Merge pull request #146 from VE-FORBRYDERNE/sampler-order
Add support for changing the order of the samplers
This commit is contained in:
commit
06c3a2a1fa
44
aiserver.py
44
aiserver.py
|
@ -306,6 +306,7 @@ class vars:
|
||||||
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
|
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
|
||||||
comregex_ai = re.compile(r'(?:\n<\|(?:.|\n)*?\|>(?=\n|$))|(?:<\|(?:.|\n)*?\|>\n?)') # Pattern for matching comments to remove them before sending them to the AI
|
comregex_ai = re.compile(r'(?:\n<\|(?:.|\n)*?\|>(?=\n|$))|(?:<\|(?:.|\n)*?\|>\n?)') # Pattern for matching comments to remove them before sending them to the AI
|
||||||
comregex_ui = re.compile(r'(<\|(?:.|\n)*?\|>)') # Pattern for matching comments in the editor
|
comregex_ui = re.compile(r'(<\|(?:.|\n)*?\|>)') # Pattern for matching comments in the editor
|
||||||
|
sampler_order = utils.default_sampler_order.copy()
|
||||||
chatmode = False
|
chatmode = False
|
||||||
chatname = "You"
|
chatname = "You"
|
||||||
adventure = False
|
adventure = False
|
||||||
|
@ -567,6 +568,8 @@ def loadmodelsettings():
|
||||||
vars.badwordsids = js["badwordsids"]
|
vars.badwordsids = js["badwordsids"]
|
||||||
if("nobreakmodel" in js):
|
if("nobreakmodel" in js):
|
||||||
vars.nobreakmodel = js["nobreakmodel"]
|
vars.nobreakmodel = js["nobreakmodel"]
|
||||||
|
if("sampler_order" in js):
|
||||||
|
vars.sampler_order = js["sampler_order"]
|
||||||
if("temp" in js):
|
if("temp" in js):
|
||||||
vars.temp = js["temp"]
|
vars.temp = js["temp"]
|
||||||
if("top_p" in js):
|
if("top_p" in js):
|
||||||
|
@ -610,6 +613,7 @@ def savesettings():
|
||||||
js = {}
|
js = {}
|
||||||
js["apikey"] = vars.apikey
|
js["apikey"] = vars.apikey
|
||||||
js["andepth"] = vars.andepth
|
js["andepth"] = vars.andepth
|
||||||
|
js["sampler_order"] = vars.sampler_order
|
||||||
js["temp"] = vars.temp
|
js["temp"] = vars.temp
|
||||||
js["top_p"] = vars.top_p
|
js["top_p"] = vars.top_p
|
||||||
js["top_k"] = vars.top_k
|
js["top_k"] = vars.top_k
|
||||||
|
@ -686,6 +690,8 @@ def processsettings(js):
|
||||||
vars.apikey = js["apikey"]
|
vars.apikey = js["apikey"]
|
||||||
if("andepth" in js):
|
if("andepth" in js):
|
||||||
vars.andepth = js["andepth"]
|
vars.andepth = js["andepth"]
|
||||||
|
if("sampler_order" in js):
|
||||||
|
vars.sampler_order = js["sampler_order"]
|
||||||
if("temp" in js):
|
if("temp" in js):
|
||||||
vars.temp = js["temp"]
|
vars.temp = js["temp"]
|
||||||
if("top_p" in js):
|
if("top_p" in js):
|
||||||
|
@ -1448,15 +1454,23 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||||
new_get_logits_processor.old_get_logits_processor = transformers.generation_utils.GenerationMixin._get_logits_processor
|
new_get_logits_processor.old_get_logits_processor = transformers.generation_utils.GenerationMixin._get_logits_processor
|
||||||
transformers.generation_utils.GenerationMixin._get_logits_processor = new_get_logits_processor
|
transformers.generation_utils.GenerationMixin._get_logits_processor = new_get_logits_processor
|
||||||
|
|
||||||
|
class KoboldLogitsWarperList(LogitsProcessorList):
|
||||||
|
def __init__(self, beams: int = 1, **kwargs):
|
||||||
|
self.__warper_list: List[LogitsWarper] = []
|
||||||
|
self.__warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
|
self.__warper_list.append(TopALogitsWarper(top_a=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
|
self.__warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
|
self.__warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
|
self.__warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
|
self.__warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
||||||
|
|
||||||
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, *args, **kwargs):
|
||||||
|
for k in vars.sampler_order:
|
||||||
|
scores = self.__warper_list[k](input_ids, scores, *args, **kwargs)
|
||||||
|
return scores
|
||||||
|
|
||||||
def new_get_logits_warper(beams: int = 1,) -> LogitsProcessorList:
|
def new_get_logits_warper(beams: int = 1,) -> LogitsProcessorList:
|
||||||
warper_list = LogitsProcessorList()
|
return KoboldLogitsWarperList(beams=beams)
|
||||||
warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1)))
|
|
||||||
warper_list.append(TopALogitsWarper(top_a=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
|
||||||
warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
|
||||||
warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
|
||||||
warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
|
||||||
warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
|
||||||
return warper_list
|
|
||||||
|
|
||||||
def new_sample(self, *args, **kwargs):
|
def new_sample(self, *args, **kwargs):
|
||||||
assert kwargs.pop("logits_warper", None) is not None
|
assert kwargs.pop("logits_warper", None) is not None
|
||||||
|
@ -1816,6 +1830,7 @@ else:
|
||||||
|
|
||||||
def tpumtjgenerate_settings_callback() -> dict:
|
def tpumtjgenerate_settings_callback() -> dict:
|
||||||
return {
|
return {
|
||||||
|
"sampler_order": vars.sampler_order,
|
||||||
"top_p": float(vars.top_p),
|
"top_p": float(vars.top_p),
|
||||||
"temp": float(vars.temp),
|
"temp": float(vars.temp),
|
||||||
"top_k": int(vars.top_k),
|
"top_k": int(vars.top_k),
|
||||||
|
@ -2858,6 +2873,8 @@ def get_message(msg):
|
||||||
elif(msg['cmd'] == 'uslistrequest'):
|
elif(msg['cmd'] == 'uslistrequest'):
|
||||||
unloaded, loaded = getuslist()
|
unloaded, loaded = getuslist()
|
||||||
emit('from_server', {'cmd': 'buildus', 'data': {"unloaded": unloaded, "loaded": loaded}})
|
emit('from_server', {'cmd': 'buildus', 'data': {"unloaded": unloaded, "loaded": loaded}})
|
||||||
|
elif(msg['cmd'] == 'samplerlistrequest'):
|
||||||
|
emit('from_server', {'cmd': 'buildsamplers', 'data': vars.sampler_order})
|
||||||
elif(msg['cmd'] == 'usloaded'):
|
elif(msg['cmd'] == 'usloaded'):
|
||||||
vars.userscripts = []
|
vars.userscripts = []
|
||||||
for userscript in msg['data']:
|
for userscript in msg['data']:
|
||||||
|
@ -2871,6 +2888,16 @@ def get_message(msg):
|
||||||
load_lua_scripts()
|
load_lua_scripts()
|
||||||
unloaded, loaded = getuslist()
|
unloaded, loaded = getuslist()
|
||||||
sendUSStatItems()
|
sendUSStatItems()
|
||||||
|
elif(msg['cmd'] == 'samplers'):
|
||||||
|
sampler_order = msg["data"]
|
||||||
|
if(not isinstance(sampler_order, list)):
|
||||||
|
raise ValueError(f"Sampler order must be a list, but got a {type(sampler_order)}")
|
||||||
|
if(len(sampler_order) != len(vars.sampler_order)):
|
||||||
|
raise ValueError(f"Sampler order must be a list of length {len(vars.sampler_order)}, but got a list of length {len(sampler_order)}")
|
||||||
|
if(not all(isinstance(e, int) for e in sampler_order)):
|
||||||
|
raise ValueError(f"Sampler order must be a list of ints, but got a list with at least one non-int element")
|
||||||
|
vars.sampler_order = sampler_order
|
||||||
|
settingschanged()
|
||||||
elif(msg['cmd'] == 'loadselect'):
|
elif(msg['cmd'] == 'loadselect'):
|
||||||
vars.loadselect = msg["data"]
|
vars.loadselect = msg["data"]
|
||||||
elif(msg['cmd'] == 'spselect'):
|
elif(msg['cmd'] == 'spselect'):
|
||||||
|
@ -3910,6 +3937,7 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
|
||||||
rprange=vars.rep_pen_range,
|
rprange=vars.rep_pen_range,
|
||||||
soft_embeddings=vars.sp,
|
soft_embeddings=vars.sp,
|
||||||
soft_tokens=soft_tokens,
|
soft_tokens=soft_tokens,
|
||||||
|
sampler_order=vars.sampler_order,
|
||||||
)
|
)
|
||||||
past = genout
|
past = genout
|
||||||
for i in range(vars.numseqs):
|
for i in range(vars.numseqs):
|
||||||
|
|
|
@ -20,6 +20,7 @@ var button_settings;
|
||||||
var button_format;
|
var button_format;
|
||||||
var button_softprompt;
|
var button_softprompt;
|
||||||
var button_userscripts;
|
var button_userscripts;
|
||||||
|
var button_samplers;
|
||||||
var button_mode;
|
var button_mode;
|
||||||
var button_mode_label;
|
var button_mode_label;
|
||||||
var button_send;
|
var button_send;
|
||||||
|
@ -109,6 +110,9 @@ var do_clear_ent = false;
|
||||||
// Whether or not an entry in the Userscripts menu is being dragged
|
// Whether or not an entry in the Userscripts menu is being dragged
|
||||||
var us_dragging = false;
|
var us_dragging = false;
|
||||||
|
|
||||||
|
// Whether or not an entry in the Samplers menu is being dragged
|
||||||
|
var samplers_dragging = false;
|
||||||
|
|
||||||
// Display vars
|
// Display vars
|
||||||
var allowtoggle = false;
|
var allowtoggle = false;
|
||||||
var formatcount = 0;
|
var formatcount = 0;
|
||||||
|
@ -976,6 +980,16 @@ function hideUSPopup() {
|
||||||
spcontent.html("");
|
spcontent.html("");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function showSamplersPopup() {
|
||||||
|
samplerspopup.removeClass("hidden");
|
||||||
|
samplerspopup.addClass("flex");
|
||||||
|
}
|
||||||
|
|
||||||
|
function hideSamplersPopup() {
|
||||||
|
samplerspopup.removeClass("flex");
|
||||||
|
samplerspopup.addClass("hidden");
|
||||||
|
}
|
||||||
|
|
||||||
function buildLoadList(ar) {
|
function buildLoadList(ar) {
|
||||||
disableButtons([load_accept]);
|
disableButtons([load_accept]);
|
||||||
loadcontent.html("");
|
loadcontent.html("");
|
||||||
|
@ -1109,6 +1123,29 @@ function buildUSList(unloaded, loaded) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function buildSamplerList(samplers) {
|
||||||
|
samplerslist.html("");
|
||||||
|
showSamplersPopup();
|
||||||
|
var i;
|
||||||
|
var samplers_lookup_table = [
|
||||||
|
"Top-k Sampling",
|
||||||
|
"Top-a Sampling",
|
||||||
|
"Top-p Sampling",
|
||||||
|
"Tail-free Sampling",
|
||||||
|
"Typical Sampling",
|
||||||
|
"Temperature",
|
||||||
|
]
|
||||||
|
for(i=0; i<samplers.length; i++) {
|
||||||
|
samplerslist.append("<div class=\"flex\">\
|
||||||
|
<div class=\"samplerslistitem flex-row-container\" sid=\""+samplers[i]+"\">\
|
||||||
|
<div class=\"flex-row\">\
|
||||||
|
<div>"+samplers_lookup_table[samplers[i]]+"</div>\
|
||||||
|
</div>\
|
||||||
|
</div>\
|
||||||
|
</div>");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
function highlightLoadLine(ref) {
|
function highlightLoadLine(ref) {
|
||||||
$("#loadlistcontent > div > div.popuplistselected").removeClass("popuplistselected");
|
$("#loadlistcontent > div > div.popuplistselected").removeClass("popuplistselected");
|
||||||
ref.addClass("popuplistselected");
|
ref.addClass("popuplistselected");
|
||||||
|
@ -1838,6 +1875,7 @@ $(document).ready(function(){
|
||||||
button_format = $('#btn_format');
|
button_format = $('#btn_format');
|
||||||
button_softprompt = $("#btn_softprompt");
|
button_softprompt = $("#btn_softprompt");
|
||||||
button_userscripts= $("#btn_userscripts");
|
button_userscripts= $("#btn_userscripts");
|
||||||
|
button_samplers = $("#btn_samplers");
|
||||||
button_mode = $('#btnmode')
|
button_mode = $('#btnmode')
|
||||||
button_mode_label = $('#btnmode_label')
|
button_mode_label = $('#btnmode_label')
|
||||||
button_send = $('#btnsend');
|
button_send = $('#btnsend');
|
||||||
|
@ -1886,6 +1924,10 @@ $(document).ready(function(){
|
||||||
usloaded = $("#uslistloaded");
|
usloaded = $("#uslistloaded");
|
||||||
us_accept = $("#btn_usaccept");
|
us_accept = $("#btn_usaccept");
|
||||||
us_close = $("#btn_usclose");
|
us_close = $("#btn_usclose");
|
||||||
|
samplerspopup = $("#samplerscontainer");
|
||||||
|
samplerslist = $("#samplerslist");
|
||||||
|
samplers_accept = $("#btn_samplersaccept");
|
||||||
|
samplers_close = $("#btn_samplersclose");
|
||||||
nspopup = $("#newgamecontainer");
|
nspopup = $("#newgamecontainer");
|
||||||
ns_accept = $("#btn_nsaccept");
|
ns_accept = $("#btn_nsaccept");
|
||||||
ns_close = $("#btn_nsclose");
|
ns_close = $("#btn_nsclose");
|
||||||
|
@ -1908,7 +1950,7 @@ $(document).ready(function(){
|
||||||
modelname = msg.modelname;
|
modelname = msg.modelname;
|
||||||
}
|
}
|
||||||
refreshTitle();
|
refreshTitle();
|
||||||
connect_status.html("<b>Connected to KoboldAI Process!</b>");
|
connect_status.html("<b>Connected to KoboldAI!</b>");
|
||||||
connect_status.removeClass("color_orange");
|
connect_status.removeClass("color_orange");
|
||||||
connect_status.addClass("color_green");
|
connect_status.addClass("color_green");
|
||||||
// Reset Menus
|
// Reset Menus
|
||||||
|
@ -2310,6 +2352,8 @@ $(document).ready(function(){
|
||||||
buildSPList(msg.data);
|
buildSPList(msg.data);
|
||||||
} else if(msg.cmd == "buildus") {
|
} else if(msg.cmd == "buildus") {
|
||||||
buildUSList(msg.data.unloaded, msg.data.loaded);
|
buildUSList(msg.data.unloaded, msg.data.loaded);
|
||||||
|
} else if(msg.cmd == "buildsamplers") {
|
||||||
|
buildSamplerList(msg.data);
|
||||||
} else if(msg.cmd == "askforoverwrite") {
|
} else if(msg.cmd == "askforoverwrite") {
|
||||||
// Show overwrite warning
|
// Show overwrite warning
|
||||||
show([$(".saveasoverwrite")]);
|
show([$(".saveasoverwrite")]);
|
||||||
|
@ -2436,6 +2480,20 @@ $(document).ready(function(){
|
||||||
}, 10);
|
}, 10);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
var samplers_click_handler = function(ev) {
|
||||||
|
setTimeout(function() {
|
||||||
|
if (samplers_dragging) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
var target = $(ev.target).closest(".samplerslistitem");
|
||||||
|
var next = target.parent().next().find(".samplerslistitem");
|
||||||
|
if (!next.length) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
next.parent().after(target.parent());
|
||||||
|
}, 10);
|
||||||
|
}
|
||||||
|
|
||||||
// Make the userscripts menu sortable
|
// Make the userscripts menu sortable
|
||||||
var us_sortable_settings = {
|
var us_sortable_settings = {
|
||||||
placeholder: "ussortable-placeholder",
|
placeholder: "ussortable-placeholder",
|
||||||
|
@ -2456,6 +2514,22 @@ $(document).ready(function(){
|
||||||
connectWith: "#uslistunloaded",
|
connectWith: "#uslistunloaded",
|
||||||
}, us_sortable_settings)).on("click", ".uslistitem", us_click_handler);
|
}, us_sortable_settings)).on("click", ".uslistitem", us_click_handler);
|
||||||
|
|
||||||
|
// Make the samplers menu sortable
|
||||||
|
var samplers_sortable_settings = {
|
||||||
|
placeholder: "samplerssortable-placeholder",
|
||||||
|
start: function() { samplers_dragging = true; },
|
||||||
|
stop: function() { samplers_dragging = false; },
|
||||||
|
delay: 2,
|
||||||
|
cursor: "move",
|
||||||
|
tolerance: "pointer",
|
||||||
|
opacity: 0.21,
|
||||||
|
revert: 173,
|
||||||
|
scrollSensitivity: 64,
|
||||||
|
scrollSpeed: 10,
|
||||||
|
}
|
||||||
|
samplerslist.sortable($.extend({
|
||||||
|
}, samplers_sortable_settings)).on("click", ".samplerslistitem", samplers_click_handler);
|
||||||
|
|
||||||
// Bind actions to UI buttons
|
// Bind actions to UI buttons
|
||||||
button_send.on("click", function(ev) {
|
button_send.on("click", function(ev) {
|
||||||
dosubmit();
|
dosubmit();
|
||||||
|
@ -2590,6 +2664,10 @@ $(document).ready(function(){
|
||||||
button_userscripts.on("click", function(ev) {
|
button_userscripts.on("click", function(ev) {
|
||||||
socket.send({'cmd': 'uslistrequest', 'data': ''});
|
socket.send({'cmd': 'uslistrequest', 'data': ''});
|
||||||
});
|
});
|
||||||
|
|
||||||
|
button_samplers.on("click", function(ev) {
|
||||||
|
socket.send({'cmd': 'samplerlistrequest', 'data': ''});
|
||||||
|
});
|
||||||
|
|
||||||
load_close.on("click", function(ev) {
|
load_close.on("click", function(ev) {
|
||||||
hideLoadPopup();
|
hideLoadPopup();
|
||||||
|
@ -2623,6 +2701,16 @@ $(document).ready(function(){
|
||||||
socket.send({'cmd': 'usload', 'data': ''});
|
socket.send({'cmd': 'usload', 'data': ''});
|
||||||
hideUSPopup();
|
hideUSPopup();
|
||||||
});
|
});
|
||||||
|
|
||||||
|
samplers_close.on("click", function(ev) {
|
||||||
|
hideSamplersPopup();
|
||||||
|
});
|
||||||
|
|
||||||
|
samplers_accept.on("click", function(ev) {
|
||||||
|
hideMessage();
|
||||||
|
socket.send({'cmd': 'samplers', 'data': samplerslist.find(".samplerslistitem").map(function() { return parseInt($(this).attr("sid")); }).toArray()});
|
||||||
|
hideSamplersPopup();
|
||||||
|
});
|
||||||
|
|
||||||
button_newgame.on("click", function(ev) {
|
button_newgame.on("click", function(ev) {
|
||||||
if(connected) {
|
if(connected) {
|
||||||
|
|
|
@ -457,6 +457,26 @@ body.connected #popupfooter, #popupfooter.always-available {
|
||||||
overflow-wrap: anywhere;
|
overflow-wrap: anywhere;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#samplerspopup {
|
||||||
|
width: 300px;
|
||||||
|
background-color: #262626;
|
||||||
|
margin-top: 100px;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
#samplerspopup {
|
||||||
|
width: 100%;
|
||||||
|
background-color: #262626;
|
||||||
|
margin-top: 100px;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#samplerslist {
|
||||||
|
height: 300px;
|
||||||
|
overflow-y: scroll;
|
||||||
|
overflow-wrap: anywhere;
|
||||||
|
}
|
||||||
|
|
||||||
#nspopup {
|
#nspopup {
|
||||||
width: 350px;
|
width: 350px;
|
||||||
background-color: #262626;
|
background-color: #262626;
|
||||||
|
@ -750,7 +770,7 @@ body.connected .dropdown-item:hover, .dropdown-item.always-available:hover {
|
||||||
background-color: #3bf723;
|
background-color: #3bf723;
|
||||||
}
|
}
|
||||||
|
|
||||||
.ussortable-placeholder {
|
.ussortable-placeholder, .samplerssortable-placeholder {
|
||||||
height: 4px;
|
height: 4px;
|
||||||
background-color: #3bf723;
|
background-color: #3bf723;
|
||||||
}
|
}
|
||||||
|
@ -1340,7 +1360,7 @@ body.connected .popupfooter, .popupfooter.always-available {
|
||||||
background-color: #688f1f;
|
background-color: #688f1f;
|
||||||
}
|
}
|
||||||
|
|
||||||
.uslistitem {
|
.uslistitem, .samplerslistitem {
|
||||||
padding: 12px 10px 12px 10px;
|
padding: 12px 10px 12px 10px;
|
||||||
display: flex;
|
display: flex;
|
||||||
flex-grow: 1;
|
flex-grow: 1;
|
||||||
|
@ -1352,11 +1372,11 @@ body.connected .popupfooter, .popupfooter.always-available {
|
||||||
transition: background-color 0.25s ease-in;
|
transition: background-color 0.25s ease-in;
|
||||||
}
|
}
|
||||||
|
|
||||||
.uslistitemsub {
|
.uslistitemsub, .samplerslistitemsub {
|
||||||
color: #ba9;
|
color: #ba9;
|
||||||
}
|
}
|
||||||
|
|
||||||
.uslistitem:hover {
|
.uslistitem:hover, .samplerslistitem:hover {
|
||||||
cursor: move;
|
cursor: move;
|
||||||
background-color: #688f1f;
|
background-color: #688f1f;
|
||||||
}
|
}
|
||||||
|
|
|
@ -9,7 +9,7 @@
|
||||||
<link rel="stylesheet" href="static/bootstrap.min.css">
|
<link rel="stylesheet" href="static/bootstrap.min.css">
|
||||||
<link rel="stylesheet" href="static/bootstrap-toggle.min.css">
|
<link rel="stylesheet" href="static/bootstrap-toggle.min.css">
|
||||||
<link rel="stylesheet" href="static/open-iconic-bootstrap.min.css">
|
<link rel="stylesheet" href="static/open-iconic-bootstrap.min.css">
|
||||||
<link rel="stylesheet" href="static/custom.css?ver=1.18b">
|
<link rel="stylesheet" href="static/custom.css?ver=1.18c">
|
||||||
|
|
||||||
<script src="static/jquery-3.6.0.min.js"></script>
|
<script src="static/jquery-3.6.0.min.js"></script>
|
||||||
<script src="static/jquery-ui.sortable.min.js"></script>
|
<script src="static/jquery-ui.sortable.min.js"></script>
|
||||||
|
@ -17,7 +17,7 @@
|
||||||
<script src="static/bootstrap.min.js"></script>
|
<script src="static/bootstrap.min.js"></script>
|
||||||
<script src="static/bootstrap-toggle.min.js"></script>
|
<script src="static/bootstrap-toggle.min.js"></script>
|
||||||
<script src="static/rangy-core.min.js"></script>
|
<script src="static/rangy-core.min.js"></script>
|
||||||
<script src="static/application.js?ver=1.18d"></script>
|
<script src="static/application.js?ver=1.18e"></script>
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
<input type="file" id="remote-save-select" accept="application/json" style="display:none">
|
<input type="file" id="remote-save-select" accept="application/json" style="display:none">
|
||||||
|
@ -71,6 +71,9 @@
|
||||||
<li class="nav-item">
|
<li class="nav-item">
|
||||||
<a class="nav-link" href="#" id="btn_format">Formatting</a>
|
<a class="nav-link" href="#" id="btn_format">Formatting</a>
|
||||||
</li>
|
</li>
|
||||||
|
<li class="nav-item">
|
||||||
|
<a class="nav-link" href="#" id="btn_samplers">Samplers</a>
|
||||||
|
</li>
|
||||||
<li class="nav-item">
|
<li class="nav-item">
|
||||||
<a class="nav-link" href="#" id="btn_userscripts">Userscripts</a>
|
<a class="nav-link" href="#" id="btn_userscripts">Userscripts</a>
|
||||||
</li>
|
</li>
|
||||||
|
@ -299,6 +302,19 @@
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
|
<div class="popupcontainer hidden" id="samplerscontainer">
|
||||||
|
<div id="samplerspopup">
|
||||||
|
<div class="popuptitlebar">
|
||||||
|
<div class="popuptitletext">Drag-and-drop to change the order in which the samplers are applied</div>
|
||||||
|
</div>
|
||||||
|
<div id="samplerslist">
|
||||||
|
</div>
|
||||||
|
<div class="popupfooter">
|
||||||
|
<button type="button" class="btn btn-primary" id="btn_samplersaccept">Save</button>
|
||||||
|
<button type="button" class="btn btn-primary" id="btn_samplersclose">Cancel</button>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
<div class="popupcontainer hidden" id="loadcontainerdelete">
|
<div class="popupcontainer hidden" id="loadcontainerdelete">
|
||||||
<div id="loadpopupdelete">
|
<div id="loadpopupdelete">
|
||||||
<div class="popuptitlebar">
|
<div class="popuptitlebar">
|
||||||
|
|
|
@ -65,6 +65,7 @@ def stopping_callback(generated, n_generated, excluded_world_info) -> Tuple[List
|
||||||
|
|
||||||
def settings_callback() -> dict:
|
def settings_callback() -> dict:
|
||||||
return {
|
return {
|
||||||
|
"sampler_order": utils.default_sampler_order.copy(),
|
||||||
"top_p": 0.9,
|
"top_p": 0.9,
|
||||||
"temp": 0.5,
|
"temp": 0.5,
|
||||||
"top_k": 0,
|
"top_k": 0,
|
||||||
|
@ -159,7 +160,7 @@ def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty, generat
|
||||||
logits[tokens] = penalty_logits
|
logits[tokens] = penalty_logits
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
def kobold_sample_dynamic(key, logits, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||||
'''
|
'''
|
||||||
This gets called by generate_loop_fn to apply a series of 6 filters
|
This gets called by generate_loop_fn to apply a series of 6 filters
|
||||||
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
||||||
|
@ -181,8 +182,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return np.where(indices_to_remove, -np.inf, logits)
|
return np.where(indices_to_remove, -np.inf, logits)
|
||||||
if top_k > 0:
|
|
||||||
logits = top_k_filter(logits)
|
|
||||||
# Top-a (remove all tokens that have softmax probability less than
|
# Top-a (remove all tokens that have softmax probability less than
|
||||||
# a*m^2 where m is the maximum softmax probability)
|
# a*m^2 where m is the maximum softmax probability)
|
||||||
def top_a_filter(logits):
|
def top_a_filter(logits):
|
||||||
|
@ -195,8 +194,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
||||||
probs_max = probabilities.max()
|
probs_max = probabilities.max()
|
||||||
# Remove tokens
|
# Remove tokens
|
||||||
return np.where(probabilities < probs_max * probs_max * top_a, -np.inf, logits)
|
return np.where(probabilities < probs_max * probs_max * top_a, -np.inf, logits)
|
||||||
if top_a > 0.0:
|
|
||||||
logits = top_a_filter(logits)
|
|
||||||
# Top-p (after sorting the remaining tokens again in descending order of
|
# Top-p (after sorting the remaining tokens again in descending order of
|
||||||
# logit, remove the ones that have cumulative softmax probability
|
# logit, remove the ones that have cumulative softmax probability
|
||||||
# greater than p)
|
# greater than p)
|
||||||
|
@ -222,8 +219,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return np.where(indices_to_remove, -np.inf, logits)
|
return np.where(indices_to_remove, -np.inf, logits)
|
||||||
if top_p < 1.0:
|
|
||||||
logits = top_p_filter(logits)
|
|
||||||
# Tail free sampling (basically top-p a second time on remaining tokens
|
# Tail free sampling (basically top-p a second time on remaining tokens
|
||||||
# except it's the "cumulative normalized absolute second finite
|
# except it's the "cumulative normalized absolute second finite
|
||||||
# differences of the softmax probabilities" instead of just the
|
# differences of the softmax probabilities" instead of just the
|
||||||
|
@ -262,8 +257,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return np.where(indices_to_remove, -np.inf, logits)
|
return np.where(indices_to_remove, -np.inf, logits)
|
||||||
if tfs < 1.0:
|
|
||||||
logits = tail_free_filter(logits)
|
|
||||||
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
|
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
|
||||||
def typical_filter(logits):
|
def typical_filter(logits):
|
||||||
# Compute softmax probabilities and the natural logarithms of them
|
# Compute softmax probabilities and the natural logarithms of them
|
||||||
|
@ -293,10 +286,16 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return np.where(indices_to_remove, -jnp.inf, logits)
|
return np.where(indices_to_remove, -jnp.inf, logits)
|
||||||
if typical < 1.0:
|
|
||||||
logits = typical_filter(logits)
|
|
||||||
# Temperature (just divide the logits by the temperature)
|
# Temperature (just divide the logits by the temperature)
|
||||||
logits /= temp
|
def temp_filter(logits):
|
||||||
|
return logits / temp
|
||||||
|
for k in sampler_order:
|
||||||
|
if k == 0 and top_k > 0: logits = top_k_filter(logits)
|
||||||
|
if k == 1 and top_a > 0.0: logits = top_a_filter(logits)
|
||||||
|
if k == 2 and top_p < 1.0: logits = top_p_filter(logits)
|
||||||
|
if k == 3 and tfs < 1.0: logits = tail_free_filter(logits)
|
||||||
|
if k == 4 and typical < 1.0: logits = typical_filter(logits)
|
||||||
|
if k == 5 and temp != 1.0: logits = temp_filter(logits)
|
||||||
# Finally, pick one token using the softmax thingy again (it gives
|
# Finally, pick one token using the softmax thingy again (it gives
|
||||||
# an array whose elements sum to 1 so it can be used nicely as a
|
# an array whose elements sum to 1 so it can be used nicely as a
|
||||||
# probability distribution)
|
# probability distribution)
|
||||||
|
@ -347,7 +346,7 @@ def apply_repetition_penalty_static(logits, tokens, repetition_penalty, generate
|
||||||
# positions in the logits array
|
# positions in the logits array
|
||||||
return logits.at[tokens].set(penalty_logits)
|
return logits.at[tokens].set(penalty_logits)
|
||||||
|
|
||||||
def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
def kobold_sample_static(key, logits, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||||
'''
|
'''
|
||||||
This gets called by generate_loop_fn to apply a series of 6 filters
|
This gets called by generate_loop_fn to apply a series of 6 filters
|
||||||
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
||||||
|
@ -369,7 +368,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
logits = jax.lax.cond(top_k > 0, top_k_filter, lambda x: x, logits)
|
|
||||||
# Top-a (remove all tokens that have softmax probability less than
|
# Top-a (remove all tokens that have softmax probability less than
|
||||||
# a*m^2 where m is the maximum softmax probability)
|
# a*m^2 where m is the maximum softmax probability)
|
||||||
def top_a_filter(logits):
|
def top_a_filter(logits):
|
||||||
|
@ -382,7 +380,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
||||||
probs_max = probabilities.max()
|
probs_max = probabilities.max()
|
||||||
# Remove tokens
|
# Remove tokens
|
||||||
return jnp.where(probabilities < probs_max * probs_max * top_a, -jnp.inf, logits)
|
return jnp.where(probabilities < probs_max * probs_max * top_a, -jnp.inf, logits)
|
||||||
logits = jax.lax.cond(top_a > 0.0, top_a_filter, lambda x: x, logits)
|
|
||||||
# Top-p (after sorting the remaining tokens again in descending order of
|
# Top-p (after sorting the remaining tokens again in descending order of
|
||||||
# logit, remove the ones that have cumulative softmax probability
|
# logit, remove the ones that have cumulative softmax probability
|
||||||
# greater than p)
|
# greater than p)
|
||||||
|
@ -408,7 +405,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
logits = jax.lax.cond(top_p < 1.0, top_p_filter, lambda x: x, logits)
|
|
||||||
# Tail free sampling (basically top-p a second time on remaining tokens
|
# Tail free sampling (basically top-p a second time on remaining tokens
|
||||||
# except it's the "cumulative normalized absolute second finite
|
# except it's the "cumulative normalized absolute second finite
|
||||||
# differences of the softmax probabilities" instead of just the
|
# differences of the softmax probabilities" instead of just the
|
||||||
|
@ -447,7 +443,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
logits = jax.lax.cond(tfs < 1.0, tail_free_filter, lambda x: x, logits)
|
|
||||||
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
|
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
|
||||||
def typical_filter(logits):
|
def typical_filter(logits):
|
||||||
# Compute softmax probabilities and the natural logarithms of them
|
# Compute softmax probabilities and the natural logarithms of them
|
||||||
|
@ -476,11 +471,16 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
||||||
sorted_indices_to_remove,
|
sorted_indices_to_remove,
|
||||||
)
|
)
|
||||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
logits = jax.lax.cond(typical < 1.0, typical_filter, lambda x: x, logits)
|
|
||||||
# Temperature (just divide the logits by the temperature)
|
# Temperature (just divide the logits by the temperature)
|
||||||
def temp_filter(logits):
|
def temp_filter(logits):
|
||||||
return logits / temp
|
return logits / temp
|
||||||
logits = jax.lax.cond(True, temp_filter, lambda x: x, logits)
|
for k in sampler_order:
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 0, top_k > 0), top_k_filter, lambda x: x, logits)
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 1, top_a > 0.0), top_a_filter, lambda x: x, logits)
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 2, top_p < 1.0), top_p_filter, lambda x: x, logits)
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 3, tfs < 1.0), tail_free_filter, lambda x: x, logits)
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 4, typical < 1.0), typical_filter, lambda x: x, logits)
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 5, temp != 1.0), temp_filter, lambda x: x, logits)
|
||||||
# Finally, pick one token using the softmax thingy again (it gives
|
# Finally, pick one token using the softmax thingy again (it gives
|
||||||
# an array whose elements sum to 1 so it can be used nicely as a
|
# an array whose elements sum to 1 so it can be used nicely as a
|
||||||
# probability distribution)
|
# probability distribution)
|
||||||
|
@ -842,8 +842,12 @@ def infer_static(
|
||||||
gen_len=80,
|
gen_len=80,
|
||||||
soft_embeddings: Optional[np.array] = None,
|
soft_embeddings: Optional[np.array] = None,
|
||||||
soft_tokens: Optional[np.array] = None,
|
soft_tokens: Optional[np.array] = None,
|
||||||
|
sampler_order: Optional[List[int]] = None,
|
||||||
) -> List[np.array]:
|
) -> List[np.array]:
|
||||||
maps.thread_resources.env = thread_resources_env
|
maps.thread_resources.env = thread_resources_env
|
||||||
|
if sampler_order is None:
|
||||||
|
sampler_order = utils.default_sampler_order.copy()
|
||||||
|
sampler_order = np.uint32(sampler_order)
|
||||||
total_batch = 1
|
total_batch = 1
|
||||||
tokens = context
|
tokens = context
|
||||||
if(soft_tokens is not None):
|
if(soft_tokens is not None):
|
||||||
|
@ -854,6 +858,7 @@ def infer_static(
|
||||||
batched_tokens = np.array([padded_tokens] * total_batch)
|
batched_tokens = np.array([padded_tokens] * total_batch)
|
||||||
samples = []
|
samples = []
|
||||||
batched_generator_params = {
|
batched_generator_params = {
|
||||||
|
"sampler_order": np.repeat(sampler_order[np.newaxis], total_batch, axis=0),
|
||||||
"temp": temp * np.ones(total_batch),
|
"temp": temp * np.ones(total_batch),
|
||||||
"top_p": top_p * np.ones(total_batch),
|
"top_p": top_p * np.ones(total_batch),
|
||||||
"tfs": tfs * np.ones(total_batch),
|
"tfs": tfs * np.ones(total_batch),
|
||||||
|
@ -1015,6 +1020,9 @@ def read_neox_checkpoint(state, path, config, checkpoint_shards=2):
|
||||||
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpoint=False, **kwargs) -> None:
|
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpoint=False, **kwargs) -> None:
|
||||||
global thread_resources_env, seq, tokenizer, network, params
|
global thread_resources_env, seq, tokenizer, network, params
|
||||||
|
|
||||||
|
if not hasattr(vars, "sampler_order") or not vars.sampler_order:
|
||||||
|
vars.sampler_order = utils.default_sampler_order.copy()
|
||||||
|
|
||||||
default_params = {
|
default_params = {
|
||||||
"compat": "j",
|
"compat": "j",
|
||||||
"layers": 28,
|
"layers": 28,
|
||||||
|
|
2
utils.py
2
utils.py
|
@ -20,6 +20,8 @@ from_pretrained_index_filename: Optional[str] = None
|
||||||
from_pretrained_kwargs = {}
|
from_pretrained_kwargs = {}
|
||||||
bar = None
|
bar = None
|
||||||
|
|
||||||
|
default_sampler_order = [0, 1, 2, 3, 4, 5]
|
||||||
|
|
||||||
#==================================================================#
|
#==================================================================#
|
||||||
# Decorator to prevent a function's actions from being run until
|
# Decorator to prevent a function's actions from being run until
|
||||||
# at least x seconds have passed without the function being called
|
# at least x seconds have passed without the function being called
|
||||||
|
|
Loading…
Reference in New Issue