Clamp input_ids in place
Apparently transformers maintains an internal reference to input_ids (to use for repetition penalty) so we have to clamp the internal version, too, because otherwise transformers will throw an out-of-bounds error upon attempting to access token IDs that are not in the vocabulary.
This commit is contained in:
parent
24d5d63c9f
commit
40b4631f6c
10
aiserver.py
10
aiserver.py
|
@ -518,13 +518,15 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
|
|||
input_ids = kwargs.get('input_ids').to(self.device)
|
||||
assert input_ids is not None
|
||||
kwargs['input_ids'] = None
|
||||
inputs_embeds = self.transformer.wte(input_ids.clamp(max=self.config.vocab_size-1))
|
||||
input_ids = input_ids - self.config.vocab_size # Don't use the -= operator here, you'll get a cryptic error message
|
||||
if(vars.sp is not None):
|
||||
shifted_input_ids = input_ids - self.config.vocab_size
|
||||
input_ids.clamp_(max=self.config.vocab_size-1)
|
||||
inputs_embeds = self.transformer.wte(input_ids)
|
||||
if(vars.sp is not None):
|
||||
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
|
||||
inputs_embeds = torch.where(
|
||||
(input_ids >= 0)[:, :, None],
|
||||
vars.sp[input_ids.clamp(min=0)],
|
||||
(shifted_input_ids >= 0)[:, :, None],
|
||||
vars.sp[shifted_input_ids.clamp(min=0)],
|
||||
inputs_embeds,
|
||||
)
|
||||
kwargs['inputs_embeds'] = inputs_embeds
|
||||
|
|
Loading…
Reference in New Issue