From 32e1d4a7a8393376bb8eefe9be3cffc54af8b206 Mon Sep 17 00:00:00 2001 From: Gnome Ann <> Date: Thu, 25 Nov 2021 18:09:25 -0500 Subject: [PATCH] Enable `low_cpu_mem_usage` --- aiserver.py | 26 +++++++++++++++++--------- 1 file changed, 17 insertions(+), 9 deletions(-) diff --git a/aiserver.py b/aiserver.py index ba65f79d..53bbe726 100644 --- a/aiserver.py +++ b/aiserver.py @@ -14,7 +14,8 @@ from tkinter import messagebox import json import collections import zipfile -from typing import Union, Dict, Set, List +import packaging +from typing import Any, Union, Dict, Set, List import requests import html @@ -541,6 +542,7 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END)) from transformers import StoppingCriteria, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModelForCausalLM import transformers.generation_utils + from transformers import __version__ as transformers_version # Patch transformers to use our soft prompt def patch_causallm(cls): @@ -701,15 +703,21 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme return int(model.transformer.embed_dim) except: return int(model.lm_head.in_features) + + def maybe_low_cpu_mem_usage() -> Dict[str, Any]: + if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")): + print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr) + return {} + return {"low_cpu_mem_usage": True} # If custom GPT Neo model was chosen if(vars.model == "NeoCustom"): model_config = open(vars.custmodpth + "/config.json", "r") js = json.load(model_config) if("model_type" in js): - model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/") + model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage()) else: - model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/") + model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage()) vars.modeldim = get_hidden_size_from_model(model) tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/") # Is CUDA available? If so, use GPU, otherwise fall back to CPU @@ -727,8 +735,8 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme elif(vars.model == "GPT2Custom"): model_config = open(vars.custmodpth + "/config.json", "r") js = json.load(model_config) - model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/") - tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/") + model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage()) + tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage()) vars.modeldim = get_hidden_size_from_model(model) # Is CUDA available? If so, use GPU, otherwise fall back to CPU if(vars.hascuda and vars.usegpu): @@ -742,20 +750,20 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme tokenizer = GPT2Tokenizer.from_pretrained(vars.model, cache_dir="cache/") if(vars.hascuda): if(vars.usegpu): - model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/") + model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage()) vars.modeldim = get_hidden_size_from_model(model) model = model.half().to(0) generator = model.generate elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel) - model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/") + model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage()) vars.modeldim = get_hidden_size_from_model(model) device_config(model) else: - model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/") + model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage()) vars.modeldim = get_hidden_size_from_model(model) generator = model.generate else: - model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/") + model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage()) vars.modeldim = get_hidden_size_from_model(model) generator = model.generate