mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Attempts at dynamic wi fixes
This commit is contained in:
@@ -71,11 +71,10 @@ class HFMTJInferenceModel(HFInferenceModel):
|
||||
return scores
|
||||
|
||||
def mtj_stopping_callback(
|
||||
generated, n_generated, excluded_world_info
|
||||
generated, n_generated
|
||||
) -> Tuple[List[set], bool, bool]:
|
||||
utils.koboldai_vars.generated_tkns += 1
|
||||
|
||||
assert len(excluded_world_info) == len(generated)
|
||||
regeneration_required = (
|
||||
utils.koboldai_vars.lua_koboldbridge.regeneration_required
|
||||
)
|
||||
@@ -98,7 +97,7 @@ class HFMTJInferenceModel(HFInferenceModel):
|
||||
)
|
||||
|
||||
if not utils.koboldai_vars.dynamicscan or halt:
|
||||
return excluded_world_info, regeneration_required, halt
|
||||
return regeneration_required, halt
|
||||
|
||||
for i, t in enumerate(generated):
|
||||
decoded = utils.decodenewlines(
|
||||
@@ -114,14 +113,16 @@ class HFMTJInferenceModel(HFInferenceModel):
|
||||
)
|
||||
)
|
||||
# _, found = checkworldinfo(decoded, force_use_txt=True, actions=koboldai_vars.actions)
|
||||
_, _, _, found = utils.koboldai_vars.calc_ai_text(
|
||||
_, _, _, used_world_info = utils.koboldai_vars.calc_ai_text(
|
||||
submitted_text=decoded
|
||||
)
|
||||
found -= excluded_world_info[i]
|
||||
if len(found) != 0:
|
||||
print(utils.koboldai_vars.calc_ai_text())
|
||||
# found -= excluded_world_info[i]
|
||||
if used_world_info:
|
||||
print("lets regen")
|
||||
regeneration_required = True
|
||||
break
|
||||
return excluded_world_info, regeneration_required, halt
|
||||
return regeneration_required, halt
|
||||
|
||||
def mtj_compiling_callback() -> None:
|
||||
print(Colors.GREEN + "TPU backend compilation triggered" + Colors.END)
|
||||
@@ -261,7 +262,7 @@ class HFMTJInferenceModel(HFInferenceModel):
|
||||
gen_settings: GenerationSettings,
|
||||
single_line: bool = False,
|
||||
batch_count: int = 1,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
) -> GenerationResult:
|
||||
soft_tokens = self.get_soft_tokens()
|
||||
|
||||
@@ -289,19 +290,82 @@ class HFMTJInferenceModel(HFInferenceModel):
|
||||
)
|
||||
genout = np.array(genout)
|
||||
else:
|
||||
genout = tpool.execute(
|
||||
tpu_mtj_backend.infer_dynamic,
|
||||
context=np.uint32(prompt_tokens),
|
||||
numseqs=batch_count,
|
||||
gen_len=max_new,
|
||||
soft_embeddings=utils.koboldai_vars.sp,
|
||||
soft_tokens=soft_tokens,
|
||||
# TODO: Fix Dynamic WI on TPU
|
||||
excluded_world_info=set(),
|
||||
use_callback=True
|
||||
global past
|
||||
context = np.tile(
|
||||
np.uint32(prompt_tokens), (utils.koboldai_vars.numseqs, 1)
|
||||
)
|
||||
print(genout)
|
||||
print(type(genout))
|
||||
past = np.empty((utils.koboldai_vars.numseqs, 0), dtype=np.uint32)
|
||||
self.gen_state["wi_scanner_excluded_keys"] = set()
|
||||
|
||||
while True:
|
||||
genout, n_generated, regeneration_required, halt = tpool.execute(
|
||||
tpu_mtj_backend.infer_dynamic,
|
||||
context,
|
||||
gen_len=max_new,
|
||||
numseqs=utils.koboldai_vars.numseqs,
|
||||
soft_embeddings=utils.koboldai_vars.sp,
|
||||
soft_tokens=soft_tokens,
|
||||
)
|
||||
|
||||
past = np.pad(past, ((0, 0), (0, n_generated)))
|
||||
for r in range(utils.koboldai_vars.numseqs):
|
||||
for c in range(utils.koboldai_vars.lua_koboldbridge.generated_cols):
|
||||
assert (
|
||||
utils.koboldai_vars.lua_koboldbridge.generated[r + 1][c + 1]
|
||||
is not None
|
||||
)
|
||||
past[r, c] = utils.koboldai_vars.lua_koboldbridge.generated[
|
||||
r + 1
|
||||
][c + 1]
|
||||
|
||||
if utils.koboldai_vars.abort or halt or not regeneration_required:
|
||||
break
|
||||
|
||||
print("(regeneration triggered)")
|
||||
|
||||
encoded = []
|
||||
for i in range(utils.koboldai_vars.numseqs):
|
||||
txt = utils.decodenewlines(self.tokenizer.decode(past[i]))
|
||||
# _, _, _, _found_entries = utils.koboldai_vars.calc_ai_text(
|
||||
# self.tokenizer.decode(prompt_tokens)
|
||||
# )
|
||||
# # utils.koboldai_vars.calc_ai_text()
|
||||
# print(_found_entries)
|
||||
# self.gen_state["wi_scanner_excluded_keys"].update(_found_entries)
|
||||
encoded.append(np.array(txt, dtype=np.uint32))
|
||||
|
||||
max_length = len(max(encoded, key=len))
|
||||
encoded = np.stack(
|
||||
tuple(
|
||||
np.pad(
|
||||
e,
|
||||
(max_length - len(e), 0),
|
||||
constant_values=tpu_mtj_backend.pad_token_id,
|
||||
)
|
||||
for e in encoded
|
||||
)
|
||||
)
|
||||
context = np.concatenate(
|
||||
(
|
||||
encoded,
|
||||
past,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# genout = tpool.execute(
|
||||
# tpu_mtj_backend.infer_dynamic,
|
||||
# context=np.uint32(prompt_tokens),
|
||||
# numseqs=batch_count,
|
||||
# gen_len=max_new,
|
||||
# soft_embeddings=utils.koboldai_vars.sp,
|
||||
# soft_tokens=soft_tokens,
|
||||
# # TODO: Fix Dynamic WI on TPU
|
||||
# excluded_world_info=set(),
|
||||
# use_callback=True
|
||||
# )
|
||||
# print(genout)
|
||||
# print(type(genout))
|
||||
print(context)
|
||||
genout = np.array(genout)
|
||||
|
||||
return GenerationResult(
|
||||
|
@@ -258,7 +258,7 @@ class TopK(Warper):
|
||||
|
||||
@classmethod
|
||||
def value_is_valid(cls) -> bool:
|
||||
return cls.top_p > 0
|
||||
return cls.top_k > 0
|
||||
|
||||
|
||||
class TailFree(Warper):
|
||||
|
@@ -89,7 +89,7 @@ def new_rng_state(seed: int):
|
||||
def warper_callback(logits) -> np.array:
|
||||
raise NotImplementedError("`tpu_mtj_backend.warper_callback()` needs to be defined")
|
||||
|
||||
def stopping_callback(generated, n_generated, excluded_world_info) -> Tuple[List[set], bool, bool]:
|
||||
def stopping_callback(generated, n_generated) -> Tuple[bool, bool]:
|
||||
raise NotImplementedError("`tpu_mtj_backend.stopping_callback()` needs to be defined")
|
||||
|
||||
def settings_callback() -> dict:
|
||||
@@ -219,7 +219,7 @@ def kobold_sample_dynamic(key, logits, rpargs, sampler_order: Optional[np.ndarra
|
||||
warper = warpers.Warper.from_id(sid)
|
||||
if not warper.value_is_valid():
|
||||
continue
|
||||
logits = warper.jax_dynamic()
|
||||
logits = warper.jax_dynamic(logits)
|
||||
|
||||
# Finally, pick one token using the softmax thingy again (it gives
|
||||
# an array whose elements sum to 1 so it can be used nicely as a
|
||||
@@ -473,8 +473,7 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||
out_axes=["shard", "batch", ...],
|
||||
axis_resources={'shard': 'mp', 'batch': 'dp'},
|
||||
)
|
||||
def generate_dynamic(self, ctx, ctx_length, gen_length, numseqs, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True):
|
||||
assert excluded_world_info is not None
|
||||
def generate_dynamic(self, ctx, ctx_length, gen_length, numseqs, return_logits=False, soft_embeddings=None, use_callback=True):
|
||||
assert not return_logits
|
||||
assert gen_length.ndim == 1
|
||||
assert soft_embeddings is not None
|
||||
@@ -517,7 +516,7 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||
generate_data[i][3] = np.tile(sample_data[i][0][sample_data[i][1]-1][np.newaxis, np.newaxis], (params["cores_per_replica"], 1, 1))
|
||||
if use_callback:
|
||||
generated = np.uint32(tuple(d[0] for d in sample_data))
|
||||
excluded_world_info, regeneration_required, halt = stopping_callback(generated, n_generated, excluded_world_info)
|
||||
regeneration_required, halt = stopping_callback(generated, n_generated)
|
||||
if regeneration_required or halt:
|
||||
break
|
||||
else:
|
||||
@@ -550,10 +549,8 @@ def infer_dynamic(
|
||||
gen_len=80,
|
||||
soft_embeddings: Optional[np.array] = None,
|
||||
soft_tokens: Optional[np.array] = None,
|
||||
excluded_world_info = None,
|
||||
use_callback=True,
|
||||
) -> Tuple[List[np.array], int, bool, bool]:
|
||||
assert excluded_world_info is not None
|
||||
maps.thread_resources.env = thread_resources_env
|
||||
total_batch = 1
|
||||
tokens = context
|
||||
@@ -570,7 +567,6 @@ def infer_dynamic(
|
||||
np.ones(total_batch, dtype=np.uint32) * gen_len,
|
||||
numseqs,
|
||||
soft_embeddings=soft_embeddings,
|
||||
excluded_world_info=excluded_world_info,
|
||||
use_callback=use_callback,
|
||||
)
|
||||
for out in output[0]:
|
||||
|
Reference in New Issue
Block a user