Added start to alternative multi-gen (linear instead of parallel). Non-functional

Continued stub for in UI soft prompt training.
Removed old xls to preset file code
This commit is contained in:
ebolam
2022-12-05 13:50:49 -05:00
parent 457b7a46c4
commit 280c35b452
11 changed files with 246 additions and 205 deletions

View File

@@ -2452,6 +2452,37 @@ def reset_model_settings():
koboldai_vars.revision = None
koboldai_vars.lazy_load = True
def unload_model():
global model
global generator
global model_config
global tokenizer
#We need to wipe out the existing model and refresh the cuda cache
model = None
generator = None
model_config = None
koboldai_vars.online_model = ''
with torch.no_grad():
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
for tensor in gc.get_objects():
try:
if torch.is_tensor(tensor):
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
except:
pass
gc.collect()
try:
with torch.no_grad():
torch.cuda.empty_cache()
except:
pass
#Reload our badwords
koboldai_vars.badwordsids = koboldai_settings.badwordsids_default
def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=False, online_model="", use_breakmodel_args=False, breakmodel_args_default_to_cpu=False, url=None, use_8_bit=False):
global model
global generator
@@ -2490,29 +2521,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
if breakmodel_args_default_to_cpu and disk_layers is None:
disk_layers = args.breakmodel_disklayers = 0
#We need to wipe out the existing model and refresh the cuda cache
model = None
generator = None
model_config = None
koboldai_vars.online_model = ''
with torch.no_grad():
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
for tensor in gc.get_objects():
try:
if torch.is_tensor(tensor):
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
except:
pass
gc.collect()
try:
with torch.no_grad():
torch.cuda.empty_cache()
except:
pass
#Reload our badwords
koboldai_vars.badwordsids = koboldai_settings.badwordsids_default
unload_model()
if online_model == "":
koboldai_vars.configname = getmodelname()
@@ -5244,97 +5253,103 @@ def core_generate(text: list, _min: int, _max: int, found_entries: set, is_core:
with torch.no_grad():
already_generated = 0
numseqs = koboldai_vars.numseqs
total_gens = None
while True:
# The reason this is a loop is due to how Dynamic WI works. We
# cannot simply add the WI to the context mid-generation, so we
# stop early, and then insert WI, then continue generating. That
# stopping and continuing is this loop.
for i in range(koboldai_vars.numseqs if koboldai_vars.alt_multi_gen else 1):
while True:
# The reason this is a loop is due to how Dynamic WI works. We
# cannot simply add the WI to the context mid-generation, so we
# stop early, and then insert WI, then continue generating. That
# stopping and continuing is this loop.
start_time = time.time()
result = raw_generate(
gen_in[0],
max_new=koboldai_vars.genamt,
do_streaming=koboldai_vars.output_streaming,
do_dynamic_wi=koboldai_vars.dynamicscan,
batch_count=numseqs,
# Real max length is handled by CoreStopper.
bypass_hf_maxlength=koboldai_vars.dynamicscan,
is_core=True,
)
logger.debug("core_generate: run raw_generate pass {} {}s".format(already_generated, time.time()-start_time))
genout = result.encoded
already_generated += len(genout[0])
try:
assert already_generated <= koboldai_vars.genamt
except AssertionError:
print("AlreadyGenerated", already_generated)
print("genamt", koboldai_vars.genamt)
raise
if result.is_whole_generation:
break
# Generation stopped; why?
# If we have been told to halt, we have reached our target token
# amount (controlled by halt), or Dynamic WI has not told us to
# stop temporarily to insert WI, we can assume that we are done
# generating. We shall break.
if model.core_stopper.halt or not model.core_stopper.regeneration_required:
break
# Now we are doing stuff for Dynamic WI.
assert genout.ndim >= 2
assert genout.shape[0] == koboldai_vars.numseqs
if(koboldai_vars.lua_koboldbridge.generated_cols and koboldai_vars.generated_tkns != koboldai_vars.lua_koboldbridge.generated_cols):
raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({koboldai_vars.generated_tkns} != {koboldai_vars.lua_koboldbridge.generated_cols})")
if(already_generated != koboldai_vars.generated_tkns):
print("already_generated: {}".format(already_generated))
print("generated_tkns: {}".format(koboldai_vars.generated_tkns))
raise RuntimeError("WI scanning error")
for r in range(koboldai_vars.numseqs):
for c in range(already_generated):
assert koboldai_vars.lua_koboldbridge.generated[r+1][c+1] is not None
genout[r][genout.shape[-1] - already_generated + c] = koboldai_vars.lua_koboldbridge.generated[r+1][c+1]
encoded = []
for i in range(koboldai_vars.numseqs):
txt = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:]))
#winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True, actions=koboldai_vars.actions)
#txt, _, _ = calcsubmitbudget(len(koboldai_vars.actions), winfo, mem, anotetxt, koboldai_vars.actions, submission=txt)
txt, _, _, _found_entries = koboldai_vars.calc_ai_text(submitted_text=txt, send_context=False)
found_entries[i].update(_found_entries)
encoded.append(torch.tensor(txt, dtype=torch.long, device=genout.device))
max_length = len(max(encoded, key=len))
encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded))
genout = torch.cat(
(
encoded,
genout[..., -already_generated:],
),
dim=-1
)
if(koboldai_vars.sp is not None):
soft_tokens = torch.arange(
model.config.vocab_size,
model.config.vocab_size + koboldai_vars.sp.shape[0],
device=genout.device,
start_time = time.time()
result = raw_generate(
gen_in[0],
max_new=koboldai_vars.genamt,
do_streaming=koboldai_vars.output_streaming,
do_dynamic_wi=koboldai_vars.dynamicscan,
batch_count=numseqs if not koboldai_vars.alt_multi_gen else 1,
# Real max length is handled by CoreStopper.
bypass_hf_maxlength=koboldai_vars.dynamicscan,
is_core=True,
)
genout = torch.cat((soft_tokens.tile(koboldai_vars.numseqs, 1), genout), dim=-1)
assert genout.shape[-1] + koboldai_vars.genamt - already_generated <= koboldai_vars.max_length
gen_in = genout
numseqs = 1
logger.debug("core_generate: run raw_generate pass {} {}s".format(already_generated, time.time()-start_time))
genout = result.encoded
already_generated += len(genout[0])
try:
assert already_generated <= koboldai_vars.genamt
except AssertionError:
print("AlreadyGenerated", already_generated)
print("genamt", koboldai_vars.genamt)
raise
if result.is_whole_generation:
break
# Generation stopped; why?
# If we have been told to halt, we have reached our target token
# amount (controlled by halt), or Dynamic WI has not told us to
# stop temporarily to insert WI, we can assume that we are done
# generating. We shall break.
if model.core_stopper.halt or not model.core_stopper.regeneration_required:
break
# Now we are doing stuff for Dynamic WI.
assert genout.ndim >= 2
assert genout.shape[0] == koboldai_vars.numseqs
if(koboldai_vars.lua_koboldbridge.generated_cols and koboldai_vars.generated_tkns != koboldai_vars.lua_koboldbridge.generated_cols):
raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({koboldai_vars.generated_tkns} != {koboldai_vars.lua_koboldbridge.generated_cols})")
if(already_generated != koboldai_vars.generated_tkns):
print("already_generated: {}".format(already_generated))
print("generated_tkns: {}".format(koboldai_vars.generated_tkns))
raise RuntimeError("WI scanning error")
for r in range(koboldai_vars.numseqs):
for c in range(already_generated):
assert koboldai_vars.lua_koboldbridge.generated[r+1][c+1] is not None
genout[r][genout.shape[-1] - already_generated + c] = koboldai_vars.lua_koboldbridge.generated[r+1][c+1]
encoded = []
for i in range(koboldai_vars.numseqs):
txt = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:]))
#winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True, actions=koboldai_vars.actions)
#txt, _, _ = calcsubmitbudget(len(koboldai_vars.actions), winfo, mem, anotetxt, koboldai_vars.actions, submission=txt)
txt, _, _, _found_entries = koboldai_vars.calc_ai_text(submitted_text=txt, send_context=False)
found_entries[i].update(_found_entries)
encoded.append(torch.tensor(txt, dtype=torch.long, device=genout.device))
max_length = len(max(encoded, key=len))
encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded))
genout = torch.cat(
(
encoded,
genout[..., -already_generated:],
),
dim=-1
)
if(koboldai_vars.sp is not None):
soft_tokens = torch.arange(
model.config.vocab_size,
model.config.vocab_size + koboldai_vars.sp.shape[0],
device=genout.device,
)
genout = torch.cat((soft_tokens.tile(koboldai_vars.numseqs, 1), genout), dim=-1)
assert genout.shape[-1] + koboldai_vars.genamt - already_generated <= koboldai_vars.max_length
gen_in = genout
numseqs = 1
if total_gens is None:
total_gens = genout
else:
total_gens = torch.cat((total_gens, genout))
return genout, already_generated
return total_gens, already_generated
class GenerationResult:
def __init__(
@@ -6043,6 +6058,7 @@ def generate(txt, minimum, maximum, found_entries=None):
try:
start_time = time.time()
genout, already_generated = tpool.execute(core_generate, txt, minimum, maximum, found_entries)
print(genout)
logger.debug("Generate: core_generate time {}s".format(time.time()-start_time))
except Exception as e:
if(issubclass(type(e), lupa.LuaError)):
@@ -9613,6 +9629,55 @@ def UI_2_privacy_mode(data):
if data['password'] == koboldai_vars.privacy_password:
koboldai_vars.privacy_mode = False
#==================================================================#
# Soft Prompt Tuning
#==================================================================#
@socketio.on("create_new_softprompt")
@logger.catch
def UI_2_create_new_softprompt(data):
logger.info("Soft Prompt Dataset: {}".format(data))
from prompt_tuner import BasicTrainer
trainer = BasicTrainer(None, quiet=koboldai_vars.quiet)
trainer.data.ckpt_path = koboldai_vars.model
trainer.get_hf_checkpoint_metadata()
trainer.data.save_file = "{}.mtjsp".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
trainer.data.prompt_method = "tokens"
tokenizer = trainer.get_tokenizer()
if trainer.data.newlinemode == "s": # Handle fairseq-style newlines if required
initial_softprompt = data['sp_prompt'].replace("\n", "</s>")
trainer.data.initial_softprompt = tokenizer.encode(
data['sp_prompt'], max_length=int(2e9), truncation=True
)
trainer.tokenize_dataset(dataset_path=data['sp_dataset'],
output_file="softprompts/{}.npy".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"])),
batch_size=2048 if 'batch_size' not in data else data['batch_size'],
epochs=1 if 'epochs' not in data else data['epochs'])
trainer.data.dataset_file = "softprompts/{}.npy".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
trainer.data.gradient_accumulation_steps = 16 if 'gradient_accumulation_steps' not in data else data['gradient_accumulation_steps']
trainer.data.stparams = {
"lr": 3e-5,
"max_grad_norm": 10.0,
"weight_decay": 0.1,
"warmup": 0.1,
"end_lr_multiplier": 0.1,
"save_every": 50,
}
unload_model()
trainer.train(breakmodel_primary_device=breakmodel.primary_device,
breakmodel_gpulayers=breakmodel.gpu_blocks,
breakmodel_disklayers=breakmodel.disk_blocks)
output_file = "softprompts/{}.zip".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
name = data['sp_title']
author = data['sp_author']
supported = koboldai_vars.model
description = data['sp_description']
trainer.export_to_kobold(output_file, name, author, supported, description)
output_file = "softprompts/{}.json".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
trainer.export_to_mkultra(output_file, name, description)
#==================================================================#
# Test