Add RWKV-4 code

This commit is contained in:
somebody
2022-09-24 20:51:03 -05:00
parent 317c10583b
commit 381e1c9275
11 changed files with 1253 additions and 0 deletions

204
models/RWKV4/LICENSE.txt Normal file
View File

@@ -0,0 +1,204 @@
Code in this directory is taken from https://github.com/BlinkDL/RWKV-LM.
The license for this code is as follows:
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,125 @@
#include <stdio.h>
#include <assert.h>
#define MIN_VALUE (-1e38)
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
F p = 0, q = 0, o = MIN_VALUE;
// p and q are running sums divided by exp(o) (to avoid overflows)
for (int i = 0; i < T; i++) {
const int ii = i * C;
F no = max(o, u + k[ii]);
F A = exp(o - no);
F B = exp(u + k[ii] - no);
y[ii] = (A * p + B * v[ii]) / (A * q + B);
no = max(w + o, k[ii]);
A = exp(w + o - no);
B = exp(k[ii] - no);
p = A * p + B * v[ii];
q = A * q + B;
o = no;
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ const _gy,
F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
const F *__restrict__ const gy = _gy + _offset;
F *__restrict__ const gk = _gk + _offset;
F *__restrict__ const gv = _gv + _offset;
F y[Tmax], z[Tmax], zexp[Tmax];
F gw = 0, gu = 0;
F p = 0, q = 0;
F dpdw = 0, dqdw = 0;
F o = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
F no = max(o, k[ii] + u);
F A = exp(o - no);
F B = exp(k[ii] + u - no);
F num = A * p + B * v[ii];
F iden = 1 / (A * q + B);
y[i] = num * iden;
z[i] = iden;
zexp[i] = k[ii] + u - no;
gw += gy[ii] * (dpdw - dqdw * y[i]) * iden * A;
gu += gy[ii] * (v[ii] - y[i]) * B * iden;
no = max(w + o, k[ii]);
A = exp(w + o - no);
B = exp(k[ii] - no);
dpdw = A * (p + dpdw);
dqdw = A * (q + dqdw);
p = A * p + B * v[ii];
q = A * q + B;
o = no;
}
F gp = 0, gq = 0;
o = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
F A = gy[ii] * z[i] * exp(zexp[i]);
F B = exp(k[ii] + o);
gk[ii] = A * (v[ii] - y[i]) + B * (gp * v[ii] + gq);
gv[ii] = A + B * gp;
F no = max(w + o, zexp[i] - k[ii] - u);
A = exp(w + o - no);
B = gy[ii] * z[i] * exp(zexp[i] - k[ii] - u - no);
gp = A * gp + B;
gq = A * gq - B * y[i];
o = no;
}
// Multiply by w because the w -> -exp(w) preprocessing is halfway in the backwards pass, even though it's not in the forward pass
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] += gw * _w[_c];
_gu[_offsetBC] += gu;
}
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *gy, float *gw, float *gu, float *gk, float *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, gy, gw, gu, gk, gv);
}

View File

@@ -0,0 +1,21 @@
#include <torch/extension.h>
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *gy, float *gw, float *gu, float *gk, float *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

416
models/RWKV4/src/model.py Normal file
View File

@@ -0,0 +1,416 @@
# File from RWKV-v4 Repo - Small changes made for compatibility
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import math, os
import numpy as np
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
try:
from deepspeed.ops.adam import FusedAdam
except:
pass # some poor windows users cant install deepspeed
logger = logging.getLogger(__name__)
RWKV_HEAD_QK_DIM = 0
print(f'\nRWKV_HEAD_QK_DIM {RWKV_HEAD_QK_DIM}\n')
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
########################################################################################################
# CUDA Kernel
########################################################################################################
T_MAX = 1024 # increase this if your ctx_len is long [NOTE: TAKES LOTS OF VRAM!]
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice
from torch.utils.cpp_extension import load
wkv_cuda = load(name="wkv", sources=["models/RWKV4/cuda/wkv_op.cpp", "models/RWKV4/cuda/wkv_cuda.cu"],
verbose=True, extra_cuda_cflags=['-res-usage', '--maxrregcount 60', '--use_fast_math', '-O3', '-Xptxas -O3', f'-DTmax={T_MAX}'])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
if '32' in os.environ['RWKV_FLOAT_MODE']:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
ctx.save_for_backward(w, u, k, v)
y = torch.empty((B, T, C), device='cuda', memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
if '32' in os.environ['RWKV_FLOAT_MODE']:
return y
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
return y.half()
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
w, u, k, v = ctx.saved_tensors
gw = torch.zeros((B, C), device='cuda').contiguous()
gu = torch.zeros((B, C), device='cuda').contiguous()
gk = torch.zeros((B, T, C), device='cuda').contiguous()
gv = torch.zeros((B, T, C), device='cuda').contiguous()
if '32' in os.environ['RWKV_FLOAT_MODE']:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if '32' in os.environ['RWKV_FLOAT_MODE']:
return (None, None, None, gw, gu, gk, gv)
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
def RUN_CUDA(B, T, C, w, u, k, v):
return WKV.apply(B, T, C, w.cuda(), u.cuda(), k.cuda(), v.cuda())
########################################################################################################
# RWKV: RWKV Time-mix + RWKV Channel-mix
########################################################################################################
def RWKV_Init(model, args): # fancy initialization of all lin & emb layer in the model
print("\n[--> first run, init model params (very slow for large models) <--]")
print("[so you shall only do it for 1 single GPU and save the checkpt and load it when using multiple GPU]\n")
for mm in model.modules():
if "RecursiveScriptModule" in str(type(mm)):
if mm.original_name not in ["Linear"]:
continue
ww = None
for name, param in mm.named_parameters():
if name == "weight":
ww = param
else:
m = mm
if not isinstance(m, (nn.Linear, nn.Embedding)):
continue
ww = m.weight
with torch.no_grad():
name = "[unknown weight]"
for name, parameter in model.named_parameters(): # find the name of the weight
if id(ww) == id(parameter):
break
shape = ww.shape
gain = 1.0
scale = 1.0 # extra scale for gain
if isinstance(m, nn.Embedding):
gain = math.sqrt(max(shape[0], shape[1]))
if shape[0] == args.vocab_size and shape[1] == args.n_embd: # token emb?
scale = 1e-4
else:
scale = 0
if isinstance(m, nn.Linear):
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
if shape[0] == args.vocab_size and shape[1] == args.n_embd: # final projection?
scale = 0.5
if hasattr(m, "scale_init"):
scale = m.scale_init
# print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {name}")
gain *= scale
if scale == -999:
nn.init.eye_(ww)
elif gain == 0:
# zero init is great for some RWKV matrices
nn.init.zeros_(ww)
elif gain > 0:
nn.init.orthogonal_(ww, gain=gain)
else:
nn.init.normal_(ww, mean=0.0, std=-scale)
class RWKV_TimeMix(torch.jit.ScriptModule):
def __init__(self, config, layer_id):
super().__init__()
self.layer_id = layer_id
self.ctx_len = config.ctx_len
self.n_embd = config.n_embd
attn_sz = config.n_embd
with torch.no_grad(): # fancy init
ratio_0_to_1 = (layer_id / (config.n_layer - 1)) # 0 to 1
ratio_1_to_almost0 = (1.0 - (layer_id / config.n_layer)) # 1 to ~0
# fancy time_decay
decay_speed = torch.ones(attn_sz)
for h in range(attn_sz):
decay_speed[h] = -5 + 8 * (h / (attn_sz-1)) ** (0.7 + 1.3 * ratio_0_to_1)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = (torch.tensor([(i+1)%3 - 1 for i in range(attn_sz)]) * 0.5)
self.time_first = nn.Parameter(torch.ones(attn_sz) * math.log(0.3) + zigzag)
# fancy time_mix
x = torch.ones(1, 1, config.n_embd)
for i in range(config.n_embd):
x[0, 0, i] = i / config.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(x, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_r = nn.Parameter(torch.pow(x, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = nn.Linear(config.n_embd, attn_sz, bias=False)
self.value = nn.Linear(config.n_embd, attn_sz, bias=False)
self.receptance = nn.Linear(config.n_embd, attn_sz, bias=False)
self.output = nn.Linear(attn_sz, config.n_embd, bias=False)
self.key.scale_init = 0
self.receptance.scale_init = 0
self.output.scale_init = 0
@torch.jit.script_method
def jit_func(self, x):
# Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
# Use xk, xv, xr to produce k, v, r
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
return sr, k, v
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, C, self.time_decay, self.time_first, k, v)
rwkv = self.output(rwkv)
return rwkv
class RWKV_ChannelMix(torch.jit.ScriptModule):
def __init__(self, config, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = (1.0 - (layer_id / config.n_layer)) # 1 to ~0
x = torch.ones(1, 1, config.n_embd)
for i in range(config.n_embd):
x[0, 0, i] = i / config.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
hidden_sz = 4 * config.n_embd
self.key = nn.Linear(config.n_embd, hidden_sz, bias=False)
self.receptance = nn.Linear(config.n_embd, config.n_embd, bias=False)
self.value = nn.Linear(hidden_sz, config.n_embd, bias=False)
self.value.scale_init = 0
self.receptance.scale_init = 0
@torch.jit.script_method
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
rkv = torch.sigmoid(self.receptance(xr)) * kv
return rkv
########################################################################################################
# The GPT Model with our blocks
########################################################################################################
class GPTConfig:
def __init__(self, vocab_size, ctx_len, **kwargs):
self.vocab_size = vocab_size
self.ctx_len = ctx_len
for k, v in kwargs.items():
setattr(self, k, v)
class Block(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.config = config
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(config.n_embd)
if self.layer_id == 0 and self.config.model_type == 'RWKV-ffnPre':
self.ffnPre = RWKV_ChannelMix(config, 0)
else:
self.att = RWKV_TimeMix(config, layer_id)
self.ffn = RWKV_ChannelMix(config, layer_id)
def forward(self, x):
if self.layer_id == 0:
x = self.ln0(x)
if self.layer_id == 0 and self.config.model_type == 'RWKV-ffnPre':
x = x + self.ffnPre(self.ln1(x)) # better in some cases
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.step = 0
self.config = config
self.emb = nn.Embedding(config.vocab_size, config.n_embd)
self.blocks = nn.Sequential(*[Block(config, i)
for i in range(config.n_layer)])
self.ln_out = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
if RWKV_HEAD_QK_DIM > 0:
self.head_q = nn.Linear(config.n_embd, RWKV_HEAD_QK_DIM, bias=False)
self.head_q.scale_init = 0
self.head_k = nn.Linear(config.n_embd, RWKV_HEAD_QK_DIM, bias=False)
self.head_k.scale_init = 0.1
self.register_buffer("copy_mask", torch.tril(
torch.ones(config.ctx_len, config.ctx_len)))
self.ctx_len = config.ctx_len
try:
if os.environ['RWKV_LOAD_MODEL'] == str(False):
RWKV_Init(self, config)
except:
pass
logger.info("number of parameters: %e", sum(p.numel()
for p in self.parameters()))
def get_ctx_len(self):
return self.ctx_len
def _init_weights(self, module):
if isinstance(module, (nn.Linear)):
module.weight.data.normal_(mean=0.0, std=0.01)
if isinstance(module, (nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=1e-5)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def configure_optimizers(self, train_config):
no_decay = set()
for mn, m in self.named_modules(): # here we disable weight_decay
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
no_decay.add(fpn)
param_dict = {pn: p for pn, p in self.named_parameters()}
optim_groups = [
{"params": [param_dict[pn]
for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
try:
optimizer = FusedAdam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas, eps=train_config.eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
except:
print('\n\nDeepSpeed not found. Using torch optimizer instead (probably slower)\n\n')
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas, eps=train_config.eps)
return optimizer
def forward(self, idx, targets=None):
idx = idx.to(self.emb.weight.device)
self.step += 1
B, T = idx.size()
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
x = self.emb(idx)
x = self.blocks(x)
x = self.ln_out(x)
if RWKV_HEAD_QK_DIM > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / RWKV_HEAD_QK_DIM)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if '32' in os.environ['RWKV_FLOAT_MODE']:
c = c @ F.one_hot(idx, num_classes=self.config.vocab_size)
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
c = c @ F.one_hot(idx, num_classes=self.config.vocab_size).half()
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
c = c @ F.one_hot(idx, num_classes=self.config.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(x.view(-1, x.size(-1)), targets.to(x.device).view(-1))
return L2Wrap.apply(loss, x)

View File

@@ -0,0 +1,392 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import types
import copy
import torch
import math, os
from torch.nn import functional as F
import torch.nn as nn
RWKV_HEAD_QK_DIM = 0
print(f'\nRWKV_HEAD_QK_DIM {RWKV_HEAD_QK_DIM}\n')
DEBUG_TIME = False # True False - show trained time-coeffs
########################################################################################################
# CUDA Kernel
########################################################################################################
if os.environ['RWKV_RUN_DEVICE'] == 'cuda':
T_MAX = 1024 # increase this if your ctx_len is long [NOTE: TAKES LOTS OF VRAM!]
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice
from torch.utils.cpp_extension import load
wkv_cuda = load(name="wkv", sources=["models/RWKV4/cuda/wkv_op.cpp", "models/RWKV4/cuda/wkv_cuda.cu"],
verbose=True, extra_cuda_cflags=['-res-usage', '--maxrregcount 60', '--use_fast_math', '-O3', '-Xptxas -O3', f'-DTmax={T_MAX}'])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
if '32' in os.environ['RWKV_FLOAT_MODE']:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
ctx.save_for_backward(w, u, k, v)
y = torch.empty((B, T, C), device='cuda', memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
if '32' in os.environ['RWKV_FLOAT_MODE']:
return y
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
return y.half()
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 1024) == 0
w, u, k, v = ctx.saved_tensors
gw = torch.zeros((B, C), device='cuda').contiguous()
gu = torch.zeros((B, C), device='cuda').contiguous()
gk = torch.zeros((B, T, C), device='cuda').contiguous()
gv = torch.zeros((B, T, C), device='cuda').contiguous()
if '32' in os.environ['RWKV_FLOAT_MODE']:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if '32' in os.environ['RWKV_FLOAT_MODE']:
return (None, None, None, gw, gu, gk, gv)
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
def RUN_CUDA(B, T, C, w, u, k, v):
return WKV.apply(B, T, C, w.cuda(), u.cuda(), k.cuda(), v.cuda())
############################################################################################################
RWKV_CFG = types.SimpleNamespace()
class RWKV_ChannelMix(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
self.time_mix_k = nn.Parameter(torch.ones(1, 1, RWKV_CFG.n_embd))
self.time_mix_r = nn.Parameter(torch.ones(1, 1, RWKV_CFG.n_embd))
hidden_sz = 4 * RWKV_CFG.n_embd
self.key = nn.Linear(RWKV_CFG.n_embd, hidden_sz, bias=False)
self.receptance = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.value = nn.Linear(hidden_sz, RWKV_CFG.n_embd, bias=False)
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
rkv = torch.sigmoid(self.receptance(xr)) * kv
return rkv
class RWKV_TimeMix(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.time_decay = nn.Parameter(torch.ones(RWKV_CFG.n_embd))
self.time_first = nn.Parameter(torch.ones(RWKV_CFG.n_embd) * math.log(0.3))
self.time_shift = nn.ZeroPad2d((0,0,1,-1))
self.time_mix_k = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd))
self.time_mix_v = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd))
self.time_mix_r = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd))
self.key = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.value = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.receptance = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
self.output = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False)
def forward(self, x):
B, T, C = x.size()
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
rwkv = torch.sigmoid(r) * RUN_CUDA(B, T, C, self.time_decay, self.time_first, k, v)
rwkv = self.output(rwkv)
return rwkv
class Block(nn.Module):
def __init__(self, layer_id):
super().__init__()
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(RWKV_CFG.n_embd)
self.ln2 = nn.LayerNorm(RWKV_CFG.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(RWKV_CFG.n_embd)
if self.layer_id == 0 and RWKV_CFG.model_type == 'RWKV-ffnPre':
self.ffnPre = RWKV_ChannelMix(layer_id+1000)
else:
self.att = RWKV_TimeMix(layer_id)
self.ffn = RWKV_ChannelMix(layer_id)
def forward(self, x):
if self.layer_id == 0:
x = self.ln0(x)
if self.layer_id == 0 and RWKV_CFG.model_type == 'RWKV-ffnPre':
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
return x
class RWKV_GPT(nn.Module):
def __init__(self, MODEL_NAME, RUN_DEVICE, model_type, vocab_size, n_layer, n_embd, ctx_len):
global RWKV_CFG
super().__init__()
RWKV_CFG.RUN_DEVICE = RUN_DEVICE
RWKV_CFG.model_type = model_type
RWKV_CFG.vocab_size = vocab_size
RWKV_CFG.n_layer = n_layer
RWKV_CFG.n_embd = n_embd
RWKV_CFG.ctx_len = ctx_len
print('\nloading RWKV-GPT', MODEL_NAME)
self.emb = nn.Embedding(vocab_size, n_embd)
self.blocks = nn.Sequential(*[Block(i) for i in range(n_layer)])
self.ln_out = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, vocab_size, bias=False)
if RWKV_HEAD_QK_DIM > 0:
self.head_q = nn.Linear(n_embd, RWKV_HEAD_QK_DIM, bias=False)
self.head_q.scale_init = 0
self.head_k = nn.Linear(n_embd, RWKV_HEAD_QK_DIM, bias=False)
self.head_k.scale_init = 0.1
self.register_buffer("copy_mask", torch.tril(
torch.ones(ctx_len, ctx_len)))
self.ctx_len = ctx_len
self.eval()
self.load_state_dict(torch.load(MODEL_NAME + '.pth'))
self.eval()
def forward(self, idx):
B, T = idx.size()
assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len."
x = self.emb(idx)
x = self.blocks(x)
x = self.ln_out(x)
if RWKV_HEAD_QK_DIM > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / RWKV_HEAD_QK_DIM)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if '32' in os.environ['RWKV_FLOAT_MODE']:
c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size)
elif os.environ['RWKV_FLOAT_MODE'] == 'fp16':
c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size).half()
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16':
c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
############################################################################################################
class RWKV_RNN(): # this is running in FP32 at this moment
def __init__(self, MODEL_NAME, RUN_DEVICE, model_type, n_layer, n_embd, ctx_len):
self.RUN_DEVICE = RUN_DEVICE
self.model_type = model_type
self.n_layer = n_layer
self.n_embd = n_embd
self.ctx_len = ctx_len
self.w = types.SimpleNamespace()
w = torch.load(MODEL_NAME + '.pth',
map_location=torch.device(RUN_DEVICE))
for x in w.keys():
w[x] = w[x].float()
if '.time_' in x:
w[x] = w[x].squeeze()
if '.time_decay' in x:
w[x] = -torch.exp(w[x])
if DEBUG_TIME and '.time_' in x:
print(x, w[x].squeeze().cpu().numpy())
xx = x.split('.')
here = self.w
for i in range(len(xx)):
if xx[i].isdigit():
ii = int(xx[i])
if ii not in here:
here[ii] = types.SimpleNamespace()
here = here[ii]
else:
if i == len(xx) - 1:
setattr(here, xx[i], w[x])
elif not hasattr(here, xx[i]):
if xx[i+1].isdigit():
setattr(here, xx[i], {})
else:
setattr(here, xx[i], types.SimpleNamespace())
here = getattr(here, xx[i])
self.clear()
def clear(self):
self.xx = {}
self.aa = {}
self.bb = {}
self.pp = {}
self.hk = None
def save(self, target):
target.xx = copy.deepcopy(self.xx)
target.aa = copy.deepcopy(self.aa)
target.bb = copy.deepcopy(self.bb)
target.pp = copy.deepcopy(self.pp)
target.hk = copy.deepcopy(self.hk)
def load(self, target):
self.xx = copy.deepcopy(target.xx)
self.aa = copy.deepcopy(target.aa)
self.bb = copy.deepcopy(target.bb)
self.pp = copy.deepcopy(target.pp)
self.hk = copy.deepcopy(target.hk)
def LN(self, xx, w):
return F.layer_norm(xx, (self.n_embd,), weight=w.weight, bias=w.bias)
def FF(self, xx, w, name):
if name not in self.xx:
self.xx[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
self.xx[name] = xx
r = torch.sigmoid(w.receptance.weight @ xr)
k = torch.square(torch.relu(w.key.weight @ xk))
kv = w.value.weight @ k
return r * kv
def SA(self, xx, w, name):
if name not in self.xx:
self.xx[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
self.aa[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
self.bb[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE)
self.pp[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) - 1e30
xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k)
xv = xx * w.time_mix_v + self.xx[name] * (1 - w.time_mix_v)
xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r)
self.xx[name] = xx
r = torch.sigmoid(w.receptance.weight @ xr)
k = w.key.weight @ xk
v = w.value.weight @ xv
pp = self.pp[name]
aa = self.aa[name]
bb = self.bb[name]
ww = w.time_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
a = e1 * aa + e2 * v
b = e1 * bb + e2
ww = pp + w.time_decay
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
self.aa[name] = e1 * aa + e2 * v
self.bb[name] = e1 * bb + e2
self.pp[name] = p
rwkv = r * a / b
return w.output.weight @ rwkv
def run(self, ctx):
w = self.w
x = w.emb.weight[ctx[-1]]
for i in range(self.n_layer):
if i == 0:
x = self.LN(x, w.blocks[i].ln0)
if i == 0 and self.model_type == 'RWKV-ffnPre':
x = x + self.FF(self.LN(x, w.blocks[i].ln1), w.blocks[i].ffnPre, f'ffnPre.{i}')
else:
x = x + self.SA(self.LN(x, w.blocks[i].ln1), w.blocks[i].att, f'att.{i}')
x = x + self.FF(self.LN(x, w.blocks[i].ln2), w.blocks[i].ffn, f'ffn.{i}')
x = self.LN(x, w.ln_out)
if RWKV_HEAD_QK_DIM > 0:
if self.hk == None:
self.hk = (w.head_k.weight @ x).unsqueeze(0)
else:
self.hk = torch.cat(
[self.hk, (w.head_k.weight @ x).unsqueeze(0)], dim=0)
if self.hk.shape[0] > self.ctx_len:
self.hk = self.hk[-self.ctx_len:, :]
q = w.head_q.weight @ x
x = w.head.weight @ x
x = x.cpu().numpy().tolist()
c = (self.hk @ q) / RWKV_HEAD_QK_DIM
for i in range(len(c)):
x[ctx[i]] += c[i]
else:
x = w.head.weight @ x
x = x.cpu().numpy().tolist()
return x

95
models/RWKV4/src/utils.py Normal file
View File

@@ -0,0 +1,95 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os
try:
NUM_GPUS = int(os.environ['RWKV_NUM_GPUS'])
except:
NUM_GPUS = 1
import json
import random
import numpy as np
import torch
from torch.nn import functional as F
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
if 'list' in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(torch.tensor(out), dim=-1)
if self.charMode:
if self.itos[lastChar] == '\n':
top_p = top_p_newline
else:
top_p = top_p_usual
else:
top_p = top_p_usual
sorted_probs, s_index = torch.sort(probs, descending=True)
# for j in range(30):
# pp = sorted_probs[j].item()
# if pp < 0.005:
# break
# ss = self.itos[int(s_index[j])].replace('\n','_')
# print(f'{math.floor(pp*100):>3.0f}{ss}', end='')
# print('')
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
# print("[" + str(round(cutoff,4)) + ' ' + str(round(to_float(sum(probs)),3)) + "]", end = "")
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
return torch.multinomial(probs, num_samples=1)[0]
def to_float(x):
return x.cpu().detach().numpy().flatten()[0].astype(float)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)