mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-02-17 12:10:49 +01:00
Lazy loader no longer requires map file except when loading to TPU
This commit is contained in:
parent
b0a01962ab
commit
5253cdcb36
30
aiserver.py
30
aiserver.py
@ -1652,18 +1652,14 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
|
||||
|
||||
device_map = {}
|
||||
|
||||
for _key, spec in lazy_load_spec.get("layer_weights", {}).items():
|
||||
for layer in range(n_layers):
|
||||
key = _key.format(layer=layer)
|
||||
if key not in model_dict:
|
||||
continue
|
||||
for key, value in model_dict.items():
|
||||
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(key.startswith(n) or key.startswith(n.split(".", 1)[1]) for n in vars.layer_param_names):
|
||||
device_map[key] = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu"
|
||||
else:
|
||||
layer = int(next(n for n in vars.layer_param_names if key.startswith(n) or key.startswith(n.split(".", 1)[1])).rsplit(".", 1)[1])
|
||||
device = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu" if not vars.hascuda or not vars.breakmodel or layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
|
||||
device_map[key] = device
|
||||
|
||||
for key, value in model_dict.items():
|
||||
if isinstance(value, torch_lazy_loader.LazyTensor) and key not in device_map:
|
||||
device_map[key] = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu"
|
||||
|
||||
if utils.num_shards is None or utils.current_shard == 0:
|
||||
if utils.num_shards is not None:
|
||||
num_tensors = len(utils.get_sharded_checkpoint_num_tensors(utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs))
|
||||
@ -1717,15 +1713,6 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
|
||||
lazy_load_callback.nested = False
|
||||
return lazy_load_callback
|
||||
|
||||
lazy_load_config_path = os.path.join("maps", vars.model_type + ".json")
|
||||
if(vars.lazy_load and "model_config" in globals() and os.path.isfile(lazy_load_config_path)):
|
||||
with open(lazy_load_config_path) as f:
|
||||
lazy_load_spec = json.load(f)
|
||||
|
||||
else:
|
||||
vars.lazy_load = False
|
||||
|
||||
|
||||
|
||||
def get_hidden_size_from_model(model):
|
||||
try:
|
||||
@ -1800,6 +1787,13 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
|
||||
import shutil
|
||||
shutil.move(vars.model.replace('/', '_'), "models/{}".format(vars.model.replace('/', '_')))
|
||||
print("\n", flush=True)
|
||||
if(vars.lazy_load): # If we're using lazy loader, we need to figure out what the model's hidden layers are called
|
||||
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(model_config)
|
||||
except Exception as e:
|
||||
metamodel = GPTNeoForCausalLM.from_config(model_config)
|
||||
vars.layer_param_names = utils.get_layer_param_names(metamodel)
|
||||
with maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(enable=vars.lazy_load, callback=get_lazy_load_callback(utils.num_layers(model_config)) if vars.lazy_load else None, dematerialized_modules=True):
|
||||
if(vars.lazy_load): # torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
|
||||
lowmem = {}
|
||||
|
20
utils.py
20
utils.py
@ -7,11 +7,19 @@ import tempfile
|
||||
import requests
|
||||
import requests.adapters
|
||||
import time
|
||||
from transformers import __version__ as transformers_version
|
||||
import packaging.version
|
||||
from tqdm.auto import tqdm
|
||||
import os
|
||||
import itertools
|
||||
from typing import Optional
|
||||
|
||||
HAS_ACCELERATE = packaging.version.parse(transformers_version) >= packaging.version.parse("4.20.0.dev0")
|
||||
try:
|
||||
import accelerate
|
||||
except ImportError:
|
||||
HAS_ACCELERATE = False
|
||||
|
||||
vars = None
|
||||
num_shards: Optional[int] = None
|
||||
current_shard = 0
|
||||
@ -300,3 +308,15 @@ def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename,
|
||||
import torch
|
||||
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision, mirror=mirror)
|
||||
return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths)))
|
||||
|
||||
def get_layer_param_names(model):
|
||||
names = []
|
||||
def recurse(module, head=""):
|
||||
for c in module.named_children():
|
||||
name = head + c[0]
|
||||
if c[0].isnumeric() and any(c[1].__class__.__name__.endswith(suffix) for suffix in ("Block", "Layer")):
|
||||
names.append(name)
|
||||
else:
|
||||
recurse(c[1], head=name + ".")
|
||||
recurse(model)
|
||||
return names
|
||||
|
Loading…
x
Reference in New Issue
Block a user