Model: WIP horde and API tests

This commit is contained in:
somebody
2023-03-13 14:11:06 -05:00
parent cd8ccf0a5e
commit 0320678b27
4 changed files with 46 additions and 18 deletions

View File

@@ -23,10 +23,12 @@ class APIException(Exception):
class APIInferenceModel(InferenceModel):
def __init__(self, base_url: str = "http://localhost:5000") -> None:
super().__init__()
self.base_url = base_url
def _load(self, save_model: bool, initial_load: bool) -> None:
tokenizer_id = requests.get(
utils.koboldai_vars.colaburl[:-8] + "/api/v1/model",
).json()["result"]
tokenizer_id = requests.get(f"{self.base_url}/api/v1/model").json()["result"]
self.tokenizer = self._get_tokenizer(tokenizer_id)
@@ -73,13 +75,10 @@ class APIInferenceModel(InferenceModel):
# Create request
while True:
req = requests.post(
utils.koboldai_vars.colaburl[:-8] + "/api/v1/generate",
json=reqdata,
)
if (
req.status_code == 503
): # Server is currently generating something else so poll until it's our turn
req = requests.post(f"{self.base_url}/api/v1/generate", json=reqdata)
if req.status_code == 503:
# Server is currently generating something else so poll until it's our turn
time.sleep(1)
continue

View File

@@ -471,7 +471,6 @@ class HFTorchInferenceModel(HFInferenceModel):
additional_bad_words_ids = [self.tokenizer.encode("\n")] if single_line else []
if seed is not None:
print("seeding", seed)
torch.manual_seed(seed)
with torch.no_grad():

View File

@@ -4,7 +4,7 @@ import time
import torch
import requests
import numpy as np
from typing import List, Union
from typing import List, Optional, Union
import utils
from logger import logger
@@ -87,7 +87,7 @@ class HordeInferenceModel(InferenceModel):
try:
# Create request
req = requests.post(
utils.koboldai_vars.colaburl[:-8] + "/api/v2/generate/text/async",
f"{utils.koboldai_vars.horde_url}/api/v2/generate/text/async",
json=cluster_metadata,
headers=cluster_headers,
)
@@ -102,8 +102,8 @@ class HordeInferenceModel(InferenceModel):
raise HordeException(errmsg)
elif not req.ok:
errmsg = f"KoboldAI API Error: Failed to get a standard reply from the Horde. Please check the console."
logger.error(req.url)
logger.error(errmsg)
logger.error(f"HTTP {req.status_code}!!!")
logger.error(req.text)
raise HordeException(errmsg)
@@ -125,7 +125,7 @@ class HordeInferenceModel(InferenceModel):
while not finished:
try:
req = requests.get(
f"{utils.koboldai_vars.colaburl[:-8]}/api/v2/generate/text/status/{request_id}",
f"{utils.koboldai_vars.horde_url}/api/v2/generate/text/status/{request_id}",
headers=cluster_agent_headers,
)
except requests.exceptions.ConnectionError:

View File

@@ -1,8 +1,12 @@
# We have to go through aiserver to initalize koboldai_vars :(
import torch
# We have to go through aiserver to initalize koboldai_vars :(
from aiserver import GenericHFTorchInferenceModel
from aiserver import koboldai_vars
from modeling.inference_model import InferenceModel
from modeling.inference_models.api import APIInferenceModel
from modeling.inference_models.horde import HordeInferenceModel
model: InferenceModel
@@ -12,6 +16,7 @@ TEST_PROMPT = "Once upon a time I found myself"
TEST_GEN_TOKEN_COUNT = 20
TEST_SEED = 1337
# HF Torch
def test_generic_hf_torch_load() -> None:
global model
@@ -29,11 +34,11 @@ def test_generic_hf_torch_low_mem_load() -> None:
GenericHFTorchInferenceModel(TEST_MODEL_HF_ID, lazy_load=False, low_mem=True).load()
def test_model_gen() -> None:
def test_torch_inference() -> None:
x = model.raw_generate(TEST_PROMPT, max_new=TEST_GEN_TOKEN_COUNT, seed=TEST_SEED)
print(x.decoded)
assert len(x.encoded) == 1, "Bad output shape (too many batches!)"
assert len(x.encoded[0]) == 20, "Wrong token amount (requested 20)"
assert len(x.encoded[0]) == TEST_GEN_TOKEN_COUNT, f"Wrong token amount (requested {TEST_GEN_TOKEN_COUNT})"
y = model.raw_generate(TEST_PROMPT, max_new=TEST_GEN_TOKEN_COUNT, seed=TEST_SEED)
@@ -42,3 +47,28 @@ def test_model_gen() -> None:
), f"Faulty full determinism! {x.decoded} vs {y.decoded}"
print(x)
# Horde
def test_horde_load() -> None:
global model
# TODO: Make this a property and sync it with kaivars
koboldai_vars.cluster_requested_models = []
model = HordeInferenceModel()
model.load()
def test_horde_inference() -> None:
x = model.raw_generate(TEST_PROMPT, max_new=TEST_GEN_TOKEN_COUNT, seed=TEST_SEED)
assert len(x.encoded[0]) == TEST_GEN_TOKEN_COUNT, f"Wrong token amount (requested {TEST_GEN_TOKEN_COUNT})"
print(x)
# API
def test_api_load() -> None:
global model
model = APIInferenceModel()
model.load()
def test_api_inference() -> None:
x = model.raw_generate(TEST_PROMPT, max_new=TEST_GEN_TOKEN_COUNT, seed=TEST_SEED)
# NOTE: Below test is flakey due to Horde worker-defined constraints
# assert len(x.encoded[0]) == TEST_GEN_TOKEN_COUNT, f"Wrong token amount (requested {TEST_GEN_TOKEN_COUNT})"
print(x)