Core Timing: General corrections and added tests.

This commit is contained in:
Fernando Sahmkow 2019-10-08 17:18:06 -04:00 committed by FernandoS27
parent c9a1129c95
commit 65aff6930b
3 changed files with 165 additions and 7 deletions

View File

@ -13,6 +13,8 @@
#include "common/thread.h"
#include "core/core_timing_util.h"
#pragma optoimize("", off)
namespace Core::Timing {
constexpr int MAX_SLICE_LENGTH = 10000;
@ -114,7 +116,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) {
u64 CoreTiming::GetTicks() const {
u64 ticks = static_cast<u64>(global_timer);
if (!is_global_timer_sane) {
ticks += time_slice[current_context] - downcounts[current_context];
ticks += accumulated_ticks;
}
return ticks;
}
@ -124,6 +126,7 @@ u64 CoreTiming::GetIdleTicks() const {
}
void CoreTiming::AddTicks(u64 ticks) {
accumulated_ticks += ticks;
downcounts[current_context] -= static_cast<s64>(ticks);
}
@ -151,7 +154,6 @@ void CoreTiming::ForceExceptionCheck(s64 cycles) {
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
// here. Account for cycles already executed by adjusting the g.slice_length
slice_length -= downcounts[current_context] - static_cast<int>(cycles);
downcounts[current_context] = static_cast<int>(cycles);
}
@ -172,8 +174,8 @@ std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
void CoreTiming::Advance() {
std::unique_lock<std::mutex> guard(inner_mutex);
const int cycles_executed = time_slice[current_context] - downcounts[current_context];
time_slice[current_context] = std::max<s64>(0, downcounts[current_context]);
const int cycles_executed = accumulated_ticks;
time_slice[current_context] = std::max<s64>(0, time_slice[current_context] - accumulated_ticks);
global_timer += cycles_executed;
is_global_timer_sane = true;
@ -198,6 +200,8 @@ void CoreTiming::Advance() {
}
}
accumulated_ticks = 0;
downcounts[current_context] = time_slice[current_context];
}
@ -212,6 +216,9 @@ void CoreTiming::ResetRun() {
s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
downcounts[current_context] = needed_ticks;
}
is_global_timer_sane = false;
accumulated_ticks = 0;
}
void CoreTiming::Idle() {

View File

@ -130,6 +130,7 @@ private:
s64 global_timer = 0;
s64 idled_cycles = 0;
s64 slice_length = 0;
u64 accumulated_ticks = 0;
std::array<s64, num_cpu_cores> downcounts{};
// Slice of time assigned to each core per run.
std::array<s64, num_cpu_cores> time_slice{};

View File

@ -6,6 +6,7 @@
#include <array>
#include <bitset>
#include <cstdlib>
#include <string>
#include "common/file_util.h"
#include "core/core.h"
@ -13,7 +14,7 @@
// Numbers are chosen randomly to make sure the correct one is given.
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
static u64 expected_callback = 0;
@ -28,6 +29,12 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) {
REQUIRE(lateness == cycles_late);
}
static u64 callbacks_done = 0;
void EmptyCallback(u64 userdata, s64 cycles_late) {
++callbacks_done;
}
struct ScopeInit final {
ScopeInit() {
core_timing.Initialize();
@ -39,16 +46,159 @@ struct ScopeInit final {
Core::Timing::CoreTiming core_timing;
};
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount,
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
int expected_lateness = 0, int cpu_downcount = 0) {
callbacks_ran_flags = 0;
expected_callback = CB_IDS[idx];
lateness = expected_lateness;
// Pretend we executed X cycles of instructions.
core_timing.SwitchContext(context);
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
core_timing.Advance();
core_timing.SwitchContext((context + 1) % 4);
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
REQUIRE(downcount == core_timing.GetDowncount());
}
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
core_timing.ResetRun();
// D -> B -> C -> A -> E
core_timing.SwitchContext(0);
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
REQUIRE(1000 == core_timing.GetDowncount());
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
REQUIRE(500 == core_timing.GetDowncount());
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
REQUIRE(500 == core_timing.GetDowncount());
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
REQUIRE(100 == core_timing.GetDowncount());
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
REQUIRE(100 == core_timing.GetDowncount());
AdvanceAndCheck(core_timing, 3, 0);
AdvanceAndCheck(core_timing, 1, 1);
AdvanceAndCheck(core_timing, 2, 2);
AdvanceAndCheck(core_timing, 0, 3);
AdvanceAndCheck(core_timing, 4, 0);
}
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
Core::Timing::EventType* empty_callback =
core_timing.RegisterEvent("empty_callback", EmptyCallback);
callbacks_done = 0;
u64 MAX_CALLBACKS = 10;
for (std::size_t i = 0; i < 10; i++) {
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
}
const s64 advances = MAX_SLICE_LENGTH / 10;
core_timing.ResetRun();
u64 current_time = core_timing.GetTicks();
bool keep_running{};
do {
keep_running = false;
for (u32 active_core = 0; active_core < 4; ++active_core) {
core_timing.SwitchContext(active_core);
if (core_timing.CurrentContextCanRun()) {
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
core_timing.Advance();
}
keep_running |= core_timing.CurrentContextCanRun();
}
} while (keep_running);
u64 current_time_2 = core_timing.GetTicks();
REQUIRE(MAX_CALLBACKS == callbacks_done);
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
}
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
// Enter slice 0
core_timing.ResetRun();
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
}
namespace ChainSchedulingTest {
static int reschedules = 0;
static void RescheduleCallback(Core::Timing::CoreTiming& core_timing, u64 userdata,
s64 cycles_late) {
--reschedules;
REQUIRE(reschedules >= 0);
REQUIRE(lateness == cycles_late);
if (reschedules > 0) {
core_timing.ScheduleEvent(1000, reinterpret_cast<Core::Timing::EventType*>(userdata),
userdata);
}
}
} // namespace ChainSchedulingTest
TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
using namespace ChainSchedulingTest;
ScopeInit guard;
auto& core_timing = guard.core_timing;
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
Core::Timing::EventType* cb_rs = core_timing.RegisterEvent(
"callbackReschedule", [&core_timing](u64 userdata, s64 cycles_late) {
RescheduleCallback(core_timing, userdata, cycles_late);
});
// Enter slice 0
core_timing.ResetRun();
core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
core_timing.ScheduleEvent(2200, cb_c, CB_IDS[2]);
core_timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
REQUIRE(800 == core_timing.GetDowncount());
reschedules = 3;
AdvanceAndCheck(core_timing, 0, 0); // cb_a
AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs
REQUIRE(2 == reschedules);
core_timing.AddTicks(core_timing.GetDowncount());
core_timing.Advance(); // cb_rs
core_timing.SwitchContext(3);
REQUIRE(1 == reschedules);
REQUIRE(200 == core_timing.GetDowncount());
AdvanceAndCheck(core_timing, 2, 3); // cb_c
core_timing.AddTicks(core_timing.GetDowncount());
core_timing.Advance(); // cb_rs
REQUIRE(0 == reschedules);
}