Enable `low_cpu_mem_usage`
This commit is contained in:
parent
25c9be5d02
commit
32e1d4a7a8
26
aiserver.py
26
aiserver.py
|
@ -14,7 +14,8 @@ from tkinter import messagebox
|
|||
import json
|
||||
import collections
|
||||
import zipfile
|
||||
from typing import Union, Dict, Set, List
|
||||
import packaging
|
||||
from typing import Any, Union, Dict, Set, List
|
||||
|
||||
import requests
|
||||
import html
|
||||
|
@ -541,6 +542,7 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
|||
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
|
||||
from transformers import StoppingCriteria, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModelForCausalLM
|
||||
import transformers.generation_utils
|
||||
from transformers import __version__ as transformers_version
|
||||
|
||||
# Patch transformers to use our soft prompt
|
||||
def patch_causallm(cls):
|
||||
|
@ -702,14 +704,20 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
|||
except:
|
||||
return int(model.lm_head.in_features)
|
||||
|
||||
def maybe_low_cpu_mem_usage() -> Dict[str, Any]:
|
||||
if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")):
|
||||
print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr)
|
||||
return {}
|
||||
return {"low_cpu_mem_usage": True}
|
||||
|
||||
# If custom GPT Neo model was chosen
|
||||
if(vars.model == "NeoCustom"):
|
||||
model_config = open(vars.custmodpth + "/config.json", "r")
|
||||
js = json.load(model_config)
|
||||
if("model_type" in js):
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
else:
|
||||
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
|
@ -727,8 +735,8 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
|||
elif(vars.model == "GPT2Custom"):
|
||||
model_config = open(vars.custmodpth + "/config.json", "r")
|
||||
js = json.load(model_config)
|
||||
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
if(vars.hascuda and vars.usegpu):
|
||||
|
@ -742,20 +750,20 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
|||
tokenizer = GPT2Tokenizer.from_pretrained(vars.model, cache_dir="cache/")
|
||||
if(vars.hascuda):
|
||||
if(vars.usegpu):
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/")
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
model = model.half().to(0)
|
||||
generator = model.generate
|
||||
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/")
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
device_config(model)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/")
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
generator = model.generate
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/")
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||
vars.modeldim = get_hidden_size_from_model(model)
|
||||
generator = model.generate
|
||||
|
||||
|
|
Loading…
Reference in New Issue