Merge pull request #195 from db0/kai_cluster3
Adds support for using the KAI Cluster approach directly from KAI
This commit is contained in:
commit
39944c4258
137
aiserver.py
137
aiserver.py
|
@ -217,6 +217,7 @@ model_menu = {
|
|||
["InferKit API (requires API key)", "InferKit", "", False],
|
||||
# ["KoboldAI Server API (Old Google Colab)", "Colab", "", False],
|
||||
["KoboldAI API", "API", "", False],
|
||||
["KoboldAI Cluster", "CLUSTER", "", False],
|
||||
["Return to Main Menu", "mainmenu", "", True],
|
||||
]
|
||||
}
|
||||
|
@ -318,6 +319,7 @@ class vars:
|
|||
colaburl = "" # Ngrok url for Google Colab mode
|
||||
apikey = "" # API key to use for InferKit API calls
|
||||
oaiapikey = "" # API key to use for OpenAI API calls
|
||||
cluster_requested_models = [] # The models which we allow to generate during cluster mode
|
||||
savedir = getcwd()+"\\stories"
|
||||
hascuda = False # Whether torch has detected CUDA on the system
|
||||
usegpu = False # Whether to launch pipeline with GPU support
|
||||
|
@ -1287,6 +1289,8 @@ def general_startup(override_args=None):
|
|||
parser.add_argument("--aria2_port", type=int, help="Specify the port on which aria2's RPC interface will be open if aria2 is installed (defaults to 6799)")
|
||||
parser.add_argument("--model", help="Specify the Model Type to skip the Menu")
|
||||
parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)")
|
||||
parser.add_argument("--apikey", help="Specify the API key to use for online services")
|
||||
parser.add_argument("--req_model", type=str, action='append', required=False, help="Which models which we allow to generate for us during cluster mode. Can be specified multiple times.")
|
||||
parser.add_argument("--revision", help="Specify the model revision for huggingface models (can be a git branch/tag name or a git commit hash)")
|
||||
parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.")
|
||||
parser.add_argument("--breakmodel", action='store_true', help=argparse.SUPPRESS)
|
||||
|
@ -1335,6 +1339,11 @@ def general_startup(override_args=None):
|
|||
vars.model = args.model;
|
||||
vars.revision = args.revision
|
||||
|
||||
if args.apikey:
|
||||
vars.apikey = args.apikey
|
||||
if args.req_model:
|
||||
vars.cluster_requested_models = args.req_model
|
||||
|
||||
if args.colab:
|
||||
args.remote = True;
|
||||
args.override_rename = True;
|
||||
|
@ -1479,7 +1488,7 @@ def get_model_info(model, directory=""):
|
|||
|
||||
|
||||
def get_layer_count(model, directory=""):
|
||||
if(model not in ["InferKit", "Colab", "API", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ"]):
|
||||
if(model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ"]):
|
||||
if(model == "GPT2Custom"):
|
||||
with open(os.path.join(directory, "config.json"), "r") as f:
|
||||
model_config = json.load(f)
|
||||
|
@ -2034,7 +2043,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||
|
||||
|
||||
# If transformers model was selected & GPU available, ask to use CPU or GPU
|
||||
if(vars.model not in ["InferKit", "Colab", "API", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
vars.allowsp = True
|
||||
# Test for GPU support
|
||||
|
||||
|
@ -2073,7 +2082,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||
print("WARNING: No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)")
|
||||
vars.model_type = "gpt_neo"
|
||||
|
||||
if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "API", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
loadmodelsettings()
|
||||
loadsettings()
|
||||
print(2)
|
||||
|
@ -2127,7 +2136,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||
vars.noai = True
|
||||
|
||||
# Start transformers and create pipeline
|
||||
if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "API", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "API", "CLUSTER", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(not vars.noai):
|
||||
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
|
||||
for m in ("GPTJModel", "XGLMModel"):
|
||||
|
@ -2582,7 +2591,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||
}
|
||||
|
||||
# If we're running Colab or OAI, we still need a tokenizer.
|
||||
if(vars.model in ("Colab", "API")):
|
||||
if(vars.model in ("Colab", "API", "CLUSTER")):
|
||||
from transformers import GPT2TokenizerFast
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("EleutherAI/gpt-neo-2.7B", revision=vars.revision, cache_dir="cache")
|
||||
loadsettings()
|
||||
|
@ -3228,7 +3237,7 @@ def lua_set_chunk(k, v):
|
|||
def lua_get_modeltype():
|
||||
if(vars.noai):
|
||||
return "readonly"
|
||||
if(vars.model in ("Colab", "API", "OAI", "InferKit")):
|
||||
if(vars.model in ("Colab", "API", "CLUSTER", "OAI", "InferKit")):
|
||||
return "api"
|
||||
if(not vars.use_colab_tpu and vars.model not in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX") and (vars.model in ("GPT2Custom", "NeoCustom") or vars.model_type in ("gpt2", "gpt_neo", "gptj"))):
|
||||
hidden_size = get_hidden_size_from_model(model)
|
||||
|
@ -3257,7 +3266,7 @@ def lua_get_modeltype():
|
|||
def lua_get_modelbackend():
|
||||
if(vars.noai):
|
||||
return "readonly"
|
||||
if(vars.model in ("Colab", "API", "OAI", "InferKit")):
|
||||
if(vars.model in ("Colab", "API", "CLUSTER", "OAI", "InferKit")):
|
||||
return "api"
|
||||
if(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")):
|
||||
return "mtj"
|
||||
|
@ -3978,11 +3987,19 @@ def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False,
|
|||
while(True):
|
||||
set_aibusy(1)
|
||||
|
||||
if(vars.model == "API"):
|
||||
if(vars.model in ["API","CLUSTER"]):
|
||||
global tokenizer
|
||||
tokenizer_id = requests.get(
|
||||
vars.colaburl[:-8] + "/api/v1/model",
|
||||
).json()["result"]
|
||||
if vars.model == "API":
|
||||
tokenizer_id = requests.get(
|
||||
vars.colaburl[:-8] + "/api/v1/model",
|
||||
).json()["result"]
|
||||
elif len(vars.cluster_requested_models) >= 1:
|
||||
# If the player has requested one or more models, we use the first one for the tokenizer
|
||||
tokenizer_id = vars.cluster_requested_models[0]
|
||||
# The cluster can return any number of possible models for each gen, but this happens after this step
|
||||
# So at this point, this is unknown
|
||||
else:
|
||||
tokenizer_id = ""
|
||||
if tokenizer_id != vars.api_tokenizer_id:
|
||||
try:
|
||||
if(os.path.isdir(tokenizer_id)):
|
||||
|
@ -4228,6 +4245,8 @@ def apiactionsubmit(data, use_memory=False, use_world_info=False, use_story=Fals
|
|||
raise NotImplementedError("API generation is not supported in old Colab API mode.")
|
||||
elif(vars.model == "API"):
|
||||
raise NotImplementedError("API generation is not supported in API mode.")
|
||||
elif(vars.model == "CLUSTER"):
|
||||
raise NotImplementedError("API generation is not supported in API mode.")
|
||||
elif(vars.model == "OAI"):
|
||||
raise NotImplementedError("API generation is not supported in OpenAI/GooseAI mode.")
|
||||
elif(vars.model == "ReadOnly"):
|
||||
|
@ -4278,7 +4297,7 @@ def apiactionsubmit(data, use_memory=False, use_world_info=False, use_story=Fals
|
|||
minimum = len(tokens) + 1
|
||||
maximum = len(tokens) + vars.genamt
|
||||
|
||||
if(not vars.use_colab_tpu and vars.model not in ["Colab", "API", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(not vars.use_colab_tpu and vars.model not in ["Colab", "API", "CLUSTER", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
genout = apiactionsubmit_generate(tokens, minimum, maximum)
|
||||
elif(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")):
|
||||
genout = apiactionsubmit_tpumtjgenerate(tokens, minimum, maximum)
|
||||
|
@ -4446,7 +4465,7 @@ def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions, submission=None,
|
|||
|
||||
if(actionlen == 0):
|
||||
# First/Prompt action
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "OAI") else []) + memtokens + witokens + anotetkns + prompttkns
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "CLUSTER", "OAI") else []) + memtokens + witokens + anotetkns + prompttkns
|
||||
assert len(tokens) <= vars.max_length - lnsp - vars.genamt - budget_deduction
|
||||
ln = len(tokens) + lnsp
|
||||
return tokens, ln+1, ln+vars.genamt
|
||||
|
@ -4494,12 +4513,12 @@ def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions, submission=None,
|
|||
# Did we get to add the A.N.? If not, do it here
|
||||
if(anotetxt != ""):
|
||||
if((not anoteadded) or forceanote):
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "OAI") else []) + memtokens + witokens + anotetkns + prompttkns + tokens
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "CLUSTER", "OAI") else []) + memtokens + witokens + anotetkns + prompttkns + tokens
|
||||
else:
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "OAI") else []) + memtokens + witokens + prompttkns + tokens
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "CLUSTER", "OAI") else []) + memtokens + witokens + prompttkns + tokens
|
||||
else:
|
||||
# Prepend Memory, WI, and Prompt before action tokens
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "OAI") else []) + memtokens + witokens + prompttkns + tokens
|
||||
tokens = (tokenizer._koboldai_header if vars.model not in ("Colab", "API", "CLUSTER", "OAI") else []) + memtokens + witokens + prompttkns + tokens
|
||||
|
||||
# Send completed bundle to generator
|
||||
assert len(tokens) <= vars.max_length - lnsp - vars.genamt - budget_deduction
|
||||
|
@ -4521,23 +4540,27 @@ def calcsubmit(txt):
|
|||
if(vars.model != "InferKit"):
|
||||
subtxt, min, max = calcsubmitbudget(actionlen, winfo, mem, anotetxt, vars.actions, submission=txt)
|
||||
if(actionlen == 0):
|
||||
if(not vars.use_colab_tpu and vars.model not in ["Colab", "API", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(not vars.use_colab_tpu and vars.model not in ["Colab", "API", "CLUSTER", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
generate(subtxt, min, max, found_entries=found_entries)
|
||||
elif(vars.model == "Colab"):
|
||||
sendtocolab(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.model == "API"):
|
||||
sendtoapi(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.model == "CLUSTER"):
|
||||
sendtocluster(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.model == "OAI"):
|
||||
oairequest(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")):
|
||||
tpumtjgenerate(subtxt, min, max, found_entries=found_entries)
|
||||
else:
|
||||
if(not vars.use_colab_tpu and vars.model not in ["Colab", "API", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
if(not vars.use_colab_tpu and vars.model not in ["Colab", "API", "CLUSTER", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]):
|
||||
generate(subtxt, min, max, found_entries=found_entries)
|
||||
elif(vars.model == "Colab"):
|
||||
sendtocolab(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.model == "API"):
|
||||
sendtoapi(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.model == "CLUSTER"):
|
||||
sendtocluster(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.model == "OAI"):
|
||||
oairequest(utils.decodenewlines(tokenizer.decode(subtxt)), min, max)
|
||||
elif(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")):
|
||||
|
@ -5017,6 +5040,84 @@ def sendtoapi(txt, min, max):
|
|||
set_aibusy(0)
|
||||
return
|
||||
|
||||
#==================================================================#
|
||||
# Send transformers-style request to KoboldAI Cluster
|
||||
#==================================================================#
|
||||
def sendtocluster(txt, min, max):
|
||||
# Log request to console
|
||||
if not vars.quiet:
|
||||
print("{0}Tokens:{1}, Txt:{2}{3}".format(colors.YELLOW, min-1, txt, colors.END))
|
||||
|
||||
# Store context in memory to use it for comparison with generated content
|
||||
vars.lastctx = txt
|
||||
|
||||
# Build request JSON data
|
||||
reqdata = {
|
||||
'max_length': max - min + 1,
|
||||
'max_context_length': vars.max_length,
|
||||
'rep_pen': vars.rep_pen,
|
||||
'rep_pen_slope': vars.rep_pen_slope,
|
||||
'rep_pen_range': vars.rep_pen_range,
|
||||
'temperature': vars.temp,
|
||||
'top_p': vars.top_p,
|
||||
'top_k': vars.top_k,
|
||||
'top_a': vars.top_a,
|
||||
'tfs': vars.tfs,
|
||||
'typical': vars.typical,
|
||||
'n': vars.numseqs,
|
||||
}
|
||||
cluster_metadata = {
|
||||
'prompt': txt,
|
||||
'params': reqdata,
|
||||
'username': vars.apikey,
|
||||
'models': vars.cluster_requested_models,
|
||||
}
|
||||
|
||||
# Create request
|
||||
req = requests.post(
|
||||
vars.colaburl[:-8] + "/generate/sync",
|
||||
json=cluster_metadata,
|
||||
)
|
||||
js = req.json()
|
||||
if(req.status_code == 503):
|
||||
errmsg = "KoboldAI API Error: No available KoboldAI servers found in cluster to fulfil this request using the selected models and requested lengths."
|
||||
print("{0}{1}{2}".format(colors.RED, json.dumps(js, indent=2), colors.END))
|
||||
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
|
||||
set_aibusy(0)
|
||||
return
|
||||
if(req.status_code != 200):
|
||||
errmsg = "KoboldAI API Error: Failed to get a reply from the server. Please check the console."
|
||||
print("{0}{1}{2}".format(colors.RED, json.dumps(js, indent=2), colors.END))
|
||||
emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True)
|
||||
set_aibusy(0)
|
||||
return
|
||||
genout = js
|
||||
|
||||
for i in range(vars.numseqs):
|
||||
vars.lua_koboldbridge.outputs[i+1] = genout[i]
|
||||
|
||||
execute_outmod()
|
||||
if(vars.lua_koboldbridge.regeneration_required):
|
||||
vars.lua_koboldbridge.regeneration_required = False
|
||||
genout = []
|
||||
for i in range(vars.numseqs):
|
||||
genout.append(vars.lua_koboldbridge.outputs[i+1])
|
||||
assert type(genout[-1]) is str
|
||||
|
||||
if(len(genout) == 1):
|
||||
genresult(genout[0])
|
||||
else:
|
||||
# Convert torch output format to transformers
|
||||
seqs = []
|
||||
for seq in genout:
|
||||
seqs.append({"generated_text": seq})
|
||||
if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0):
|
||||
genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"])
|
||||
else:
|
||||
genselect(genout)
|
||||
|
||||
set_aibusy(0)
|
||||
return
|
||||
|
||||
#==================================================================#
|
||||
# Send text to TPU mesh transformer backend
|
||||
|
|
Loading…
Reference in New Issue