mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Added start to alternative multi-gen (linear instead of parallel). Non-functional
Continued stub for in UI soft prompt training. Removed old xls to preset file code
This commit is contained in:
285
aiserver.py
285
aiserver.py
@@ -2452,6 +2452,37 @@ def reset_model_settings():
|
||||
koboldai_vars.revision = None
|
||||
koboldai_vars.lazy_load = True
|
||||
|
||||
def unload_model():
|
||||
global model
|
||||
global generator
|
||||
global model_config
|
||||
global tokenizer
|
||||
|
||||
#We need to wipe out the existing model and refresh the cuda cache
|
||||
model = None
|
||||
generator = None
|
||||
model_config = None
|
||||
koboldai_vars.online_model = ''
|
||||
with torch.no_grad():
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
|
||||
for tensor in gc.get_objects():
|
||||
try:
|
||||
if torch.is_tensor(tensor):
|
||||
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
|
||||
except:
|
||||
pass
|
||||
gc.collect()
|
||||
try:
|
||||
with torch.no_grad():
|
||||
torch.cuda.empty_cache()
|
||||
except:
|
||||
pass
|
||||
|
||||
#Reload our badwords
|
||||
koboldai_vars.badwordsids = koboldai_settings.badwordsids_default
|
||||
|
||||
|
||||
def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=False, online_model="", use_breakmodel_args=False, breakmodel_args_default_to_cpu=False, url=None, use_8_bit=False):
|
||||
global model
|
||||
global generator
|
||||
@@ -2490,29 +2521,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
if breakmodel_args_default_to_cpu and disk_layers is None:
|
||||
disk_layers = args.breakmodel_disklayers = 0
|
||||
|
||||
#We need to wipe out the existing model and refresh the cuda cache
|
||||
model = None
|
||||
generator = None
|
||||
model_config = None
|
||||
koboldai_vars.online_model = ''
|
||||
with torch.no_grad():
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
|
||||
for tensor in gc.get_objects():
|
||||
try:
|
||||
if torch.is_tensor(tensor):
|
||||
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
|
||||
except:
|
||||
pass
|
||||
gc.collect()
|
||||
try:
|
||||
with torch.no_grad():
|
||||
torch.cuda.empty_cache()
|
||||
except:
|
||||
pass
|
||||
|
||||
#Reload our badwords
|
||||
koboldai_vars.badwordsids = koboldai_settings.badwordsids_default
|
||||
unload_model()
|
||||
|
||||
if online_model == "":
|
||||
koboldai_vars.configname = getmodelname()
|
||||
@@ -5244,97 +5253,103 @@ def core_generate(text: list, _min: int, _max: int, found_entries: set, is_core:
|
||||
with torch.no_grad():
|
||||
already_generated = 0
|
||||
numseqs = koboldai_vars.numseqs
|
||||
total_gens = None
|
||||
|
||||
while True:
|
||||
# The reason this is a loop is due to how Dynamic WI works. We
|
||||
# cannot simply add the WI to the context mid-generation, so we
|
||||
# stop early, and then insert WI, then continue generating. That
|
||||
# stopping and continuing is this loop.
|
||||
for i in range(koboldai_vars.numseqs if koboldai_vars.alt_multi_gen else 1):
|
||||
while True:
|
||||
# The reason this is a loop is due to how Dynamic WI works. We
|
||||
# cannot simply add the WI to the context mid-generation, so we
|
||||
# stop early, and then insert WI, then continue generating. That
|
||||
# stopping and continuing is this loop.
|
||||
|
||||
start_time = time.time()
|
||||
result = raw_generate(
|
||||
gen_in[0],
|
||||
max_new=koboldai_vars.genamt,
|
||||
do_streaming=koboldai_vars.output_streaming,
|
||||
do_dynamic_wi=koboldai_vars.dynamicscan,
|
||||
batch_count=numseqs,
|
||||
# Real max length is handled by CoreStopper.
|
||||
bypass_hf_maxlength=koboldai_vars.dynamicscan,
|
||||
is_core=True,
|
||||
)
|
||||
logger.debug("core_generate: run raw_generate pass {} {}s".format(already_generated, time.time()-start_time))
|
||||
|
||||
genout = result.encoded
|
||||
|
||||
already_generated += len(genout[0])
|
||||
|
||||
try:
|
||||
assert already_generated <= koboldai_vars.genamt
|
||||
except AssertionError:
|
||||
print("AlreadyGenerated", already_generated)
|
||||
print("genamt", koboldai_vars.genamt)
|
||||
raise
|
||||
|
||||
if result.is_whole_generation:
|
||||
break
|
||||
|
||||
# Generation stopped; why?
|
||||
# If we have been told to halt, we have reached our target token
|
||||
# amount (controlled by halt), or Dynamic WI has not told us to
|
||||
# stop temporarily to insert WI, we can assume that we are done
|
||||
# generating. We shall break.
|
||||
if model.core_stopper.halt or not model.core_stopper.regeneration_required:
|
||||
break
|
||||
|
||||
# Now we are doing stuff for Dynamic WI.
|
||||
assert genout.ndim >= 2
|
||||
assert genout.shape[0] == koboldai_vars.numseqs
|
||||
|
||||
if(koboldai_vars.lua_koboldbridge.generated_cols and koboldai_vars.generated_tkns != koboldai_vars.lua_koboldbridge.generated_cols):
|
||||
raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({koboldai_vars.generated_tkns} != {koboldai_vars.lua_koboldbridge.generated_cols})")
|
||||
|
||||
if(already_generated != koboldai_vars.generated_tkns):
|
||||
print("already_generated: {}".format(already_generated))
|
||||
print("generated_tkns: {}".format(koboldai_vars.generated_tkns))
|
||||
raise RuntimeError("WI scanning error")
|
||||
|
||||
for r in range(koboldai_vars.numseqs):
|
||||
for c in range(already_generated):
|
||||
assert koboldai_vars.lua_koboldbridge.generated[r+1][c+1] is not None
|
||||
genout[r][genout.shape[-1] - already_generated + c] = koboldai_vars.lua_koboldbridge.generated[r+1][c+1]
|
||||
|
||||
encoded = []
|
||||
|
||||
for i in range(koboldai_vars.numseqs):
|
||||
txt = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:]))
|
||||
#winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True, actions=koboldai_vars.actions)
|
||||
#txt, _, _ = calcsubmitbudget(len(koboldai_vars.actions), winfo, mem, anotetxt, koboldai_vars.actions, submission=txt)
|
||||
txt, _, _, _found_entries = koboldai_vars.calc_ai_text(submitted_text=txt, send_context=False)
|
||||
found_entries[i].update(_found_entries)
|
||||
encoded.append(torch.tensor(txt, dtype=torch.long, device=genout.device))
|
||||
|
||||
max_length = len(max(encoded, key=len))
|
||||
encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded))
|
||||
genout = torch.cat(
|
||||
(
|
||||
encoded,
|
||||
genout[..., -already_generated:],
|
||||
),
|
||||
dim=-1
|
||||
)
|
||||
|
||||
if(koboldai_vars.sp is not None):
|
||||
soft_tokens = torch.arange(
|
||||
model.config.vocab_size,
|
||||
model.config.vocab_size + koboldai_vars.sp.shape[0],
|
||||
device=genout.device,
|
||||
start_time = time.time()
|
||||
result = raw_generate(
|
||||
gen_in[0],
|
||||
max_new=koboldai_vars.genamt,
|
||||
do_streaming=koboldai_vars.output_streaming,
|
||||
do_dynamic_wi=koboldai_vars.dynamicscan,
|
||||
batch_count=numseqs if not koboldai_vars.alt_multi_gen else 1,
|
||||
# Real max length is handled by CoreStopper.
|
||||
bypass_hf_maxlength=koboldai_vars.dynamicscan,
|
||||
is_core=True,
|
||||
)
|
||||
genout = torch.cat((soft_tokens.tile(koboldai_vars.numseqs, 1), genout), dim=-1)
|
||||
assert genout.shape[-1] + koboldai_vars.genamt - already_generated <= koboldai_vars.max_length
|
||||
gen_in = genout
|
||||
numseqs = 1
|
||||
logger.debug("core_generate: run raw_generate pass {} {}s".format(already_generated, time.time()-start_time))
|
||||
|
||||
genout = result.encoded
|
||||
|
||||
already_generated += len(genout[0])
|
||||
|
||||
try:
|
||||
assert already_generated <= koboldai_vars.genamt
|
||||
except AssertionError:
|
||||
print("AlreadyGenerated", already_generated)
|
||||
print("genamt", koboldai_vars.genamt)
|
||||
raise
|
||||
|
||||
if result.is_whole_generation:
|
||||
break
|
||||
|
||||
# Generation stopped; why?
|
||||
# If we have been told to halt, we have reached our target token
|
||||
# amount (controlled by halt), or Dynamic WI has not told us to
|
||||
# stop temporarily to insert WI, we can assume that we are done
|
||||
# generating. We shall break.
|
||||
if model.core_stopper.halt or not model.core_stopper.regeneration_required:
|
||||
break
|
||||
|
||||
# Now we are doing stuff for Dynamic WI.
|
||||
assert genout.ndim >= 2
|
||||
assert genout.shape[0] == koboldai_vars.numseqs
|
||||
|
||||
if(koboldai_vars.lua_koboldbridge.generated_cols and koboldai_vars.generated_tkns != koboldai_vars.lua_koboldbridge.generated_cols):
|
||||
raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({koboldai_vars.generated_tkns} != {koboldai_vars.lua_koboldbridge.generated_cols})")
|
||||
|
||||
if(already_generated != koboldai_vars.generated_tkns):
|
||||
print("already_generated: {}".format(already_generated))
|
||||
print("generated_tkns: {}".format(koboldai_vars.generated_tkns))
|
||||
raise RuntimeError("WI scanning error")
|
||||
|
||||
for r in range(koboldai_vars.numseqs):
|
||||
for c in range(already_generated):
|
||||
assert koboldai_vars.lua_koboldbridge.generated[r+1][c+1] is not None
|
||||
genout[r][genout.shape[-1] - already_generated + c] = koboldai_vars.lua_koboldbridge.generated[r+1][c+1]
|
||||
|
||||
encoded = []
|
||||
|
||||
for i in range(koboldai_vars.numseqs):
|
||||
txt = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:]))
|
||||
#winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True, actions=koboldai_vars.actions)
|
||||
#txt, _, _ = calcsubmitbudget(len(koboldai_vars.actions), winfo, mem, anotetxt, koboldai_vars.actions, submission=txt)
|
||||
txt, _, _, _found_entries = koboldai_vars.calc_ai_text(submitted_text=txt, send_context=False)
|
||||
found_entries[i].update(_found_entries)
|
||||
encoded.append(torch.tensor(txt, dtype=torch.long, device=genout.device))
|
||||
|
||||
max_length = len(max(encoded, key=len))
|
||||
encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded))
|
||||
genout = torch.cat(
|
||||
(
|
||||
encoded,
|
||||
genout[..., -already_generated:],
|
||||
),
|
||||
dim=-1
|
||||
)
|
||||
|
||||
if(koboldai_vars.sp is not None):
|
||||
soft_tokens = torch.arange(
|
||||
model.config.vocab_size,
|
||||
model.config.vocab_size + koboldai_vars.sp.shape[0],
|
||||
device=genout.device,
|
||||
)
|
||||
genout = torch.cat((soft_tokens.tile(koboldai_vars.numseqs, 1), genout), dim=-1)
|
||||
assert genout.shape[-1] + koboldai_vars.genamt - already_generated <= koboldai_vars.max_length
|
||||
gen_in = genout
|
||||
numseqs = 1
|
||||
if total_gens is None:
|
||||
total_gens = genout
|
||||
else:
|
||||
total_gens = torch.cat((total_gens, genout))
|
||||
|
||||
return genout, already_generated
|
||||
return total_gens, already_generated
|
||||
|
||||
class GenerationResult:
|
||||
def __init__(
|
||||
@@ -6043,6 +6058,7 @@ def generate(txt, minimum, maximum, found_entries=None):
|
||||
try:
|
||||
start_time = time.time()
|
||||
genout, already_generated = tpool.execute(core_generate, txt, minimum, maximum, found_entries)
|
||||
print(genout)
|
||||
logger.debug("Generate: core_generate time {}s".format(time.time()-start_time))
|
||||
except Exception as e:
|
||||
if(issubclass(type(e), lupa.LuaError)):
|
||||
@@ -9613,6 +9629,55 @@ def UI_2_privacy_mode(data):
|
||||
if data['password'] == koboldai_vars.privacy_password:
|
||||
koboldai_vars.privacy_mode = False
|
||||
|
||||
#==================================================================#
|
||||
# Soft Prompt Tuning
|
||||
#==================================================================#
|
||||
@socketio.on("create_new_softprompt")
|
||||
@logger.catch
|
||||
def UI_2_create_new_softprompt(data):
|
||||
logger.info("Soft Prompt Dataset: {}".format(data))
|
||||
from prompt_tuner import BasicTrainer
|
||||
trainer = BasicTrainer(None, quiet=koboldai_vars.quiet)
|
||||
trainer.data.ckpt_path = koboldai_vars.model
|
||||
trainer.get_hf_checkpoint_metadata()
|
||||
trainer.data.save_file = "{}.mtjsp".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
|
||||
trainer.data.prompt_method = "tokens"
|
||||
tokenizer = trainer.get_tokenizer()
|
||||
if trainer.data.newlinemode == "s": # Handle fairseq-style newlines if required
|
||||
initial_softprompt = data['sp_prompt'].replace("\n", "</s>")
|
||||
trainer.data.initial_softprompt = tokenizer.encode(
|
||||
data['sp_prompt'], max_length=int(2e9), truncation=True
|
||||
)
|
||||
trainer.tokenize_dataset(dataset_path=data['sp_dataset'],
|
||||
output_file="softprompts/{}.npy".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"])),
|
||||
batch_size=2048 if 'batch_size' not in data else data['batch_size'],
|
||||
epochs=1 if 'epochs' not in data else data['epochs'])
|
||||
trainer.data.dataset_file = "softprompts/{}.npy".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
|
||||
trainer.data.gradient_accumulation_steps = 16 if 'gradient_accumulation_steps' not in data else data['gradient_accumulation_steps']
|
||||
|
||||
trainer.data.stparams = {
|
||||
"lr": 3e-5,
|
||||
"max_grad_norm": 10.0,
|
||||
"weight_decay": 0.1,
|
||||
"warmup": 0.1,
|
||||
"end_lr_multiplier": 0.1,
|
||||
"save_every": 50,
|
||||
}
|
||||
|
||||
unload_model()
|
||||
trainer.train(breakmodel_primary_device=breakmodel.primary_device,
|
||||
breakmodel_gpulayers=breakmodel.gpu_blocks,
|
||||
breakmodel_disklayers=breakmodel.disk_blocks)
|
||||
|
||||
output_file = "softprompts/{}.zip".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
|
||||
name = data['sp_title']
|
||||
author = data['sp_author']
|
||||
supported = koboldai_vars.model
|
||||
description = data['sp_description']
|
||||
trainer.export_to_kobold(output_file, name, author, supported, description)
|
||||
output_file = "softprompts/{}.json".format("".join(x for x in data['sp_title'] if x.isalnum() or x in [" ", "-", "_"]))
|
||||
trainer.export_to_mkultra(output_file, name, description)
|
||||
|
||||
|
||||
#==================================================================#
|
||||
# Test
|
||||
|
@@ -1,60 +0,0 @@
|
||||
import pandas as pd
|
||||
import sys
|
||||
|
||||
output = []
|
||||
sheet_mapper = {"KAI-ADAPTED 13B": "13B", "KAI-ADAPTED 6B": "6B", 'KAI-CUSTOM': 'Custom'}
|
||||
|
||||
for file in ['KoboldAI Settings (6B).xlsx', 'KoboldAI Settings (13B).xlsx', 'KoboldAI Settings (Custom).xlsx', 'KoboldAI Settings (Original).xlsx']:
|
||||
presets = pd.read_excel("preset Files/{}".format(file), None)
|
||||
for sheet in presets:
|
||||
df = presets[sheet]
|
||||
if sheet in sheet_mapper:
|
||||
sheet = sheet_mapper[sheet]
|
||||
df = df.dropna(axis=1, how='all')
|
||||
df = df.rename(columns={"Unnamed: 0": "setting"})
|
||||
df = pd.melt(df, id_vars=['setting'])
|
||||
df = df.rename(columns={"variable": "preset"})
|
||||
df['fix'] = df['value'].str.replace(" (KAI)", "", regex=False)
|
||||
df.loc[~df['fix'].isnull(), 'value'] = df['fix']
|
||||
df = df.drop(columns=['fix'])
|
||||
df.loc[df['setting']=='Samplers Order', 'value'] = df['value'].str.replace("Temp", "5", regex=False)
|
||||
df.loc[df['setting']=='Samplers Order', 'value'] = df['value'].str.replace("K", "0", regex=False)
|
||||
df.loc[df['setting']=='Samplers Order', 'value'] = df['value'].str.replace("TFS", "3", regex=False)
|
||||
df.loc[df['setting']=='Samplers Order', 'value'] = df['value'].str.replace("A", "1", regex=False)
|
||||
df.loc[df['setting']=='Samplers Order', 'value'] = df['value'].str.replace("Typ", "4", regex=False)
|
||||
df.loc[df['setting']=='Samplers Order', 'value'] = df['value'].str.replace("P", "2", regex=False)
|
||||
|
||||
|
||||
settings_mapper = {'Temperature': 'temp', 'Output Length': 'genamt', 'Repetition Penalty': 'rep_pen',
|
||||
'Top P': 'top_p', 'Top K': 'top_k', 'Tail-Free': 'tfs', 'Repetition Penalty Range': 'rep_pen_range',
|
||||
'Repetition Penalty Slope': 'rep_pen_slope', 'Typical': 'typical', 'Top A': 'top_a',
|
||||
'Samplers Order': 'sampler_order', 'Description of settings from the author': 'description',
|
||||
'Author': 'Author', 'Model Type': 'Model Type',
|
||||
'Description of settings from NovelAI': 'description', 'Model Size': "Model Size"
|
||||
}
|
||||
df['setting'] = df['setting'].map(settings_mapper)
|
||||
|
||||
try:
|
||||
df = df.pivot(index='preset', columns='setting', values='value')
|
||||
except:
|
||||
print(file)
|
||||
display(df)
|
||||
raise
|
||||
|
||||
df['Model Type'] = df['Model Type'].str.replace(", ", ",").str.split(",")
|
||||
|
||||
df.loc[:, 'Model Category'] = sheet
|
||||
|
||||
output.append(df)
|
||||
|
||||
#output[sheet] = df.to_json(orient="index")
|
||||
|
||||
df = pd.concat(output)
|
||||
df = df.reset_index(drop=False)
|
||||
df['uid'] = df.index
|
||||
df = df.explode("Model Type")
|
||||
df['description'] = df['description'].str.strip()
|
||||
|
||||
|
||||
with open("official.presets", "w") as f:
|
||||
f.write(df.reset_index(drop=True).to_json(orient='records'))
|
@@ -36,4 +36,5 @@ dependencies:
|
||||
- ansi2html
|
||||
- flask_compress
|
||||
- ijson
|
||||
- bitsandbytes
|
||||
- bitsandbytes
|
||||
- ftfy
|
@@ -34,3 +34,4 @@ dependencies:
|
||||
- ansi2html
|
||||
- flask_compress
|
||||
- ijson
|
||||
- ftfy
|
||||
|
@@ -411,6 +411,22 @@ gensettingstf = [
|
||||
"sub_path": "Other",
|
||||
"classname": "system",
|
||||
"name": "alt_gen",
|
||||
"ui_level": 2
|
||||
},
|
||||
{
|
||||
"uitype": "toggle",
|
||||
"unit": "bool",
|
||||
"label": "Alt Multi Gen",
|
||||
"id": "alt_multi_gen",
|
||||
"min": 0,
|
||||
"max": 1,
|
||||
"step": 1,
|
||||
"default": 0,
|
||||
"tooltip": "Runs Gens per Action one at a time so you can select one if you like it without having to wait.",
|
||||
"menu_path": "Settings",
|
||||
"sub_path": "Other",
|
||||
"classname": "model",
|
||||
"name": "alt_multi_gen",
|
||||
"ui_level": 2
|
||||
},
|
||||
{
|
||||
|
@@ -649,6 +649,7 @@ class model_settings(settings):
|
||||
</div>""" # Custom Welcome Text
|
||||
self.welcome = self.welcome_default
|
||||
self.koboldai_vars = koboldai_vars
|
||||
self.alt_multi_gen = False
|
||||
|
||||
def reset_for_model_load(self):
|
||||
self.max_length = 2048 # Maximum number of tokens to submit per action
|
||||
|
@@ -3,7 +3,7 @@ import os
|
||||
import sys
|
||||
import math
|
||||
import numpy as np
|
||||
import termcolor
|
||||
from logger import logger
|
||||
import contextlib
|
||||
import traceback
|
||||
import random
|
||||
@@ -70,21 +70,24 @@ def patch_transformers_download():
|
||||
class Send_to_socketio(object):
|
||||
def write(self, bar):
|
||||
bar = bar.replace("\r", "").replace("\n", "")
|
||||
if bar != "":
|
||||
|
||||
if bar != "" and [ord(num) for num in bar] != [27, 91, 65]: #No idea why we're getting the 27, 1, 65 character set, just killing to so we can move on
|
||||
try:
|
||||
print(bar, end="\r")
|
||||
if utils.emit is not None:
|
||||
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
|
||||
print('\r' + bar, end='')
|
||||
socketio.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True, room="UI_1")
|
||||
eventlet.sleep(seconds=0)
|
||||
except:
|
||||
pass
|
||||
def flush(self):
|
||||
pass
|
||||
|
||||
def http_get(
|
||||
url: str,
|
||||
temp_file: transformers.utils.hub.BinaryIO,
|
||||
temp_file,
|
||||
proxies=None,
|
||||
resume_size=0,
|
||||
headers: transformers.utils.hub.Optional[transformers.utils.hub.Dict[str, str]] = None,
|
||||
file_name: transformers.utils.hub.Optional[str] = None,
|
||||
headers=None,
|
||||
file_name=None,
|
||||
):
|
||||
"""
|
||||
Download remote file. Do not gobble up errors.
|
||||
@@ -108,13 +111,18 @@ def patch_transformers_download():
|
||||
desc=f"Downloading {file_name}" if file_name is not None else "Downloading",
|
||||
file=Send_to_socketio(),
|
||||
)
|
||||
koboldai_vars.status_message = "Download Model"
|
||||
koboldai_vars.total_download_chunks = total
|
||||
for chunk in r.iter_content(chunk_size=1024):
|
||||
if chunk: # filter out keep-alive new chunks
|
||||
if url[-11:] != 'config.json':
|
||||
progress.update(len(chunk))
|
||||
koboldai_vars.downloaded_chunks += len(chunk)
|
||||
temp_file.write(chunk)
|
||||
if url[-11:] != 'config.json':
|
||||
progress.close()
|
||||
|
||||
koboldai_vars.status_message = ""
|
||||
|
||||
transformers.utils.hub.http_get = http_get
|
||||
|
||||
@@ -195,18 +203,18 @@ def device_list(n_layers, primary=None, selected=None):
|
||||
if(device_count < 2):
|
||||
primary = None
|
||||
gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0]
|
||||
print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
|
||||
logger.info(" DEVICE ID | LAYERS | DEVICE NAME{colors.END}")
|
||||
for i in range(device_count):
|
||||
name = torch.cuda.get_device_name(i)
|
||||
if(len(name) > 47):
|
||||
name = "..." + name[-44:]
|
||||
row_color = colors.END
|
||||
sep_color = colors.YELLOW
|
||||
print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}")
|
||||
logger.info(f"{'(primary)' if i == primary else ' '*9} {i:3} | {gpu_blocks[i]:3} | {name}")
|
||||
row_color = colors.END
|
||||
sep_color = colors.YELLOW
|
||||
print(f"{row_color}{colors.YELLOW + '->' + row_color if -1 == selected else ' '} {' '*9} N/A {sep_color}|{row_color} {breakmodel.disk_blocks:3} {sep_color}|{row_color} (Disk cache){colors.END}")
|
||||
print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}")
|
||||
logger.info(f" {' '*9} N/A | {breakmodel.disk_blocks:3} | (Disk cache)")
|
||||
logger.info(f" {' '*9} N/A | {n_layers:3} | (CPU)")
|
||||
|
||||
|
||||
def move_model_to_devices(model, usegpu, gpu_device):
|
||||
@@ -440,12 +448,12 @@ class TrainerBase(abc.ABC):
|
||||
|
||||
@property
|
||||
def lazy_load_spec(self):
|
||||
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
|
||||
logger.warning("WARNING: `TrainerData.lazy_load_spec` is currently unused")
|
||||
return self.__lazy_load_spec
|
||||
|
||||
@lazy_load_spec.setter
|
||||
def lazy_load_spec(self, value: Optional[dict]):
|
||||
print("WARNING: `TrainerData.lazy_load_spec` is currently unused", file=sys.stderr)
|
||||
logger.warning("WARNING: `TrainerData.lazy_load_spec` is currently unused")
|
||||
self.__lazy_load_spec = value
|
||||
|
||||
@property
|
||||
@@ -465,7 +473,7 @@ class TrainerBase(abc.ABC):
|
||||
self.data = self.TrainerData()
|
||||
self._spmodule: Optional[str] = None
|
||||
if universe is not None:
|
||||
print("WARNING: The `universe` argument of `TrainerBase.__init__` is currently unused", file=sys.stderr)
|
||||
logger.warning("WARNING: The `universe` argument of `TrainerBase.__init__` is currently unused")
|
||||
|
||||
def raise_configuration_error(self, msg, **kwargs):
|
||||
if "quiet" not in kwargs:
|
||||
@@ -608,14 +616,11 @@ class TrainerBase(abc.ABC):
|
||||
self.data.params["max_batch_size"] - self.data.soft_in_dim,
|
||||
)
|
||||
assert batch_size >= 0
|
||||
print(
|
||||
termcolor.colored(
|
||||
"\nIf you see a warning somewhere below about token indices, ignore it. That warning is normal.\n",
|
||||
"magenta",
|
||||
)
|
||||
logger.info(
|
||||
"\nIf you see a warning somewhere below about token indices, ignore it. That warning is normal.\n"
|
||||
)
|
||||
print("Batch size:", batch_size)
|
||||
print(termcolor.colored("Tokenizing your dataset...\n", "magenta"))
|
||||
logger.info("Batch size: {}".format(batch_size))
|
||||
logger.info("Tokenizing your dataset...\n")
|
||||
|
||||
if not isinstance(dataset_path, str):
|
||||
files = [dataset_path]
|
||||
@@ -632,7 +637,7 @@ class TrainerBase(abc.ABC):
|
||||
eos = tokenizer.decode(self.data.params["eos_token"])
|
||||
for path in files:
|
||||
if isinstance(path, str):
|
||||
f = open(path)
|
||||
f = open(path, 'r', encoding='utf-8')
|
||||
else:
|
||||
f = path
|
||||
try:
|
||||
@@ -645,7 +650,7 @@ class TrainerBase(abc.ABC):
|
||||
if isinstance(path, str):
|
||||
f.close()
|
||||
|
||||
print("Dataset size (in tokens):", len(tokens))
|
||||
logger.info("Dataset size (in tokens): {}".format(len(tokens)))
|
||||
if len(tokens) < batch_size + 1:
|
||||
self.raise_configuration_error(
|
||||
"Your dataset is too small! The number of tokens has to be greater than the batch size. Try increasing the epochs.",
|
||||
@@ -653,7 +658,7 @@ class TrainerBase(abc.ABC):
|
||||
)
|
||||
tail = len(tokens) % (batch_size + 1)
|
||||
if tail:
|
||||
print(
|
||||
logger.info(
|
||||
f"We're removing the last {tail} tokens from your dataset to make the length a multiple of {batch_size+1}."
|
||||
)
|
||||
tokens = tokens[:-tail]
|
||||
@@ -671,7 +676,7 @@ class TrainerBase(abc.ABC):
|
||||
axis=0,
|
||||
)
|
||||
tokens = tokens[: math.ceil(epochs * sequences_per_epoch)]
|
||||
print(f"Total sequences in your dataset: {tokens.shape[0]}")
|
||||
logger.info(f"Total sequences in your dataset: {tokens.shape[0]}")
|
||||
|
||||
if isinstance(output_file, str):
|
||||
f = open(output_file, "w")
|
||||
@@ -698,7 +703,7 @@ class TrainerBase(abc.ABC):
|
||||
self.data.params["max_batch_size"] = 2048
|
||||
|
||||
if not os.path.exists(self.data.save_file):
|
||||
print("We are starting a brand new soft-tuning session.\n")
|
||||
logger.info("We are starting a brand new soft-tuning session.\n")
|
||||
self.startup(step=-1)
|
||||
if self.data.soft_in_dim <= 0:
|
||||
self.raise_configuration_error(
|
||||
@@ -718,7 +723,7 @@ class TrainerBase(abc.ABC):
|
||||
opt_state = z["opt_state"]
|
||||
except AssertionError:
|
||||
self.raise_configuration_error("MKUSP file is corrupted.", code=14)
|
||||
print(f"We're resuming a previous soft-tuning session at step {step+1}.\n")
|
||||
logger.info(f"We're resuming a previous soft-tuning session at step {step+1}.\n")
|
||||
self.startup(step=step + 1)
|
||||
soft_embeddings = z["tensor"]
|
||||
|
||||
@@ -785,7 +790,7 @@ class TrainerBase(abc.ABC):
|
||||
num_tensors = len(utils.get_sharded_checkpoint_num_tensors(utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs))
|
||||
else:
|
||||
num_tensors = len(device_map)
|
||||
print(flush=True)
|
||||
#print(flush=True)
|
||||
utils.bar = tqdm(total=num_tensors, desc="Loading model tensors", file=Send_to_socketio())
|
||||
|
||||
with zipfile.ZipFile(f, "r") as z:
|
||||
|
@@ -24,4 +24,5 @@ psutil
|
||||
ansi2html
|
||||
flask_compress
|
||||
ijson
|
||||
bitsandbytes
|
||||
bitsandbytes
|
||||
ftfy
|
@@ -25,4 +25,5 @@ diffusers
|
||||
psutil
|
||||
ansi2html
|
||||
flask_compress
|
||||
ijson
|
||||
ijson
|
||||
ftfy
|
@@ -2600,6 +2600,15 @@ function process_log_message(full_data) {
|
||||
}
|
||||
|
||||
//--------------------------------------------UI to Server Functions----------------------------------
|
||||
function create_new_softprompt() {
|
||||
socket.emit("create_new_softprompt", {"sp_title": document.getElementById("sp_title").value,
|
||||
"sp_prompt": document.getElementById("sp_prompt").value,
|
||||
"sp_dataset": document.getElementById("sp_dataset").value,
|
||||
"sp_author": document.getElementById("sp_author").value,
|
||||
"sp_description": document.getElementById("sp_description").value
|
||||
});
|
||||
}
|
||||
|
||||
async function download_story_to_json() {
|
||||
//document.getElementById('download_iframe').src = 'json';
|
||||
downloaded = false;
|
||||
|
@@ -85,7 +85,7 @@
|
||||
<button type="button" class="btn btn-primary popup_load_cancel_button" onclick="closePopups();">Cancel</button>
|
||||
</div>
|
||||
</div>
|
||||
<!---------------- Story overwrite screen ---------------------->
|
||||
<!---------------- Private Mode Unlock screen ---------------------->
|
||||
<div id="privacy_mode" class="popup-window popup">
|
||||
<div class="title">
|
||||
<div class="popuptitletext">Locked</div>
|
||||
@@ -267,7 +267,8 @@
|
||||
</div>
|
||||
<div id="shortcut-container"></div>
|
||||
</div>
|
||||
<!---------------- Shortcuts ------------------->
|
||||
|
||||
<!---------------- Softprompt Trainer ------------------->
|
||||
<div id="sp-trainer-popup" class="popup-window popup">
|
||||
<div class="title">
|
||||
<div class="popuptitletext">Softprompt Trainer</div>
|
||||
@@ -282,7 +283,7 @@
|
||||
</form>
|
||||
</div>
|
||||
<div class="popup_load_cancel">
|
||||
<button type="button" class="btn btn-primary popup_load_cancel_button" onclick="closePopups();">Ok</button>
|
||||
<button type="button" class="btn btn-primary popup_load_cancel_button" onclick="create_new_softprompt(); closePopups();">Ok</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
Reference in New Issue
Block a user