Merge pull request #146 from VE-FORBRYDERNE/sampler-order
Add support for changing the order of the samplers
This commit is contained in:
commit
06c3a2a1fa
44
aiserver.py
44
aiserver.py
|
@ -306,6 +306,7 @@ class vars:
|
|||
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
|
||||
comregex_ai = re.compile(r'(?:\n<\|(?:.|\n)*?\|>(?=\n|$))|(?:<\|(?:.|\n)*?\|>\n?)') # Pattern for matching comments to remove them before sending them to the AI
|
||||
comregex_ui = re.compile(r'(<\|(?:.|\n)*?\|>)') # Pattern for matching comments in the editor
|
||||
sampler_order = utils.default_sampler_order.copy()
|
||||
chatmode = False
|
||||
chatname = "You"
|
||||
adventure = False
|
||||
|
@ -567,6 +568,8 @@ def loadmodelsettings():
|
|||
vars.badwordsids = js["badwordsids"]
|
||||
if("nobreakmodel" in js):
|
||||
vars.nobreakmodel = js["nobreakmodel"]
|
||||
if("sampler_order" in js):
|
||||
vars.sampler_order = js["sampler_order"]
|
||||
if("temp" in js):
|
||||
vars.temp = js["temp"]
|
||||
if("top_p" in js):
|
||||
|
@ -610,6 +613,7 @@ def savesettings():
|
|||
js = {}
|
||||
js["apikey"] = vars.apikey
|
||||
js["andepth"] = vars.andepth
|
||||
js["sampler_order"] = vars.sampler_order
|
||||
js["temp"] = vars.temp
|
||||
js["top_p"] = vars.top_p
|
||||
js["top_k"] = vars.top_k
|
||||
|
@ -686,6 +690,8 @@ def processsettings(js):
|
|||
vars.apikey = js["apikey"]
|
||||
if("andepth" in js):
|
||||
vars.andepth = js["andepth"]
|
||||
if("sampler_order" in js):
|
||||
vars.sampler_order = js["sampler_order"]
|
||||
if("temp" in js):
|
||||
vars.temp = js["temp"]
|
||||
if("top_p" in js):
|
||||
|
@ -1448,15 +1454,23 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
|||
new_get_logits_processor.old_get_logits_processor = transformers.generation_utils.GenerationMixin._get_logits_processor
|
||||
transformers.generation_utils.GenerationMixin._get_logits_processor = new_get_logits_processor
|
||||
|
||||
class KoboldLogitsWarperList(LogitsProcessorList):
|
||||
def __init__(self, beams: int = 1, **kwargs):
|
||||
self.__warper_list: List[LogitsWarper] = []
|
||||
self.__warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1)))
|
||||
self.__warper_list.append(TopALogitsWarper(top_a=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
self.__warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
self.__warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
self.__warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
self.__warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, *args, **kwargs):
|
||||
for k in vars.sampler_order:
|
||||
scores = self.__warper_list[k](input_ids, scores, *args, **kwargs)
|
||||
return scores
|
||||
|
||||
def new_get_logits_warper(beams: int = 1,) -> LogitsProcessorList:
|
||||
warper_list = LogitsProcessorList()
|
||||
warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1)))
|
||||
warper_list.append(TopALogitsWarper(top_a=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||
warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
||||
return warper_list
|
||||
return KoboldLogitsWarperList(beams=beams)
|
||||
|
||||
def new_sample(self, *args, **kwargs):
|
||||
assert kwargs.pop("logits_warper", None) is not None
|
||||
|
@ -1816,6 +1830,7 @@ else:
|
|||
|
||||
def tpumtjgenerate_settings_callback() -> dict:
|
||||
return {
|
||||
"sampler_order": vars.sampler_order,
|
||||
"top_p": float(vars.top_p),
|
||||
"temp": float(vars.temp),
|
||||
"top_k": int(vars.top_k),
|
||||
|
@ -2858,6 +2873,8 @@ def get_message(msg):
|
|||
elif(msg['cmd'] == 'uslistrequest'):
|
||||
unloaded, loaded = getuslist()
|
||||
emit('from_server', {'cmd': 'buildus', 'data': {"unloaded": unloaded, "loaded": loaded}})
|
||||
elif(msg['cmd'] == 'samplerlistrequest'):
|
||||
emit('from_server', {'cmd': 'buildsamplers', 'data': vars.sampler_order})
|
||||
elif(msg['cmd'] == 'usloaded'):
|
||||
vars.userscripts = []
|
||||
for userscript in msg['data']:
|
||||
|
@ -2871,6 +2888,16 @@ def get_message(msg):
|
|||
load_lua_scripts()
|
||||
unloaded, loaded = getuslist()
|
||||
sendUSStatItems()
|
||||
elif(msg['cmd'] == 'samplers'):
|
||||
sampler_order = msg["data"]
|
||||
if(not isinstance(sampler_order, list)):
|
||||
raise ValueError(f"Sampler order must be a list, but got a {type(sampler_order)}")
|
||||
if(len(sampler_order) != len(vars.sampler_order)):
|
||||
raise ValueError(f"Sampler order must be a list of length {len(vars.sampler_order)}, but got a list of length {len(sampler_order)}")
|
||||
if(not all(isinstance(e, int) for e in sampler_order)):
|
||||
raise ValueError(f"Sampler order must be a list of ints, but got a list with at least one non-int element")
|
||||
vars.sampler_order = sampler_order
|
||||
settingschanged()
|
||||
elif(msg['cmd'] == 'loadselect'):
|
||||
vars.loadselect = msg["data"]
|
||||
elif(msg['cmd'] == 'spselect'):
|
||||
|
@ -3910,6 +3937,7 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
|
|||
rprange=vars.rep_pen_range,
|
||||
soft_embeddings=vars.sp,
|
||||
soft_tokens=soft_tokens,
|
||||
sampler_order=vars.sampler_order,
|
||||
)
|
||||
past = genout
|
||||
for i in range(vars.numseqs):
|
||||
|
|
|
@ -20,6 +20,7 @@ var button_settings;
|
|||
var button_format;
|
||||
var button_softprompt;
|
||||
var button_userscripts;
|
||||
var button_samplers;
|
||||
var button_mode;
|
||||
var button_mode_label;
|
||||
var button_send;
|
||||
|
@ -109,6 +110,9 @@ var do_clear_ent = false;
|
|||
// Whether or not an entry in the Userscripts menu is being dragged
|
||||
var us_dragging = false;
|
||||
|
||||
// Whether or not an entry in the Samplers menu is being dragged
|
||||
var samplers_dragging = false;
|
||||
|
||||
// Display vars
|
||||
var allowtoggle = false;
|
||||
var formatcount = 0;
|
||||
|
@ -976,6 +980,16 @@ function hideUSPopup() {
|
|||
spcontent.html("");
|
||||
}
|
||||
|
||||
function showSamplersPopup() {
|
||||
samplerspopup.removeClass("hidden");
|
||||
samplerspopup.addClass("flex");
|
||||
}
|
||||
|
||||
function hideSamplersPopup() {
|
||||
samplerspopup.removeClass("flex");
|
||||
samplerspopup.addClass("hidden");
|
||||
}
|
||||
|
||||
function buildLoadList(ar) {
|
||||
disableButtons([load_accept]);
|
||||
loadcontent.html("");
|
||||
|
@ -1109,6 +1123,29 @@ function buildUSList(unloaded, loaded) {
|
|||
}
|
||||
}
|
||||
|
||||
function buildSamplerList(samplers) {
|
||||
samplerslist.html("");
|
||||
showSamplersPopup();
|
||||
var i;
|
||||
var samplers_lookup_table = [
|
||||
"Top-k Sampling",
|
||||
"Top-a Sampling",
|
||||
"Top-p Sampling",
|
||||
"Tail-free Sampling",
|
||||
"Typical Sampling",
|
||||
"Temperature",
|
||||
]
|
||||
for(i=0; i<samplers.length; i++) {
|
||||
samplerslist.append("<div class=\"flex\">\
|
||||
<div class=\"samplerslistitem flex-row-container\" sid=\""+samplers[i]+"\">\
|
||||
<div class=\"flex-row\">\
|
||||
<div>"+samplers_lookup_table[samplers[i]]+"</div>\
|
||||
</div>\
|
||||
</div>\
|
||||
</div>");
|
||||
}
|
||||
}
|
||||
|
||||
function highlightLoadLine(ref) {
|
||||
$("#loadlistcontent > div > div.popuplistselected").removeClass("popuplistselected");
|
||||
ref.addClass("popuplistselected");
|
||||
|
@ -1838,6 +1875,7 @@ $(document).ready(function(){
|
|||
button_format = $('#btn_format');
|
||||
button_softprompt = $("#btn_softprompt");
|
||||
button_userscripts= $("#btn_userscripts");
|
||||
button_samplers = $("#btn_samplers");
|
||||
button_mode = $('#btnmode')
|
||||
button_mode_label = $('#btnmode_label')
|
||||
button_send = $('#btnsend');
|
||||
|
@ -1886,6 +1924,10 @@ $(document).ready(function(){
|
|||
usloaded = $("#uslistloaded");
|
||||
us_accept = $("#btn_usaccept");
|
||||
us_close = $("#btn_usclose");
|
||||
samplerspopup = $("#samplerscontainer");
|
||||
samplerslist = $("#samplerslist");
|
||||
samplers_accept = $("#btn_samplersaccept");
|
||||
samplers_close = $("#btn_samplersclose");
|
||||
nspopup = $("#newgamecontainer");
|
||||
ns_accept = $("#btn_nsaccept");
|
||||
ns_close = $("#btn_nsclose");
|
||||
|
@ -1908,7 +1950,7 @@ $(document).ready(function(){
|
|||
modelname = msg.modelname;
|
||||
}
|
||||
refreshTitle();
|
||||
connect_status.html("<b>Connected to KoboldAI Process!</b>");
|
||||
connect_status.html("<b>Connected to KoboldAI!</b>");
|
||||
connect_status.removeClass("color_orange");
|
||||
connect_status.addClass("color_green");
|
||||
// Reset Menus
|
||||
|
@ -2310,6 +2352,8 @@ $(document).ready(function(){
|
|||
buildSPList(msg.data);
|
||||
} else if(msg.cmd == "buildus") {
|
||||
buildUSList(msg.data.unloaded, msg.data.loaded);
|
||||
} else if(msg.cmd == "buildsamplers") {
|
||||
buildSamplerList(msg.data);
|
||||
} else if(msg.cmd == "askforoverwrite") {
|
||||
// Show overwrite warning
|
||||
show([$(".saveasoverwrite")]);
|
||||
|
@ -2436,6 +2480,20 @@ $(document).ready(function(){
|
|||
}, 10);
|
||||
}
|
||||
|
||||
var samplers_click_handler = function(ev) {
|
||||
setTimeout(function() {
|
||||
if (samplers_dragging) {
|
||||
return;
|
||||
}
|
||||
var target = $(ev.target).closest(".samplerslistitem");
|
||||
var next = target.parent().next().find(".samplerslistitem");
|
||||
if (!next.length) {
|
||||
return;
|
||||
}
|
||||
next.parent().after(target.parent());
|
||||
}, 10);
|
||||
}
|
||||
|
||||
// Make the userscripts menu sortable
|
||||
var us_sortable_settings = {
|
||||
placeholder: "ussortable-placeholder",
|
||||
|
@ -2456,6 +2514,22 @@ $(document).ready(function(){
|
|||
connectWith: "#uslistunloaded",
|
||||
}, us_sortable_settings)).on("click", ".uslistitem", us_click_handler);
|
||||
|
||||
// Make the samplers menu sortable
|
||||
var samplers_sortable_settings = {
|
||||
placeholder: "samplerssortable-placeholder",
|
||||
start: function() { samplers_dragging = true; },
|
||||
stop: function() { samplers_dragging = false; },
|
||||
delay: 2,
|
||||
cursor: "move",
|
||||
tolerance: "pointer",
|
||||
opacity: 0.21,
|
||||
revert: 173,
|
||||
scrollSensitivity: 64,
|
||||
scrollSpeed: 10,
|
||||
}
|
||||
samplerslist.sortable($.extend({
|
||||
}, samplers_sortable_settings)).on("click", ".samplerslistitem", samplers_click_handler);
|
||||
|
||||
// Bind actions to UI buttons
|
||||
button_send.on("click", function(ev) {
|
||||
dosubmit();
|
||||
|
@ -2590,6 +2664,10 @@ $(document).ready(function(){
|
|||
button_userscripts.on("click", function(ev) {
|
||||
socket.send({'cmd': 'uslistrequest', 'data': ''});
|
||||
});
|
||||
|
||||
button_samplers.on("click", function(ev) {
|
||||
socket.send({'cmd': 'samplerlistrequest', 'data': ''});
|
||||
});
|
||||
|
||||
load_close.on("click", function(ev) {
|
||||
hideLoadPopup();
|
||||
|
@ -2623,6 +2701,16 @@ $(document).ready(function(){
|
|||
socket.send({'cmd': 'usload', 'data': ''});
|
||||
hideUSPopup();
|
||||
});
|
||||
|
||||
samplers_close.on("click", function(ev) {
|
||||
hideSamplersPopup();
|
||||
});
|
||||
|
||||
samplers_accept.on("click", function(ev) {
|
||||
hideMessage();
|
||||
socket.send({'cmd': 'samplers', 'data': samplerslist.find(".samplerslistitem").map(function() { return parseInt($(this).attr("sid")); }).toArray()});
|
||||
hideSamplersPopup();
|
||||
});
|
||||
|
||||
button_newgame.on("click", function(ev) {
|
||||
if(connected) {
|
||||
|
|
|
@ -457,6 +457,26 @@ body.connected #popupfooter, #popupfooter.always-available {
|
|||
overflow-wrap: anywhere;
|
||||
}
|
||||
|
||||
#samplerspopup {
|
||||
width: 300px;
|
||||
background-color: #262626;
|
||||
margin-top: 100px;
|
||||
}
|
||||
|
||||
@media (max-width: 768px) {
|
||||
#samplerspopup {
|
||||
width: 100%;
|
||||
background-color: #262626;
|
||||
margin-top: 100px;
|
||||
}
|
||||
}
|
||||
|
||||
#samplerslist {
|
||||
height: 300px;
|
||||
overflow-y: scroll;
|
||||
overflow-wrap: anywhere;
|
||||
}
|
||||
|
||||
#nspopup {
|
||||
width: 350px;
|
||||
background-color: #262626;
|
||||
|
@ -750,7 +770,7 @@ body.connected .dropdown-item:hover, .dropdown-item.always-available:hover {
|
|||
background-color: #3bf723;
|
||||
}
|
||||
|
||||
.ussortable-placeholder {
|
||||
.ussortable-placeholder, .samplerssortable-placeholder {
|
||||
height: 4px;
|
||||
background-color: #3bf723;
|
||||
}
|
||||
|
@ -1340,7 +1360,7 @@ body.connected .popupfooter, .popupfooter.always-available {
|
|||
background-color: #688f1f;
|
||||
}
|
||||
|
||||
.uslistitem {
|
||||
.uslistitem, .samplerslistitem {
|
||||
padding: 12px 10px 12px 10px;
|
||||
display: flex;
|
||||
flex-grow: 1;
|
||||
|
@ -1352,11 +1372,11 @@ body.connected .popupfooter, .popupfooter.always-available {
|
|||
transition: background-color 0.25s ease-in;
|
||||
}
|
||||
|
||||
.uslistitemsub {
|
||||
.uslistitemsub, .samplerslistitemsub {
|
||||
color: #ba9;
|
||||
}
|
||||
|
||||
.uslistitem:hover {
|
||||
.uslistitem:hover, .samplerslistitem:hover {
|
||||
cursor: move;
|
||||
background-color: #688f1f;
|
||||
}
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
<link rel="stylesheet" href="static/bootstrap.min.css">
|
||||
<link rel="stylesheet" href="static/bootstrap-toggle.min.css">
|
||||
<link rel="stylesheet" href="static/open-iconic-bootstrap.min.css">
|
||||
<link rel="stylesheet" href="static/custom.css?ver=1.18b">
|
||||
<link rel="stylesheet" href="static/custom.css?ver=1.18c">
|
||||
|
||||
<script src="static/jquery-3.6.0.min.js"></script>
|
||||
<script src="static/jquery-ui.sortable.min.js"></script>
|
||||
|
@ -17,7 +17,7 @@
|
|||
<script src="static/bootstrap.min.js"></script>
|
||||
<script src="static/bootstrap-toggle.min.js"></script>
|
||||
<script src="static/rangy-core.min.js"></script>
|
||||
<script src="static/application.js?ver=1.18d"></script>
|
||||
<script src="static/application.js?ver=1.18e"></script>
|
||||
</head>
|
||||
<body>
|
||||
<input type="file" id="remote-save-select" accept="application/json" style="display:none">
|
||||
|
@ -71,6 +71,9 @@
|
|||
<li class="nav-item">
|
||||
<a class="nav-link" href="#" id="btn_format">Formatting</a>
|
||||
</li>
|
||||
<li class="nav-item">
|
||||
<a class="nav-link" href="#" id="btn_samplers">Samplers</a>
|
||||
</li>
|
||||
<li class="nav-item">
|
||||
<a class="nav-link" href="#" id="btn_userscripts">Userscripts</a>
|
||||
</li>
|
||||
|
@ -299,6 +302,19 @@
|
|||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="popupcontainer hidden" id="samplerscontainer">
|
||||
<div id="samplerspopup">
|
||||
<div class="popuptitlebar">
|
||||
<div class="popuptitletext">Drag-and-drop to change the order in which the samplers are applied</div>
|
||||
</div>
|
||||
<div id="samplerslist">
|
||||
</div>
|
||||
<div class="popupfooter">
|
||||
<button type="button" class="btn btn-primary" id="btn_samplersaccept">Save</button>
|
||||
<button type="button" class="btn btn-primary" id="btn_samplersclose">Cancel</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="popupcontainer hidden" id="loadcontainerdelete">
|
||||
<div id="loadpopupdelete">
|
||||
<div class="popuptitlebar">
|
||||
|
|
|
@ -65,6 +65,7 @@ def stopping_callback(generated, n_generated, excluded_world_info) -> Tuple[List
|
|||
|
||||
def settings_callback() -> dict:
|
||||
return {
|
||||
"sampler_order": utils.default_sampler_order.copy(),
|
||||
"top_p": 0.9,
|
||||
"temp": 0.5,
|
||||
"top_k": 0,
|
||||
|
@ -159,7 +160,7 @@ def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty, generat
|
|||
logits[tokens] = penalty_logits
|
||||
return logits
|
||||
|
||||
def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||
def kobold_sample_dynamic(key, logits, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||
'''
|
||||
This gets called by generate_loop_fn to apply a series of 6 filters
|
||||
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
||||
|
@ -181,8 +182,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return np.where(indices_to_remove, -np.inf, logits)
|
||||
if top_k > 0:
|
||||
logits = top_k_filter(logits)
|
||||
# Top-a (remove all tokens that have softmax probability less than
|
||||
# a*m^2 where m is the maximum softmax probability)
|
||||
def top_a_filter(logits):
|
||||
|
@ -195,8 +194,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
|||
probs_max = probabilities.max()
|
||||
# Remove tokens
|
||||
return np.where(probabilities < probs_max * probs_max * top_a, -np.inf, logits)
|
||||
if top_a > 0.0:
|
||||
logits = top_a_filter(logits)
|
||||
# Top-p (after sorting the remaining tokens again in descending order of
|
||||
# logit, remove the ones that have cumulative softmax probability
|
||||
# greater than p)
|
||||
|
@ -222,8 +219,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return np.where(indices_to_remove, -np.inf, logits)
|
||||
if top_p < 1.0:
|
||||
logits = top_p_filter(logits)
|
||||
# Tail free sampling (basically top-p a second time on remaining tokens
|
||||
# except it's the "cumulative normalized absolute second finite
|
||||
# differences of the softmax probabilities" instead of just the
|
||||
|
@ -262,8 +257,6 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return np.where(indices_to_remove, -np.inf, logits)
|
||||
if tfs < 1.0:
|
||||
logits = tail_free_filter(logits)
|
||||
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
|
||||
def typical_filter(logits):
|
||||
# Compute softmax probabilities and the natural logarithms of them
|
||||
|
@ -293,10 +286,16 @@ def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, ty
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return np.where(indices_to_remove, -jnp.inf, logits)
|
||||
if typical < 1.0:
|
||||
logits = typical_filter(logits)
|
||||
# Temperature (just divide the logits by the temperature)
|
||||
logits /= temp
|
||||
def temp_filter(logits):
|
||||
return logits / temp
|
||||
for k in sampler_order:
|
||||
if k == 0 and top_k > 0: logits = top_k_filter(logits)
|
||||
if k == 1 and top_a > 0.0: logits = top_a_filter(logits)
|
||||
if k == 2 and top_p < 1.0: logits = top_p_filter(logits)
|
||||
if k == 3 and tfs < 1.0: logits = tail_free_filter(logits)
|
||||
if k == 4 and typical < 1.0: logits = typical_filter(logits)
|
||||
if k == 5 and temp != 1.0: logits = temp_filter(logits)
|
||||
# Finally, pick one token using the softmax thingy again (it gives
|
||||
# an array whose elements sum to 1 so it can be used nicely as a
|
||||
# probability distribution)
|
||||
|
@ -347,7 +346,7 @@ def apply_repetition_penalty_static(logits, tokens, repetition_penalty, generate
|
|||
# positions in the logits array
|
||||
return logits.at[tokens].set(penalty_logits)
|
||||
|
||||
def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||
def kobold_sample_static(key, logits, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||
'''
|
||||
This gets called by generate_loop_fn to apply a series of 6 filters
|
||||
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
||||
|
@ -369,7 +368,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||
logits = jax.lax.cond(top_k > 0, top_k_filter, lambda x: x, logits)
|
||||
# Top-a (remove all tokens that have softmax probability less than
|
||||
# a*m^2 where m is the maximum softmax probability)
|
||||
def top_a_filter(logits):
|
||||
|
@ -382,7 +380,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
|||
probs_max = probabilities.max()
|
||||
# Remove tokens
|
||||
return jnp.where(probabilities < probs_max * probs_max * top_a, -jnp.inf, logits)
|
||||
logits = jax.lax.cond(top_a > 0.0, top_a_filter, lambda x: x, logits)
|
||||
# Top-p (after sorting the remaining tokens again in descending order of
|
||||
# logit, remove the ones that have cumulative softmax probability
|
||||
# greater than p)
|
||||
|
@ -408,7 +405,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||
logits = jax.lax.cond(top_p < 1.0, top_p_filter, lambda x: x, logits)
|
||||
# Tail free sampling (basically top-p a second time on remaining tokens
|
||||
# except it's the "cumulative normalized absolute second finite
|
||||
# differences of the softmax probabilities" instead of just the
|
||||
|
@ -447,7 +443,6 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||
logits = jax.lax.cond(tfs < 1.0, tail_free_filter, lambda x: x, logits)
|
||||
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
|
||||
def typical_filter(logits):
|
||||
# Compute softmax probabilities and the natural logarithms of them
|
||||
|
@ -476,11 +471,16 @@ def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typ
|
|||
sorted_indices_to_remove,
|
||||
)
|
||||
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||
logits = jax.lax.cond(typical < 1.0, typical_filter, lambda x: x, logits)
|
||||
# Temperature (just divide the logits by the temperature)
|
||||
def temp_filter(logits):
|
||||
return logits / temp
|
||||
logits = jax.lax.cond(True, temp_filter, lambda x: x, logits)
|
||||
for k in sampler_order:
|
||||
logits = jax.lax.cond(jnp.logical_and(k == 0, top_k > 0), top_k_filter, lambda x: x, logits)
|
||||
logits = jax.lax.cond(jnp.logical_and(k == 1, top_a > 0.0), top_a_filter, lambda x: x, logits)
|
||||
logits = jax.lax.cond(jnp.logical_and(k == 2, top_p < 1.0), top_p_filter, lambda x: x, logits)
|
||||
logits = jax.lax.cond(jnp.logical_and(k == 3, tfs < 1.0), tail_free_filter, lambda x: x, logits)
|
||||
logits = jax.lax.cond(jnp.logical_and(k == 4, typical < 1.0), typical_filter, lambda x: x, logits)
|
||||
logits = jax.lax.cond(jnp.logical_and(k == 5, temp != 1.0), temp_filter, lambda x: x, logits)
|
||||
# Finally, pick one token using the softmax thingy again (it gives
|
||||
# an array whose elements sum to 1 so it can be used nicely as a
|
||||
# probability distribution)
|
||||
|
@ -842,8 +842,12 @@ def infer_static(
|
|||
gen_len=80,
|
||||
soft_embeddings: Optional[np.array] = None,
|
||||
soft_tokens: Optional[np.array] = None,
|
||||
sampler_order: Optional[List[int]] = None,
|
||||
) -> List[np.array]:
|
||||
maps.thread_resources.env = thread_resources_env
|
||||
if sampler_order is None:
|
||||
sampler_order = utils.default_sampler_order.copy()
|
||||
sampler_order = np.uint32(sampler_order)
|
||||
total_batch = 1
|
||||
tokens = context
|
||||
if(soft_tokens is not None):
|
||||
|
@ -854,6 +858,7 @@ def infer_static(
|
|||
batched_tokens = np.array([padded_tokens] * total_batch)
|
||||
samples = []
|
||||
batched_generator_params = {
|
||||
"sampler_order": np.repeat(sampler_order[np.newaxis], total_batch, axis=0),
|
||||
"temp": temp * np.ones(total_batch),
|
||||
"top_p": top_p * np.ones(total_batch),
|
||||
"tfs": tfs * np.ones(total_batch),
|
||||
|
@ -1015,6 +1020,9 @@ def read_neox_checkpoint(state, path, config, checkpoint_shards=2):
|
|||
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpoint=False, **kwargs) -> None:
|
||||
global thread_resources_env, seq, tokenizer, network, params
|
||||
|
||||
if not hasattr(vars, "sampler_order") or not vars.sampler_order:
|
||||
vars.sampler_order = utils.default_sampler_order.copy()
|
||||
|
||||
default_params = {
|
||||
"compat": "j",
|
||||
"layers": 28,
|
||||
|
|
2
utils.py
2
utils.py
|
@ -20,6 +20,8 @@ from_pretrained_index_filename: Optional[str] = None
|
|||
from_pretrained_kwargs = {}
|
||||
bar = None
|
||||
|
||||
default_sampler_order = [0, 1, 2, 3, 4, 5]
|
||||
|
||||
#==================================================================#
|
||||
# Decorator to prevent a function's actions from being run until
|
||||
# at least x seconds have passed without the function being called
|
||||
|
|
Loading…
Reference in New Issue