Merge pull request #5121 from bunnei/optimize-core-timing
core: Optimize core timing utility functions to avoid unnecessary math
This commit is contained in:
		@@ -168,7 +168,6 @@ add_library(common STATIC
 | 
			
		||||
    time_zone.cpp
 | 
			
		||||
    time_zone.h
 | 
			
		||||
    tree.h
 | 
			
		||||
    uint128.cpp
 | 
			
		||||
    uint128.h
 | 
			
		||||
    uuid.cpp
 | 
			
		||||
    uuid.h
 | 
			
		||||
 
 | 
			
		||||
@@ -1,71 +0,0 @@
 | 
			
		||||
// Copyright 2019 yuzu Emulator Project
 | 
			
		||||
// Licensed under GPLv2 or any later version
 | 
			
		||||
// Refer to the license.txt file included.
 | 
			
		||||
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
#include <intrin.h>
 | 
			
		||||
 | 
			
		||||
#pragma intrinsic(_umul128)
 | 
			
		||||
#pragma intrinsic(_udiv128)
 | 
			
		||||
#endif
 | 
			
		||||
#include <cstring>
 | 
			
		||||
#include "common/uint128.h"
 | 
			
		||||
 | 
			
		||||
namespace Common {
 | 
			
		||||
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
 | 
			
		||||
u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
 | 
			
		||||
    u128 r{};
 | 
			
		||||
    r[0] = _umul128(a, b, &r[1]);
 | 
			
		||||
    u64 remainder;
 | 
			
		||||
#if _MSC_VER < 1923
 | 
			
		||||
    return udiv128(r[1], r[0], d, &remainder);
 | 
			
		||||
#else
 | 
			
		||||
    return _udiv128(r[1], r[0], d, &remainder);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
 | 
			
		||||
u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
 | 
			
		||||
    const u64 diva = a / d;
 | 
			
		||||
    const u64 moda = a % d;
 | 
			
		||||
    const u64 divb = b / d;
 | 
			
		||||
    const u64 modb = b % d;
 | 
			
		||||
    return diva * b + moda * divb + moda * modb / d;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
u128 Multiply64Into128(u64 a, u64 b) {
 | 
			
		||||
    u128 result;
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
    result[0] = _umul128(a, b, &result[1]);
 | 
			
		||||
#else
 | 
			
		||||
    unsigned __int128 tmp = a;
 | 
			
		||||
    tmp *= b;
 | 
			
		||||
    std::memcpy(&result, &tmp, sizeof(u128));
 | 
			
		||||
#endif
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor) {
 | 
			
		||||
    u64 remainder = dividend[0] % divisor;
 | 
			
		||||
    u64 accum = dividend[0] / divisor;
 | 
			
		||||
    if (dividend[1] == 0)
 | 
			
		||||
        return {accum, remainder};
 | 
			
		||||
    // We ignore dividend[1] / divisor as that overflows
 | 
			
		||||
    const u64 first_segment = (dividend[1] % divisor) << 32;
 | 
			
		||||
    accum += (first_segment / divisor) << 32;
 | 
			
		||||
    const u64 second_segment = (first_segment % divisor) << 32;
 | 
			
		||||
    accum += (second_segment / divisor);
 | 
			
		||||
    remainder += second_segment % divisor;
 | 
			
		||||
    if (remainder >= divisor) {
 | 
			
		||||
        accum++;
 | 
			
		||||
        remainder -= divisor;
 | 
			
		||||
    }
 | 
			
		||||
    return {accum, remainder};
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace Common
 | 
			
		||||
@@ -4,19 +4,98 @@
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <cstring>
 | 
			
		||||
#include <utility>
 | 
			
		||||
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
#include <intrin.h>
 | 
			
		||||
#pragma intrinsic(__umulh)
 | 
			
		||||
#pragma intrinsic(_umul128)
 | 
			
		||||
#pragma intrinsic(_udiv128)
 | 
			
		||||
#else
 | 
			
		||||
#include <x86intrin.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include "common/common_types.h"
 | 
			
		||||
 | 
			
		||||
namespace Common {
 | 
			
		||||
 | 
			
		||||
// This function multiplies 2 u64 values and divides it by a u64 value.
 | 
			
		||||
[[nodiscard]] u64 MultiplyAndDivide64(u64 a, u64 b, u64 d);
 | 
			
		||||
[[nodiscard]] static inline u64 MultiplyAndDivide64(u64 a, u64 b, u64 d) {
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
    u128 r{};
 | 
			
		||||
    r[0] = _umul128(a, b, &r[1]);
 | 
			
		||||
    u64 remainder;
 | 
			
		||||
#if _MSC_VER < 1923
 | 
			
		||||
    return udiv128(r[1], r[0], d, &remainder);
 | 
			
		||||
#else
 | 
			
		||||
    return _udiv128(r[1], r[0], d, &remainder);
 | 
			
		||||
#endif
 | 
			
		||||
#else
 | 
			
		||||
    const u64 diva = a / d;
 | 
			
		||||
    const u64 moda = a % d;
 | 
			
		||||
    const u64 divb = b / d;
 | 
			
		||||
    const u64 modb = b % d;
 | 
			
		||||
    return diva * b + moda * divb + moda * modb / d;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// This function multiplies 2 u64 values and produces a u128 value;
 | 
			
		||||
[[nodiscard]] u128 Multiply64Into128(u64 a, u64 b);
 | 
			
		||||
[[nodiscard]] static inline u128 Multiply64Into128(u64 a, u64 b) {
 | 
			
		||||
    u128 result;
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
    result[0] = _umul128(a, b, &result[1]);
 | 
			
		||||
#else
 | 
			
		||||
    unsigned __int128 tmp = a;
 | 
			
		||||
    tmp *= b;
 | 
			
		||||
    std::memcpy(&result, &tmp, sizeof(u128));
 | 
			
		||||
#endif
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// This function divides a u128 by a u32 value and produces two u64 values:
 | 
			
		||||
// the result of division and the remainder
 | 
			
		||||
[[nodiscard]] std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor);
 | 
			
		||||
[[nodiscard]] static inline u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
 | 
			
		||||
#ifdef __SIZEOF_INT128__
 | 
			
		||||
    const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
 | 
			
		||||
    return static_cast<u64>(base / divisor);
 | 
			
		||||
#elif defined(_M_X64) || defined(_M_ARM64)
 | 
			
		||||
    std::array<u64, 2> r = {0, numerator};
 | 
			
		||||
    u64 remainder;
 | 
			
		||||
#if _MSC_VER < 1923
 | 
			
		||||
    return udiv128(r[1], r[0], divisor, &remainder);
 | 
			
		||||
#else
 | 
			
		||||
    return _udiv128(r[1], r[0], divisor, &remainder);
 | 
			
		||||
#endif
 | 
			
		||||
#else
 | 
			
		||||
    // This one is bit more inaccurate.
 | 
			
		||||
    return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] static inline u64 MultiplyHigh(u64 a, u64 b) {
 | 
			
		||||
#ifdef __SIZEOF_INT128__
 | 
			
		||||
    return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
 | 
			
		||||
#elif defined(_M_X64) || defined(_M_ARM64)
 | 
			
		||||
    return __umulh(a, b); // MSVC
 | 
			
		||||
#else
 | 
			
		||||
    // Generic fallback
 | 
			
		||||
    const u64 a_lo = u32(a);
 | 
			
		||||
    const u64 a_hi = a >> 32;
 | 
			
		||||
    const u64 b_lo = u32(b);
 | 
			
		||||
    const u64 b_hi = b >> 32;
 | 
			
		||||
 | 
			
		||||
    const u64 a_x_b_hi = a_hi * b_hi;
 | 
			
		||||
    const u64 a_x_b_mid = a_hi * b_lo;
 | 
			
		||||
    const u64 b_x_a_mid = b_hi * a_lo;
 | 
			
		||||
    const u64 a_x_b_lo = a_lo * b_lo;
 | 
			
		||||
 | 
			
		||||
    const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
 | 
			
		||||
                           static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
 | 
			
		||||
                          32;
 | 
			
		||||
 | 
			
		||||
    const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
 | 
			
		||||
 | 
			
		||||
    return multhi;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace Common
 | 
			
		||||
 
 | 
			
		||||
@@ -2,6 +2,8 @@
 | 
			
		||||
// Licensed under GPLv2 or any later version
 | 
			
		||||
// Refer to the license.txt file included.
 | 
			
		||||
 | 
			
		||||
#include <cstdint>
 | 
			
		||||
 | 
			
		||||
#include "common/uint128.h"
 | 
			
		||||
#include "common/wall_clock.h"
 | 
			
		||||
 | 
			
		||||
@@ -18,7 +20,9 @@ using base_time_point = std::chrono::time_point<base_timer>;
 | 
			
		||||
class StandardWallClock final : public WallClock {
 | 
			
		||||
public:
 | 
			
		||||
    explicit StandardWallClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_)
 | 
			
		||||
        : WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, false) {
 | 
			
		||||
        : WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, false),
 | 
			
		||||
          emulated_clock_factor{GetFixedPoint64Factor(emulated_clock_frequency, 1000000000)},
 | 
			
		||||
          emulated_cpu_factor{GetFixedPoint64Factor(emulated_cpu_frequency, 1000000000)} {
 | 
			
		||||
        start_time = base_timer::now();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -41,16 +45,11 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    u64 GetClockCycles() override {
 | 
			
		||||
        std::chrono::nanoseconds time_now = GetTimeNS();
 | 
			
		||||
        const u128 temporary =
 | 
			
		||||
            Common::Multiply64Into128(time_now.count(), emulated_clock_frequency);
 | 
			
		||||
        return Common::Divide128On32(temporary, 1000000000).first;
 | 
			
		||||
        return MultiplyHigh(GetTimeNS().count(), emulated_clock_factor);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    u64 GetCPUCycles() override {
 | 
			
		||||
        std::chrono::nanoseconds time_now = GetTimeNS();
 | 
			
		||||
        const u128 temporary = Common::Multiply64Into128(time_now.count(), emulated_cpu_frequency);
 | 
			
		||||
        return Common::Divide128On32(temporary, 1000000000).first;
 | 
			
		||||
        return MultiplyHigh(GetTimeNS().count(), emulated_cpu_factor);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void Pause([[maybe_unused]] bool is_paused) override {
 | 
			
		||||
@@ -59,6 +58,8 @@ public:
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    base_time_point start_time;
 | 
			
		||||
    const u64 emulated_clock_factor;
 | 
			
		||||
    const u64 emulated_cpu_factor;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#ifdef ARCHITECTURE_x86_64
 | 
			
		||||
 
 | 
			
		||||
@@ -8,68 +8,10 @@
 | 
			
		||||
#include <mutex>
 | 
			
		||||
#include <thread>
 | 
			
		||||
 | 
			
		||||
#ifdef _MSC_VER
 | 
			
		||||
#include <intrin.h>
 | 
			
		||||
 | 
			
		||||
#pragma intrinsic(__umulh)
 | 
			
		||||
#pragma intrinsic(_udiv128)
 | 
			
		||||
#else
 | 
			
		||||
#include <x86intrin.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include "common/atomic_ops.h"
 | 
			
		||||
#include "common/uint128.h"
 | 
			
		||||
#include "common/x64/native_clock.h"
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
 | 
			
		||||
#ifdef __SIZEOF_INT128__
 | 
			
		||||
    const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
 | 
			
		||||
    return static_cast<u64>(base / divisor);
 | 
			
		||||
#elif defined(_M_X64) || defined(_M_ARM64)
 | 
			
		||||
    std::array<u64, 2> r = {0, numerator};
 | 
			
		||||
    u64 remainder;
 | 
			
		||||
#if _MSC_VER < 1923
 | 
			
		||||
    return udiv128(r[1], r[0], divisor, &remainder);
 | 
			
		||||
#else
 | 
			
		||||
    return _udiv128(r[1], r[0], divisor, &remainder);
 | 
			
		||||
#endif
 | 
			
		||||
#else
 | 
			
		||||
    // This one is bit more inaccurate.
 | 
			
		||||
    return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] u64 MultiplyHigh(u64 a, u64 b) {
 | 
			
		||||
#ifdef __SIZEOF_INT128__
 | 
			
		||||
    return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
 | 
			
		||||
#elif defined(_M_X64) || defined(_M_ARM64)
 | 
			
		||||
    return __umulh(a, b); // MSVC
 | 
			
		||||
#else
 | 
			
		||||
    // Generic fallback
 | 
			
		||||
    const u64 a_lo = u32(a);
 | 
			
		||||
    const u64 a_hi = a >> 32;
 | 
			
		||||
    const u64 b_lo = u32(b);
 | 
			
		||||
    const u64 b_hi = b >> 32;
 | 
			
		||||
 | 
			
		||||
    const u64 a_x_b_hi = a_hi * b_hi;
 | 
			
		||||
    const u64 a_x_b_mid = a_hi * b_lo;
 | 
			
		||||
    const u64 b_x_a_mid = b_hi * a_lo;
 | 
			
		||||
    const u64 a_x_b_lo = a_lo * b_lo;
 | 
			
		||||
 | 
			
		||||
    const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
 | 
			
		||||
                           static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
 | 
			
		||||
                          32;
 | 
			
		||||
 | 
			
		||||
    const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
 | 
			
		||||
 | 
			
		||||
    return multhi;
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace
 | 
			
		||||
 | 
			
		||||
namespace Common {
 | 
			
		||||
 | 
			
		||||
u64 EstimateRDTSCFrequency() {
 | 
			
		||||
 
 | 
			
		||||
@@ -19,7 +19,6 @@ add_library(core STATIC
 | 
			
		||||
    core.h
 | 
			
		||||
    core_timing.cpp
 | 
			
		||||
    core_timing.h
 | 
			
		||||
    core_timing_util.cpp
 | 
			
		||||
    core_timing_util.h
 | 
			
		||||
    cpu_manager.cpp
 | 
			
		||||
    cpu_manager.h
 | 
			
		||||
 
 | 
			
		||||
@@ -1,84 +0,0 @@
 | 
			
		||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
 | 
			
		||||
// Licensed under GPLv2+
 | 
			
		||||
// Refer to the license.txt file included.
 | 
			
		||||
 | 
			
		||||
#include "core/core_timing_util.h"
 | 
			
		||||
 | 
			
		||||
#include <cinttypes>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include "common/logging/log.h"
 | 
			
		||||
#include "common/uint128.h"
 | 
			
		||||
#include "core/hardware_properties.h"
 | 
			
		||||
 | 
			
		||||
namespace Core::Timing {
 | 
			
		||||
 | 
			
		||||
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
 | 
			
		||||
 | 
			
		||||
s64 msToCycles(std::chrono::milliseconds ms) {
 | 
			
		||||
    if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
 | 
			
		||||
        LOG_ERROR(Core_Timing, "Integer overflow, use max value");
 | 
			
		||||
        return std::numeric_limits<s64>::max();
 | 
			
		||||
    }
 | 
			
		||||
    if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
 | 
			
		||||
        LOG_DEBUG(Core_Timing, "Time very big, do rounding");
 | 
			
		||||
        return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
 | 
			
		||||
    }
 | 
			
		||||
    return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
s64 usToCycles(std::chrono::microseconds us) {
 | 
			
		||||
    if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
 | 
			
		||||
        LOG_ERROR(Core_Timing, "Integer overflow, use max value");
 | 
			
		||||
        return std::numeric_limits<s64>::max();
 | 
			
		||||
    }
 | 
			
		||||
    if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
 | 
			
		||||
        LOG_DEBUG(Core_Timing, "Time very big, do rounding");
 | 
			
		||||
        return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
 | 
			
		||||
    }
 | 
			
		||||
    return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
s64 nsToCycles(std::chrono::nanoseconds ns) {
 | 
			
		||||
    const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
 | 
			
		||||
    return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u64 msToClockCycles(std::chrono::milliseconds ns) {
 | 
			
		||||
    const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
 | 
			
		||||
    return Common::Divide128On32(temp, 1000).first;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u64 usToClockCycles(std::chrono::microseconds ns) {
 | 
			
		||||
    const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
 | 
			
		||||
    return Common::Divide128On32(temp, 1000000).first;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
 | 
			
		||||
    const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
 | 
			
		||||
    return Common::Divide128On32(temp, 1000000000).first;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u64 CpuCyclesToClockCycles(u64 ticks) {
 | 
			
		||||
    const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
 | 
			
		||||
    return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::chrono::milliseconds CyclesToMs(s64 cycles) {
 | 
			
		||||
    const u128 temporal = Common::Multiply64Into128(cycles, 1000);
 | 
			
		||||
    u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
 | 
			
		||||
    return std::chrono::milliseconds(ms);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::chrono::nanoseconds CyclesToNs(s64 cycles) {
 | 
			
		||||
    const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
 | 
			
		||||
    u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
 | 
			
		||||
    return std::chrono::nanoseconds(ns);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::chrono::microseconds CyclesToUs(s64 cycles) {
 | 
			
		||||
    const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
 | 
			
		||||
    u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
 | 
			
		||||
    return std::chrono::microseconds(us);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace Core::Timing
 | 
			
		||||
@@ -1,24 +1,59 @@
 | 
			
		||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
 | 
			
		||||
// Licensed under GPLv2+
 | 
			
		||||
// Copyright 2020 yuzu Emulator Project
 | 
			
		||||
// Licensed under GPLv2 or any later version
 | 
			
		||||
// Refer to the license.txt file included.
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <chrono>
 | 
			
		||||
 | 
			
		||||
#include "common/common_types.h"
 | 
			
		||||
#include "core/hardware_properties.h"
 | 
			
		||||
 | 
			
		||||
namespace Core::Timing {
 | 
			
		||||
 | 
			
		||||
s64 msToCycles(std::chrono::milliseconds ms);
 | 
			
		||||
s64 usToCycles(std::chrono::microseconds us);
 | 
			
		||||
s64 nsToCycles(std::chrono::nanoseconds ns);
 | 
			
		||||
u64 msToClockCycles(std::chrono::milliseconds ns);
 | 
			
		||||
u64 usToClockCycles(std::chrono::microseconds ns);
 | 
			
		||||
u64 nsToClockCycles(std::chrono::nanoseconds ns);
 | 
			
		||||
std::chrono::milliseconds CyclesToMs(s64 cycles);
 | 
			
		||||
std::chrono::nanoseconds CyclesToNs(s64 cycles);
 | 
			
		||||
std::chrono::microseconds CyclesToUs(s64 cycles);
 | 
			
		||||
namespace detail {
 | 
			
		||||
constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000;
 | 
			
		||||
constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000;
 | 
			
		||||
} // namespace detail
 | 
			
		||||
 | 
			
		||||
u64 CpuCyclesToClockCycles(u64 ticks);
 | 
			
		||||
[[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) {
 | 
			
		||||
    return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) {
 | 
			
		||||
    return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) {
 | 
			
		||||
    return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) {
 | 
			
		||||
    return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) {
 | 
			
		||||
    return us.count() * detail::CNTFREQ_ADJUSTED / 1000;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) {
 | 
			
		||||
    return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) {
 | 
			
		||||
    return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) {
 | 
			
		||||
    return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) {
 | 
			
		||||
    return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) {
 | 
			
		||||
    return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace Core::Timing
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user