Merge pull request #7 from henk717/united

Merge united
This commit is contained in:
Llama
2022-11-24 12:25:20 -08:00
committed by GitHub
8 changed files with 33 additions and 58 deletions

View File

@@ -1,7 +1,7 @@
#!/usr/bin/python3
#==================================================================#
# KoboldAI
# Version: 1.19.1
# Version: 1.19.2
# By: The KoboldAI Community
#==================================================================#
@@ -125,6 +125,7 @@ model_menu = {
["NSFW Models", "nsfwlist", "", True],
["Untuned OPT", "optlist", "", True],
["Untuned GPT-Neo/J", "gptneolist", "", True],
["Untuned Pythia", "pythialist", "", True],
["Untuned Fairseq Dense", "fsdlist", "", True],
["Untuned Bloom", "bloomlist", "", True],
["Untuned XGLM", "xglmlist", "", True],
@@ -154,6 +155,7 @@ model_menu = {
["OPT Nerys 6B V2 (Hybrid)", "KoboldAI/OPT-6B-nerys-v2", "16GB", False],
["Janeway FSD 6.7B", "KoboldAI/fairseq-dense-6.7B-Janeway", "16GB", False],
["Janeway Neo 6B", "KoboldAI/GPT-J-6B-Janeway", "16GB", False],
["Qilin Lit 6B (SFW)", "rexwang8/qilin-lit-6b", "16GB", False],
["Janeway Neo 2.7B", "KoboldAI/GPT-Neo-2.7B-Janeway", "8GB", False],
["Janeway FSD 2.7B", "KoboldAI/fairseq-dense-2.7B-Janeway", "8GB", False],
["Nerys FSD 2.7B (Hybrid)", "KoboldAI/fairseq-dense-2.7B-Nerys", "8GB", False],
@@ -183,12 +185,31 @@ model_menu = {
],
'gptneolist': [
["GPT-NeoX 20B", "EleutherAI/gpt-neox-20b", "64GB", False],
["Pythia 13B (NeoX, Same dataset)", "EleutherAI/pythia-13b", "32GB", False],
["GPT-J 6B", "EleutherAI/gpt-j-6B", "16GB", False],
["GPT-Neo 2.7B", "EleutherAI/gpt-neo-2.7B", "8GB", False],
["GPT-Neo 1.3B", "EleutherAI/gpt-neo-1.3B", "6GB", False],
["Pythia 800M (NeoX, Same dataset)", "EleutherAI/pythia-800m", "4GB", False],
["Pythia 350M (NeoX, Same dataset)", "EleutherAI/pythia-350m", "2GB", False],
["GPT-Neo 125M", "EleutherAI/gpt-neo-125M", "2GB", False],
["Return to Main Menu", "mainmenu", "", True],
],
'pythialist': [
["Pythia 13B Deduped", "EleutherAI/pythia-13b-deduped", "32GB", False],
["Pythia 13B", "EleutherAI/pythia-13b", "32GB", False],
["Pythia 6.7B Deduped", "EleutherAI/pythia-6.7b-deduped", "16GB", False],
["Pythia 6.7B", "EleutherAI/pythia-6.7b", "16GB", False],
["Pythia 1.3B Deduped", "EleutherAI/pythia-1.3b-deduped", "6GB", False],
["Pythia 1.3B", "EleutherAI/pythia-1.3b", "6GB", False],
["Pythia 800M", "EleutherAI/pythia-800m", "4GB", False],
["Pythia 350M Deduped", "EleutherAI/pythia-350m-deduped", "2GB", False],
["Pythia 350M", "EleutherAI/pythia-350m", "2GB", False],
["Pythia 125M Deduped", "EleutherAI/pythia-125m-deduped", "2GB", False],
["Pythia 125M", "EleutherAI/pythia-125m", "2GB", False],
["Pythia 19M Deduped", "EleutherAI/pythia-19m-deduped", "1GB", False],
["Pythia 19M", "EleutherAI/pythia-19m", "1GB", False],
["Return to Main Menu", "mainmenu", "", True],
],
'gpt2list': [
["GPT-2 XL", "gpt2-xl", "6GB", False],
["GPT-2 Large", "gpt2-large", "4GB", False],
@@ -996,7 +1017,7 @@ def loadmodelsettings():
if("nobreakmodel" in js):
vars.nobreakmodel = js["nobreakmodel"]
if("sampler_order" in js):
sampler_order = vars.sampler_order
sampler_order = js["sampler_order"]
if(len(sampler_order) < 7):
sampler_order = [6] + sampler_order
vars.sampler_order = sampler_order
@@ -1134,7 +1155,7 @@ def processsettings(js):
if("andepth" in js):
vars.andepth = js["andepth"]
if("sampler_order" in js):
sampler_order = vars.sampler_order
sampler_order = js["sampler_order"]
if(len(sampler_order) < 7):
sampler_order = [6] + sampler_order
vars.sampler_order = sampler_order

View File

@@ -1,26 +0,0 @@
name: koboldai
channels:
- pytorch
- conda-forge
- defaults
dependencies:
- colorama
- flask-socketio
- flask-session
- pytorch
- cudatoolkit=11.1
- tensorflow-gpu
- python=3.8.*
- eventlet
- markdown
- bleach=4.1.0
- pip
- git=2.35.1
- marshmallow>=3.13
- apispec-webframeworks
- loguru
- pip:
- git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3-rp-b
- flask-cloudflared
- flask-ngrok
- lupa==1.10

View File

@@ -21,6 +21,7 @@ dependencies:
- apispec-webframeworks
- loguru
- termcolor
- psutil
- pip:
- flask-cloudflared
- flask-ngrok

View File

@@ -1,25 +0,0 @@
name: koboldai-ft
channels:
- conda-forge
- defaults
dependencies:
- colorama
- flask-socketio
- flask-session
- python=3.8.*
- eventlet
- markdown
- bleach=4.1.0
- pip
- git=2.35.1
- marshmallow>=3.13
- apispec-webframeworks
- loguru
- pip:
- --find-links https://download.pytorch.org/whl/rocm4.2/torch_stable.html
- torch
- torchvision==0.11.1
- flask-cloudflared
- git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3-rp-b
- flask-ngrok
- lupa==1.10

View File

@@ -18,6 +18,7 @@ dependencies:
- apispec-webframeworks
- loguru
- termcolor
- psutil
- pip:
- --extra-index-url https://download.pytorch.org/whl/rocm5.1.1
- torch

View File

@@ -9,11 +9,11 @@
},
"static_weights": {
"transformer.wte.weight": {"mtj": {"module": "embedding_shard/~/linear", "param": "w", "transforms": ["no_transpose", "vocab_pad"]}},
"transformer.wte.bias": {"mtj": {"module": "embedding_shard/~/linear", "param": "b"}},
"transformer.wte.bias": {"mtj": {"module": "embedding_shard/~/linear", "param": "b", "transforms": ["vocab_pad"]}},
"transformer.ln_f.weight": {"mtj": {"module": "projection_shard/~/replicated_layer_norm", "param": "scale"}},
"transformer.ln_f.bias": {"mtj": {"module": "projection_shard/~/replicated_layer_norm", "param": "offset"}},
"lm_head.weight": {"mtj": {"module": "projection_shard/~/linear", "param": "w", "transforms": ["vocab_pad"]}},
"lm_head.bias": {"mtj": {"module": "projection_shard/~/linear", "param": "b"}}
"lm_head.bias": {"mtj": {"module": "projection_shard/~/linear", "param": "b", "transforms": ["vocab_pad"]}}
},
"layer_weights": {
"transformer.h.{layer}.attn.bias": {},

View File

@@ -2,6 +2,8 @@
cd /D %~dp0
SET CONDA_SHLVL=
rmdir /S /Q flask_session
TITLE KoboldAI - Server
SET /P M=<loader.settings
IF %M%==1 GOTO drivemap

View File

@@ -1149,7 +1149,8 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
params[param] = default_params[param]
# Use an optimization that will allow us to avoid one extra transpose operation
params["transposed_linear"] = True
if hf_checkpoint:
params["transposed_linear"] = True
# Load tokenizer
if vars.model == "TPUMeshTransformerGPTNeoX":
@@ -1307,7 +1308,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
if "divide_by_shards" in transforms:
tensor /= params["cores_per_replica"]
if "vocab_pad" in transforms:
tensor = torch.nn.functional.pad(tensor, (0, 0, 0, params["n_vocab_padding"]))
tensor = torch.nn.functional.pad(tensor, (0,) * (tensor.ndim * 2 - 1) + (params["n_vocab_padding"],))
# We don't need to transpose linear module weights anymore because MTJ will do it for us if `transposed_linear` is set to True in the config
#if "no_transpose" not in transforms and tensor.ndim == 2:
# tensor = tensor.T