Core Timing: General corrections and added tests.
This commit is contained in:
		
				
					committed by
					
						 FernandoS27
						FernandoS27
					
				
			
			
				
	
			
			
			
						parent
						
							c9a1129c95
						
					
				
				
					commit
					65aff6930b
				
			| @@ -13,6 +13,8 @@ | |||||||
| #include "common/thread.h" | #include "common/thread.h" | ||||||
| #include "core/core_timing_util.h" | #include "core/core_timing_util.h" | ||||||
|  |  | ||||||
|  | #pragma optoimize("", off) | ||||||
|  |  | ||||||
| namespace Core::Timing { | namespace Core::Timing { | ||||||
|  |  | ||||||
| constexpr int MAX_SLICE_LENGTH = 10000; | constexpr int MAX_SLICE_LENGTH = 10000; | ||||||
| @@ -114,7 +116,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) { | |||||||
| u64 CoreTiming::GetTicks() const { | u64 CoreTiming::GetTicks() const { | ||||||
|     u64 ticks = static_cast<u64>(global_timer); |     u64 ticks = static_cast<u64>(global_timer); | ||||||
|     if (!is_global_timer_sane) { |     if (!is_global_timer_sane) { | ||||||
|         ticks += time_slice[current_context] - downcounts[current_context]; |         ticks += accumulated_ticks; | ||||||
|     } |     } | ||||||
|     return ticks; |     return ticks; | ||||||
| } | } | ||||||
| @@ -124,6 +126,7 @@ u64 CoreTiming::GetIdleTicks() const { | |||||||
| } | } | ||||||
|  |  | ||||||
| void CoreTiming::AddTicks(u64 ticks) { | void CoreTiming::AddTicks(u64 ticks) { | ||||||
|  |     accumulated_ticks += ticks; | ||||||
|     downcounts[current_context] -= static_cast<s64>(ticks); |     downcounts[current_context] -= static_cast<s64>(ticks); | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -151,7 +154,6 @@ void CoreTiming::ForceExceptionCheck(s64 cycles) { | |||||||
|  |  | ||||||
|     // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int |     // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int | ||||||
|     // here. Account for cycles already executed by adjusting the g.slice_length |     // here. Account for cycles already executed by adjusting the g.slice_length | ||||||
|     slice_length -= downcounts[current_context] - static_cast<int>(cycles); |  | ||||||
|     downcounts[current_context] = static_cast<int>(cycles); |     downcounts[current_context] = static_cast<int>(cycles); | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -172,8 +174,8 @@ std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const { | |||||||
| void CoreTiming::Advance() { | void CoreTiming::Advance() { | ||||||
|     std::unique_lock<std::mutex> guard(inner_mutex); |     std::unique_lock<std::mutex> guard(inner_mutex); | ||||||
|  |  | ||||||
|     const int cycles_executed = time_slice[current_context] - downcounts[current_context]; |     const int cycles_executed = accumulated_ticks; | ||||||
|     time_slice[current_context] = std::max<s64>(0, downcounts[current_context]); |     time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks); | ||||||
|     global_timer += cycles_executed; |     global_timer += cycles_executed; | ||||||
|  |  | ||||||
|     is_global_timer_sane = true; |     is_global_timer_sane = true; | ||||||
| @@ -198,6 +200,8 @@ void CoreTiming::Advance() { | |||||||
|         } |         } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|  |     accumulated_ticks = 0; | ||||||
|  |  | ||||||
|     downcounts[current_context] = time_slice[current_context]; |     downcounts[current_context] = time_slice[current_context]; | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -212,6 +216,9 @@ void CoreTiming::ResetRun() { | |||||||
|         s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); |         s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH); | ||||||
|         downcounts[current_context] = needed_ticks; |         downcounts[current_context] = needed_ticks; | ||||||
|     } |     } | ||||||
|  |  | ||||||
|  |     is_global_timer_sane = false; | ||||||
|  |     accumulated_ticks = 0; | ||||||
| } | } | ||||||
|  |  | ||||||
| void CoreTiming::Idle() { | void CoreTiming::Idle() { | ||||||
|   | |||||||
| @@ -130,6 +130,7 @@ private: | |||||||
|     s64 global_timer = 0; |     s64 global_timer = 0; | ||||||
|     s64 idled_cycles = 0; |     s64 idled_cycles = 0; | ||||||
|     s64 slice_length = 0; |     s64 slice_length = 0; | ||||||
|  |     u64 accumulated_ticks = 0; | ||||||
|     std::array<s64, num_cpu_cores> downcounts{}; |     std::array<s64, num_cpu_cores> downcounts{}; | ||||||
|     // Slice of time assigned to each core per run. |     // Slice of time assigned to each core per run. | ||||||
|     std::array<s64, num_cpu_cores> time_slice{}; |     std::array<s64, num_cpu_cores> time_slice{}; | ||||||
|   | |||||||
| @@ -6,6 +6,7 @@ | |||||||
|  |  | ||||||
| #include <array> | #include <array> | ||||||
| #include <bitset> | #include <bitset> | ||||||
|  | #include <cstdlib> | ||||||
| #include <string> | #include <string> | ||||||
| #include "common/file_util.h" | #include "common/file_util.h" | ||||||
| #include "core/core.h" | #include "core/core.h" | ||||||
| @@ -13,7 +14,7 @@ | |||||||
|  |  | ||||||
| // Numbers are chosen randomly to make sure the correct one is given. | // Numbers are chosen randomly to make sure the correct one is given. | ||||||
| static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; | static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; | ||||||
| static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals | static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals | ||||||
|  |  | ||||||
| static std::bitset<CB_IDS.size()> callbacks_ran_flags; | static std::bitset<CB_IDS.size()> callbacks_ran_flags; | ||||||
| static u64 expected_callback = 0; | static u64 expected_callback = 0; | ||||||
| @@ -28,6 +29,12 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) { | |||||||
|     REQUIRE(lateness == cycles_late); |     REQUIRE(lateness == cycles_late); | ||||||
| } | } | ||||||
|  |  | ||||||
|  | static u64 callbacks_done = 0; | ||||||
|  |  | ||||||
|  | void EmptyCallback(u64 userdata, s64 cycles_late) { | ||||||
|  |     ++callbacks_done; | ||||||
|  | } | ||||||
|  |  | ||||||
| struct ScopeInit final { | struct ScopeInit final { | ||||||
|     ScopeInit() { |     ScopeInit() { | ||||||
|         core_timing.Initialize(); |         core_timing.Initialize(); | ||||||
| @@ -39,16 +46,159 @@ struct ScopeInit final { | |||||||
|     Core::Timing::CoreTiming core_timing; |     Core::Timing::CoreTiming core_timing; | ||||||
| }; | }; | ||||||
|  |  | ||||||
| static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount, | static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0, | ||||||
|                             int expected_lateness = 0, int cpu_downcount = 0) { |                             int expected_lateness = 0, int cpu_downcount = 0) { | ||||||
|     callbacks_ran_flags = 0; |     callbacks_ran_flags = 0; | ||||||
|     expected_callback = CB_IDS[idx]; |     expected_callback = CB_IDS[idx]; | ||||||
|     lateness = expected_lateness; |     lateness = expected_lateness; | ||||||
|  |  | ||||||
|     // Pretend we executed X cycles of instructions. |     // Pretend we executed X cycles of instructions. | ||||||
|  |     core_timing.SwitchContext(context); | ||||||
|     core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount); |     core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount); | ||||||
|     core_timing.Advance(); |     core_timing.Advance(); | ||||||
|  |     core_timing.SwitchContext((context + 1) % 4); | ||||||
|  |  | ||||||
|     REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); |     REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); | ||||||
|     REQUIRE(downcount == core_timing.GetDowncount()); | } | ||||||
|  |  | ||||||
|  | TEST_CASE("CoreTiming[BasicOrder]", "[core]") { | ||||||
|  |     ScopeInit guard; | ||||||
|  |     auto& core_timing = guard.core_timing; | ||||||
|  |  | ||||||
|  |     Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>); | ||||||
|  |     Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>); | ||||||
|  |     Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>); | ||||||
|  |     Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>); | ||||||
|  |     Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>); | ||||||
|  |  | ||||||
|  |     // Enter slice 0 | ||||||
|  |     core_timing.ResetRun(); | ||||||
|  |  | ||||||
|  |     // D -> B -> C -> A -> E | ||||||
|  |     core_timing.SwitchContext(0); | ||||||
|  |     core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); | ||||||
|  |     REQUIRE(1000 == core_timing.GetDowncount()); | ||||||
|  |     core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]); | ||||||
|  |     REQUIRE(500 == core_timing.GetDowncount()); | ||||||
|  |     core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]); | ||||||
|  |     REQUIRE(500 == core_timing.GetDowncount()); | ||||||
|  |     core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]); | ||||||
|  |     REQUIRE(100 == core_timing.GetDowncount()); | ||||||
|  |     core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]); | ||||||
|  |     REQUIRE(100 == core_timing.GetDowncount()); | ||||||
|  |  | ||||||
|  |     AdvanceAndCheck(core_timing, 3, 0); | ||||||
|  |     AdvanceAndCheck(core_timing, 1, 1); | ||||||
|  |     AdvanceAndCheck(core_timing, 2, 2); | ||||||
|  |     AdvanceAndCheck(core_timing, 0, 3); | ||||||
|  |     AdvanceAndCheck(core_timing, 4, 0); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | TEST_CASE("CoreTiming[FairSharing]", "[core]") { | ||||||
|  |  | ||||||
|  |     ScopeInit guard; | ||||||
|  |     auto& core_timing = guard.core_timing; | ||||||
|  |  | ||||||
|  |     Core::Timing::EventType* empty_callback = | ||||||
|  |         core_timing.RegisterEvent("empty_callback", EmptyCallback); | ||||||
|  |  | ||||||
|  |     callbacks_done = 0; | ||||||
|  |     u64 MAX_CALLBACKS = 10; | ||||||
|  |     for (std::size_t i = 0; i < 10; i++) { | ||||||
|  |         core_timing.ScheduleEvent(i * 3333U, empty_callback, 0); | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     const s64 advances = MAX_SLICE_LENGTH / 10; | ||||||
|  |     core_timing.ResetRun(); | ||||||
|  |     u64 current_time = core_timing.GetTicks(); | ||||||
|  |     bool keep_running{}; | ||||||
|  |     do { | ||||||
|  |         keep_running = false; | ||||||
|  |         for (u32 active_core = 0; active_core < 4; ++active_core) { | ||||||
|  |             core_timing.SwitchContext(active_core); | ||||||
|  |             if (core_timing.CurrentContextCanRun()) { | ||||||
|  |                 core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount())); | ||||||
|  |                 core_timing.Advance(); | ||||||
|  |             } | ||||||
|  |             keep_running |= core_timing.CurrentContextCanRun(); | ||||||
|  |         } | ||||||
|  |     } while (keep_running); | ||||||
|  |     u64 current_time_2 = core_timing.GetTicks(); | ||||||
|  |  | ||||||
|  |     REQUIRE(MAX_CALLBACKS == callbacks_done); | ||||||
|  |     REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | TEST_CASE("Core::Timing[PredictableLateness]", "[core]") { | ||||||
|  |     ScopeInit guard; | ||||||
|  |     auto& core_timing = guard.core_timing; | ||||||
|  |  | ||||||
|  |     Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>); | ||||||
|  |     Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>); | ||||||
|  |  | ||||||
|  |     // Enter slice 0 | ||||||
|  |     core_timing.ResetRun(); | ||||||
|  |  | ||||||
|  |     core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]); | ||||||
|  |     core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]); | ||||||
|  |  | ||||||
|  |     AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10) | ||||||
|  |     AdvanceAndCheck(core_timing, 1, 1, 50, -50); | ||||||
|  | } | ||||||
|  |  | ||||||
|  | namespace ChainSchedulingTest { | ||||||
|  | static int reschedules = 0; | ||||||
|  |  | ||||||
|  | static void RescheduleCallback(Core::Timing::CoreTiming& core_timing, u64 userdata, | ||||||
|  |                                s64 cycles_late) { | ||||||
|  |     --reschedules; | ||||||
|  |     REQUIRE(reschedules >= 0); | ||||||
|  |     REQUIRE(lateness == cycles_late); | ||||||
|  |  | ||||||
|  |     if (reschedules > 0) { | ||||||
|  |         core_timing.ScheduleEvent(1000, reinterpret_cast<Core::Timing::EventType*>(userdata), | ||||||
|  |                                   userdata); | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | } // namespace ChainSchedulingTest | ||||||
|  |  | ||||||
|  | TEST_CASE("CoreTiming[ChainScheduling]", "[core]") { | ||||||
|  |     using namespace ChainSchedulingTest; | ||||||
|  |  | ||||||
|  |     ScopeInit guard; | ||||||
|  |     auto& core_timing = guard.core_timing; | ||||||
|  |  | ||||||
|  |     Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>); | ||||||
|  |     Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>); | ||||||
|  |     Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>); | ||||||
|  |     Core::Timing::EventType* cb_rs = core_timing.RegisterEvent( | ||||||
|  |         "callbackReschedule", [&core_timing](u64 userdata, s64 cycles_late) { | ||||||
|  |             RescheduleCallback(core_timing, userdata, cycles_late); | ||||||
|  |         }); | ||||||
|  |  | ||||||
|  |     // Enter slice 0 | ||||||
|  |     core_timing.ResetRun(); | ||||||
|  |  | ||||||
|  |     core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]); | ||||||
|  |     core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); | ||||||
|  |     core_timing.ScheduleEvent(2200, cb_c, CB_IDS[2]); | ||||||
|  |     core_timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs)); | ||||||
|  |     REQUIRE(800 == core_timing.GetDowncount()); | ||||||
|  |  | ||||||
|  |     reschedules = 3; | ||||||
|  |     AdvanceAndCheck(core_timing, 0, 0); // cb_a | ||||||
|  |     AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs | ||||||
|  |     REQUIRE(2 == reschedules); | ||||||
|  |  | ||||||
|  |     core_timing.AddTicks(core_timing.GetDowncount()); | ||||||
|  |     core_timing.Advance(); // cb_rs | ||||||
|  |     core_timing.SwitchContext(3); | ||||||
|  |     REQUIRE(1 == reschedules); | ||||||
|  |     REQUIRE(200 == core_timing.GetDowncount()); | ||||||
|  |  | ||||||
|  |     AdvanceAndCheck(core_timing, 2, 3); // cb_c | ||||||
|  |  | ||||||
|  |     core_timing.AddTicks(core_timing.GetDowncount()); | ||||||
|  |     core_timing.Advance(); // cb_rs | ||||||
|  |     REQUIRE(0 == reschedules); | ||||||
| } | } | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user