container_file_map)
|
||||
|
||||
|
||||
|
||||
|
||||
if not checkpoint:
|
||||
checkpoint = torch_checkpoint_file_handles[self.file_name]
|
||||
filename = self.file_name
|
||||
|
||||
filename = os.path.basename(os.path.normpath(filename)).split(".")[0]
|
||||
size = reduce(lambda x, y: x * y, self.shape, 1)
|
||||
@@ -141,19 +162,23 @@ class TorchLazyTensor(LazyTensor):
|
||||
>> 3
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(checkpoint, zipfile.ZipFile):
|
||||
try:
|
||||
f = checkpoint.open(f"archive/data/{self.key}", "r")
|
||||
except:
|
||||
f = checkpoint.open(f"{filename}/data/{self.key}", "r")
|
||||
f.read(self.seek_offset)
|
||||
f.seek(self.seek_offset, os.SEEK_CUR)
|
||||
# f.read(self.seek_offset)
|
||||
else:
|
||||
f = checkpoint
|
||||
|
||||
try:
|
||||
storage = STORAGE_TYPE_MAP[dtype].from_buffer(f.read(nbytes), "little")
|
||||
finally:
|
||||
if isinstance(checkpoint, zipfile.ZipFile):
|
||||
f.close()
|
||||
|
||||
storage = torch.serialization._get_restore_location(map_location)(
|
||||
storage, self.location
|
||||
)
|
||||
@@ -242,7 +267,6 @@ class _LazyUnpickler(RestrictedUnpickler):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
# print(args, kwargs)
|
||||
self.file_handle = args[0]
|
||||
self.lazy_loaded_storages = {}
|
||||
return super().__init__(*args, **kwargs)
|
||||
|
||||
@@ -253,7 +277,9 @@ class _LazyUnpickler(RestrictedUnpickler):
|
||||
typename == "storage"
|
||||
), f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
|
||||
storage_type, key, location, _ = saved_id[1:]
|
||||
return TorchLazyTensor(storage_type, key, location, file_handle=self.file_handle)
|
||||
return TorchLazyTensor(
|
||||
storage_type, key, location
|
||||
)
|
||||
|
||||
def load(self, *args, **kwargs):
|
||||
retval = super().load(*args, **kwargs)
|
||||
@@ -277,117 +303,6 @@ def _rebuild_tensor(lazy_storage: LazyTensor, storage_offset, shape, stride):
|
||||
return lazy_storage
|
||||
|
||||
|
||||
# Modified version of https://github.com/pytorch/pytorch/blob/v1.11.0-rc4/torch/nn/modules/module.py#L1346-L1438
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
for hook in self._load_state_dict_pre_hooks.values():
|
||||
hook(
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
)
|
||||
|
||||
persistent_buffers = {
|
||||
k: v
|
||||
for k, v in self._buffers.items()
|
||||
if k not in self._non_persistent_buffers_set
|
||||
}
|
||||
local_name_params = itertools.chain(
|
||||
self._parameters.items(), persistent_buffers.items()
|
||||
)
|
||||
local_state = {k: v for k, v in local_name_params if v is not None}
|
||||
|
||||
for name, param in local_state.items():
|
||||
key = prefix + name
|
||||
if key in state_dict:
|
||||
input_param = state_dict[key]
|
||||
if not torch.overrides.is_tensor_like(input_param):
|
||||
error_msgs.append(
|
||||
'While copying the parameter named "{}", '
|
||||
"expected torch.Tensor or Tensor-like object from checkpoint but "
|
||||
"received {}".format(key, type(input_param))
|
||||
)
|
||||
continue
|
||||
|
||||
# This is used to avoid copying uninitialized parameters into
|
||||
# non-lazy modules, since they dont have the hook to do the checks
|
||||
# in such case, it will error when accessing the .shape attribute.
|
||||
is_param_lazy = torch.nn.parameter.is_lazy(param)
|
||||
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
|
||||
if (
|
||||
not is_param_lazy
|
||||
and len(param.shape) == 0
|
||||
and len(input_param.shape) == 1
|
||||
):
|
||||
input_param = input_param[0]
|
||||
|
||||
if not is_param_lazy and input_param.shape != param.shape:
|
||||
# local shape should match the one in checkpoint
|
||||
error_msgs.append(
|
||||
"size mismatch for {}: copying a param with shape {} from checkpoint, "
|
||||
"the shape in current model is {}.".format(
|
||||
key, input_param.shape, param.shape
|
||||
)
|
||||
)
|
||||
continue
|
||||
try:
|
||||
with torch.no_grad():
|
||||
# param.copy_(input_param)
|
||||
new_param = torch.nn.Parameter(
|
||||
input_param, requires_grad=param.requires_grad
|
||||
) # This line is new
|
||||
if name in self._parameters: # This line is new
|
||||
self._parameters[name] = new_param # This line is new
|
||||
if name in persistent_buffers: # This line is new
|
||||
self._buffers[name] = new_param # This line is new
|
||||
except Exception as ex:
|
||||
error_msgs.append(
|
||||
'While copying the parameter named "{}", '
|
||||
"whose dimensions in the model are {} and "
|
||||
"whose dimensions in the checkpoint are {}, "
|
||||
"an exception occurred : {}.".format(
|
||||
key, param.size(), input_param.size(), ex.args
|
||||
)
|
||||
)
|
||||
elif strict:
|
||||
missing_keys.append(key)
|
||||
|
||||
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
||||
if (
|
||||
hasattr(Module, "set_extra_state")
|
||||
and getattr(self.__class__, "set_extra_state", Module.set_extra_state)
|
||||
is not Module.set_extra_state
|
||||
): # if getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state:
|
||||
if extra_state_key in state_dict:
|
||||
self.set_extra_state(state_dict[extra_state_key])
|
||||
elif strict:
|
||||
missing_keys.append(extra_state_key)
|
||||
elif strict and (extra_state_key in state_dict):
|
||||
unexpected_keys.append(extra_state_key)
|
||||
|
||||
if strict:
|
||||
for key in state_dict.keys():
|
||||
if key.startswith(prefix) and key != extra_state_key:
|
||||
input_name = key[len(prefix) :]
|
||||
input_name = input_name.split(".", 1)[
|
||||
0
|
||||
] # get the name of param/buffer/child
|
||||
if input_name not in self._modules and input_name not in local_state:
|
||||
unexpected_keys.append(key)
|
||||
|
||||
|
||||
def safetensors_load_tensor_independently(
|
||||
checkpoint_file: str, tensor_key: str, device: Any
|
||||
) -> torch.Tensor:
|
||||
@@ -418,7 +333,9 @@ def patch_safetensors(callback):
|
||||
tensors = {}
|
||||
|
||||
with safetensors.safe_open(
|
||||
checkpoint_file, framework="pt", device=intermediary_device,
|
||||
checkpoint_file,
|
||||
framework="pt",
|
||||
device=intermediary_device,
|
||||
) as f:
|
||||
for key in f.keys():
|
||||
tensors[key] = None
|
||||
@@ -426,7 +343,9 @@ def patch_safetensors(callback):
|
||||
for key in tensors.keys():
|
||||
|
||||
tensors[key] = SafetensorsLazyTensor(
|
||||
checkpoint_file=checkpoint_file, key=key, location=intermediary_device,
|
||||
checkpoint_file=checkpoint_file,
|
||||
key=key,
|
||||
location=intermediary_device,
|
||||
)
|
||||
|
||||
if callback is not None:
|
||||
@@ -442,6 +361,13 @@ def patch_safetensors(callback):
|
||||
|
||||
transformers.modeling_utils.safe_load_file = safetensors_load
|
||||
|
||||
def get_torch_tensor_file(file: str, lazy_tensor: TorchLazyTensor):
|
||||
with zipfile.ZipFile(file, "r") as z:
|
||||
storage_key = lazy_tensor.key
|
||||
ziproot = z.namelist()[0].split("/")[0]
|
||||
f = z.open(f"{ziproot}/data/{storage_key}")
|
||||
# TODO: Maybe some file seeking
|
||||
return f
|
||||
|
||||
@contextlib.contextmanager
|
||||
def use_custom_unpickler(unpickler: Type[pickle.Unpickler] = RestrictedUnpickler):
|
||||
@@ -468,7 +394,6 @@ def use_lazy_load(
|
||||
enable=True,
|
||||
callback: Optional[Callable] = None,
|
||||
dematerialized_modules=False,
|
||||
use_accelerate_init_empty_weights=False,
|
||||
):
|
||||
if not enable:
|
||||
with use_custom_unpickler(RestrictedUnpickler):
|
||||
@@ -483,22 +408,30 @@ def use_lazy_load(
|
||||
old_torch_load = torch.load
|
||||
|
||||
def torch_load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
|
||||
retval = old_torch_load(
|
||||
model_dict = old_torch_load(
|
||||
f=f,
|
||||
map_location=map_location,
|
||||
pickle_module=pickle_module,
|
||||
**pickle_load_args,
|
||||
)
|
||||
|
||||
if f not in torch_checkpoint_file_handles:
|
||||
torch_checkpoint_file_handles[f] = zipfile.ZipFile(f, "r")
|
||||
|
||||
for k,v in model_dict.items():
|
||||
v.file_name = f
|
||||
|
||||
if callback is not None:
|
||||
callback(
|
||||
retval,
|
||||
model_dict,
|
||||
f=f,
|
||||
map_location=map_location,
|
||||
pickle_module=pickle_module,
|
||||
is_safetensors=False,
|
||||
**pickle_load_args,
|
||||
)
|
||||
return retval
|
||||
|
||||
return model_dict
|
||||
|
||||
torch.load = torch_load
|
||||
|
||||
@@ -506,30 +439,10 @@ def use_lazy_load(
|
||||
patch_safetensors(callback)
|
||||
|
||||
if dematerialized_modules:
|
||||
if use_accelerate_init_empty_weights:
|
||||
import accelerate
|
||||
import accelerate
|
||||
|
||||
init_empty_weights = accelerate.init_empty_weights()
|
||||
init_empty_weights.__enter__()
|
||||
else:
|
||||
old_linear_init = torch.nn.Linear.__init__
|
||||
old_embedding_init = torch.nn.Embedding.__init__
|
||||
old_layernorm_init = torch.nn.LayerNorm.__init__
|
||||
|
||||
def linear_init(self, *args, device=None, **kwargs):
|
||||
return old_linear_init(self, *args, device="meta", **kwargs)
|
||||
|
||||
def embedding_init(self, *args, device=None, **kwargs):
|
||||
return old_embedding_init(self, *args, device="meta", **kwargs)
|
||||
|
||||
def layernorm_init(self, *args, device=None, **kwargs):
|
||||
return old_layernorm_init(self, *args, device="meta", **kwargs)
|
||||
|
||||
torch.nn.Linear.__init__ = linear_init
|
||||
torch.nn.Embedding.__init__ = embedding_init
|
||||
torch.nn.LayerNorm.__init__ = layernorm_init
|
||||
old_load_from_state_dict = torch.nn.Module._load_from_state_dict
|
||||
torch.nn.Module._load_from_state_dict = _load_from_state_dict
|
||||
init_empty_weights = accelerate.init_empty_weights()
|
||||
init_empty_weights.__enter__()
|
||||
|
||||
with use_custom_unpickler(_LazyUnpickler):
|
||||
yield True
|
||||
@@ -538,10 +451,4 @@ def use_lazy_load(
|
||||
torch._utils._rebuild_tensor = old_rebuild_tensor
|
||||
torch.load = old_torch_load
|
||||
if dematerialized_modules:
|
||||
if use_accelerate_init_empty_weights:
|
||||
init_empty_weights.__exit__(None, None, None)
|
||||
else:
|
||||
torch.nn.Linear.__init__ = old_linear_init
|
||||
torch.nn.Embedding.__init__ = old_embedding_init
|
||||
torch.nn.LayerNorm.__init__ = old_layernorm_init
|
||||
torch.nn.Module._load_from_state_dict = old_load_from_state_dict
|
||||
init_empty_weights.__exit__(None, None, None)
|
||||
|
@@ -190,7 +190,7 @@ def patch_transformers_for_lazyload() -> None:
|
||||
|
||||
# BEGIN PATCH
|
||||
if isinstance(param, LazyTensor):
|
||||
print("Materializing", param_name)
|
||||
print(".", end="", flush=True)
|
||||
param = param.materialize()
|
||||
# END PATCH
|
||||
|
||||
|
@@ -855,7 +855,7 @@ class TrainerBase(abc.ABC):
|
||||
lazy_load_callback.nested = False
|
||||
|
||||
# Since we're using lazy loader, we need to figure out what the model's hidden layers are called
|
||||
with lazy_loader.use_lazy_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
|
||||
with lazy_loader.use_lazy_load(dematerialized_modules=True):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(model_config)
|
||||
except Exception as e:
|
||||
|
Reference in New Issue
Block a user