2022-01-24 21:30:38 +01:00
'''
This file is AGPL - licensed .
Some of the code in this file is from Clover Edition :
https : / / github . com / cloveranon / Clover - Edition / blob / master / aidungeon / gpt2generator . py
The license for Clover Edition is shown below :
Copyright ( c ) 2019 Nick Walton
Permission is hereby granted , free of charge , to any person obtaining a copy
of this software and associated documentation files ( the " Software " ) , to deal
in the Software without restriction , including without limitation the rights
to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
copies of the Software , and to permit persons to whom the Software is
furnished to do so , subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software .
THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .
'''
2022-05-13 05:51:40 +02:00
import utils
2021-11-20 00:06:57 +01:00
import multiprocessing
2022-01-15 03:39:02 +01:00
from typing import Any , Callable , Dict , List , Optional , Tuple , TypeVar
2021-11-20 00:06:57 +01:00
import progressbar
import time
import os
2022-03-05 18:33:33 +01:00
import sys
import json
import zipfile
2021-11-20 00:06:57 +01:00
import requests
import random
import jax
2022-03-10 21:12:42 +01:00
import jax . dlpack
2021-11-20 00:06:57 +01:00
from jax . config import config
from jax . experimental import maps
import jax . numpy as jnp
import numpy as np
import optax
import haiku as hk
2022-03-05 18:33:33 +01:00
from transformers import AutoTokenizer , GPT2TokenizerFast , AutoModelForCausalLM , GPTNeoForCausalLM
2022-03-15 04:14:20 +01:00
from tokenizers import Tokenizer
2021-11-20 00:06:57 +01:00
from mesh_transformer . checkpoint import read_ckpt_lowmem
2022-03-05 18:33:33 +01:00
from mesh_transformer . transformer_shard import CausalTransformer , CausalTransformerShard , PlaceholderTensor
from mesh_transformer . util import to_bf16
2021-11-20 00:06:57 +01:00
params : Dict [ str , Any ] = { }
2022-01-15 05:00:06 +01:00
def warper_callback ( logits ) - > np . array :
2022-01-15 03:39:02 +01:00
raise NotImplementedError ( " `tpu_mtj_backend.warper_callback()` needs to be defined " )
2022-01-15 05:00:06 +01:00
def stopping_callback ( generated , n_generated , excluded_world_info ) - > Tuple [ List [ set ] , bool , bool ] :
raise NotImplementedError ( " `tpu_mtj_backend.stopping_callback()` needs to be defined " )
2022-01-17 20:10:32 +01:00
def settings_callback ( ) - > dict :
return {
" top_p " : 0.9 ,
" temp " : 0.5 ,
" top_k " : 0 ,
" tfs " : 1.0 ,
2022-03-27 22:25:50 +02:00
" typical " : 1.0 ,
2022-01-17 20:10:32 +01:00
" repetition_penalty " : 1.0 ,
2022-01-24 21:30:38 +01:00
" rpslope " : 0.0 ,
" rprange " : 0 ,
2022-01-17 20:10:32 +01:00
}
2022-01-17 03:09:10 +01:00
def started_compiling_callback ( ) - > None :
pass
def stopped_compiling_callback ( ) - > None :
pass
def compiling_callback ( ) - > None :
pass
2022-01-15 03:39:02 +01:00
2021-11-20 00:06:57 +01:00
def show_spinner ( ) :
bar = progressbar . ProgressBar ( max_value = progressbar . UnknownLength , widgets = [ progressbar . Timer ( ) , ' ' , progressbar . BouncingBar ( left = ' [ ' , right = ' ] ' , marker = ' █ ' ) ] )
i = 0
while True :
bar . update ( i )
time . sleep ( 0.1 )
i + = 1
2022-01-13 03:45:30 +01:00
__F = TypeVar ( " __F " , bound = Callable )
__T = TypeVar ( " __T " )
def __move_xmap ( f : __F , out_axis : str ) - > __F :
return maps . xmap (
f ,
in_axes = ( [ " shard " , . . . ] , [ " batch " , . . . ] ) ,
out_axes = [ out_axis , . . . ] ,
axis_resources = { ' shard ' : ' mp ' , ' batch ' : ' dp ' } ,
)
def __shard_xmap ( batch_dim = 1 ) :
xmap = __move_xmap ( lambda s , b : s , " shard " )
def inner ( x : __T ) - > __T :
return xmap ( x , np . empty ( batch_dim ) )
return inner
def __batch_xmap ( shard_dim = 1 ) :
xmap = __move_xmap ( lambda s , b : b , " batch " )
def inner ( x : __T ) - > __T :
return xmap ( np . empty ( shard_dim ) , x )
return inner
2022-01-24 21:30:38 +01:00
def apply_repetition_penalty_dynamic ( logits , tokens , repetition_penalty , generated_index , gen_length , rpslope , rprange ) :
2021-11-20 00:06:57 +01:00
'''
2021-11-30 16:13:02 +01:00
This gets called by generate_loop_fn to apply repetition penalty
2021-11-20 00:06:57 +01:00
to the 1 D array logits using the provided 1 D array of tokens to penalize
'''
2022-01-17 19:54:02 +01:00
tokens = np . minimum ( tokens , params [ " n_vocab " ] - 1 ) # https://github.com/google/jax/issues/3774
2022-01-24 21:30:38 +01:00
rpslope = np . int32 ( rpslope )
rprange = np . int32 ( rprange )
clipped_rprange = rprange if rprange > 0 else tokens . shape [ - 1 ]
penalty_arange = np . roll ( np . arange ( tokens . shape [ - 1 ] ) + ( clipped_rprange - tokens . shape [ - 1 ] ) , generated_index , axis = - 1 )
2021-11-20 00:06:57 +01:00
# Make a new array with the same length as the tokens array but with
# each element replaced by the value at the corresponding index in the
# logits array; e.g.
# if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1],
# then penalty_logits will be [77, 5, 3, 98, 3, 98, 5]
2022-01-14 21:05:21 +01:00
penalty_logits = np . take ( logits , tokens )
2022-01-24 21:30:38 +01:00
# Repetition penalty slope
if rpslope != 0.0 and rprange > 0 :
_penalty = ( penalty_arange / ( rprange - 1 ) ) * 2 - 1
_penalty = ( rpslope * _penalty ) / ( 1 + np . abs ( _penalty ) * ( rpslope - 1 ) )
_penalty = 1 + ( ( _penalty + 1 ) / 2 ) * ( repetition_penalty - 1 )
repetition_penalty = _penalty
2021-11-20 00:06:57 +01:00
# Divide positive values by repetition_penalty and multiply negative
# values by repetition_penalty (the academic publication that described
# this technique actually just only divided, but that would cause tokens
# with negative logits to become more likely, which is obviously wrong)
2022-01-14 21:05:21 +01:00
penalty_logits = np . where (
2022-01-24 21:30:38 +01:00
penalty_arange > = 0 ,
np . where (
penalty_logits > 0 ,
penalty_logits / repetition_penalty ,
penalty_logits * repetition_penalty ,
) ,
penalty_logits ,
2021-11-20 00:06:57 +01:00
)
# Finally, put those penalized logit values back into their original
# positions in the logits array
2022-01-14 21:05:21 +01:00
logits [ tokens ] = penalty_logits
return logits
2021-11-20 00:06:57 +01:00
2022-03-27 22:25:50 +02:00
def kobold_sample_dynamic ( key , logits , top_p = 0.9 , temp = 0.5 , top_k = 0 , tfs = 1.0 , typical = 1.0 ) :
2021-11-20 00:06:57 +01:00
'''
2022-03-27 22:25:50 +02:00
This gets called by generate_loop_fn to apply a series of 5 filters
to the logits ( top - k , then top - p , then TFS , then typical , then temperature )
before picking one token using the modified logits
2021-11-20 00:06:57 +01:00
'''
# Top-k (keep only the k tokens with the highest logits and remove
# the rest, by setting their logits to negative infinity)
def top_k_filter ( logits ) :
# After sorting the logits array in descending order,
# sorted_indices_to_remove is a 1D array that is True for tokens
# in the sorted logits array we want to remove and False for ones
# we want to keep, in this case the first top_k elements will be
# False and the rest will be True
2022-01-14 21:05:21 +01:00
sorted_indices_to_remove = np . arange ( len ( logits ) ) > = top_k
2021-11-20 00:06:57 +01:00
# Unsort the logits array back to its original configuration and
# remove tokens we need to remove
_ , indices_to_remove = jax . lax . sort_key_val (
2022-01-14 21:05:21 +01:00
np . argsort ( - logits ) ,
2021-11-20 00:06:57 +01:00
sorted_indices_to_remove ,
)
2022-01-14 21:05:21 +01:00
return np . where ( indices_to_remove , - np . inf , logits )
if top_k > 0 :
logits = top_k_filter ( logits )
2021-11-20 00:06:57 +01:00
# Top-p (after sorting the remaining tokens again in descending order of
# logit, remove the ones that have cumulative softmax probability
# greater than p)
def top_p_filter ( logits ) :
# Sort the logits array in descending order, replace every element
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
2022-01-14 21:05:21 +01:00
sorted_logits = - np . sort ( - logits )
probabilities = np . array ( jax . nn . softmax ( sorted_logits ) , copy = True )
2021-11-20 00:06:57 +01:00
# Calculate cumulative_probabilities as the prefix-sum array of
# probabilities
2022-01-14 21:05:21 +01:00
cumulative_probabilities = np . cumsum ( probabilities , axis = - 1 )
2021-11-20 00:06:57 +01:00
# We want to remove tokens with cumulative probability higher
# than top_p
sorted_indices_to_remove = cumulative_probabilities > top_p
# Don't ever remove the token with the highest logit, even if
# the probability is higher than top_p
2022-01-14 21:05:21 +01:00
sorted_indices_to_remove [ 0 ] = False
2021-11-20 00:06:57 +01:00
# Unsort and remove
_ , indices_to_remove = jax . lax . sort_key_val (
2022-01-14 21:05:21 +01:00
np . argsort ( - logits ) ,
2021-11-20 00:06:57 +01:00
sorted_indices_to_remove ,
)
2022-01-14 21:05:21 +01:00
return np . where ( indices_to_remove , - np . inf , logits )
if top_p < 1.0 :
logits = top_p_filter ( logits )
2021-11-20 00:06:57 +01:00
# Tail free sampling (basically top-p a second time on remaining tokens
# except it's the "cumulative normalized absolute second finite
# differences of the softmax probabilities" instead of just the
# cumulative softmax probabilities)
def tail_free_filter ( logits ) :
# Sort in descending order
2022-01-14 21:05:21 +01:00
sorted_logits = - np . sort ( - logits )
2021-11-20 00:06:57 +01:00
# Softmax again
2022-01-14 21:05:21 +01:00
probabilities = np . array ( jax . nn . softmax ( sorted_logits ) , copy = True )
2021-11-20 00:06:57 +01:00
# Calculate the second finite differences of that array (i.e.
# calculate the difference array and then calculate the difference
# array of the difference array)
2022-01-14 21:05:21 +01:00
d2 = np . diff ( np . diff ( probabilities ) )
2021-11-20 00:06:57 +01:00
# Get the absolute values of all those second finite differences
2022-01-14 21:05:21 +01:00
d2 = np . abs ( d2 )
2021-11-20 00:06:57 +01:00
# Normalize (all elements in the array are divided by the sum of the
# array's elements)
d2 = d2 / d2 . sum ( axis = - 1 , keepdims = True )
# Get the prefix-sum array
2022-01-14 21:05:21 +01:00
cumulative_d2 = np . cumsum ( d2 , axis = - 1 )
2021-11-20 00:06:57 +01:00
# We will remove the tokens with a cumulative normalized absolute
# second finite difference larger than the TFS value
sorted_indices_to_remove = cumulative_d2 > tfs
# Don't remove the token with the highest logit
2022-01-14 21:05:21 +01:00
sorted_indices_to_remove [ 0 ] = False
2021-11-20 00:06:57 +01:00
# Since the d2 array has two fewer elements than the logits array,
# we'll add two extra Trues to the end
2022-01-14 21:05:21 +01:00
sorted_indices_to_remove = np . pad (
2021-11-20 00:06:57 +01:00
sorted_indices_to_remove ,
( 0 , 2 ) ,
constant_values = True ,
)
# Unsort and remove
_ , indices_to_remove = jax . lax . sort_key_val (
2022-01-14 21:05:21 +01:00
np . argsort ( - logits ) ,
2021-11-20 00:06:57 +01:00
sorted_indices_to_remove ,
)
2022-01-14 21:05:21 +01:00
return np . where ( indices_to_remove , - np . inf , logits )
if tfs < 1.0 :
logits = tail_free_filter ( logits )
2022-03-27 22:57:12 +02:00
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
2022-03-27 22:25:50 +02:00
def typical_filter ( logits ) :
# Compute softmax probabilities and the natural logarithms of them
probs = jax . nn . softmax ( logits )
2022-03-27 22:57:12 +02:00
with np . errstate ( divide = " ignore " ) :
log_probs = np . log ( probs )
2022-03-27 22:25:50 +02:00
# Compute the negative of entropy, which is the sum of p*ln(p) for all p
# in the set of softmax probabilities of the logits
2022-03-28 06:02:31 +02:00
neg_entropy = np . nansum ( probs * log_probs , axis = - 1 , keepdims = True )
2022-03-27 22:25:50 +02:00
# Determine absolute difference between the negative entropy and the
# log probabilities
entropy_deviation = np . abs ( neg_entropy - log_probs )
# Keep certain tokens such that the sum of the entropy_deviation of the
# kept tokens is the smallest possible value such that the sum of the
# softmax probabilities of the kept tokens is at least the threshold
# value (by sorting the tokens in ascending order of entropy_deviation
# and then keeping the smallest possible number of tokens from the
# beginning such that sum of softmax probabilities is at or above the
# threshold)
_ , sorted_logits = jax . lax . sort_key_val ( entropy_deviation , probs )
sorted_indices_to_remove = np . cumsum ( sorted_logits , axis = - 1 ) > = typical
sorted_indices_to_remove = np . roll ( sorted_indices_to_remove , 1 , axis = - 1 )
sorted_indices_to_remove [ 0 ] = False
# Unsort and remove
_ , indices_to_remove = jax . lax . sort_key_val (
jnp . argsort ( entropy_deviation ) ,
sorted_indices_to_remove ,
)
return np . where ( indices_to_remove , - jnp . inf , logits )
if typical < 1.0 :
logits = typical_filter ( logits )
2021-11-20 00:06:57 +01:00
# Temperature (just divide the logits by the temperature)
2022-01-14 21:05:21 +01:00
logits / = temp
2021-11-20 00:06:57 +01:00
# Finally, pick one token using the softmax thingy again (it gives
# an array whose elements sum to 1 so it can be used nicely as a
# probability distribution)
2022-01-14 21:05:21 +01:00
return jax . random . categorical ( key , logits , - 1 ) . astype ( np . uint32 )
2021-11-20 00:06:57 +01:00
2022-01-24 21:30:38 +01:00
def apply_repetition_penalty_static ( logits , tokens , repetition_penalty , generated_index , gen_length , rpslope , rprange ) :
2022-01-16 05:31:07 +01:00
'''
This gets called by generate_loop_fn to apply repetition penalty
to the 1 D array logits using the provided 1 D array of tokens to penalize
'''
2022-01-24 21:30:38 +01:00
rpslope = jnp . int32 ( rpslope )
rprange = jnp . int32 ( rprange )
clipped_rprange = jax . lax . cond ( rprange > 0 , lambda x : x , lambda x : tokens . shape [ - 1 ] , rprange )
penalty_arange = jnp . roll ( jnp . arange ( tokens . shape [ - 1 ] ) + ( clipped_rprange - tokens . shape [ - 1 ] ) , generated_index , axis = - 1 )
2022-01-16 05:31:07 +01:00
# Make a new array with the same length as the tokens array but with
# each element replaced by the value at the corresponding index in the
# logits array; e.g.
# if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1],
# then penalty_logits will be [77, 5, 3, 98, 3, 98, 5]
penalty_logits = jnp . take ( logits , tokens )
2022-01-24 21:30:38 +01:00
# Repetition penalty slope
def apply_slope ( carry ) :
repetition_penalty , rprange = carry
_penalty = ( penalty_arange / ( rprange - 1 ) ) * 2 - 1
_penalty = ( rpslope * _penalty ) / ( 1 + jnp . abs ( _penalty ) * ( rpslope - 1 ) )
_penalty = 1 + ( ( _penalty + 1 ) / 2 ) * ( repetition_penalty - 1 )
return _penalty
repetition_penalty = jax . lax . cond (
( rpslope != 0.0 ) & ( rprange > 0 ) , # Not a typo; do not use `and` here, it makes JAX crash
apply_slope ,
lambda carry : jnp . full ( tokens . shape , carry [ 0 ] ) ,
( repetition_penalty , rprange ) ,
)
2022-01-16 05:31:07 +01:00
# Divide positive values by repetition_penalty and multiply negative
# values by repetition_penalty (the academic publication that described
# this technique actually just only divided, but that would cause tokens
# with negative logits to become more likely, which is obviously wrong)
penalty_logits = jnp . where (
2022-01-24 21:30:38 +01:00
penalty_arange > = 0 ,
jnp . where (
penalty_logits > 0 ,
penalty_logits / repetition_penalty ,
penalty_logits * repetition_penalty ,
) ,
penalty_logits ,
2022-01-16 05:31:07 +01:00
)
# Finally, put those penalized logit values back into their original
# positions in the logits array
return logits . at [ tokens ] . set ( penalty_logits )
2022-03-27 22:25:50 +02:00
def kobold_sample_static ( key , logits , top_p = 0.9 , temp = 0.5 , top_k = 0 , tfs = 1.0 , typical = 1.0 ) :
2022-01-16 05:31:07 +01:00
'''
2022-03-27 22:25:50 +02:00
This gets called by generate_loop_fn to apply a series of 5 filters
to the logits ( top - k , then top - p , then TFS , then typical , then temperature )
before picking one token using the modified logits
2022-01-16 05:31:07 +01:00
'''
# Top-k (keep only the k tokens with the highest logits and remove
# the rest, by setting their logits to negative infinity)
def top_k_filter ( logits ) :
# After sorting the logits array in descending order,
# sorted_indices_to_remove is a 1D array that is True for tokens
# in the sorted logits array we want to remove and False for ones
# we want to keep, in this case the first top_k elements will be
# False and the rest will be True
sorted_indices_to_remove = jnp . arange ( len ( logits ) ) > = top_k
# Unsort the logits array back to its original configuration and
# remove tokens we need to remove
_ , indices_to_remove = jax . lax . sort_key_val (
jnp . argsort ( - logits ) ,
sorted_indices_to_remove ,
)
return jnp . where ( indices_to_remove , - jnp . inf , logits )
logits = jax . lax . cond ( top_k > 0 , top_k_filter , lambda x : x , logits )
# Top-p (after sorting the remaining tokens again in descending order of
# logit, remove the ones that have cumulative softmax probability
# greater than p)
def top_p_filter ( logits ) :
# Sort the logits array in descending order, replace every element
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
sorted_logits = - jnp . sort ( - logits )
probabilities = jax . nn . softmax ( sorted_logits )
# Calculate cumulative_probabilities as the prefix-sum array of
# probabilities
cumulative_probabilities = jnp . cumsum ( probabilities , axis = - 1 )
# We want to remove tokens with cumulative probability higher
# than top_p
sorted_indices_to_remove = cumulative_probabilities > top_p
# Don't ever remove the token with the highest logit, even if
# the probability is higher than top_p
sorted_indices_to_remove = sorted_indices_to_remove . at [ 0 ] . set ( False )
# Unsort and remove
_ , indices_to_remove = jax . lax . sort_key_val (
jnp . argsort ( - logits ) ,
sorted_indices_to_remove ,
)
return jnp . where ( indices_to_remove , - jnp . inf , logits )
logits = jax . lax . cond ( top_p < 1.0 , top_p_filter , lambda x : x , logits )
# Tail free sampling (basically top-p a second time on remaining tokens
# except it's the "cumulative normalized absolute second finite
# differences of the softmax probabilities" instead of just the
# cumulative softmax probabilities)
def tail_free_filter ( logits ) :
# Sort in descending order
sorted_logits = - jnp . sort ( - logits )
# Softmax again
probabilities = jax . nn . softmax ( sorted_logits )
# Calculate the second finite differences of that array (i.e.
# calculate the difference array and then calculate the difference
# array of the difference array)
d2 = jnp . diff ( jnp . diff ( probabilities ) )
# Get the absolute values of all those second finite differences
d2 = jnp . abs ( d2 )
# Normalize (all elements in the array are divided by the sum of the
# array's elements)
d2 = d2 / d2 . sum ( axis = - 1 , keepdims = True )
# Get the prefix-sum array
cumulative_d2 = jnp . cumsum ( d2 , axis = - 1 )
# We will remove the tokens with a cumulative normalized absolute
# second finite difference larger than the TFS value
sorted_indices_to_remove = cumulative_d2 > tfs
# Don't remove the token with the highest logit
sorted_indices_to_remove = sorted_indices_to_remove . at [ 0 ] . set ( False )
# Since the d2 array has two fewer elements than the logits array,
# we'll add two extra Trues to the end
sorted_indices_to_remove = jnp . pad (
sorted_indices_to_remove ,
( 0 , 2 ) ,
constant_values = True ,
)
# Unsort and remove
_ , indices_to_remove = jax . lax . sort_key_val (
jnp . argsort ( - logits ) ,
sorted_indices_to_remove ,
)
return jnp . where ( indices_to_remove , - jnp . inf , logits )
logits = jax . lax . cond ( tfs < 1.0 , tail_free_filter , lambda x : x , logits )
2022-03-27 22:57:12 +02:00
# Typical sampling (https://arxiv.org/pdf/2202.00666.pdf)
2022-03-27 22:25:50 +02:00
def typical_filter ( logits ) :
# Compute softmax probabilities and the natural logarithms of them
probs = jax . nn . softmax ( logits )
log_probs = jnp . log ( probs )
# Compute the negative of entropy, which is the sum of p*ln(p) for all p
# in the set of softmax probabilities of the logits
2022-03-28 06:02:31 +02:00
neg_entropy = jnp . nansum ( probs * log_probs , axis = - 1 , keepdims = True )
2022-03-27 22:25:50 +02:00
# Determine absolute difference between the negative entropy and the
# log probabilities
entropy_deviation = jnp . abs ( neg_entropy - log_probs )
# Keep certain tokens such that the sum of the entropy_deviation of the
# kept tokens is the smallest possible value such that the sum of the
# softmax probabilities of the kept tokens is at least the threshold
# value (by sorting the tokens in ascending order of entropy_deviation
# and then keeping the smallest possible number of tokens from the
# beginning such that sum of softmax probabilities is at or above the
# threshold)
_ , sorted_logits = jax . lax . sort_key_val ( entropy_deviation , probs )
sorted_indices_to_remove = jnp . cumsum ( sorted_logits , axis = - 1 ) > = typical
sorted_indices_to_remove = jnp . roll ( sorted_indices_to_remove , 1 , axis = - 1 )
sorted_indices_to_remove = sorted_indices_to_remove . at [ 0 ] . set ( False )
# Unsort and remove
_ , indices_to_remove = jax . lax . sort_key_val (
jnp . argsort ( entropy_deviation ) ,
sorted_indices_to_remove ,
)
return jnp . where ( indices_to_remove , - jnp . inf , logits )
logits = jax . lax . cond ( typical < 1.0 , typical_filter , lambda x : x , logits )
2022-01-16 05:31:07 +01:00
# Temperature (just divide the logits by the temperature)
def temp_filter ( logits ) :
return logits / temp
logits = jax . lax . cond ( True , temp_filter , lambda x : x , logits )
# Finally, pick one token using the softmax thingy again (it gives
# an array whose elements sum to 1 so it can be used nicely as a
# probability distribution)
return jax . random . categorical ( key , logits , - 1 ) . astype ( jnp . uint32 )
2021-11-20 00:06:57 +01:00
pad_token_id = 50256
2022-01-24 21:30:38 +01:00
def sample_func ( data , key , numseqs_aux , badwords , repetition_penalty , generated_index , gen_length , rpslope , rprange , sampler_options ) :
2022-01-14 08:23:19 +01:00
numseqs = numseqs_aux . shape [ 0 ]
gi = data [ 0 ] [ 1 ]
def sample_loop_fn ( carry ) :
generated , generated_index , logits , _ = carry [ 0 ] [ 0 ]
sample_key = carry [ 1 ]
# Get the pseudo-random number generator key that will
2022-01-16 05:31:07 +01:00
# be used by kobold_sample_dynamic to randomly pick a token
2022-01-14 08:23:19 +01:00
sample_key , new_key = jax . random . split ( sample_key , num = 2 )
# Apply repetition penalty to all tokens that are
# currently inside the "generated" array
2022-01-16 05:31:07 +01:00
logits = apply_repetition_penalty_dynamic (
2022-01-14 08:23:19 +01:00
logits ,
generated ,
2022-01-24 21:30:38 +01:00
repetition_penalty ,
generated_index ,
gen_length ,
rpslope ,
rprange ,
2022-01-14 08:23:19 +01:00
)
# Remove any tokens in the badwords list by setting
# their logits to negative infinity which effectively
# makes their probabilities of being chosen zero
2022-01-14 21:05:21 +01:00
logits [ badwords ] = - np . inf
2022-01-16 05:31:07 +01:00
# Use the sampler (kobold_sample_dynamic) to pick one token
2022-01-14 08:23:19 +01:00
# based on the logits array as a 0D uint32 array
# (higher logit means higher probability of being
# picked, non-linearly)
2022-01-16 05:31:07 +01:00
next_token = kobold_sample_dynamic (
2022-01-14 08:23:19 +01:00
sample_key ,
logits ,
* * sampler_options ,
)
# Remember what token was picked
2022-01-14 21:05:21 +01:00
generated [ generated_index ] = next_token
2022-01-14 08:23:19 +01:00
generated_index + = 1
# Re-pack the current sample_loop_fn's state so we can
# get back the same variables the next time
carry [ 0 ] [ 0 ] = [ generated , generated_index , logits , next_token ]
carry [ 0 ] . append ( carry [ 0 ] . pop ( 0 ) )
return carry [ 0 ] , new_key
2022-01-14 21:05:21 +01:00
# return jax.lax.while_loop(
# lambda carry: carry[0][0][1] == gi,
# sample_loop_fn,
# (data, key),
# )
carry = ( data , key )
while carry [ 0 ] [ 0 ] [ 1 ] == gi :
carry = sample_loop_fn ( carry )
return carry
2022-01-14 08:23:19 +01:00
2021-11-20 00:06:57 +01:00
class PenalizingCausalTransformer ( CausalTransformer ) :
2022-02-23 01:43:13 +01:00
def __init__ ( self , config , * * kwargs ) :
2021-11-20 00:06:57 +01:00
# Initialize
2022-02-23 01:43:13 +01:00
super ( ) . __init__ ( config , * * kwargs )
2022-01-16 05:31:07 +01:00
def generate_static ( state , key , ctx , ctx_length , gen_length , numseqs_aux , sampler_options , soft_embeddings = None ) :
2022-01-17 03:09:10 +01:00
compiling_callback ( )
2022-01-16 05:31:07 +01:00
numseqs = numseqs_aux . shape [ 0 ]
# These are the tokens that we don't want the AI to ever write
2022-01-29 18:09:53 +01:00
self . badwords = jnp . array ( vars . badwordsids ) . squeeze ( )
2022-01-16 05:31:07 +01:00
@hk.transform
def generate_sample ( context , ctx_length ) :
# Give the initial context to the transformer
transformer = CausalTransformerShard ( config )
def generate_initial_scan_fn ( sequence_index , _ ) :
_ , initial_state = transformer . generate_initial ( context , ctx_length , soft_embeddings = soft_embeddings )
# The "generated" array will contain the tokens from the
# context as well as the tokens picked by the sampler at
# each stage, padded with a bunch of 50256s, so we know
# which tokens have to be repetition penalized
generated = jnp . pad ( context , ( 0 , config [ " seq " ] ) , constant_values = pad_token_id ) # Let it start off with just the 2048 context tokens, plus some 50256s which will be eventually filled with sampler-chosen tokens
generated_index = config [ " seq " ]
# Add that information to generate_loop_fn's starting state
initial_state = ( generated , generated_index , sequence_index ) + initial_state
return sequence_index + 1 , initial_state
_ , initial_states = jax . lax . scan ( generate_initial_scan_fn , 0 , None , numseqs )
sample_key = initial_states [ - 1 ] [ 0 ]
initial_states = list ( jax . tree_map ( lambda x : x [ i ] , initial_states [ : - 1 ] ) for i in range ( numseqs ) )
# Get repetition penalty from the arguments
repetition_penalty = sampler_options . pop ( ' repetition_penalty ' , None )
2022-01-24 21:30:38 +01:00
rpslope = sampler_options . pop ( ' rpslope ' , None )
rprange = sampler_options . pop ( ' rprange ' , None )
2022-01-16 05:31:07 +01:00
# This is the main generation loop
def generate_loop_fn ( carry ) :
# Unpack current generate_loop_fn state
generated , generated_index , sequence_index , next_token , decode_state = carry [ 0 ] [ 0 ]
sample_key = carry [ 1 ]
# Get the pseudo-random number generator key that will
# be used by kobold_sample_static to randomly pick a token
sample_key , new_key = jax . random . split ( sample_key )
# Give the context to the model and get the logits it
# spits out
# (a 2D array with 1 row and 50400 columns representing
# how strongly it thinks each of the 50257 tokens in its
# vocabulary should be appended to the context, followed
# by 143 apparently useless columns ???)
logits , new_state = transformer . generate_once ( next_token , decode_state , soft_embeddings = soft_embeddings )
# Verify that logits does indeed have that many rows and
# columns (if you get an error here, pray for mercy)
assert logits . shape == ( 1 , config [ " n_vocab " ] )
# Flatten it into a 1D array to make it easier to use
logits = logits [ 0 ]
# Apply repetition penalty to all tokens that are
# currently inside the "generated" array
if repetition_penalty is not None :
logits = apply_repetition_penalty_static (
logits ,
generated ,
2022-01-24 21:30:38 +01:00
repetition_penalty ,
generated_index ,
gen_length ,
rpslope ,
rprange ,
2022-01-16 05:31:07 +01:00
)
# Remove any tokens in the badwords list by setting
# their logits to negative infinity which effectively
# makes their probabilities of being chosen zero
logits = logits . at [ self . badwords ] . set ( - jnp . inf )
# Use the sampler (kobold_sample_static) to pick one token
# based on the logits array as a 0D uint32 array
# (higher logit means higher probability of being
# picked, non-linearly)
next_token = kobold_sample_static (
sample_key ,
logits ,
* * sampler_options ,
)
# Remember what token was picked
generated = generated . at [ generated_index ] . set ( next_token )
generated_index + = 1
# Re-pack the current generate_loop_fn's state so we can
# get back the same variables the next time
carry [ 0 ] [ 0 ] = ( generated , generated_index , sequence_index , next_token [ jnp . newaxis ] , new_state )
carry [ 0 ] . append ( carry [ 0 ] . pop ( 0 ) )
return carry [ 0 ] , new_key
return jax . lax . while_loop (
lambda carry : carry [ 0 ] [ 0 ] [ 1 ] - config [ " seq " ] < gen_length ,
generate_loop_fn ,
( initial_states , sample_key ) ,
)
return generate_sample . apply ( state [ " params " ] , key , ctx , ctx_length )
self . generate_static_xmap = jax . experimental . maps . xmap (
fun = generate_static ,
in_axes = (
[ " shard " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " shard " , . . . ] ,
) ,
out_axes = [ " shard " , " batch " , . . . ] ,
axis_resources = { ' shard ' : ' mp ' , ' batch ' : ' dp ' } ,
)
2022-01-14 08:23:19 +01:00
def generate_initial ( state , key , ctx , ctx_length , numseqs_aux , soft_embeddings = None ) :
2022-01-17 03:09:10 +01:00
compiling_callback ( )
2021-11-30 20:06:46 +01:00
numseqs = numseqs_aux . shape [ 0 ]
2022-01-14 08:23:19 +01:00
@hk.transform
2022-01-13 06:56:00 +01:00
def generate_initial_inner ( context , ctx_length ) :
2021-11-20 00:06:57 +01:00
# Give the initial context to the transformer
transformer = CausalTransformerShard ( config )
2022-01-15 03:39:02 +01:00
def generate_initial_scan_fn ( sequence_index , c ) :
_ , initial_state = transformer . generate_initial ( c , ctx_length , soft_embeddings = soft_embeddings )
2021-11-30 20:06:46 +01:00
generated_index = config [ " seq " ]
# Add that information to generate_loop_fn's starting state
2022-01-14 08:23:19 +01:00
initial_state = ( jnp . empty ( config [ " n_vocab " ] , dtype = jnp . float32 ) , generated_index , sequence_index ) + initial_state
2021-12-01 01:22:40 +01:00
return sequence_index + 1 , initial_state
2022-01-15 03:39:02 +01:00
_ , initial_states = jax . lax . scan ( generate_initial_scan_fn , 0 , context , numseqs )
2021-12-01 01:22:40 +01:00
sample_key = initial_states [ - 1 ] [ 0 ]
2022-01-14 21:05:21 +01:00
initial_states = list ( list ( jax . tree_map ( lambda x : x [ i ] , initial_states [ : - 1 ] ) ) for i in range ( numseqs ) )
2022-01-13 06:56:00 +01:00
return initial_states , sample_key
2022-01-14 08:23:19 +01:00
return generate_initial_inner . apply ( state [ " params " ] , key , ctx , ctx_length )
2022-01-13 06:56:00 +01:00
self . generate_initial_xmap = jax . experimental . maps . xmap (
fun = generate_initial ,
in_axes = (
[ " shard " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " batch " , . . . ] ,
[ " shard " , . . . ] ,
) ,
out_axes = [ " shard " , " batch " , . . . ] ,
axis_resources = { ' shard ' : ' mp ' , ' batch ' : ' dp ' } ,
)
2022-01-14 08:23:19 +01:00
def generate_once ( data , state , numseqs_aux , soft_embeddings = None ) :
2022-01-13 06:56:00 +01:00
numseqs = numseqs_aux . shape [ 0 ]
2022-01-14 08:23:19 +01:00
@hk.without_apply_rng
@hk.transform
def generate_once_inner ( ) :
gi = data [ 0 ] [ 1 ]
2022-01-13 06:56:00 +01:00
# Give the initial context to the transformer
transformer = CausalTransformerShard ( config )
2021-12-01 01:22:40 +01:00
# This is the main generation loop
2021-11-30 16:13:02 +01:00
def generate_loop_fn ( carry ) :
# Unpack current generate_loop_fn state
2022-01-14 08:23:19 +01:00
_ , generated_index , sequence_index , next_token , decode_state = carry [ 0 ] [ 0 ]
2021-11-20 00:06:57 +01:00
# Give the context to the model and get the logits it
# spits out
# (a 2D array with 1 row and 50400 columns representing
# how strongly it thinks each of the 50257 tokens in its
# vocabulary should be appended to the context, followed
# by 143 apparently useless columns ???)
2021-11-22 00:08:04 +01:00
logits , new_state = transformer . generate_once ( next_token , decode_state , soft_embeddings = soft_embeddings )
2021-11-20 00:06:57 +01:00
# Verify that logits does indeed have that many rows and
# columns (if you get an error here, pray for mercy)
assert logits . shape == ( 1 , config [ " n_vocab " ] )
2022-01-14 08:23:19 +01:00
assert logits . dtype == jnp . float32
2021-11-20 00:06:57 +01:00
# Flatten it into a 1D array to make it easier to use
logits = logits [ 0 ]
2021-11-30 16:13:02 +01:00
# Re-pack the current generate_loop_fn's state so we can
2021-11-20 00:06:57 +01:00
# get back the same variables the next time
2022-01-14 08:23:19 +01:00
generated_index + = 1
2022-01-14 21:05:21 +01:00
carry [ 0 ] [ 0 ] = [ logits , generated_index , sequence_index , next_token , new_state ]
2021-12-01 01:22:40 +01:00
carry [ 0 ] . append ( carry [ 0 ] . pop ( 0 ) )
2022-01-14 08:23:19 +01:00
return carry [ 0 ] ,
return jax . lax . while_loop (
2022-01-13 06:56:00 +01:00
lambda carry : carry [ 0 ] [ 0 ] [ 1 ] == gi ,
2021-11-30 16:13:02 +01:00
generate_loop_fn ,
2022-01-14 08:23:19 +01:00
( data , ) ,
2021-11-20 00:06:57 +01:00
)
2022-01-14 08:23:19 +01:00
return generate_once_inner . apply ( state [ " params " ] )
2022-01-13 06:56:00 +01:00
self . generate_once_xmap = jax . experimental . maps . xmap (
fun = generate_once ,
2021-11-30 16:13:02 +01:00
in_axes = (
2022-01-13 06:56:00 +01:00
[ " shard " , " batch " , . . . ] ,
2021-11-30 16:13:02 +01:00
[ " shard " , . . . ] ,
[ " batch " , . . . ] ,
[ " shard " , . . . ] ,
) ,
out_axes = [ " shard " , " batch " , . . . ] ,
axis_resources = { ' shard ' : ' mp ' , ' batch ' : ' dp ' } ,
)
2022-01-17 20:10:32 +01:00
def generate_dynamic ( self , ctx , ctx_length , gen_length , numseqs , return_logits = False , soft_embeddings = None , excluded_world_info = None , use_callback = True ) :
2022-01-15 03:39:02 +01:00
assert excluded_world_info is not None
2021-11-30 16:13:02 +01:00
assert not return_logits
2022-01-13 06:56:00 +01:00
assert gen_length . ndim == 1
2022-01-14 08:23:19 +01:00
assert soft_embeddings is not None
2021-11-20 00:06:57 +01:00
key = hk . PRNGSequence ( random . randint ( 0 , 2 * * 60 ) )
batch_size = ctx . shape [ 0 ]
self . batch_size = batch_size
2022-01-14 08:23:19 +01:00
_numseqs_aux = jnp . empty ( ( batch_size , numseqs ) , dtype = np . uint32 )
numseqs_aux = batch_xmap ( _numseqs_aux )
sample_data = [
[
2022-01-15 03:39:02 +01:00
np . pad ( ctx [ 0 ] [ i ] , ( 0 , params [ " seq " ] ) , constant_values = pad_token_id ) ,
2022-01-14 08:23:19 +01:00
params [ " seq " ] ,
None ,
2022-01-14 21:05:21 +01:00
np . empty ( ( ) , dtype = np . uint32 ) ,
2022-01-14 08:23:19 +01:00
]
2022-01-15 03:39:02 +01:00
for i in range ( numseqs )
2022-01-13 06:56:00 +01:00
]
2022-01-15 03:39:02 +01:00
n_generated = 0
regeneration_required = False
halt = False
2022-01-17 03:09:10 +01:00
started_compiling_callback ( )
2022-01-14 08:23:19 +01:00
generate_data , sample_key = self . generate_initial_xmap ( self . state , jnp . array ( key . take ( batch_size ) ) , ctx , ctx_length , numseqs_aux , soft_embeddings )
2022-01-14 21:05:21 +01:00
sample_key = np . asarray ( sample_key [ 0 , 0 ] )
2022-01-15 03:39:02 +01:00
while True :
2022-01-14 08:23:19 +01:00
generate_data , = self . generate_once_xmap ( generate_data , self . state , numseqs_aux , soft_embeddings )
for i in range ( numseqs ) :
2022-01-15 03:39:02 +01:00
sample_data [ i ] [ 2 ] = np . array ( generate_data [ i ] [ 0 ] [ 0 , 0 ] , copy = True )
2022-01-15 05:00:06 +01:00
if use_callback :
logits = np . float32 ( tuple ( d [ 2 ] for d in sample_data ) )
logits = warper_callback ( logits )
for i in range ( numseqs ) :
sample_data [ i ] [ 2 ] = logits [ i ]
2022-01-17 20:10:32 +01:00
sampler_options = settings_callback ( )
repetition_penalty = sampler_options . pop ( " repetition_penalty " , 1.0 )
2022-01-24 21:30:38 +01:00
rpslope = sampler_options . pop ( " rpslope " , 0.0 )
rprange = sampler_options . pop ( " rprange " , 0 )
sample_data , sample_key = sample_func ( sample_data , sample_key , _numseqs_aux , badwords , repetition_penalty , params [ " seq " ] + n_generated , gen_length , rpslope , rprange , sampler_options )
2022-01-15 05:00:06 +01:00
n_generated + = 1
2022-01-14 21:05:21 +01:00
for i in range ( numseqs ) :
generate_data [ i ] [ 3 ] = np . tile ( sample_data [ i ] [ 0 ] [ sample_data [ i ] [ 1 ] - 1 ] [ np . newaxis , np . newaxis ] , ( params [ " cores_per_replica " ] , 1 , 1 ) )
2022-01-15 03:39:02 +01:00
if use_callback :
2022-01-15 05:00:06 +01:00
generated = np . uint32 ( tuple ( d [ 0 ] for d in sample_data ) )
excluded_world_info , regeneration_required , halt = stopping_callback ( generated , n_generated , excluded_world_info )
2022-01-15 03:39:02 +01:00
if regeneration_required or halt :
break
else :
break
2022-01-17 03:09:10 +01:00
stopped_compiling_callback ( )
2022-01-15 03:39:02 +01:00
return sample_data , n_generated , regeneration_required , halt
2022-01-16 05:31:07 +01:00
def generate_static ( self , ctx , ctx_length , gen_length , numseqs , sampler_options , return_logits = False , soft_embeddings = None ) :
assert not return_logits
key = hk . PRNGSequence ( random . randint ( 0 , 2 * * 60 ) )
batch_size = ctx . shape [ 0 ]
self . batch_size = batch_size
2022-01-17 03:09:10 +01:00
started_compiling_callback ( )
result = self . generate_static_xmap (
2022-01-16 05:31:07 +01:00
self . state ,
jnp . array ( key . take ( batch_size ) ) ,
ctx ,
np . array ( ctx_length , dtype = np . uint32 ) ,
np . array ( gen_length , dtype = np . uint32 ) ,
np . empty ( ( batch_size , numseqs ) , dtype = np . uint8 ) ,
sampler_options ,
soft_embeddings ,
)
2022-01-17 03:09:10 +01:00
stopped_compiling_callback ( )
return result
2021-11-20 00:06:57 +01:00
2022-01-16 05:31:07 +01:00
def infer_dynamic (
2021-12-27 00:29:54 +01:00
context : np . array ,
2021-11-22 00:08:04 +01:00
numseqs = 1 ,
gen_len = 80 ,
soft_embeddings : Optional [ np . array ] = None ,
soft_tokens : Optional [ np . array ] = None ,
2022-01-15 03:39:02 +01:00
excluded_world_info = None ,
use_callback = True ,
) - > Tuple [ List [ np . array ] , int , bool , bool ] :
assert excluded_world_info is not None
2021-11-20 00:06:57 +01:00
maps . thread_resources . env = thread_resources_env
2021-11-30 20:06:46 +01:00
total_batch = 1
2021-12-27 00:29:54 +01:00
tokens = context
2021-11-22 00:08:04 +01:00
if ( soft_tokens is not None ) :
2022-01-15 03:39:02 +01:00
tokens = np . uint32 ( np . concatenate ( ( np . tile ( soft_tokens , ( tokens . shape [ 0 ] , 1 ) ) , tokens ) , axis = - 1 ) )
provided_ctx = tokens . shape [ - 1 ]
2021-11-20 00:06:57 +01:00
pad_amount = seq - provided_ctx
2022-01-15 03:39:02 +01:00
padded_tokens = np . pad ( tokens , ( ( 0 , 0 ) , ( pad_amount , 0 ) ) , constant_values = pad_token_id )
2021-11-20 00:06:57 +01:00
batched_tokens = np . array ( [ padded_tokens ] * total_batch )
samples = [ ]
2022-01-16 05:31:07 +01:00
output = network . generate_dynamic (
2021-11-22 00:08:04 +01:00
batched_tokens ,
2021-11-30 16:13:02 +01:00
np . ones ( total_batch , dtype = np . uint32 ) * provided_ctx ,
np . ones ( total_batch , dtype = np . uint32 ) * gen_len ,
2021-11-30 20:06:46 +01:00
numseqs ,
2021-11-22 00:08:04 +01:00
soft_embeddings = soft_embeddings ,
2022-01-15 03:39:02 +01:00
excluded_world_info = excluded_world_info ,
use_callback = use_callback ,
)
for out in output [ 0 ] :
2022-01-14 21:05:21 +01:00
samples . append ( out [ 0 ] [ params [ " seq " ] : params [ " seq " ] + gen_len ] )
2022-01-15 03:39:02 +01:00
return ( samples , ) + output [ 1 : ]
2021-11-20 00:06:57 +01:00
2022-01-16 05:31:07 +01:00
def infer_static (
context : np . array ,
top_p = 0.9 ,
temp = 0.5 ,
top_k = 0 ,
tfs = 1.0 ,
2022-03-27 22:25:50 +02:00
typical = 1.0 ,
2022-01-16 05:31:07 +01:00
repetition_penalty = 1.0 ,
2022-01-24 21:30:38 +01:00
rpslope = 0.0 ,
rprange = 0 ,
2022-01-16 05:31:07 +01:00
numseqs = 1 ,
gen_len = 80 ,
soft_embeddings : Optional [ np . array ] = None ,
soft_tokens : Optional [ np . array ] = None ,
) - > List [ np . array ] :
maps . thread_resources . env = thread_resources_env
total_batch = 1
tokens = context
if ( soft_tokens is not None ) :
tokens = np . uint32 ( np . concatenate ( ( soft_tokens , tokens ) ) )
provided_ctx = tokens . shape [ 0 ]
pad_amount = seq - provided_ctx
padded_tokens = np . pad ( tokens , ( ( pad_amount , 0 ) , ) , constant_values = pad_token_id )
batched_tokens = np . array ( [ padded_tokens ] * total_batch )
samples = [ ]
batched_generator_params = {
" temp " : temp * np . ones ( total_batch ) ,
" top_p " : top_p * np . ones ( total_batch ) ,
" tfs " : tfs * np . ones ( total_batch ) ,
2022-03-27 22:25:50 +02:00
" typical " : typical * np . ones ( total_batch ) ,
2022-01-16 05:31:07 +01:00
" repetition_penalty " : repetition_penalty * np . ones ( total_batch ) ,
2022-01-24 21:30:38 +01:00
" rpslope " : rpslope * np . ones ( total_batch ) ,
" rprange " : np . full ( total_batch , rprange , dtype = np . uint32 ) ,
2022-01-16 05:31:07 +01:00
" top_k " : np . full ( total_batch , top_k , dtype = np . uint32 )
}
output = network . generate_static (
batched_tokens ,
np . ones ( total_batch , dtype = np . uint32 ) * provided_ctx ,
np . ones ( total_batch , dtype = np . uint32 ) * gen_len ,
numseqs ,
batched_generator_params ,
soft_embeddings = soft_embeddings ,
) [ 0 ]
for o in output :
samples . append ( o [ 0 ] [ 0 , 0 , params [ " seq " ] : params [ " seq " ] + gen_len ] )
return samples
2021-11-20 00:06:57 +01:00
2022-03-05 18:33:33 +01:00
def reshard_reverse ( x , total_shards , old_shape ) :
assert len ( x . shape ) != 1
if len ( x . shape ) == 2 :
if old_shape [ 1 ] == x . shape [ 1 ] :
out = x [ 0 : 1 ] . tile ( ( total_shards , 1 ) )
else :
out = x . reshape ( old_shape )
elif len ( x . shape ) == 3 :
if x . shape [ 0 ] * x . shape [ 2 ] == old_shape [ 2 ] :
out = x . reshape ( old_shape )
elif x . shape [ 0 ] * x . shape [ 1 ] == old_shape [ 1 ] :
out = x . reshape ( ( old_shape [ 1 ] , old_shape [ 0 ] , old_shape [ 2 ] ) ) . permute ( ( 1 , 0 , 2 ) )
else :
assert False
else :
assert False
return out
2022-03-15 04:14:20 +01:00
def get_old_shape ( t , total_shards , dim = 2 ) :
if len ( t . shape ) == 2 :
shard_shape = t . shape
if dim == 1 :
assert shard_shape [ 0 ] % total_shards == 0
return ( shard_shape [ 0 ] / / total_shards , shard_shape [ 1 ] )
elif dim == 2 :
assert shard_shape [ 1 ] % total_shards == 0
return ( shard_shape [ 0 ] , shard_shape [ 1 ] / / total_shards )
else :
raise ValueError ( f " Unsupported dim { dim } " )
if len ( t . shape ) == 1 :
assert t . shape [ 0 ] % total_shards == 0
return ( t . shape [ 0 ] / / total_shards , )
else :
raise ValueError ( f " Unsupported shape { t . shape } " )
def read_neox_checkpoint ( state , path , config , checkpoint_shards = 2 ) :
assert config [ " cores_per_replica " ] % checkpoint_shards == 0
output_shards = config [ " cores_per_replica " ] / / checkpoint_shards
import torch
2022-04-02 21:02:54 +02:00
import torch . utils . dlpack
2022-03-15 04:14:20 +01:00
from tqdm . auto import tqdm
move_xmap = jax . experimental . maps . xmap (
fun = lambda x , _ : to_bf16 ( x ) ,
in_axes = ( [ " shard " , . . . ] , [ " batch " , . . . ] ) ,
out_axes = [ " shard " , . . . ] ,
axis_resources = { ' shard ' : ' mp ' , ' batch ' : ' dp ' }
)
path_template = os . path . join ( path , " layer_ {layer:02d} -model_ {shard:02d} -model_states.pt " )
static_mapping = {
" word_embeddings.weight " : { " module " : " embedding_shard/~/linear " , " param " : " w " , " axis " : 1 } ,
" final_linear.weight " : { " module " : " projection_shard/~/linear " , " param " : " w " , " axis " : 2 } ,
" norm.weight " : { " module " : " projection_shard/~/replicated_layer_norm " , " param " : " scale " , " axis " : None } ,
" norm.bias " : { " module " : " projection_shard/~/replicated_layer_norm " , " param " : " offset " , " axis " : None } ,
}
layer_mapping = {
" attention.query_key_value.weight " : { " module " : " combined_qkv " , " param " : " w " , " axis " : 2 } ,
" attention.query_key_value.bias " : { " module " : " combined_qkv " , " param " : " b " , " axis " : 1 } ,
" attention.dense.weight " : { " module " : " linear_3 " , " param " : " w " , " axis " : 1 } ,
" attention.dense.bias " : { " module " : " linear_3 " , " param " : " b " , " axis " : None } ,
" mlp.dense_h_to_4h.weight " : { " module " : " linear_4 " , " param " : " w " , " axis " : 2 } ,
" mlp.dense_h_to_4h.bias " : { " module " : " linear_4 " , " param " : " b " , " axis " : 1 } ,
" mlp.dense_4h_to_h.weight " : { " module " : " linear_5 " , " param " : " w " , " axis " : 1 } ,
" mlp.dense_4h_to_h.bias " : { " module " : " linear_5 " , " param " : " b " , " axis " : None } ,
" input_layernorm.weight " : { " module " : " replicated_layer_norm " , " param " : " scale " , " axis " : None } ,
" input_layernorm.bias " : { " module " : " replicated_layer_norm " , " param " : " offset " , " axis " : None } ,
" post_attention_layernorm.weight " : { " module " : " replicated_layer_norm_1 " , " param " : " scale " , " axis " : None } ,
" post_attention_layernorm.bias " : { " module " : " replicated_layer_norm_1 " , " param " : " offset " , " axis " : None } ,
}
tqdm_length = len ( static_mapping ) + config [ " layers " ] * len ( layer_mapping )
bar = tqdm ( total = tqdm_length , desc = " Loading from NeoX checkpoint " )
for checkpoint_layer in range ( config [ " layers " ] + 5 ) :
if checkpoint_layer in ( 1 , config [ " layers " ] + 2 ) :
continue
layer = checkpoint_layer - 2
shards = [ ]
for checkpoint_shard in range ( checkpoint_shards ) :
shards . append ( torch . load ( path_template . format ( layer = checkpoint_layer , shard = checkpoint_shard ) , map_location = " cpu " ) )
for key in shards [ 0 ] :
if key == " attention.rotary_emb.inv_freq " :
continue
elif key in static_mapping :
target_module = " causal_transformer_shard/~/ " + static_mapping [ key ] [ " module " ]
target_param = static_mapping [ key ] [ " param " ]
target_axis = static_mapping [ key ] [ " axis " ]
elif key in layer_mapping :
target_module = f " causal_transformer_shard/~/layer_ { layer } /~/ " + layer_mapping [ key ] [ " module " ]
target_param = layer_mapping [ key ] [ " param " ]
target_axis = layer_mapping [ key ] [ " axis " ]
else :
error = f " { repr ( key ) } not found in mapping "
print ( " \n \n ERROR: " , error , file = sys . stderr )
raise RuntimeError ( error )
original_shape = shards [ 0 ] [ key ] . shape
for checkpoint_shard in range ( checkpoint_shards ) :
if key in ( " attention.dense.bias " , " mlp.dense_4h_to_h.bias " ) :
2022-03-20 06:04:55 +01:00
shards [ checkpoint_shard ] [ key ] / = output_shards
2022-03-19 05:48:33 +01:00
if key != " word_embeddings.weight " and shards [ checkpoint_shard ] [ key ] . ndim == 2 :
2022-03-15 04:14:20 +01:00
shards [ checkpoint_shard ] [ key ] = shards [ checkpoint_shard ] [ key ] . T
tensor = shards [ checkpoint_shard ] [ key ]
if target_axis is not None :
target_shape = ( output_shards , ) + get_old_shape ( tensor , total_shards = output_shards , dim = target_axis )
else :
target_shape = ( output_shards , tensor . shape [ 0 ] )
shards [ checkpoint_shard ] [ key ] = reshard_reverse ( tensor . unsqueeze_ ( 0 ) , output_shards , target_shape )
#print(key, ":", original_shape, "->", shards[0][key].shape)
tensor = torch . cat ( [ shards [ s ] [ key ] for s in range ( checkpoint_shards ) ] , dim = 0 )
target_shape = state [ " params " ] [ target_module ] [ target_param ] . shape
if tensor . shape != target_shape :
error = f " Weight { repr ( key ) } has shape { tensor . shape } in checkpoint but shape { target_shape } was requested by MTJ for { target_module } { target_param } "
print ( " \n \n ERROR: " , error , file = sys . stderr )
raise RuntimeError ( error )
if tensor . dtype is torch . float16 or tensor . dtype is torch . float32 :
tensor = tensor . bfloat16 ( )
state [ " params " ] [ target_module ] [ target_param ] = move_xmap (
jax . dlpack . from_dlpack ( torch . utils . dlpack . to_dlpack ( tensor ) ) . copy ( ) ,
np . zeros ( config [ " cores_per_replica " ] ) ,
)
bar . update ( 1 )
for mk , mv in state [ " params " ] . items ( ) :
for pk , pv in mv . items ( ) :
if isinstance ( pv , PlaceholderTensor ) :
error = f " { mk } { pk } could not be found in the model checkpoint "
print ( " \n \n ERROR: " + error , file = sys . stderr )
raise RuntimeError ( error )
2022-03-05 18:33:33 +01:00
def load_model ( path : str , driver_version = " tpu_driver0.1_dev20210607 " , hf_checkpoint = False , * * kwargs ) - > None :
2021-11-20 00:06:57 +01:00
global thread_resources_env , seq , tokenizer , network , params
default_params = {
" compat " : " j " ,
" layers " : 28 ,
" d_model " : 4096 ,
" n_heads " : 16 ,
" n_vocab " : 50400 ,
" n_vocab_padding " : 0 ,
" norm " : " layernorm " ,
" pe " : " rotary " ,
" pe_rotary_dims " : 64 ,
" seq " : 2048 ,
" cores_per_replica " : 8 ,
2022-02-24 00:22:18 +01:00
" tokenizer_class " : " GPT2TokenizerFast " ,
" tokenizer " : " gpt2 " ,
2021-11-20 00:06:57 +01:00
}
params = kwargs
2022-03-05 18:33:33 +01:00
2022-03-15 04:14:20 +01:00
if vars . model == " TPUMeshTransformerGPTNeoX " :
default_params = {
" compat " : " neox " ,
" layers " : 44 ,
" d_model " : 6144 ,
" n_heads " : 64 ,
" n_vocab " : 50432 ,
" n_vocab_padding " : 0 ,
" norm " : " doublelayernorm " ,
2022-03-19 05:26:04 +01:00
" pe " : " neox_rotary " ,
2022-03-15 04:14:20 +01:00
" pe_rotary_dims " : 24 ,
" seq " : 2048 ,
" cores_per_replica " : 8 ,
" tokenizer_class " : " GPT2TokenizerFast " ,
" tokenizer " : " gpt2 " ,
}
2022-03-05 18:33:33 +01:00
# Try to convert HF config.json to MTJ config
if hf_checkpoint :
2022-03-13 07:22:11 +01:00
spec_path = os . path . join ( " maps " , vars . model_type + " .json " )
2022-03-05 18:33:33 +01:00
if not os . path . isfile ( spec_path ) :
raise NotImplementedError ( f " Unsupported model type { repr ( vars . model_type ) } " )
with open ( spec_path ) as f :
lazy_load_spec = json . load ( f )
if " mtj_compat " in lazy_load_spec :
params [ " compat " ] = lazy_load_spec [ " mtj_compat " ]
if " mtj_pe " in lazy_load_spec :
params [ " pe " ] = lazy_load_spec [ " mtj_pe " ]
for k , v in lazy_load_spec . get ( " mtj_config_map " , { } ) . items ( ) :
if type ( v ) is not list :
params [ k ] = params [ v ]
continue
for i in range ( len ( v ) ) :
if i == len ( v ) - 1 :
params [ k ] = v [ i ]
elif v [ i ] in params :
params [ k ] = params [ v [ i ] ]
break
params [ " n_vocab " ] = params [ " vocab_size " ]
if " activation_function " in params :
params [ " activation " ] = params [ " activation_function " ]
# Both the number of attention heads in the model and the embedding
# dimension of the model need to be divisible by the number of TPU cores
# that we use, and JAX also requires the number of TPU cores used to be
# an even number if we're using more than one core, so logically we try
# to pick the largest possible even number of TPU cores such that the
# number of attention heads and embedding dimension are both divisible
# by the number of TPU cores, and fall back to one core if an even
# number of TPU cores is not possible.
for c in ( 8 , 6 , 4 , 2 , 1 ) :
2022-05-13 04:21:15 +02:00
if 0 == params [ " n_heads " ] % c == params . get ( " d_embed " , params [ " d_model " ] ) % c :
2022-03-05 18:33:33 +01:00
params [ " cores_per_replica " ] = c
break
# The vocabulary size of the model also has to be divisible by the
# number of TPU cores, so we pad the vocabulary with the minimum
# possible number of dummy tokens such that it's divisible.
params [ " n_vocab_padding " ] = - ( params [ " n_vocab " ] % - params [ " cores_per_replica " ] )
2022-02-24 00:22:18 +01:00
if " compat " in params :
default_params [ " compat " ] = params [ " compat " ]
if default_params [ " compat " ] == " fairseq_lm " :
default_params [ " tokenizer " ] = " KoboldAI/fairseq-dense-125M "
2021-11-20 00:06:57 +01:00
for param in default_params :
if param not in params :
params [ param ] = default_params [ param ]
2022-02-24 00:22:18 +01:00
# Load tokenizer
2022-03-15 04:14:20 +01:00
if vars . model == " TPUMeshTransformerGPTNeoX " :
tokenizer = Tokenizer . from_file ( os . path . join ( path , " 20B_tokenizer.json " ) )
def new_encode ( old_encode ) :
def encode ( s , * args , * * kwargs ) :
return old_encode ( s ) . ids
return encode
tokenizer . encode = new_encode ( tokenizer . encode )
elif not hf_checkpoint :
2022-03-05 18:33:33 +01:00
if not isinstance ( params [ " tokenizer_class " ] , str ) or not any ( params [ " tokenizer_class " ] . endswith ( s ) for s in ( " Tokenizer " , " TokenizerFast " ) ) :
raise ValueError ( " `tokenizer_class` must be a string ending in ' Tokenizer ' or ' TokenizerFast ' " )
tokenizer_class = getattr ( __import__ ( " transformers " ) , params [ " tokenizer_class " ] )
tokenizer = tokenizer_class . from_pretrained ( params [ " tokenizer " ] )
2022-02-24 00:22:18 +01:00
2021-11-30 16:13:02 +01:00
# Disable JAX warnings about these two functions having been renamed
jax . host_count = jax . process_count
jax . host_id = jax . process_index
2022-01-15 03:39:02 +01:00
print ( " Connecting to your Colab instance ' s TPU " , flush = True )
spinner = multiprocessing . Process ( target = show_spinner , args = ( ) )
spinner . start ( )
2022-05-31 18:20:16 +02:00
if os . environ . get ( ' COLAB_TPU_ADDR ' , ' ' ) != ' ' :
tpu_address = os . environ [ ' COLAB_TPU_ADDR ' ] # Colab
else :
tpu_address = os . environ [ ' TPU_NAME ' ] # Kaggle
tpu_address = tpu_address . replace ( " grpc:// " , " " )
tpu_address_without_port = tpu_address . split ( ' : ' , 1 ) [ 0 ]
url = f ' http:// { tpu_address_without_port } :8475/requestversion/ { driver_version } '
config . FLAGS . jax_xla_backend = " tpu_driver "
config . FLAGS . jax_backend_target = " grpc:// " + tpu_address
2022-01-15 03:39:02 +01:00
requests . post ( url )
spinner . terminate ( )
print ( )
2021-11-20 00:06:57 +01:00
2022-01-15 03:39:02 +01:00
cores_per_replica = params [ " cores_per_replica " ]
seq = params [ " seq " ]
params [ " optimizer " ] = optax . scale ( 0 )
mesh_shape = ( 1 , cores_per_replica )
devices = np . array ( jax . devices ( ) [ : cores_per_replica ] ) . reshape ( mesh_shape )
thread_resources_env = maps . ResourceEnv ( maps . Mesh ( devices , ( ' dp ' , ' mp ' ) ) , ( ) )
maps . thread_resources . env = thread_resources_env
2021-11-20 00:06:57 +01:00
2022-01-13 03:45:30 +01:00
global shard_xmap , batch_xmap
shard_xmap = __shard_xmap ( )
batch_xmap = __batch_xmap ( shard_dim = cores_per_replica )
2022-01-14 08:23:19 +01:00
global badwords
# These are the tokens that we don't want the AI to ever write
2022-01-29 18:09:53 +01:00
badwords = jnp . array ( vars . badwordsids ) . squeeze ( )
2022-01-14 08:23:19 +01:00
2021-11-20 00:06:57 +01:00
if not path . endswith ( " / " ) :
path + = " / "
2022-02-23 01:43:13 +01:00
network = PenalizingCausalTransformer ( params , dematerialized = True )
2022-03-05 18:33:33 +01:00
2022-03-15 04:14:20 +01:00
if not hf_checkpoint and vars . model != " TPUMeshTransformerGPTNeoX " :
2022-03-05 18:33:33 +01:00
network . state = read_ckpt_lowmem ( network . state , path , devices . shape [ 1 ] )
2022-03-15 04:14:20 +01:00
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
return
if vars . model == " TPUMeshTransformerGPTNeoX " :
2022-03-15 18:55:27 +01:00
print ( " \n \n \n This model has " , f " { hk . data_structures . tree_size ( network . state [ ' params ' ] ) : ,d } " . replace ( " , " , " " ) , " parameters. \n " )
2022-03-15 04:14:20 +01:00
read_neox_checkpoint ( network . state , path , params )
2022-03-05 18:33:33 +01:00
return
# Convert from HF checkpoint
move_xmap = jax . experimental . maps . xmap (
fun = lambda x , _ : to_bf16 ( x ) ,
in_axes = ( [ " shard " , . . . ] , [ " batch " , . . . ] ) ,
out_axes = [ " shard " , . . . ] ,
axis_resources = { ' shard ' : ' mp ' , ' batch ' : ' dp ' }
)
model_spec = { }
for key , spec in lazy_load_spec . get ( " static_weights " , { } ) . items ( ) :
if spec . get ( " mtj " ) is not None :
model_spec [ key ] = spec [ " mtj " ] . copy ( )
model_spec [ key ] [ " module " ] = " causal_transformer_shard/~/ " + model_spec [ key ] [ " module " ]
for _key , spec in lazy_load_spec . get ( " layer_weights " , { } ) . items ( ) :
for layer in range ( params [ " layers " ] ) :
if spec . get ( " mtj " ) is not None :
key = _key . format ( layer = layer )
model_spec [ key ] = spec [ " mtj " ] . copy ( )
model_spec [ key ] [ " module " ] = " causal_transformer_shard/~/ " + model_spec [ key ] [ " module " ] . format ( layer = layer )
import torch_lazy_loader
import torch
2022-03-15 04:14:20 +01:00
from tqdm . auto import tqdm
2022-04-02 21:02:54 +02:00
import functools
2022-03-05 18:33:33 +01:00
def callback ( model_dict , f , * * _ ) :
2022-05-14 05:32:16 +02:00
if callback . nested :
return
callback . nested = True
2022-03-05 18:33:33 +01:00
with zipfile . ZipFile ( f , " r " ) as z :
try :
last_storage_key = None
f = None
2022-04-02 21:02:54 +02:00
current_offset = 0
2022-05-13 05:51:40 +02:00
if utils . current_shard == 0 :
print ( " \n \n \n This model has " , f " { hk . data_structures . tree_size ( network . state [ ' params ' ] ) : ,d } " . replace ( " , " , " " ) , " parameters. \n " )
2022-05-14 05:32:16 +02:00
if utils . num_shards is None or utils . current_shard == 0 :
if utils . num_shards is not None :
num_tensors = len ( utils . get_sharded_checkpoint_num_tensors ( utils . from_pretrained_model_name , utils . from_pretrained_index_filename , * * utils . from_pretrained_kwargs ) )
else :
num_tensors = len ( model_dict )
utils . bar = tqdm ( total = num_tensors , desc = " Loading model tensors " )
2022-05-13 05:51:40 +02:00
if utils . num_shards is not None :
utils . current_shard + = 1
2022-05-14 05:32:16 +02:00
for key in sorted ( model_dict . keys ( ) , key = lambda k : ( model_dict [ k ] . key , model_dict [ k ] . seek_offset ) ) :
2022-03-05 18:33:33 +01:00
# Some model weights are used by transformers but not by MTJ.
# We have to materialize these weights anyways because
# transformers will throw a tantrum otherwise. To attain
# the least possible memory usage, we create them as meta
# tensors, which don't take up any actual CPU or TPU memory.
if key not in model_spec :
2022-03-17 17:51:41 +01:00
model_dict [ key ] = torch . empty ( model_dict [ key ] . shape , dtype = model_dict [ key ] . dtype , device = " meta " )
2022-05-14 05:32:16 +02:00
utils . bar . update ( 1 )
2022-03-05 18:33:33 +01:00
continue
storage_key = model_dict [ key ] . key
2022-04-09 01:38:15 +02:00
if storage_key != last_storage_key or model_dict [ key ] . seek_offset < current_offset :
2022-03-05 18:33:33 +01:00
last_storage_key = storage_key
if isinstance ( f , zipfile . ZipExtFile ) :
f . close ( )
f = z . open ( f " archive/data/ { storage_key } " )
2022-04-02 21:02:54 +02:00
current_offset = 0
2022-03-05 18:33:33 +01:00
if current_offset != model_dict [ key ] . seek_offset :
2022-04-02 21:02:54 +02:00
f . read ( model_dict [ key ] . seek_offset - current_offset )
current_offset = model_dict [ key ] . seek_offset
2022-03-05 18:33:33 +01:00
spec = model_spec [ key ]
transforms = set ( spec . get ( " transforms " , ( ) ) )
if not isinstance ( model_dict [ key ] , torch_lazy_loader . LazyTensor ) :
error = f " Duplicate key { repr ( key ) } "
print ( " \n \n ERROR: " + error , file = sys . stderr )
raise RuntimeError ( error )
2022-04-02 21:02:54 +02:00
size = functools . reduce ( lambda x , y : x * y , model_dict [ key ] . shape , 1 )
dtype = model_dict [ key ] . dtype
nbytes = size if dtype is torch . bool else size * ( ( torch . finfo if dtype . is_floating_point else torch . iinfo ) ( dtype ) . bits >> 3 )
2022-03-05 18:33:33 +01:00
tensor = model_dict [ key ] . materialize ( f , map_location = " cpu " )
model_dict [ key ] = tensor . to ( " meta " )
2022-04-02 21:02:54 +02:00
current_offset + = nbytes
2022-03-05 18:33:33 +01:00
# MTJ requires certain mathematical operations to be performed
# on tensors in order for them to be in the correct format
2022-05-13 01:09:31 +02:00
if " remove_first_two_rows " in transforms :
tensor = tensor [ 2 : ]
2022-03-05 18:33:33 +01:00
if " divide_by_shards " in transforms :
tensor / = params [ " cores_per_replica " ]
if " vocab_pad " in transforms :
tensor = torch . nn . functional . pad ( tensor , ( 0 , 0 , 0 , params [ " n_vocab_padding " ] ) )
2022-03-17 20:16:56 +01:00
if " no_transpose " not in transforms and tensor . ndim == 2 :
2022-03-05 18:33:33 +01:00
tensor = tensor . T
tensor . unsqueeze_ ( 0 )
2022-03-10 21:12:42 +01:00
if tensor . dtype is torch . float16 or tensor . dtype is torch . float32 :
tensor = tensor . bfloat16 ( )
2022-03-05 18:33:33 +01:00
# Shard the tensor so that parts of the tensor can be used
# on different TPU cores
network . state [ " params " ] [ spec [ " module " ] ] [ spec [ " param " ] ] = move_xmap (
2022-03-10 21:12:42 +01:00
jax . dlpack . from_dlpack ( torch . utils . dlpack . to_dlpack (
2022-03-05 18:33:33 +01:00
reshard_reverse (
tensor ,
params [ " cores_per_replica " ] ,
network . state [ " params " ] [ spec [ " module " ] ] [ spec [ " param " ] ] . shape ,
2022-03-10 21:12:42 +01:00
)
) ) . copy ( ) ,
2022-03-05 18:33:33 +01:00
np . empty ( params [ " cores_per_replica " ] ) ,
)
2022-05-14 05:32:16 +02:00
utils . bar . update ( 1 )
2022-05-13 05:51:40 +02:00
if utils . num_shards is not None and utils . current_shard < utils . num_shards :
return
2022-03-05 18:33:33 +01:00
# Check for tensors that MTJ needs that were not provided in the
# HF model
for mk , mv in network . state [ " params " ] . items ( ) :
for pk , pv in mv . items ( ) :
if isinstance ( pv , PlaceholderTensor ) :
# The transformers GPT-J models apparently do not
# have embedding bias, whereas MTJ GPT-J models do,
# so we have to supplement an embedding bias tensor
# by creating a tensor with the necessary shape, filled
# with zeros.
if mk == " causal_transformer_shard/~/embedding_shard/~/linear " and pk == " b " :
mv [ pk ] = move_xmap ( jnp . zeros ( mv [ pk ] . shape , dtype = jnp . bfloat16 ) , np . empty ( params [ " cores_per_replica " ] ) )
else :
error = f " { mk } { pk } could not be found in the model checkpoint "
print ( " \n \n ERROR: " + error , file = sys . stderr )
raise RuntimeError ( error )
finally :
2022-05-14 05:32:16 +02:00
if utils . num_shards is None or utils . current_shard > = utils . num_shards :
utils . bar . close ( )
utils . bar = None
callback . nested = False
2022-03-05 18:33:33 +01:00
if isinstance ( f , zipfile . ZipExtFile ) :
f . close ( )
2022-05-14 05:32:16 +02:00
callback . nested = False
2022-03-05 18:33:33 +01:00
if os . path . isdir ( vars . model . replace ( ' / ' , ' _ ' ) ) :
import shutil
shutil . move ( vars . model . replace ( ' / ' , ' _ ' ) , " models/ {} " . format ( vars . model . replace ( ' / ' , ' _ ' ) ) )
2022-03-15 18:58:53 +01:00
print ( " \n " , flush = True )
2022-03-05 18:33:33 +01:00
with torch_lazy_loader . use_lazy_torch_load ( callback = callback , dematerialized_modules = True ) :
if ( os . path . isdir ( vars . custmodpth ) ) :
try :
2022-05-11 04:14:56 +02:00
tokenizer = AutoTokenizer . from_pretrained ( vars . custmodpth , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
try :
2022-05-11 04:14:56 +02:00
tokenizer = GPT2TokenizerFast . from_pretrained ( vars . custmodpth , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
2022-05-11 04:14:56 +02:00
tokenizer = GPT2TokenizerFast . from_pretrained ( " gpt2 " , revision = vars . revision , cache_dir = " cache " )
2022-03-05 18:33:33 +01:00
try :
2022-05-11 04:14:56 +02:00
model = AutoModelForCausalLM . from_pretrained ( vars . custmodpth , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
2022-05-11 04:14:56 +02:00
model = GPTNeoForCausalLM . from_pretrained ( vars . custmodpth , revision = vars . revision , cache_dir = " cache " )
2022-03-05 18:33:33 +01:00
elif ( os . path . isdir ( " models/ {} " . format ( vars . model . replace ( ' / ' , ' _ ' ) ) ) ) :
try :
2022-05-11 04:14:56 +02:00
tokenizer = AutoTokenizer . from_pretrained ( " models/ {} " . format ( vars . model . replace ( ' / ' , ' _ ' ) ) , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
try :
2022-05-11 04:14:56 +02:00
tokenizer = GPT2TokenizerFast . from_pretrained ( " models/ {} " . format ( vars . model . replace ( ' / ' , ' _ ' ) ) , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
2022-05-11 04:14:56 +02:00
tokenizer = GPT2TokenizerFast . from_pretrained ( " gpt2 " , revision = vars . revision , cache_dir = " cache " )
2022-03-05 18:33:33 +01:00
try :
2022-05-11 04:14:56 +02:00
model = AutoModelForCausalLM . from_pretrained ( " models/ {} " . format ( vars . model . replace ( ' / ' , ' _ ' ) ) , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
2022-05-11 04:14:56 +02:00
model = GPTNeoForCausalLM . from_pretrained ( " models/ {} " . format ( vars . model . replace ( ' / ' , ' _ ' ) ) , revision = vars . revision , cache_dir = " cache " )
2022-03-05 18:33:33 +01:00
else :
try :
2022-05-11 04:14:56 +02:00
tokenizer = AutoTokenizer . from_pretrained ( vars . model , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
try :
2022-05-11 04:14:56 +02:00
tokenizer = GPT2TokenizerFast . from_pretrained ( vars . model , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
2022-05-11 04:14:56 +02:00
tokenizer = GPT2TokenizerFast . from_pretrained ( " gpt2 " , revision = vars . revision , cache_dir = " cache " )
2022-03-05 18:33:33 +01:00
try :
2022-05-11 04:14:56 +02:00
model = AutoModelForCausalLM . from_pretrained ( vars . model , revision = vars . revision , cache_dir = " cache " )
2022-03-13 05:19:35 +01:00
except Exception as e :
2022-05-11 04:14:56 +02:00
model = GPTNeoForCausalLM . from_pretrained ( vars . model , revision = vars . revision , cache_dir = " cache " )
2022-03-05 18:33:33 +01:00
2022-03-15 04:14:20 +01:00
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))