Merge pull request #447 from 0cc4m/exllama

Merge exllama backend into united.
This commit is contained in:
henk717
2023-09-10 17:45:06 +02:00
committed by GitHub
3 changed files with 485 additions and 1 deletions

View File

@@ -3929,7 +3929,8 @@ def generate(txt, minimum, maximum, found_entries=None, gen_mode=GenerationMode.
return
for i in range(koboldai_vars.numseqs):
koboldai_vars.lua_koboldbridge.generated[i+1][koboldai_vars.generated_tkns] = int(genout[i, -1].item())
if len(genout[i]) > 0:
koboldai_vars.lua_koboldbridge.generated[i+1][koboldai_vars.generated_tkns] = int(genout[i, -1].item())
koboldai_vars.lua_koboldbridge.outputs[i+1] = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:]))
execute_outmod()

View File

@@ -54,5 +54,7 @@ dependencies:
- einops
- peft==0.3.0
- scipy
- --find-links=https://0cc4m.github.io/exllama/exllama-whl-links.html
- exllama==0.0.6
- windows-curses; sys_platform == 'win32'
- pynvml

View File

@@ -0,0 +1,481 @@
from __future__ import annotations
import time, json
import torch
import requests
import numpy as np
from typing import List, Optional, Union
import os
import glob
from pathlib import Path
import re
import warnings
import gc
import utils
from logger import logger
from modeling import warpers
from modeling.warpers import Warper
from modeling.stoppers import Stoppers
from modeling.post_token_hooks import PostTokenHooks
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
ModelCapabilities,
)
from modeling.tokenizer import GenericTokenizer
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from transformers import LlamaTokenizer
from exllama.generator import ExLlamaGenerator
model_backend_type = "GPTQ"
model_backend_name = "ExLlama"
# When set to true, messages will appear in the console if samplers are not
# changing the scores. Keep in mind some samplers don't always change the
# scores for each token.
LOG_SAMPLER_NO_EFFECT = False
def load_model_gptq_settings(path):
try:
js = json.load(open(path + "/config.json", "r"))
except Exception as e:
return False, False
gptq_model = False
gptq_file = False
gptq_in_config = False
try:
if js['quantization_config']['quant_method'] == "gptq":
gptq_in_config = True
except:
pass
gptq_legacy_files = glob.glob(os.path.join(path, "*4bit*.safetensors"))
if "gptq_bits" in js or gptq_in_config:
gptq_model = True
gptq_file = os.path.join(path, "model.safetensors")
elif gptq_legacy_files:
gptq_model = True
gptq_file = gptq_legacy_files[0]
fname = Path(gptq_file).parts[-1]
g = re.findall("(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
return gptq_model, gptq_file
class model_backend(InferenceModel):
def __init__(self) -> None:
super().__init__()
self.model_config = None
self.model = None
self.tokenizer = None
self.cache = None
self.generator = None
self.model_name = ""
self.path = None
self.post_token_hooks = [
PostTokenHooks.stream_tokens,
]
self.stopper_hooks = [
Stoppers.core_stopper,
Stoppers.dynamic_wi_scanner,
Stoppers.singleline_stopper,
Stoppers.chat_mode_stopper,
Stoppers.stop_sequence_stopper,
]
self.capabilties = ModelCapabilities(
embedding_manipulation=False,
post_token_hooks=True,
stopper_hooks=True,
post_token_probs=False,
)
def is_valid(self, model_name, model_path, menu_path):
gptq_model, _ = load_model_gptq_settings(model_path)
try:
self.model_config = self._load_config(model_name, model_path)
return self.model_config and gptq_model
except:
return False
def get_local_model_path(self):
return self.path or os.path.join("models", self.model_name.replace("/", "_"))
def _load_config(self, model_name, model_path):
config = False
if model_path is not None and os.path.exists(model_path):
config = ExLlamaConfig(os.path.join(model_path, "config.json"))
if not config and os.path.exists("models/{}".format(model_name.replace('/', '_'))):
config = ExLlamaConfig(os.path.join("models/{}".format(model_name.replace('/', '_')), "config.json"))
return config
def _load(self, save_model: bool, initial_load: bool) -> None:
self.model = self._get_model(self.get_local_model_path(), {})
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
self.cache = ExLlamaCache(self.model)
self.generator = ExLlamaGenerator(self.model, self.tokenizer.tokenizer, self.cache)
def _post_load(self) -> None:
# Note: self.tokenizer is a GenericTokenizer, and self.tokenizer.tokenizer is the actual LlamaTokenizer
self.tokenizer.add_bos_token = False
# HF transformers no longer supports decode_with_prefix_space
# We work around this by wrapping decode, encode, and __call__
# with versions that work around the 'prefix space' misfeature
# of sentencepiece.
vocab = self.tokenizer.convert_ids_to_tokens(range(self.tokenizer.vocab_size))
has_prefix_space = {i for i, tok in enumerate(vocab) if tok.startswith("")}
# Wrap 'decode' with a method that always returns text starting with a space
# when the head token starts with a space. This is what 'decode_with_prefix_space'
# used to do, and we implement it using the same technique (building a cache of
# tokens that should have a prefix space, and then prepending a space if the first
# token is in this set.) We also work around a bizarre behavior in which decoding
# a single token 13 behaves differently than decoding a squence containing only [13].
original_decode = type(self.tokenizer.tokenizer).decode
def decode_wrapper(self, token_ids, *args, **kwargs):
first = None
# Note, the code below that wraps single-value token_ids in a list
# is to work around this wonky behavior:
# >>> t.decode(13)
# '<0x0A>'
# >>> t.decode([13])
# '\n'
# Not doing this causes token streaming to receive <0x0A> characters
# instead of newlines.
if isinstance(token_ids, int):
first = token_ids
token_ids = [first]
elif hasattr(token_ids, 'dim'): # Check for e.g. torch.Tensor
# Tensors don't support the Python standard of 'empty is False'
# and the special case of dimension 0 tensors also needs to be
# handled separately.
if token_ids.dim() == 0:
first = int(token_ids.item())
token_ids = [first]
elif len(token_ids) > 0:
first = int(token_ids[0])
elif token_ids is not None and len(token_ids) > 0:
first = token_ids[0]
result = original_decode(self, token_ids, *args, **kwargs)
if first is not None and first in has_prefix_space:
result = " " + result
return result
# GenericTokenizer overrides __setattr__ so we need to use object.__setattr__ to bypass it
object.__setattr__(self.tokenizer, 'decode', decode_wrapper.__get__(self.tokenizer))
# Wrap encode and __call__ to work around the 'prefix space' misfeature also.
# The problem is that "Bob" at the start of text is encoded as if it is
# " Bob". This creates a problem because it means you can't split text, encode
# the pieces, concatenate the tokens, decode them, and get the original text back.
# The workaround is to prepend a known token that (1) starts with a space; and
# (2) is not the prefix of any other token. After searching through the vocab
# " ," (space comma) is the only token containing only printable ascii characters
# that fits this bill. By prepending ',' to the text, the original encode
# method always returns [1919, ...], where the tail of the sequence is the
# actual encoded result we want without the prefix space behavior.
original_encode = type(self.tokenizer.tokenizer).encode
def encode_wrapper(self, text, *args, **kwargs):
if type(text) is str:
text = ',' + text
result = original_encode(self, text, *args, **kwargs)
result = result[1:]
else:
result = original_encode(self, text, *args, **kwargs)
return result
object.__setattr__(self.tokenizer, 'encode', encode_wrapper.__get__(self.tokenizer))
# Since 'encode' is documented as being deprecated, also override __call__.
# This doesn't appear to currently be used by KoboldAI, but doing so
# in case someone uses it in the future.
original_call = type(self.tokenizer.tokenizer).__call__
def call_wrapper(self, text, *args, **kwargs):
if type(text) is str:
text = ',' + text
result = original_call(self, text, *args, **kwargs)
result = result[1:]
else:
result = original_call(self, text, *args, **kwargs)
return result
object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer))
# Cache the newline token (for single line mode)
# Since there is only one Llama token containing newline, just encode \n
self.newline_tokens = self.tokenizer.encode("\n")
self.bracket_tokens = [i for i, tok in enumerate(vocab) if '[' in tok or ']' in tok]
self.tokenizer._koboldai_header = self.tokenizer.encode("")
def unload(self):
self.model_config = None
self.model = None
self.tokenizer = None
self.cache = None
self.generator = None
self.model_name = ""
self.path = None
with torch.no_grad():
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
for tensor in gc.get_objects():
try:
if torch.is_tensor(tensor):
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
except:
pass
gc.collect()
try:
with torch.no_grad():
torch.cuda.empty_cache()
except:
pass
def _apply_warpers(
self, scores: torch.Tensor, input_ids: torch.Tensor
) -> torch.Tensor:
warpers.update_settings()
if LOG_SAMPLER_NO_EFFECT:
pre = torch.Tensor(scores)
for sid in utils.koboldai_vars.sampler_order:
warper = Warper.from_id(sid)
if not warper.value_is_valid():
continue
if warper == warpers.RepetitionPenalty:
# Rep pen needs more data than other samplers
scores = warper.torch(scores, input_ids=input_ids)
else:
scores = warper.torch(scores)
assert scores is not None, f"Scores are None; warper '{warper}' is to blame"
if LOG_SAMPLER_NO_EFFECT:
if torch.equal(pre, scores):
logger.info(warper, "had no effect on the scores.")
pre = torch.Tensor(scores)
return scores
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
max_new: int,
gen_settings: GenerationSettings,
single_line: bool = False,
batch_count: int = 1,
seed: Optional[int] = None,
**kwargs,
) -> GenerationResult:
if seed:
torch.manual_seed(seed)
bad_words_ids = [self.tokenizer.bos_token_id]
if utils.koboldai_vars.use_default_badwordids:
bad_words_ids.append(self.tokenizer.eos_token_id)
bad_words_ids.extend(self.bracket_tokens)
if single_line:
bad_words_ids.extend(self.newline_tokens)
if not isinstance(prompt_tokens, torch.Tensor):
gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None]
else:
gen_in = prompt_tokens
self.generator.gen_begin_reuse(gen_in)
for i in range(max_new):
logits = self.model.forward(self.generator.sequence[:, -1:], self.generator.cache)
for bad_word_id in bad_words_ids:
logits[:, :, bad_word_id] = -10000.0
logits = torch.unsqueeze(logits[0, -1, :], 0)
scores = self._apply_warpers(logits, gen_in)
scores = torch.softmax(scores, dim=-1)
# Work around a bug in torch.multinomial (https://github.com/pytorch/pytorch/issues/48841)
# With low probability, multinomial can return an element with zero weight. Since this
# happens infrequently, just sample repeatedly until all tokens have non-zero probability.
for _ in range(100):
token = torch.multinomial(scores, 1)
# Verify that all selected tokens correspond to positive probabilities.
if (scores.gather(1, token) > 0).all():
break
if (token == self.tokenizer.eos_token_id).any():
break
self.generator.gen_accept_token(token)
self._post_token_gen(self.generator.sequence)
utils.koboldai_vars.generated_tkns += 1
# Apply stoppers
do_stop = False
for stopper in self.stopper_hooks:
do_stop = stopper(self, self.generator.sequence)
if do_stop:
break
if do_stop:
break
seq = self.generator.sequence[:, gen_in.size(1):]
return GenerationResult(
model=self,
out_batches=np.array(seq,),
prompt=prompt_tokens,
is_whole_generation=True,
single_line=single_line,
)
def _get_model(self, location: str, tf_kwargs: Dict):
if not self.model_config:
ExLlamaConfig(os.path.join(location, "config.json"))
_, self.model_config.model_path = load_model_gptq_settings(location)
# self.model_config.gpu_peer_fix = True
return ExLlama(self.model_config)
def _get_tokenizer(self, location: str):
tokenizer = GenericTokenizer(LlamaTokenizer.from_pretrained(location))
return tokenizer
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
requested_parameters = []
gpu_count = torch.cuda.device_count()
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
requested_parameters.append({
"uitype": "Valid Display",
"unit": "text",
"label": "Current Allocated Layers: %1/{}".format(layer_count), #%1 will be the validation value
"id": "valid_layers",
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)], "value": layer_count, 'check': "="},
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
for i in range(gpu_count):
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "{} Layers".format(torch.cuda.get_device_name(i)),
"id": "{}_Layers".format(i),
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)], "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": [layer_count if i == 0 else 0],
"tooltip": "The number of layers to put on {}.".format(torch.cuda.get_device_name(i)),
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "Maximum Context",
"id": "max_ctx",
"min": 2048,
"max": 16384,
"step": 512,
"default": 2048,
"tooltip": "The maximum context size the model supports",
"menu_path": "Configuration",
"extra_classes": "",
"refresh_model_inputs": False
})
requested_parameters.append({
"uitype": "slider",
"unit": "float",
"label": "Embedding Compression",
"id": "compress_emb",
"min": 1,
"max": 8,
"step": 0.25,
"default": 1,
"tooltip": "If the model requires compressed embeddings, set them here",
"menu_path": "Configuration",
"extra_classes": "",
"refresh_model_inputs": False
})
requested_parameters.append({
"uitype": "slider",
"unit": "float",
"label": "NTK alpha",
"id": "ntk_alpha",
"min": 1,
"max": 32,
"step": 0.25,
"default": 1,
"tooltip": "NTK alpha value",
"menu_path": "Configuration",
"extra_classes": "",
"refresh_model_inputs": False
})
return requested_parameters
def set_input_parameters(self, parameters):
gpu_count = torch.cuda.device_count()
layers = []
for i in range(gpu_count):
if isinstance(parameters["{}_Layers".format(i)], str) and parameters["{}_Layers".format(i)].isnumeric():
layers.append(int(parameters["{}_Layers".format(i)]))
elif isinstance(parameters["{}_Layers".format(i)], str):
layers.append(None)
else:
layers.append(parameters["{}_Layers".format(i)])
self.layers = layers
self.model_config.device_map.layers = []
for i, l in enumerate(layers):
if l > 0:
self.model_config.device_map.layers.extend([f"cuda:{i}"] * l)
self.model_config.device_map.lm_head = "cuda:0"
self.model_config.device_map.norm = "cuda:0"
self.model_config.max_seq_len = parameters["max_ctx"]
self.model_config.compress_pos_emb = parameters["compress_emb"]
self.model_config.alpha_value = parameters["ntk_alpha"]
self.model_config.calculate_rotary_embedding_base()
# Disable half2 for HIP
self.model_config.rmsnorm_no_half2 = bool(torch.version.hip)
self.model_config.rope_no_half2 = bool(torch.version.hip)
self.model_config.matmul_no_half2 = bool(torch.version.hip)
self.model_config.silu_no_half2 = bool(torch.version.hip)
# Disable scaled_dot_product_attention if torch version < 2
if torch.__version__.startswith("1."):
self.model_config.sdp_thd = 0
self.model_name = parameters['custom_model_name'] if 'custom_model_name' in parameters else parameters['id']
self.path = parameters['path'] if 'path' in parameters else None