This commit is contained in:
somebody
2022-09-18 22:31:06 -05:00
15 changed files with 605 additions and 199 deletions

View File

@@ -18,7 +18,8 @@ os.environ['TOKENIZERS_PARALLELISM'] = 'false'
from eventlet import tpool
import logging
logging.basicConfig(format='%(levelname)s - %(module)s:%(lineno)d - %(message)s',level=logging.WARNING)
from logger import logger, set_logger_verbosity, quiesce_logger
logging.getLogger("urllib3").setLevel(logging.ERROR)
from os import path, getcwd
@@ -71,11 +72,12 @@ try:
except:
pass
import transformers.generation_utils
global tpu_mtj_backend
if lupa.LUA_VERSION[:2] != (5, 4):
print(f"Please install lupa==1.10. You have lupa {lupa.__version__}.", file=sys.stderr)
logger.error(f"Please install lupa==1.10. You have lupa {lupa.__version__}.")
patch_causallm_patched = False
@@ -234,7 +236,8 @@ class Send_to_socketio(object):
print(bar, end="")
time.sleep(0.01)
try:
emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True, room="UI_1")
gui_msg = bar.replace(f"{colors.PURPLE}INIT{colors.END} | ","").replace(" ", " ")
emit('from_server', {'cmd': 'model_load_status', 'data': gui_msg}, broadcast=True, room="UI_1")
except:
pass
@@ -429,8 +432,6 @@ import logging
log = logging.getLogger('werkzeug')
log.setLevel(logging.ERROR)
# Start flask & SocketIO
print("{0}Initializing Flask... {1}".format(colors.PURPLE, colors.END), end="")
from flask import Flask, render_template, Response, request, copy_current_request_context, send_from_directory, session, jsonify, abort, redirect, has_request_context
from flask_socketio import SocketIO, emit, join_room, leave_room
from flask_socketio import emit as _emit
@@ -442,14 +443,12 @@ app = Flask(__name__, root_path=os.getcwd())
app.secret_key = secrets.token_hex()
app.config['SESSION_TYPE'] = 'filesystem'
app.config['TEMPLATES_AUTO_RELOAD'] = True
Session(app)
socketio = SocketIO(app, async_method="eventlet", manage_session=False, cors_allowed_origins='*', max_http_buffer_size=10_000_000)
#socketio = SocketIO(app, async_method="eventlet", manage_session=False, cors_allowed_origins='*', logger=True, engineio_logger=True)
koboldai_vars = koboldai_settings.koboldai_vars(session, socketio)
utils.koboldai_vars = koboldai_vars
print("{0}OK!{1}".format(colors.GREEN, colors.END))
old_socketio_on = socketio.on
def new_socketio_on(*a, **k):
@@ -673,7 +672,7 @@ def get_config_filename(model_name = None):
elif koboldai_vars.configname != '':
return(f"settings/{koboldai_vars.configname.replace('/', '_')}.settings")
else:
print(f"Empty configfile name sent back. Defaulting to ReadOnly")
logger.warning(f"Empty configfile name sent back. Defaulting to ReadOnly")
return(f"settings/ReadOnly.settings")
#==================================================================#
# Function to get model selection at startup
@@ -845,14 +844,14 @@ def device_config(config):
breakmodel.disk_blocks = args.breakmodel_disklayers
n_layers -= args.breakmodel_disklayers
except:
print("WARNING: --breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0.", file=sys.stderr)
logger.warning("--breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0.")
breakmodel.gpu_blocks = [n_layers]
n_layers = 0
elif(args.breakmodel_layers is not None):
breakmodel.gpu_blocks = [n_layers - max(0, min(n_layers, args.breakmodel_layers))]
n_layers -= sum(breakmodel.gpu_blocks)
elif(args.model is not None):
print("Breakmodel not specified, assuming GPU 0")
logger.info("Breakmodel not specified, assuming GPU 0")
breakmodel.gpu_blocks = [n_layers]
n_layers = 0
else:
@@ -911,7 +910,7 @@ def device_config(config):
else:
print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}")
print(colors.PURPLE + "\nFinal device configuration:")
logger.init_ok("Final device configuration:", status="Info")
device_list(n_layers)
# If all layers are on the same device, use the old GPU generation mode
@@ -924,7 +923,7 @@ def device_config(config):
return
if(not breakmodel.gpu_blocks):
print("Nothing assigned to a GPU, reverting to CPU only mode")
logger.warning("Nothing assigned to a GPU, reverting to CPU only mode")
import breakmodel
breakmodel.primary_device = "cpu"
koboldai_vars.breakmodel = False
@@ -1097,7 +1096,7 @@ def savesettings():
#==================================================================#
@debounce(2)
def settingschanged():
print("{0}Saving settings!{1}".format(colors.GREEN, colors.END))
logger.info("Saving settings.")
savesettings()
#==================================================================#
@@ -1223,6 +1222,9 @@ def general_startup(override_args=None):
parser.add_argument("--savemodel", action='store_true', help="Saves the model to the models folder even if --colab is used (Allows you to save models to Google Drive)")
parser.add_argument("--customsettings", help="Preloads arguements from json file. You only need to provide the location of the json file. Use customsettings.json template file. It can be renamed if you wish so that you can store multiple configurations. Leave any settings you want as default as null. Any values you wish to set need to be in double quotation marks")
parser.add_argument("--no_ui", action='store_true', default=False, help="Disables the GUI and Socket.IO server while leaving the API server running.")
parser.add_argument('-v', '--verbosity', action='count', default=0, help="The default logging level is ERROR or higher. This value increases the amount of logging seen in your screen")
parser.add_argument('-q', '--quiesce', action='count', default=0, help="The default logging level is ERROR or higher. This value decreases the amount of logging seen in your screen")
#args: argparse.Namespace = None
if "pytest" in sys.modules and override_args is None:
args = parser.parse_args([])
@@ -1257,6 +1259,8 @@ def general_startup(override_args=None):
setattr(args, arg, False)
else:
setattr(args, arg, os.environ[arg])
set_logger_verbosity(args.verbosity)
quiesce_logger(args.quiesce)
if args.customsettings:
f = open (args.customsettings)
importedsettings = json.load(f)
@@ -1324,9 +1328,10 @@ def general_startup(override_args=None):
koboldai_vars.model = "NeoCustom"
koboldai_vars.custmodpth = modpath
elif args.model:
print("Welcome to KoboldAI!\nYou have selected the following Model:", koboldai_vars.model)
logger.message(f"Welcome to KoboldAI!")
logger.message(f"You have selected the following Model: {koboldai_vars.model}")
if args.path:
print("You have selected the following path for your Model :", args.path)
logger.message(f"You have selected the following path for your Model: {args.path}")
koboldai_vars.custmodpth = args.path;
koboldai_vars.colaburl = args.path + "/request"; # Lets just use the same parameter to keep it simple
@@ -1492,7 +1497,7 @@ def get_oai_models(data):
return
# Get list of models from OAI
print("{0}Retrieving engine list...{1}".format(colors.PURPLE, colors.END), end="")
logger.init("OAI Engines", status="Retrieving")
req = requests.get(
url,
headers = {
@@ -1504,7 +1509,7 @@ def get_oai_models(data):
try:
engines = [[en["id"], "{} ({})".format(en['id'], "Ready" if en["ready"] == True else "Not Ready")] for en in engines]
except:
print(engines)
logger.error(engines)
raise
online_model = ""
@@ -1530,12 +1535,13 @@ def get_oai_models(data):
js["apikey"] = key
file.write(json.dumps(js, indent=3))
logger.init_ok("OAI Engines", status="OK")
emit('from_server', {'cmd': 'oai_engines', 'data': engines, 'online_model': online_model}, broadcast=True, room="UI_1")
emit('oai_engines', {'data': engines, 'online_model': online_model}, broadcast=False, room="UI_2")
else:
# Something went wrong, print the message and quit since we can't initialize an engine
print("{0}ERROR!{1}".format(colors.RED, colors.END))
print(req.json())
logger.init_err("OAI Engines", status="Failed")
logger.error(req.json())
emit('from_server', {'cmd': 'errmsg', 'data': req.json()})
@socketio.on("get_cluster_models")
@@ -1544,11 +1550,15 @@ def get_cluster_models(msg):
koboldai_vars.apikey = koboldai_vars.oaiapikey
model = msg['model']
url = msg['url']
# Get list of models from public cluster
print("{0}Retrieving engine list...{1}".format(colors.PURPLE, colors.END), end="")
req = requests.get("{}/models".format(url))
try:
req = requests.get("{}/models".format(url))
except:
logger.init_err("KAI Horde Models", status="Failed")
logger.error("Provided KoboldAI Horde URL unreachable")
emit('from_server', {'cmd': 'errmsg', 'data': "Provided KoboldAI Horde URL unreachable"})
return
if(req.status_code == 200):
engines = req.json()
print(engines)
@@ -1587,9 +1597,46 @@ def get_cluster_models(msg):
emit('oai_engines', {'data': engines, 'online_model': online_model}, broadcast=False, room="UI_2")
else:
# Something went wrong, print the message and quit since we can't initialize an engine
print("{0}ERROR!{1}".format(colors.RED, colors.END))
print(req.json())
logger.init_err("KAI Horde Models", status="Failed")
logger.error(req.json())
emit('from_server', {'cmd': 'errmsg', 'data': req.json()}, room="UI_1")
return
engines = req.json()
logger.debug(engines)
try:
engines = [[en, en] for en in engines]
except:
logger.error(engines)
raise
online_model = ""
changed=False
#Save the key
if not path.exists("settings"):
# If the client settings file doesn't exist, create it
# Write API key to file
os.makedirs('settings', exist_ok=True)
if path.exists(get_config_filename(koboldai_vars.model_selected)):
with open(get_config_filename(koboldai_vars.model_selected), "r") as file:
js = json.load(file)
if 'online_model' in js:
online_model = js['online_model']
if "apikey" in js:
if js['apikey'] != koboldai_vars.oaiapikey:
changed=True
else:
changed=True
if changed:
js={}
with open(get_config_filename(koboldai_vars.model_selected), "w") as file:
js["apikey"] = koboldai_vars.oaiapikey
file.write(json.dumps(js, indent=3))
logger.init_ok("KAI Horde Models", status="OK")
emit('from_server', {'cmd': 'oai_engines', 'data': engines, 'online_model': online_model}, broadcast=True)
# Function to patch transformers to use our soft prompt
def patch_causallm(model):
@@ -1637,11 +1684,11 @@ def patch_transformers_download():
def http_get(
url: str,
temp_file: transformers.utils.hub.BinaryIO,
temp_file,
proxies=None,
resume_size=0,
headers: transformers.utils.hub.Optional[transformers.utils.hub.Dict[str, str]] = None,
file_name: transformers.utils.hub.Optional[str] = None,
headers=None,
file_name=None,
):
"""
Download remote file. Do not gobble up errors.
@@ -2249,29 +2296,28 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
elif(koboldai_vars.model_type == "not_found" and koboldai_vars.model == "GPT2Custom"):
koboldai_vars.model_type = "gpt2"
elif(koboldai_vars.model_type == "not_found"):
print("WARNING: No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
logger.warning("No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
koboldai_vars.model_type = "gpt_neo"
if(not koboldai_vars.use_colab_tpu and koboldai_vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
loadmodelsettings()
loadsettings()
print(2)
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
logger.init("GPU support", status="Searching")
koboldai_vars.hascuda = torch.cuda.is_available()
koboldai_vars.bmsupported = (utils.HAS_ACCELERATE or koboldai_vars.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not koboldai_vars.nobreakmodel
if(args.breakmodel is not None and args.breakmodel):
print("WARNING: --breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --breakmodel_gpulayers is used (see --help for details).", file=sys.stderr)
logger.warning("--breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --breakmodel_gpulayers is used (see --help for details).")
if(args.breakmodel_layers is not None):
print("WARNING: --breakmodel_layers is deprecated. Use --breakmodel_gpulayers instead (see --help for details).", file=sys.stderr)
logger.warning("--breakmodel_layers is deprecated. Use --breakmodel_gpulayers instead (see --help for details).")
if(args.model and koboldai_vars.bmsupported and not args.breakmodel_gpulayers and not args.breakmodel_layers and (not utils.HAS_ACCELERATE or not args.breakmodel_disklayers)):
print("WARNING: Model launched without the --breakmodel_gpulayers argument, defaulting to GPU only mode.", file=sys.stderr)
logger.warning("Model launched without the --breakmodel_gpulayers argument, defaulting to GPU only mode.")
koboldai_vars.bmsupported = False
if(not koboldai_vars.bmsupported and (args.breakmodel_gpulayers is not None or args.breakmodel_layers is not None or args.breakmodel_disklayers is not None)):
print("WARNING: This model does not support hybrid generation. --breakmodel_gpulayers will be ignored.", file=sys.stderr)
logger.warning("This model does not support hybrid generation. --breakmodel_gpulayers will be ignored.")
if(koboldai_vars.hascuda):
print("{0}FOUND!{1}".format(colors.GREEN, colors.END))
logger.init_ok("GPU support", status="Found")
else:
print("{0}NOT FOUND!{1}".format(colors.YELLOW, colors.END))
logger.init_warn("GPU support", status="Not Found")
if args.cpu:
koboldai_vars.usegpu = False
@@ -2308,7 +2354,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
# Start transformers and create pipeline
if(not koboldai_vars.use_colab_tpu and koboldai_vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
if(not koboldai_vars.noai):
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
logger.init("Transformers", status='Starting')
for m in ("GPTJModel", "XGLMModel"):
try:
globals()[m] = getattr(__import__("transformers"), m)
@@ -2376,7 +2422,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
print(flush=True)
koboldai_vars.total_layers = num_tensors
koboldai_vars.loaded_layers = 0
utils.bar = tqdm(total=num_tensors, desc="Loading model tensors", file=Send_to_socketio())
utils.bar = tqdm(total=num_tensors, desc=f"{colors.PURPLE}INIT{colors.END} | Loading model tensors", file=Send_to_socketio())
with zipfile.ZipFile(f, "r") as z:
try:
@@ -2447,7 +2493,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
def maybe_low_cpu_mem_usage() -> Dict[str, Any]:
if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")):
print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr)
logger.warning(f"Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.")
return {}
return {"low_cpu_mem_usage": True}
@@ -2504,7 +2550,6 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
if os.path.isdir(koboldai_vars.model.replace('/', '_')):
import shutil
shutil.move(koboldai_vars.model.replace('/', '_'), "models/{}".format(koboldai_vars.model.replace('/', '_')))
print("\n", flush=True)
if(koboldai_vars.lazy_load): # If we're using lazy loader, we need to figure out what the model's hidden layers are called
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
try:
@@ -2597,11 +2642,13 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
import transformers.configuration_utils
import transformers.modeling_utils
import transformers.file_utils
import huggingface_hub
legacy = packaging.version.parse(transformers_version) < packaging.version.parse("4.22.0.dev0")
# Save the config.json
shutil.move(transformers.file_utils.get_from_cache(transformers.file_utils.hf_bucket_url(koboldai_vars.model, transformers.configuration_utils.CONFIG_NAME, revision=koboldai_vars.revision), cache_dir="cache", local_files_only=True), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.configuration_utils.CONFIG_NAME))
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, transformers.configuration_utils.CONFIG_NAME, revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.configuration_utils.CONFIG_NAME))
if(utils.num_shards is None):
# Save the pytorch_model.bin of an unsharded model
shutil.move(transformers.file_utils.get_from_cache(transformers.file_utils.hf_bucket_url(koboldai_vars.model, transformers.modeling_utils.WEIGHTS_NAME, revision=koboldai_vars.revision), cache_dir="cache", local_files_only=True), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.modeling_utils.WEIGHTS_NAME))
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, transformers.modeling_utils.WEIGHTS_NAME, revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(vars.model.replace('/', '_')), transformers.modeling_utils.WEIGHTS_NAME))
else:
with open(utils.from_pretrained_index_filename) as f:
map_data = json.load(f)
@@ -2610,7 +2657,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
shutil.move(utils.from_pretrained_index_filename, os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), transformers.modeling_utils.WEIGHTS_INDEX_NAME))
# Then save the pytorch_model-#####-of-#####.bin files
for filename in filenames:
shutil.move(transformers.file_utils.get_from_cache(transformers.file_utils.hf_bucket_url(koboldai_vars.model, filename, revision=koboldai_vars.revision), cache_dir="cache", local_files_only=True), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), filename))
shutil.move(os.path.realpath(huggingface_hub.hf_hub_download(koboldai_vars.model, filename, revision=koboldai_vars.revision, cache_dir="cache", local_files_only=True, legacy_cache_layout=legacy)), os.path.join("models/{}".format(koboldai_vars.model.replace('/', '_')), filename))
shutil.rmtree("cache/")
if(koboldai_vars.badwordsids is koboldai_settings.badwordsids_default and koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")):
@@ -2652,7 +2699,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
#for key in koboldai_vars.badwords:
# koboldai_vars.badwordsids.append([vocab[key]])
print("{0}OK! {1} pipeline created!{2}".format(colors.GREEN, koboldai_vars.model, colors.END))
logger.info(f"Pipeline created: {koboldai_vars.model}")
else:
from transformers import GPT2TokenizerFast
@@ -2955,7 +3002,7 @@ def lua_startup():
#==================================================================#
print("", end="", flush=True)
print(colors.PURPLE + "Initializing Lua Bridge... " + colors.END, end="", flush=True)
logger.init("LUA bridge", status="Starting")
# Set up Lua state
koboldai_vars.lua_state = lupa.LuaRuntime(unpack_returned_tuples=True)
@@ -2978,11 +3025,11 @@ def lua_startup():
except lupa.LuaError as e:
print(colors.RED + "ERROR!" + colors.END)
koboldai_vars.lua_koboldbridge.obliterate_multiverse()
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
logger.debug('LUA ERROR: ' + str(e).replace("\033", ""))
logger.warning("Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.")
socketio.emit("error", str(e), broadcast=True, room="UI_2")
exit(1)
print(colors.GREEN + "OK!" + colors.END)
logger.init_ok("LUA bridge", status="OK")
def lua_log_format_name(name):
@@ -3006,7 +3053,7 @@ def load_callback(filename, modulename):
# Load all Lua scripts
#==================================================================#
def load_lua_scripts():
print(colors.GREEN + "Loading Core Script" + colors.END)
logger.init("LUA Scripts", status="Starting")
filenames = []
modulenames = []
@@ -3038,12 +3085,12 @@ def load_lua_scripts():
if(koboldai_vars.serverstarted):
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True, room="UI_1")
sendUSStatItems()
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
logger.debug('LUA ERROR: ' + str(e).replace("\033", ""))
logger.warning("Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.")
socketio.emit("error", str(e), broadcast=True, room="UI_2")
if(koboldai_vars.serverstarted):
set_aibusy(0)
logger.init_ok("LUA Scripts", status="OK")
#==================================================================#
# Print message that originates from the userscript with the given name
@@ -3531,9 +3578,8 @@ def execute_inmod():
koboldai_vars.lua_running = False
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True, room="UI_1")
sendUSStatItems()
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
logger.debug('LUA ERROR: ' + str(e).replace("\033", ""))
logger.warning("Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.")
socketio.emit("error", str(e), broadcast=True, room="UI_2")
set_aibusy(0)
@@ -3550,9 +3596,8 @@ def execute_outmod():
koboldai_vars.lua_running = False
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True, room="UI_1")
sendUSStatItems()
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
logger.debug('LUA ERROR: ' + str(e).replace("\033", ""))
logger.warning("Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.")
socketio.emit("error", str(e), broadcast=True, room="UI_2")
set_aibusy(0)
if(koboldai_vars.lua_koboldbridge.resend_settings_required):
@@ -3573,6 +3618,7 @@ def execute_outmod():
#==================================================================#
@socketio.on('connect')
def do_connect():
logger.info("Client connected!")
if request.args.get("rely") == "true":
return
join_room("UI_{}".format(request.args.get('ui')))
@@ -3633,7 +3679,7 @@ def do_connect():
@socketio.on('message')
def get_message(msg):
if not koboldai_vars.quiet:
print("{0}Data received:{1}{2}".format(colors.GREEN, msg, colors.END))
logger.debug(f"Data received: {msg}")
# Submit action
if(msg['cmd'] == 'submit'):
if(koboldai_vars.mode == "play"):
@@ -3918,8 +3964,7 @@ def get_message(msg):
elif(msg['cmd'] == 'list_model'):
sendModelSelection(menu=msg['data'])
elif(msg['cmd'] == 'load_model'):
print(msg)
print(koboldai_vars.model_selected)
logger.debug(f"Selected Model: {koboldai_vars.model_selected}")
if not os.path.exists("settings/"):
os.mkdir("settings")
changed = True
@@ -3953,7 +3998,7 @@ def get_message(msg):
koboldai_vars.cluster_requested_models = msg['online_model']
load_model(use_gpu=msg['use_gpu'], gpu_layers=msg['gpu_layers'], disk_layers=msg['disk_layers'], online_model=msg['online_model'])
elif(msg['cmd'] == 'show_model'):
print("Model Name: {}".format(getmodelname()))
logger.info(f"Model Name: {getmodelname()}")
emit('from_server', {'cmd': 'show_model_name', 'data': getmodelname()}, broadcast=True, room="UI_1")
elif(msg['cmd'] == 'selectmodel'):
# This is run when a model line is selected from the UI (line from the model_menu variable) that is tagged as not a menu
@@ -4004,14 +4049,14 @@ def get_message(msg):
elif(msg['cmd'] == 'delete_model'):
if "{}/models".format(os.getcwd()) in os.path.abspath(msg['data']) or "{}\\models".format(os.getcwd()) in os.path.abspath(msg['data']):
if check_if_dir_is_model(msg['data']):
print(colors.YELLOW + "WARNING: Someone deleted " + msg['data'])
logger.warning(f"Someone deleted {msg['data']}")
import shutil
shutil.rmtree(msg['data'])
sendModelSelection(menu=msg['menu'])
else:
print(colors.RED + "ERROR: Someone attempted to delete " + msg['data'] + " but this is not a valid model")
logger.error(f"Someone attempted to delete {msg['data']} but this is not a valid model")
else:
print(colors.RED + "WARNING!!: Someone maliciously attempted to delete " + msg['data'] + " the attempt has been blocked.")
logger.critical(f"Someone maliciously attempted to delete {msg['data']}. The attempt has been blocked.")
elif(msg['cmd'] == 'OAI_Key_Update'):
get_oai_models({'model': koboldai_vars.model, 'key': msg['key']})
elif(msg['cmd'] == 'Cluster_Key_Update'):
@@ -4250,7 +4295,7 @@ def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False,
except:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except:
print(f"WARNING: Unknown tokenizer {repr(tokenizer_id)}")
logger.warning(f"Unknown tokenizer {repr(tokenizer_id)}")
koboldai_vars.api_tokenizer_id = tokenizer_id
if(disable_recentrng):
@@ -4403,7 +4448,8 @@ def apiactionsubmit_generate(txt, minimum, maximum):
koboldai_vars.generated_tkns = 0
if not koboldai_vars.quiet:
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, utils.decodenewlines(tokenizer.decode(txt)), colors.END))
logger.debug(f"Prompt Min:{minimum}, Max:{maximum}")
logger.prompt(utils.decodenewlines(tokenizer.decode(txt)).encode("unicode_escape").decode("utf-8"))
# Clear CUDA cache if using GPU
if(koboldai_vars.hascuda and (koboldai_vars.usegpu or koboldai_vars.breakmodel)):
@@ -4430,7 +4476,8 @@ def apiactionsubmit_tpumtjgenerate(txt, minimum, maximum):
tpu_mtj_backend.set_rng_seed(koboldai_vars.seed)
if not koboldai_vars.quiet:
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, utils.decodenewlines(tokenizer.decode(txt)), colors.END))
logger.debug(f"Prompt Min:{minimum}, Max:{maximum}")
logger.prompt(utils.decodenewlines(tokenizer.decode(txt)).encode("unicode_escape").decode("utf-8"))
koboldai_vars._prompt = koboldai_vars.prompt
@@ -4917,7 +4964,8 @@ def generate(txt, minimum, maximum, found_entries=None):
found_entries = tuple(found_entries.copy() for _ in range(koboldai_vars.numseqs))
if not koboldai_vars.quiet:
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, utils.decodenewlines(tokenizer.decode(txt)), colors.END))
logger.debug(f"Prompt Min:{minimum}, Max:{maximum}")
logger.prompt(utils.decodenewlines(tokenizer.decode(txt)).encode("unicode_escape").decode("utf-8"))
# Store context in memory to use it for comparison with generated content
koboldai_vars.lastctx = utils.decodenewlines(tokenizer.decode(txt))
@@ -4936,13 +4984,12 @@ def generate(txt, minimum, maximum, found_entries=None):
koboldai_vars.lua_running = False
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True, room="UI_1")
sendUSStatItems()
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
logger.debug('LUA ERROR: ' + str(e).replace("\033", ""))
logger.warning("Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.")
socketio.emit("error", str(e), broadcast=True, room="UI_2")
else:
emit('from_server', {'cmd': 'errmsg', 'data': 'Error occurred during generator call; please check console.'}, broadcast=True, room="UI_1")
print("{0}{1}{2}".format(colors.RED, traceback.format_exc().replace("\033", ""), colors.END), file=sys.stderr)
logger.error(traceback.format_exc().replace("\033", ""))
socketio.emit("error", str(e), broadcast=True, room="UI_2")
set_aibusy(0)
return
@@ -4985,7 +5032,7 @@ def generate(txt, minimum, maximum, found_entries=None):
#==================================================================#
def genresult(genout, flash=True, ignore_formatting=False):
if not koboldai_vars.quiet:
print("{0}{1}{2}".format(colors.CYAN, genout, colors.END))
logger.generation(genout.encode("unicode_escape").decode("utf-8"))
# Format output before continuing
if not ignore_formatting:
@@ -5015,7 +5062,8 @@ def genselect(genout):
# Apply output formatting rules to sequences
result["generated_text"] = applyoutputformatting(result["generated_text"])
if not koboldai_vars.quiet:
print("{0}[Result {1}]\n{2}{3}".format(colors.CYAN, i, result["generated_text"], colors.END))
logger.info(f"Generation Result {i}")
logger.generation(result["generated_text"].encode("unicode_escape").decode("utf-8"))
i += 1
@@ -5228,11 +5276,11 @@ def sendtoapi(txt, min, max):
def sendtocluster(txt, min, max):
# Log request to console
if not koboldai_vars.quiet:
print("{0}Tokens:{1}, Txt:{2}{3}".format(colors.YELLOW, min-1, txt, colors.END))
logger.debug(f"Tokens Min:{min-1}")
logger.prompt(txt.encode("unicode_escape").decode("utf-8"))
# Store context in memory to use it for comparison with generated content
koboldai_vars.lastctx = txt
# Build request JSON data
reqdata = {
'max_length': max - min + 1,
@@ -5254,39 +5302,41 @@ def sendtocluster(txt, min, max):
'api_key': koboldai_vars.apikey,
'models': koboldai_vars.cluster_requested_models,
}
logger.debug(f"Horde Payload: {cluster_metadata}")
try:
# Create request
req = requests.post(
koboldai_vars.colaburl[:-8] + "/api/v1/generate/sync",
json=cluster_metadata,
)
js = req.json()
except requests.exceptions.ConnectionError:
errmsg = f"Horde unavailable. Please try again later"
print("{0}{1}{2}".format(colors.RED, errmsg, colors.END))
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
return
except requests.exceptions.JSONDecodeError:
errmsg = f"Unexpected message received from the Horde: '{req.text}'"
print("{0}{1}{2}".format(colors.RED, errmsg, colors.END))
logger.error(errmsg)
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
return
if(req.status_code == 503):
errmsg = f"KoboldAI API Error: No available KoboldAI servers found in Horde to fulfil this request using the selected models or other properties."
print("{0}{1}{2}".format(colors.RED, json.dumps(js, indent=2), colors.END))
logger.error(req.text)
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
return
if(req.status_code != 200):
if(not req.ok):
errmsg = f"KoboldAI API Error: Failed to get a standard reply from the Horde. Please check the console."
print("{0}{1}{2}".format(colors.RED, json.dumps(js, indent=2), colors.END))
logger.error(req.text)
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
return
try:
js = req.json()
except requests.exceptions.JSONDecodeError:
errmsg = f"Unexpected message received from the Horde: '{req.text}'"
logger.error(errmsg)
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
set_aibusy(0)
return
gen_servers = [(cgen['server_name'],cgen['server_id']) for cgen in js]
print(f"{colors.GREEN}Generations by: {gen_servers}{colors.END}")
logger.info(f"Generations by: {gen_servers}")
# Just in case we want to announce it to the user
if len(js) == 1:
warnmsg = f"Text generated by {js[0]['server_name']}"
@@ -5336,7 +5386,8 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
found_entries = tuple(found_entries.copy() for _ in range(koboldai_vars.numseqs))
if not koboldai_vars.quiet:
print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, utils.decodenewlines(tokenizer.decode(txt)), colors.END))
logger.debug(f"Prompt Min:{minimum}, Max:{maximum}")
logger.prompt(utils.decodenewlines(tokenizer.decode(txt)).encode("unicode_escape").decode("utf-8"))
koboldai_vars._prompt = koboldai_vars.prompt
@@ -5425,9 +5476,8 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
koboldai_vars.lua_running = False
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True, room="UI_1")
sendUSStatItems()
print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr)
print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr)
print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr)
logger.debug('LUA ERROR: ' + str(e).replace("\033", ""))
logger.warning("Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.")
socketio.emit("error", str(e), broadcast=True, room="UI_2")
else:
emit('from_server', {'cmd': 'errmsg', 'data': 'Error occurred during generator call; please check console.'}, broadcast=True, room="UI_1")
@@ -5704,7 +5754,7 @@ def inlineedit(chunk, data):
if(chunk-1 in koboldai_vars.actions):
koboldai_vars.actions[chunk-1] = data
else:
print(f"WARNING: Attempted to edit non-existent chunk {chunk}")
logger.warning(f"Attempted to edit non-existent chunk {chunk}")
setgamesaved(False)
update_story_chunk(chunk)
@@ -5728,7 +5778,7 @@ def inlinedelete(chunk):
if(chunk-1 in koboldai_vars.actions):
koboldai_vars.actions.delete_action(chunk-1)
else:
print(f"WARNING: Attempted to delete non-existent chunk {chunk}")
logger.warning(f"Attempted to delete non-existent chunk {chunk}")
setgamesaved(False)
remove_story_chunk(chunk)
emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True, room="UI_1")
@@ -10847,9 +10897,13 @@ def startup():
print("", end="", flush=True)
if __name__ == "__main__":
print("{0}\nStarting webserver...{1}".format(colors.GREEN, colors.END), flush=True)
general_startup()
# Start flask & SocketIO
logger.init("Flask", status="Starting")
Session(app)
logger.init_ok("Flask", status="OK")
logger.init("Webserver", status="Starting")
patch_transformers()
startup()
# Start Flask/SocketIO (Blocking, so this must be last method!)
@@ -10883,12 +10937,12 @@ if __name__ == "__main__":
if(args.localtunnel or args.ngrok or args.remote):
with open('cloudflare.log', 'w') as cloudflarelog:
cloudflarelog.write("KoboldAI has finished loading and is available at the following link : " + cloudflare)
koboldai_vars.cloudflare_link = cloudflare
print(format(colors.GREEN) + "KoboldAI has finished loading and is available at the following link for UI 1: " + cloudflare + format(colors.END))
print(format(colors.GREEN) + "KoboldAI has finished loading and is available at the following link for UI 2: " + cloudflare + "/new_ui" + format(colors.END))
logger.init_ok("Webserver", status="OK")
logger.message(f"KoboldAI has finished loading and is available at the following link for UI 1: {cloudflare}")
logger.message(f"KoboldAI has finished loading and is available at the following link for UI 2: {cloudflare}/new_ui")
else:
print("{0}Webserver has started, you can now connect to this machine at port {1}{2}"
.format(colors.GREEN, port, colors.END))
logger.init_ok("Webserver", status="OK")
logger.message(f"Webserver has started, you can now connect to this machine at port: {port}")
koboldai_vars.serverstarted = True
socketio.run(app, host='0.0.0.0', port=port)
else:
@@ -10896,8 +10950,8 @@ if __name__ == "__main__":
if not args.no_ui:
import webbrowser
webbrowser.open_new('http://localhost:{0}'.format(port))
print("{0}Server started!\nYou may now connect with a browser at http://127.0.0.1:{1}/{2}"
.format(colors.GREEN, port, colors.END))
logger.init_ok("Webserver", status="OK")
logger.message(f"Webserver started! You may now connect with a browser at http://127.0.0.1:{port}")
koboldai_vars.serverstarted = True
socketio.run(app, port=port, host='0.0.0.0')
else:
@@ -10910,13 +10964,19 @@ if __name__ == "__main__":
if not args.no_ui:
import webbrowser
webbrowser.open_new('http://localhost:{0}'.format(port))
print("{0}Server started!\nYou may now connect with a browser at http://127.0.0.1:{1}/{2}"
.format(colors.GREEN, port, colors.END))
logger.init_ok("Webserver", status="OK")
logger.message(f"Webserver started! You may now connect with a browser at http://127.0.0.1:{port}")
koboldai_vars.serverstarted = True
socketio.run(app, port=port)
logger.init("Webserver", status="Closed")
else:
general_startup()
# Start flask & SocketIO
logger.init("Flask", status="Starting")
Session(app)
logger.init_ok("Flask", status="OK")
patch_transformers()
startup()
koboldai_settings.port = args.port if "port" in args and args.port is not None else 5000

View File

@@ -18,6 +18,7 @@ dependencies:
- git=2.35.1
- marshmallow>=3.13
- apispec-webframeworks
- loguru
- pip:
- git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3-rp-b
- flask-cloudflared

View File

@@ -19,6 +19,7 @@ dependencies:
- protobuf
- marshmallow>=3.13
- apispec-webframeworks
- loguru
- pip:
- flask-cloudflared
- flask-ngrok

View File

@@ -14,6 +14,7 @@ dependencies:
- git=2.35.1
- marshmallow>=3.13
- apispec-webframeworks
- loguru
- pip:
- --find-links https://download.pytorch.org/whl/rocm4.2/torch_stable.html
- torch

View File

@@ -16,6 +16,7 @@ dependencies:
- protobuf
- marshmallow>=3.13
- apispec-webframeworks
- loguru
- pip:
- --find-links https://download.pytorch.org/whl/rocm4.2/torch_stable.html
- torch==1.10.*

View File

@@ -3,6 +3,7 @@ from typing import Tuple, Union, Optional
import os
import json
import zipfile
from logger import logger
#==================================================================#
# Generic Method for prompting for file path
@@ -156,16 +157,16 @@ def getspfiles(model_dimension: int):
continue
z, version, shape, fortran_order, dtype = checksp("./softprompts/"+file, model_dimension)
if z == 1:
print(f"Browser SP loading error: {file} is malformed or not a soft prompt ZIP file.")
logger.warning(f"Softprompt {file} is malformed or not a soft prompt ZIP file.")
continue
if z == 2:
print(f"Browser SP loading error: {file} tensor.npy has unsupported dtype '{dtype.name}'.")
logger.warning(f"Softprompt {file} tensor.npy has unsupported dtype '{dtype.name}'.")
continue
if z == 3:
print(f"Browser SP loading error: {file} tensor.npy has model dimension {shape[1]} which does not match your model's model dimension of {model_dimension}. This usually means this soft prompt is not compatible with your model.")
logger.debug(f"Softprompt {file} tensor.npy has model dimension {shape[1]} which does not match your model's model dimension of {model_dimension}. This usually means this soft prompt is not compatible with your model.")
continue
if z == 4:
print(f"Browser SP loading error: {file} tensor.npy has {shape[0]} tokens but it is supposed to have less than 2048 tokens.")
logger.warning(f"Softprompt {file} tensor.npy has {shape[0]} tokens but it is supposed to have less than 2048 tokens.")
continue
assert isinstance(z, zipfile.ZipFile)
try:

View File

@@ -185,7 +185,7 @@ class koboldai_vars(object):
prompt_text = self.tokenizer.decode(self.tokenizer.encode(self.prompt)[-self.max_prompt_length-1:])
text += prompt_text
context.append({"type": "prompt", "text": self.prompt_text})
context.append({"type": "prompt", "text": prompt_text})
self.prompt_in_ai = True
else:
self.prompt_in_ai = False

99
logger.py Normal file
View File

@@ -0,0 +1,99 @@
import sys
from functools import partialmethod
from loguru import logger
STDOUT_LEVELS = ["GENERATION", "PROMPT"]
INIT_LEVELS = ["INIT", "INIT_OK", "INIT_WARN", "INIT_ERR"]
MESSAGE_LEVELS = ["MESSAGE"]
# By default we're at error level or higher
verbosity = 20
quiet = 0
def set_logger_verbosity(count):
global verbosity
# The count comes reversed. So count = 0 means minimum verbosity
# While count 5 means maximum verbosity
# So the more count we have, the lowe we drop the versbosity maximum
verbosity = 20 - (count * 10)
def quiesce_logger(count):
global quiet
# The bigger the count, the more silent we want our logger
quiet = count * 10
def is_stdout_log(record):
if record["level"].name not in STDOUT_LEVELS:
return(False)
if record["level"].no < verbosity + quiet:
return(False)
return(True)
def is_init_log(record):
if record["level"].name not in INIT_LEVELS:
return(False)
if record["level"].no < verbosity + quiet:
return(False)
return(True)
def is_msg_log(record):
if record["level"].name not in MESSAGE_LEVELS:
return(False)
if record["level"].no < verbosity + quiet:
return(False)
return(True)
def is_stderr_log(record):
if record["level"].name in STDOUT_LEVELS + INIT_LEVELS + MESSAGE_LEVELS:
return(False)
if record["level"].no < verbosity + quiet:
return(False)
return(True)
def test_logger():
logger.generation("This is a generation message\nIt is typically multiline\nThee Lines".encode("unicode_escape").decode("utf-8"))
logger.prompt("This is a prompt message")
logger.debug("Debug Message")
logger.info("Info Message")
logger.warning("Info Warning")
logger.error("Error Message")
logger.critical("Critical Message")
logger.init("This is an init message", status="Starting")
logger.init_ok("This is an init message", status="OK")
logger.init_warn("This is an init message", status="Warning")
logger.init_err("This is an init message", status="Error")
logger.message("This is user message")
sys.exit()
logfmt = "<level>{level: <10}</level> | <green>{name}</green>:<green>{function}</green>:<green>{line}</green> - <level>{message}</level>"
genfmt = "<level>{level: <10}</level> @ <green>{time:YYYY-MM-DD HH:mm:ss}</green> | <level>{message}</level>"
initfmt = "<magenta>INIT </magenta> | <level>{extra[status]: <10}</level> | <magenta>{message}</magenta>"
msgfmt = "<level>{level: <10}</level> | <level>{message}</level>"
logger.level("GENERATION", no=24, color="<cyan>")
logger.level("PROMPT", no=23, color="<yellow>")
logger.level("INIT", no=31, color="<white>")
logger.level("INIT_OK", no=31, color="<green>")
logger.level("INIT_WARN", no=31, color="<yellow>")
logger.level("INIT_ERR", no=31, color="<red>")
# Messages contain important information without which this application might not be able to be used
# As such, they have the highest priority
logger.level("MESSAGE", no=61, color="<green>")
logger.__class__.generation = partialmethod(logger.__class__.log, "GENERATION")
logger.__class__.prompt = partialmethod(logger.__class__.log, "PROMPT")
logger.__class__.init = partialmethod(logger.__class__.log, "INIT")
logger.__class__.init_ok = partialmethod(logger.__class__.log, "INIT_OK")
logger.__class__.init_warn = partialmethod(logger.__class__.log, "INIT_WARN")
logger.__class__.init_err = partialmethod(logger.__class__.log, "INIT_ERR")
logger.__class__.message = partialmethod(logger.__class__.log, "MESSAGE")
config = {
"handlers": [
{"sink": sys.stderr, "format": logfmt, "colorize":True, "filter": is_stderr_log},
{"sink": sys.stdout, "format": genfmt, "level": "PROMPT", "colorize":True, "filter": is_stdout_log},
{"sink": sys.stdout, "format": initfmt, "level": "INIT", "colorize":True, "filter": is_init_log},
{"sink": sys.stdout, "format": msgfmt, "level": "MESSAGE", "colorize":True, "filter": is_msg_log}
],
}
logger.configure(**config)

View File

@@ -14,4 +14,5 @@ protobuf
accelerate
flask_session
marshmallow>=3.13
apispec-webframeworks
apispec-webframeworks
loguru

View File

@@ -2,11 +2,10 @@ torch >= 1.9, <= 1.11
numpy
tqdm
requests
optax >= 0.0.5, <= 0.0.9
dm-haiku == 0.0.5
jax == 0.2.21
jaxlib >= 0.1.69, <= 0.3.7
transformers >= 4.19
transformers ==4.21.3
progressbar2
git+https://github.com/VE-FORBRYDERNE/mesh-transformer-jax@ck
flask
@@ -17,7 +16,7 @@ eventlet
lupa==1.10
markdown
bleach==4.1.0
chex==0.1.4
flask-session
marshmallow>=3.13
apispec-webframeworks
apispec-webframeworks
loguru

View File

@@ -2913,6 +2913,7 @@ $(document).ready(function(){
$("#oaimodel").addClass("hidden")
buildLoadModelList(msg.data, msg.menu, msg.breadcrumbs, msg.showdelete);
} else if(msg.cmd == 'selected_model_info') {
console.log(msg);
enableButtons([load_model_accept]);
$("#oaimodel").addClass("hidden")
$("#oaimodel")[0].options[0].selected = true;
@@ -2946,7 +2947,7 @@ $(document).ready(function(){
if (msg.url) {
$("#modelurl").removeClass("hidden");
if (msg.default_url != null) {
$("#modelurl").value = msg.default_url;
document.getElementById("modelurl").value = msg.default_url;
}
} else {
$("#modelurl").addClass("hidden");

View File

@@ -2355,4 +2355,19 @@ h2 .material-icons-outlined {
.horde_trigger[model_model="ReadOnly"],
.horde_trigger[model_model="CLUSTER"] {
display: none;
}
.preset_area {
width: 100%;
padding: 10px;
text-align: center;
}
.preset_area .settings_button {
transform: translateY(6px);
width: 155px;
}
input[type='range'] {
border: none !important;
}

View File

@@ -107,12 +107,12 @@
<span id="debug-dump" class="cursor" onclick="document.getElementById('debug-file-container').classList.remove('hidden');">Download debug dump</span>
</div>
<div id="setting_menu_settings" class="hidden settings_category_area tab-target tab-target-settings">
<div class="force_center">
<select class="var_sync_model_selected_preset settings_select presets" onchange='sync_to_server(this)'><option>Preset</option></select>
<div class="preset_area">
<button class="settings_button" onclick="show_save_preset();">
<span class="material-icons-outlined cursor" title="Save Preset">save</span>
<span class="button_label">Save Preset</span>
</button>
<select class="var_sync_model_selected_preset settings_select presets" onchange='sync_to_server(this)'><option>Preset</option></select>
</div>
{% with menu='Settings' %}
<div class="collapsable_header" onclick="toggle_setting_category(this);">

View File

@@ -30,7 +30,7 @@ SOFTWARE.
import utils
import multiprocessing
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple, TypeVar
import progressbar
import time
import os
@@ -45,7 +45,6 @@ from jax.config import config
from jax.experimental import maps
import jax.numpy as jnp
import numpy as np
import optax
import haiku as hk
from transformers import AutoTokenizer, GPT2TokenizerFast, AutoModelForCausalLM, GPTNeoForCausalLM
from tokenizers import Tokenizer
@@ -136,6 +135,14 @@ def __batch_xmap(shard_dim=1):
return inner
class _EmptyState(NamedTuple):
pass
class _DummyOptimizer:
def init(*args, **kwargs):
return _EmptyState()
def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty, generated_index, gen_length, rpslope, rprange):
'''
This gets called by generate_loop_fn to apply repetition penalty
@@ -1167,7 +1174,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
cores_per_replica = params["cores_per_replica"]
seq = params["seq"]
params["optimizer"] = optax.scale(0)
params["optimizer"] = _DummyOptimizer()
mesh_shape = (1, cores_per_replica)
devices = np.array(jax.devices()[:cores_per_replica]).reshape(mesh_shape)
thread_resources_env = maps.ResourceEnv(maps.Mesh(devices, ('dp', 'mp')), ())

375
utils.py
View File

@@ -4,6 +4,7 @@ import shutil
import json
import subprocess
import tempfile
from urllib.error import HTTPError
import requests
import requests.adapters
import time
@@ -13,6 +14,10 @@ import packaging.version
from tqdm.auto import tqdm
import os
import itertools
import hashlib
import huggingface_hub
import packaging.version
from pathlib import Path
from typing import List, Optional
HAS_ACCELERATE = packaging.version.parse(transformers_version) >= packaging.version.parse("4.20.0.dev0")
@@ -182,81 +187,9 @@ class Send_to_socketio(object):
except:
pass
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
def _download_with_aria2(aria2_config: str, total_length: int, directory: str = ".", user_agent=None, force_download=False, use_auth_token=None):
import transformers
import transformers.modeling_utils
from huggingface_hub import HfFolder
if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed
return
if local_files_only: # If local_files_only is true, we obviously don't need to download anything
return
if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index") or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path):
return
if proxies:
print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.")
return
if use_auth_token:
if isinstance(use_auth_token, str):
token = use_auth_token
else:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
sharded = False
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
if use_auth_token:
headers["authorization"] = f"Bearer {use_auth_token}"
def is_cached(url):
try:
transformers.file_utils.get_from_cache(url, cache_dir=cache_dir, local_files_only=True)
except (FileNotFoundError, transformers.file_utils.EntryNotFoundError):
return False
return True
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
try:
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
except AttributeError:
return
url = transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, filename, revision=revision, mirror=mirror)
if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
break
if sharded:
return
else:
sharded = True
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
map_filename = transformers.file_utils.cached_path(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
with open(map_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
urls = [transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, n, revision=revision, mirror=mirror) for n in filenames]
if not force_download:
urls = [u for u in urls if not is_cached(u)]
if not urls:
return
etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]]
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
filenames = [transformers.file_utils.url_to_filename(u, t) for u, t in zip(urls, etags)]
for n in filenames:
path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2")
if os.path.exists(path):
os.remove(path)
path = os.path.join(_cache_dir, "kai-tempfile." + n)
if os.path.exists(path):
os.remove(path)
if force_download:
path = os.path.join(_cache_dir, n + ".json")
if os.path.exists(path):
os.remove(path)
path = os.path.join(_cache_dir, n)
if os.path.exists(path):
os.remove(path)
total_length = sum(int(h["Content-Length"]) for h in headers)
lengths = {}
aria2_config = "\n".join(f"{u}\n out=kai-tempfile.{n}" for u, n in zip(urls, filenames)).encode()
s = requests.Session()
s.mount("http://", requests.adapters.HTTPAdapter(max_retries=requests.adapters.Retry(total=120, backoff_factor=1)))
bar = None
@@ -266,7 +199,7 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d
with tempfile.NamedTemporaryFile("w+b", delete=False) as f:
f.write(aria2_config)
f.flush()
p = subprocess.Popen(["aria2c", "-x", "10", "-s", "10", "-j", "10", "--enable-rpc=true", f"--rpc-secret={secret}", "--rpc-listen-port", str(koboldai_vars.aria2_port), "--disable-ipv6", "--file-allocation=trunc", "--allow-overwrite", "--auto-file-renaming=false", "-d", _cache_dir, "-i", f.name, "-U", transformers.file_utils.http_user_agent(user_agent)] + (["-c"] if not force_download else []) + ([f"--header='Authorization: Bearer {token}'"] if use_auth_token else []), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p = subprocess.Popen(["aria2c", "-x", "10", "-s", "10", "-j", "10", "--enable-rpc=true", f"--rpc-secret={secret}", "--rpc-listen-port", str(koboldai_vars.aria2_port), "--disable-ipv6", "--file-allocation=trunc", "--allow-overwrite", "--auto-file-renaming=false", "-d", directory, "-i", f.name, "-U", transformers.file_utils.http_user_agent(user_agent)] + (["-c"] if not force_download else []) + ([f"--header='Authorization: Bearer {use_auth_token}'"] if use_auth_token else []), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
while p.poll() is None:
r = s.post(f"http://localhost:{koboldai_vars.aria2_port}/jsonrpc", json={"jsonrpc": "2.0", "id": "kai", "method": "aria2.tellActive", "params": [f"token:{secret}"]}).json()["result"]
if not r:
@@ -278,7 +211,7 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d
done = True
break
if bar is None:
bar = tqdm(total=total_length, desc=f"[aria2] Downloading model", unit="B", unit_scale=True, unit_divisor=1000, file=Send_to_socketio())
bar = tqdm(total=total_length, desc=f"[aria2] Downloading model", unit="B", unit_scale=True, unit_divisor=1000)
visited = set()
for x in r:
filename = x["files"][0]["path"]
@@ -296,12 +229,298 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d
raise e
finally:
try:
os.remove(path)
if os.path.exists(path):
os.remove(path)
except OSError:
pass
code = p.wait()
if not done and code:
raise OSError(f"aria2 exited with exit code {code}")
def _transformers22_aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
import transformers
import transformers.modeling_utils
from huggingface_hub import HfFolder
if use_auth_token:
if isinstance(use_auth_token, str):
token = use_auth_token
else:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
_revision = revision if revision is not None else huggingface_hub.constants.DEFAULT_REVISION
sharded = False
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
if use_auth_token:
headers["authorization"] = f"Bearer {use_auth_token}"
storage_folder = os.path.join(_cache_dir, huggingface_hub.file_download.repo_folder_name(repo_id=pretrained_model_name_or_path, repo_type="model"))
os.makedirs(storage_folder, exist_ok=True)
def is_cached(filename):
try:
huggingface_hub.hf_hub_download(pretrained_model_name_or_path, filename, cache_dir=cache_dir, local_files_only=True)
except ValueError:
return False
return True
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
try:
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
except AttributeError:
return
url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision)
if is_cached(filename) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
break
if sharded:
return
else:
sharded = True
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
map_filename = huggingface_hub.hf_hub_download(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
with open(map_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames]
if not force_download:
urls = [u for u, n in zip(urls, filenames) if not is_cached(n)]
if not urls:
return
blob_paths = []
# This section is a modified version of hf_hub_download from huggingface_hub
# See https://github.com/huggingface/huggingface_hub/blob/main/LICENSE for license
for u, n in zip(urls, filenames):
relative_filename = os.path.join(*n.split("/"))
if not local_files_only:
try:
r = huggingface_hub.file_download._request_wrapper(
method="HEAD",
url=u,
headers=headers,
allow_redirects=False,
follow_relative_redirects=True,
proxies=proxies,
timeout=10,
)
try:
r.raise_for_status()
except HTTPError as e:
error_code = r.headers.get("X-Error-Code")
if error_code != "EntryNotFound":
raise RuntimeError(f"HEAD {u} failed with error code {r.status_code}")
commit_hash = r.headers.get(huggingface_hub.file_download.HUGGINGFACE_HEADER_X_REPO_COMMIT)
if commit_hash is not None:
no_exist_file_path = (
Path(storage_folder)
/ ".no_exist"
/ commit_hash
/ relative_filename
)
no_exist_file_path.parent.mkdir(parents=True, exist_ok=True)
no_exist_file_path.touch()
huggingface_hub.file_download._cache_commit_hash_for_specific_revision(
storage_folder, _revision, commit_hash
)
raise
commit_hash = r.headers[huggingface_hub.file_download.HUGGINGFACE_HEADER_X_REPO_COMMIT]
if commit_hash is None:
raise OSError(
"Distant resource does not seem to be on huggingface.co (missing"
" commit header)."
)
etag = r.headers.get(huggingface_hub.file_download.HUGGINGFACE_HEADER_X_LINKED_ETAG) or r.headers.get(
"ETag"
)
# We favor a custom header indicating the etag of the linked resource, and
# we fallback to the regular etag header.
# If we don't have any of those, raise an error.
if etag is None:
raise OSError(
"Distant resource does not have an ETag, we won't be able to"
" reliably ensure reproducibility."
)
etag = huggingface_hub.file_download._normalize_etag(etag)
# In case of a redirect, save an extra redirect on the request.get call,
# and ensure we download the exact atomic version even if it changed
# between the HEAD and the GET (unlikely, but hey).
# Useful for lfs blobs that are stored on a CDN.
if 300 <= r.status_code <= 399:
url_to_download = r.headers["Location"]
if (
"lfs.huggingface.co" in url_to_download
or "lfs-staging.huggingface.co" in url_to_download
):
# Remove authorization header when downloading a LFS blob
headers.pop("authorization", None)
except (requests.exceptions.SSLError, requests.exceptions.ProxyError):
# Actually raise for those subclasses of ConnectionError
raise
except (
requests.exceptions.ConnectionError,
requests.exceptions.Timeout,
huggingface_hub.file_download.OfflineModeIsEnabled,
):
# Otherwise, our Internet connection is down.
# etag is None
pass
if etag is None:
# In those cases, we cannot force download.
if force_download:
raise ValueError(
"We have no connection or you passed local_files_only, so"
" force_download is not an accepted option."
)
if huggingface_hub.file_download.REGEX_COMMIT_HASH.match(_revision):
commit_hash = _revision
else:
ref_path = os.path.join(storage_folder, "refs", _revision)
with open(ref_path) as f:
commit_hash = f.read()
pointer_path = os.path.join(
storage_folder, "snapshots", commit_hash, relative_filename
)
if os.path.exists(pointer_path):
return pointer_path
# If we couldn't find an appropriate file on disk,
# raise an error.
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise huggingface_hub.file_download.LocalEntryNotFoundError(
"Cannot find the requested files in the disk cache and"
" outgoing traffic has been disabled. To enable hf.co look-ups"
" and downloads online, set 'local_files_only' to False."
)
else:
raise huggingface_hub.file_download.LocalEntryNotFoundError(
"Connection error, and we cannot find the requested files in"
" the disk cache. Please try again or make sure your Internet"
" connection is on."
)
# From now on, etag and commit_hash are not None.
blob_path = os.path.join(storage_folder, "blobs", etag)
pointer_path = os.path.join(
storage_folder, "snapshots", commit_hash, relative_filename
)
os.makedirs(os.path.dirname(blob_path), exist_ok=True)
os.makedirs(os.path.dirname(pointer_path), exist_ok=True)
# if passed revision is not identical to commit_hash
# then revision has to be a branch name or tag name.
# In that case store a ref.
huggingface_hub.file_download._cache_commit_hash_for_specific_revision(storage_folder, _revision, commit_hash)
if os.path.exists(pointer_path) and not force_download:
return pointer_path
if os.path.exists(blob_path) and not force_download:
# we have the blob already, but not the pointer
huggingface_hub.file_download.logger.info("creating pointer to %s from %s", blob_path, pointer_path)
huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path)
return pointer_path
# Some Windows versions do not allow for paths longer than 255 characters.
# In this case, we must specify it is an extended path by using the "\\?\" prefix.
if os.name == "nt" and len(os.path.abspath(blob_path)) > 255:
blob_path = "\\\\?\\" + os.path.abspath(blob_path)
blob_paths.append(blob_path)
filenames = blob_paths
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
for n in filenames:
prefix, suffix = n.rsplit("/", 1)
path = os.path.join(prefix, "kai-tempfile." + suffix + ".aria2")
if os.path.exists(path):
os.remove(path)
path = os.path.join(prefix, "kai-tempfile." + suffix)
if os.path.exists(path):
os.remove(path)
total_length = sum(int(h["Content-Length"]) for h in headers)
aria2_config = "\n".join(f"{u}\n out={os.path.join(prefix, 'kai-tempfile.' + suffix)}" for u, n in zip(urls, filenames) for prefix, suffix in [n.rsplit("/", 1)]).encode()
_download_with_aria2(aria2_config, total_length, use_auth_token=token if use_auth_token else None, user_agent=user_agent, force_download=force_download)
for u, n in zip(urls, filenames):
prefix, suffix = n.rsplit("/", 1)
os.rename(os.path.join(prefix, "kai-tempfile." + suffix), os.path.join(prefix, suffix))
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
import transformers
import transformers.modeling_utils
from huggingface_hub import HfFolder
if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed
return
if local_files_only: # If local_files_only is true, we obviously don't need to download anything
return
if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index") or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path):
return
if proxies:
print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.")
return
if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.22.0.dev0"):
return _transformers22_aria2_hook(pretrained_model_name_or_path, force_download=force_download, cache_dir=cache_dir, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, **kwargs)
if use_auth_token:
if isinstance(use_auth_token, str):
token = use_auth_token
else:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
sharded = False
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
if use_auth_token:
headers["authorization"] = f"Bearer {use_auth_token}"
def is_cached(url):
try:
huggingface_hub.cached_download(url, cache_dir=cache_dir, local_files_only=True)
except ValueError:
return False
return True
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
try:
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
except AttributeError:
return
url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision)
if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
break
if sharded:
return
else:
sharded = True
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
map_filename = huggingface_hub.cached_download(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
with open(map_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames]
if not force_download:
urls = [u for u in urls if not is_cached(u)]
if not urls:
return
etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]]
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
filenames = [hashlib.sha256(u.encode("utf-8")).hexdigest() + "." + hashlib.sha256(t.encode("utf-8")).hexdigest() for u, t in zip(urls, etags)]
for n in filenames:
path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2")
if os.path.exists(path):
os.remove(path)
path = os.path.join(_cache_dir, "kai-tempfile." + n)
if os.path.exists(path):
os.remove(path)
if force_download:
path = os.path.join(_cache_dir, n + ".json")
if os.path.exists(path):
os.remove(path)
path = os.path.join(_cache_dir, n)
if os.path.exists(path):
os.remove(path)
total_length = sum(int(h["Content-Length"]) for h in headers)
aria2_config = "\n".join(f"{u}\n out=kai-tempfile.{n}" for u, n in zip(urls, filenames)).encode()
_download_with_aria2(aria2_config, total_length, directory=_cache_dir, use_auth_token=token if use_auth_token else None, user_agent=user_agent, force_download=force_download)
for u, t, n in zip(urls, etags, filenames):
os.rename(os.path.join(_cache_dir, "kai-tempfile." + n), os.path.join(_cache_dir, n))
with open(os.path.join(_cache_dir, n + ".json"), "w") as f:
@@ -321,10 +540,10 @@ def get_num_shards(filename):
# pytorch_model.bin.index.json, returns a list of weight names in the
# sharded model. Requires lazy loader to be enabled to work properl
#==================================================================#
def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
import transformers.modeling_utils
import torch
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision, mirror=mirror)
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision)
return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths)))
#==================================================================#