Custom unpickler to avoid pickle's arbitrary code execution vulnerability
This commit is contained in:
parent
b85d74f22c
commit
323f593a96
|
@ -50,9 +50,12 @@ import itertools
|
|||
import zipfile
|
||||
import pickle
|
||||
import torch
|
||||
import numpy as np
|
||||
import collections
|
||||
import _codecs
|
||||
import utils
|
||||
from torch.nn import Module
|
||||
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, Optional, Tuple, Type, Union
|
||||
|
||||
|
||||
_EXTRA_STATE_KEY_SUFFIX = '_extra_state'
|
||||
|
@ -111,8 +114,50 @@ class LazyTensor:
|
|||
tensor._backward_hooks = self.backward_hooks
|
||||
return tensor
|
||||
|
||||
class RestrictedUnpickler(pickle.Unpickler):
|
||||
def original_persistent_load(self, saved_id):
|
||||
return super().persistent_load(saved_id)
|
||||
|
||||
class _LazyUnpickler(pickle.Unpickler):
|
||||
def forced_persistent_load(self, saved_id):
|
||||
if saved_id[0] != "storage":
|
||||
raise pickle.UnpicklingError("`saved_id[0]` must be 'storage'")
|
||||
return self.original_persistent_load(saved_id)
|
||||
|
||||
def find_class(self, module, name):
|
||||
if module == "collections" and name == "OrderedDict":
|
||||
return collections.OrderedDict
|
||||
elif module == "torch._utils" and name == "_rebuild_tensor_v2":
|
||||
return torch._utils._rebuild_tensor_v2
|
||||
elif module == "torch" and name in (
|
||||
"DoubleStorage",
|
||||
"FloatStorage",
|
||||
"HalfStorage",
|
||||
"LongStorage",
|
||||
"IntStorage",
|
||||
"ShortStorage",
|
||||
"CharStorage",
|
||||
"ByteStorage",
|
||||
"BoolStorage",
|
||||
"BFloat16Storage",
|
||||
):
|
||||
return getattr(torch, name)
|
||||
elif module == "numpy.core.multiarray" and name == "scalar":
|
||||
return np.core.multiarray.scalar
|
||||
elif module == "numpy" and name == "dtype":
|
||||
return np.dtype
|
||||
elif module == "_codecs" and name == "encode":
|
||||
return _codecs.encode
|
||||
else:
|
||||
# Forbid everything else.
|
||||
qualified_name = name if module == "__builtin__" else f"{module}.{name}"
|
||||
raise pickle.UnpicklingError(f"`{qualified_name}` is forbidden; the model you are loading probably contains malicious code")
|
||||
|
||||
def load(self, *args, **kwargs):
|
||||
self.original_persistent_load = getattr(self, "persistent_load", pickle.Unpickler.persistent_load)
|
||||
self.persistent_load = self.forced_persistent_load
|
||||
return super().load(*args, **kwargs)
|
||||
|
||||
class _LazyUnpickler(RestrictedUnpickler):
|
||||
lazy_loaded_storages: Dict[str, LazyTensor]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
@ -127,7 +172,6 @@ class _LazyUnpickler(pickle.Unpickler):
|
|||
return LazyTensor(storage_type, key, location)
|
||||
|
||||
def load(self, *args, **kwargs):
|
||||
self.persistent_load = self.forced_persistent_load
|
||||
retval = super().load(*args, **kwargs)
|
||||
self.lazy_loaded_storages = {}
|
||||
return retval
|
||||
|
@ -213,16 +257,33 @@ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, miss
|
|||
unexpected_keys.append(key)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def use_custom_unpickler(unpickler: Type[pickle.Unpickler] = RestrictedUnpickler):
|
||||
try:
|
||||
old_unpickler = pickle.Unpickler
|
||||
pickle.Unpickler = unpickler
|
||||
|
||||
old_pickle_load = pickle.load
|
||||
|
||||
def new_pickle_load(*args, **kwargs):
|
||||
return pickle.Unpickler(*args, **kwargs).load()
|
||||
|
||||
pickle.load = new_pickle_load
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
pickle.Unpickler = old_unpickler
|
||||
pickle.load = old_pickle_load
|
||||
|
||||
@contextlib.contextmanager
|
||||
def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None, dematerialized_modules=False, use_accelerate_init_empty_weights=False):
|
||||
if not enable:
|
||||
yield False
|
||||
with use_custom_unpickler(RestrictedUnpickler):
|
||||
yield False
|
||||
return
|
||||
|
||||
try:
|
||||
old_unpickler = pickle.Unpickler
|
||||
pickle.Unpickler = _LazyUnpickler
|
||||
|
||||
old_rebuild_tensor = torch._utils._rebuild_tensor
|
||||
torch._utils._rebuild_tensor = _rebuild_tensor
|
||||
|
||||
|
@ -261,10 +322,10 @@ def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None, demate
|
|||
old_load_from_state_dict = torch.nn.Module._load_from_state_dict
|
||||
torch.nn.Module._load_from_state_dict = _load_from_state_dict
|
||||
|
||||
yield True
|
||||
with use_custom_unpickler(_LazyUnpickler):
|
||||
yield True
|
||||
|
||||
finally:
|
||||
pickle.Unpickler = old_unpickler
|
||||
torch._utils._rebuild_tensor = old_rebuild_tensor
|
||||
torch.load = old_torch_load
|
||||
if dematerialized_modules:
|
||||
|
|
|
@ -955,6 +955,7 @@ def read_neox_checkpoint(state, path, config, checkpoint_shards=2):
|
|||
|
||||
import torch
|
||||
import torch.utils.dlpack
|
||||
import torch_lazy_loader
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
move_xmap = jax.experimental.maps.xmap(
|
||||
|
@ -996,8 +997,9 @@ def read_neox_checkpoint(state, path, config, checkpoint_shards=2):
|
|||
continue
|
||||
layer = checkpoint_layer - 2
|
||||
shards = []
|
||||
for checkpoint_shard in range(checkpoint_shards):
|
||||
shards.append(torch.load(path_template.format(layer=checkpoint_layer, shard=checkpoint_shard), map_location="cpu"))
|
||||
with torch_lazy_loader.use_custom_unpickler(torch_lazy_loader.RestrictedUnpickler):
|
||||
for checkpoint_shard in range(checkpoint_shards):
|
||||
shards.append(torch.load(path_template.format(layer=checkpoint_layer, shard=checkpoint_shard), map_location="cpu"))
|
||||
for key in shards[0]:
|
||||
if key == "attention.rotary_emb.inv_freq":
|
||||
continue
|
||||
|
|
Loading…
Reference in New Issue