gl_rasterizer_cache: Move format conversion to its own file

This commit is contained in:
ReinUsesLisp 2019-02-23 22:45:47 -03:00
parent 0ccd490fcd
commit 0ad3c031f4
7 changed files with 175 additions and 136 deletions

View File

@ -94,6 +94,8 @@ add_library(video_core STATIC
surface.h
textures/astc.cpp
textures/astc.h
textures/convert.cpp
textures/convert.h
textures/decoders.cpp
textures/decoders.h
textures/texture.h

View File

@ -20,7 +20,7 @@
#include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/utils.h"
#include "video_core/surface.h"
#include "video_core/textures/astc.h"
#include "video_core/textures/convert.h"
#include "video_core/textures/decoders.h"
namespace OpenGL {
@ -594,103 +594,6 @@ CachedSurface::CachedSurface(const SurfaceParams& params)
}
}
static void ConvertS8Z24ToZ24S8(std::vector<u8>& data, u32 width, u32 height, bool reverse) {
union S8Z24 {
BitField<0, 24, u32> z24;
BitField<24, 8, u32> s8;
};
static_assert(sizeof(S8Z24) == 4, "S8Z24 is incorrect size");
union Z24S8 {
BitField<0, 8, u32> s8;
BitField<8, 24, u32> z24;
};
static_assert(sizeof(Z24S8) == 4, "Z24S8 is incorrect size");
S8Z24 s8z24_pixel{};
Z24S8 z24s8_pixel{};
constexpr auto bpp{GetBytesPerPixel(PixelFormat::S8Z24)};
for (std::size_t y = 0; y < height; ++y) {
for (std::size_t x = 0; x < width; ++x) {
const std::size_t offset{bpp * (y * width + x)};
if (reverse) {
std::memcpy(&z24s8_pixel, &data[offset], sizeof(Z24S8));
s8z24_pixel.s8.Assign(z24s8_pixel.s8);
s8z24_pixel.z24.Assign(z24s8_pixel.z24);
std::memcpy(&data[offset], &s8z24_pixel, sizeof(S8Z24));
} else {
std::memcpy(&s8z24_pixel, &data[offset], sizeof(S8Z24));
z24s8_pixel.s8.Assign(s8z24_pixel.s8);
z24s8_pixel.z24.Assign(s8z24_pixel.z24);
std::memcpy(&data[offset], &z24s8_pixel, sizeof(Z24S8));
}
}
}
}
/**
* Helper function to perform software conversion (as needed) when loading a buffer from Switch
* memory. This is for Maxwell pixel formats that cannot be represented as-is in OpenGL or with
* typical desktop GPUs.
*/
static void ConvertFormatAsNeeded_LoadGLBuffer(std::vector<u8>& data, PixelFormat pixel_format,
u32 width, u32 height, u32 depth) {
switch (pixel_format) {
case PixelFormat::ASTC_2D_4X4:
case PixelFormat::ASTC_2D_8X8:
case PixelFormat::ASTC_2D_8X5:
case PixelFormat::ASTC_2D_5X4:
case PixelFormat::ASTC_2D_5X5:
case PixelFormat::ASTC_2D_4X4_SRGB:
case PixelFormat::ASTC_2D_8X8_SRGB:
case PixelFormat::ASTC_2D_8X5_SRGB:
case PixelFormat::ASTC_2D_5X4_SRGB:
case PixelFormat::ASTC_2D_5X5_SRGB:
case PixelFormat::ASTC_2D_10X8:
case PixelFormat::ASTC_2D_10X8_SRGB: {
// Convert ASTC pixel formats to RGBA8, as most desktop GPUs do not support ASTC.
u32 block_width{};
u32 block_height{};
std::tie(block_width, block_height) = GetASTCBlockSize(pixel_format);
data =
Tegra::Texture::ASTC::Decompress(data, width, height, depth, block_width, block_height);
break;
}
case PixelFormat::S8Z24:
// Convert the S8Z24 depth format to Z24S8, as OpenGL does not support S8Z24.
ConvertS8Z24ToZ24S8(data, width, height, false);
break;
}
}
/**
* Helper function to perform software conversion (as needed) when flushing a buffer from OpenGL to
* Switch memory. This is for Maxwell pixel formats that cannot be represented as-is in OpenGL or
* with typical desktop GPUs.
*/
static void ConvertFormatAsNeeded_FlushGLBuffer(std::vector<u8>& data, PixelFormat pixel_format,
u32 width, u32 height) {
switch (pixel_format) {
case PixelFormat::ASTC_2D_4X4:
case PixelFormat::ASTC_2D_8X8:
case PixelFormat::ASTC_2D_4X4_SRGB:
case PixelFormat::ASTC_2D_8X8_SRGB:
case PixelFormat::ASTC_2D_5X5:
case PixelFormat::ASTC_2D_5X5_SRGB:
case PixelFormat::ASTC_2D_10X8:
case PixelFormat::ASTC_2D_10X8_SRGB: {
LOG_CRITICAL(HW_GPU, "Conversion of format {} after texture flushing is not implemented",
static_cast<u32>(pixel_format));
UNREACHABLE();
break;
}
case PixelFormat::S8Z24:
// Convert the Z24S8 depth format to S8Z24, as OpenGL does not support S8Z24.
ConvertS8Z24ToZ24S8(data, width, height, true);
break;
}
}
MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 192, 64));
void CachedSurface::LoadGLBuffer() {
MICROPROFILE_SCOPE(OpenGL_SurfaceLoad);
@ -719,8 +622,16 @@ void CachedSurface::LoadGLBuffer() {
}
}
for (u32 i = 0; i < params.max_mip_level; i++) {
ConvertFormatAsNeeded_LoadGLBuffer(gl_buffer[i], params.pixel_format, params.MipWidth(i),
params.MipHeight(i), params.MipDepth(i));
const u32 width = params.MipWidth(i);
const u32 height = params.MipHeight(i);
const u32 depth = params.MipDepth(i);
if (VideoCore::Surface::IsPixelFormatASTC(params.pixel_format)) {
// Reserve size for RGBA8 conversion
constexpr std::size_t rgba_bpp = 4;
gl_buffer[i].resize(std::max(gl_buffer[i].size(), width * height * depth * rgba_bpp));
}
Tegra::Texture::ConvertFromGuestToHost(gl_buffer[i].data(), params.pixel_format, width,
height, depth, true, true);
}
}
@ -743,8 +654,8 @@ void CachedSurface::FlushGLBuffer() {
glGetTextureImage(texture.handle, 0, tuple.format, tuple.type,
static_cast<GLsizei>(gl_buffer[0].size()), gl_buffer[0].data());
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
ConvertFormatAsNeeded_FlushGLBuffer(gl_buffer[0], params.pixel_format, params.width,
params.height);
Tegra::Texture::ConvertFromHostToGuest(gl_buffer[0].data(), params.pixel_format, params.width,
params.height, params.depth, true, true);
const u8* const texture_src_data = Memory::GetPointer(params.addr);
ASSERT(texture_src_data);
if (params.is_tiled) {

View File

@ -23,28 +23,12 @@
#include "video_core/textures/astc.h"
class BitStream {
class InputBitStream {
public:
explicit BitStream(unsigned char* ptr, int nBits = 0, int start_offset = 0)
explicit InputBitStream(const unsigned char* ptr, int nBits = 0, int start_offset = 0)
: m_NumBits(nBits), m_CurByte(ptr), m_NextBit(start_offset % 8) {}
~BitStream() = default;
int GetBitsWritten() const {
return m_BitsWritten;
}
void WriteBitsR(unsigned int val, unsigned int nBits) {
for (unsigned int i = 0; i < nBits; i++) {
WriteBit((val >> (nBits - i - 1)) & 1);
}
}
void WriteBits(unsigned int val, unsigned int nBits) {
for (unsigned int i = 0; i < nBits; i++) {
WriteBit((val >> i) & 1);
}
}
~InputBitStream() = default;
int GetBitsRead() const {
return m_BitsRead;
@ -70,6 +54,38 @@ public:
return ret;
}
private:
const int m_NumBits;
const unsigned char* m_CurByte;
int m_NextBit = 0;
int m_BitsRead = 0;
bool done = false;
};
class OutputBitStream {
public:
explicit OutputBitStream(unsigned char* ptr, int nBits = 0, int start_offset = 0)
: m_NumBits(nBits), m_CurByte(ptr), m_NextBit(start_offset % 8) {}
~OutputBitStream() = default;
int GetBitsWritten() const {
return m_BitsWritten;
}
void WriteBitsR(unsigned int val, unsigned int nBits) {
for (unsigned int i = 0; i < nBits; i++) {
WriteBit((val >> (nBits - i - 1)) & 1);
}
}
void WriteBits(unsigned int val, unsigned int nBits) {
for (unsigned int i = 0; i < nBits; i++) {
WriteBit((val >> i) & 1);
}
}
private:
void WriteBit(int b) {
@ -238,8 +254,8 @@ public:
// Fills result with the values that are encoded in the given
// bitstream. We must know beforehand what the maximum possible
// value is, and how many values we're decoding.
static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result, BitStream& bits,
uint32_t maxRange, uint32_t nValues) {
static void DecodeIntegerSequence(std::vector<IntegerEncodedValue>& result,
InputBitStream& bits, uint32_t maxRange, uint32_t nValues) {
// Determine encoding parameters
IntegerEncodedValue val = IntegerEncodedValue::CreateEncoding(maxRange);
@ -267,7 +283,7 @@ public:
}
private:
static void DecodeTritBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
static void DecodeTritBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result,
uint32_t nBitsPerValue) {
// Implement the algorithm in section C.2.12
uint32_t m[5];
@ -327,7 +343,7 @@ private:
}
}
static void DecodeQuintBlock(BitStream& bits, std::vector<IntegerEncodedValue>& result,
static void DecodeQuintBlock(InputBitStream& bits, std::vector<IntegerEncodedValue>& result,
uint32_t nBitsPerValue) {
// Implement the algorithm in section C.2.12
uint32_t m[3];
@ -406,7 +422,7 @@ struct TexelWeightParams {
}
};
static TexelWeightParams DecodeBlockInfo(BitStream& strm) {
static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
TexelWeightParams params;
// Read the entire block mode all at once
@ -605,7 +621,7 @@ static TexelWeightParams DecodeBlockInfo(BitStream& strm) {
return params;
}
static void FillVoidExtentLDR(BitStream& strm, uint32_t* const outBuf, uint32_t blockWidth,
static void FillVoidExtentLDR(InputBitStream& strm, uint32_t* const outBuf, uint32_t blockWidth,
uint32_t blockHeight) {
// Don't actually care about the void extent, just read the bits...
for (int i = 0; i < 4; ++i) {
@ -821,7 +837,7 @@ static void DecodeColorValues(uint32_t* out, uint8_t* data, const uint32_t* mode
// We now have enough to decode our integer sequence.
std::vector<IntegerEncodedValue> decodedColorValues;
BitStream colorStream(data);
InputBitStream colorStream(data);
IntegerEncodedValue::DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
// Once we have the decoded values, we need to dequantize them to the 0-255 range
@ -1365,9 +1381,9 @@ static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const uint32_t*& colorValue
#undef READ_INT_VALUES
}
static void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth,
static void DecompressBlock(const uint8_t inBuf[16], const uint32_t blockWidth,
const uint32_t blockHeight, uint32_t* outBuf) {
BitStream strm(inBuf);
InputBitStream strm(inBuf);
TexelWeightParams weightParams = DecodeBlockInfo(strm);
// Was there an error?
@ -1421,7 +1437,7 @@ static void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth,
// Define color data.
uint8_t colorEndpointData[16];
memset(colorEndpointData, 0, sizeof(colorEndpointData));
BitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
OutputBitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);
// Read extra config data...
uint32_t baseCEM = 0;
@ -1549,7 +1565,7 @@ static void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth,
memset(texelWeightData + clearByteStart, 0, 16 - clearByteStart);
std::vector<IntegerEncodedValue> texelWeightValues;
BitStream weightStream(texelWeightData);
InputBitStream weightStream(texelWeightData);
IntegerEncodedValue::DecodeIntegerSequence(texelWeightValues, weightStream,
weightParams.m_MaxWeight,
@ -1597,7 +1613,7 @@ static void DecompressBlock(uint8_t inBuf[16], const uint32_t blockWidth,
namespace Tegra::Texture::ASTC {
std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint32_t height,
std::vector<uint8_t> Decompress(const uint8_t* data, uint32_t width, uint32_t height,
uint32_t depth, uint32_t block_width, uint32_t block_height) {
uint32_t blockIdx = 0;
std::vector<uint8_t> outData(height * width * depth * 4);
@ -1605,7 +1621,7 @@ std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint
for (uint32_t j = 0; j < height; j += block_height) {
for (uint32_t i = 0; i < width; i += block_width) {
uint8_t* blockPtr = data.data() + blockIdx * 16;
const uint8_t* blockPtr = data + blockIdx * 16;
// Blocks can be at most 12x12
uint32_t uncompData[144];

View File

@ -9,7 +9,7 @@
namespace Tegra::Texture::ASTC {
std::vector<uint8_t> Decompress(std::vector<uint8_t>& data, uint32_t width, uint32_t height,
std::vector<uint8_t> Decompress(const uint8_t* data, uint32_t width, uint32_t height,
uint32_t depth, uint32_t block_width, uint32_t block_height);
} // namespace Tegra::Texture::ASTC

View File

@ -0,0 +1,92 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cstring>
#include <tuple>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/textures/astc.h"
#include "video_core/textures/convert.h"
namespace Tegra::Texture {
using VideoCore::Surface::PixelFormat;
template <bool reverse>
void SwapS8Z24ToZ24S8(u8* data, u32 width, u32 height) {
union S8Z24 {
BitField<0, 24, u32> z24;
BitField<24, 8, u32> s8;
};
static_assert(sizeof(S8Z24) == 4, "S8Z24 is incorrect size");
union Z24S8 {
BitField<0, 8, u32> s8;
BitField<8, 24, u32> z24;
};
static_assert(sizeof(Z24S8) == 4, "Z24S8 is incorrect size");
S8Z24 s8z24_pixel{};
Z24S8 z24s8_pixel{};
constexpr auto bpp{
VideoCore::Surface::GetBytesPerPixel(VideoCore::Surface::PixelFormat::S8Z24)};
for (std::size_t y = 0; y < height; ++y) {
for (std::size_t x = 0; x < width; ++x) {
const std::size_t offset{bpp * (y * width + x)};
if constexpr (reverse) {
std::memcpy(&z24s8_pixel, &data[offset], sizeof(Z24S8));
s8z24_pixel.s8.Assign(z24s8_pixel.s8);
s8z24_pixel.z24.Assign(z24s8_pixel.z24);
std::memcpy(&data[offset], &s8z24_pixel, sizeof(S8Z24));
} else {
std::memcpy(&s8z24_pixel, &data[offset], sizeof(S8Z24));
z24s8_pixel.s8.Assign(s8z24_pixel.s8);
z24s8_pixel.z24.Assign(s8z24_pixel.z24);
std::memcpy(&data[offset], &z24s8_pixel, sizeof(Z24S8));
}
}
}
}
static void ConvertS8Z24ToZ24S8(u8* data, u32 width, u32 height) {
SwapS8Z24ToZ24S8<false>(data, width, height);
}
static void ConvertZ24S8ToS8Z24(u8* data, u32 width, u32 height) {
SwapS8Z24ToZ24S8<true>(data, width, height);
}
void ConvertFromGuestToHost(u8* data, PixelFormat pixel_format, u32 width, u32 height, u32 depth,
bool convert_astc, bool convert_s8z24) {
if (convert_astc && IsPixelFormatASTC(pixel_format)) {
// Convert ASTC pixel formats to RGBA8, as most desktop GPUs do not support ASTC.
u32 block_width{};
u32 block_height{};
std::tie(block_width, block_height) = GetASTCBlockSize(pixel_format);
const std::vector<u8> rgba8_data =
Tegra::Texture::ASTC::Decompress(data, width, height, depth, block_width, block_height);
std::copy(rgba8_data.begin(), rgba8_data.end(), data);
} else if (convert_s8z24 && pixel_format == PixelFormat::S8Z24) {
Tegra::Texture::ConvertS8Z24ToZ24S8(data, width, height);
}
}
void ConvertFromHostToGuest(u8* data, PixelFormat pixel_format, u32 width, u32 height, u32 depth,
bool convert_astc, bool convert_s8z24) {
if (convert_astc && IsPixelFormatASTC(pixel_format)) {
LOG_CRITICAL(HW_GPU, "Conversion of format {} after texture flushing is not implemented",
static_cast<u32>(pixel_format));
UNREACHABLE();
} else if (convert_s8z24 && pixel_format == PixelFormat::S8Z24) {
Tegra::Texture::ConvertZ24S8ToS8Z24(data, width, height);
}
}
} // namespace Tegra::Texture

View File

@ -0,0 +1,18 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
#include "video_core/surface.h"
namespace Tegra::Texture {
void ConvertFromGuestToHost(u8* data, VideoCore::Surface::PixelFormat pixel_format, u32 width,
u32 height, u32 depth, bool convert_astc, bool convert_s8z24);
void ConvertFromHostToGuest(u8* data, VideoCore::Surface::PixelFormat pixel_format, u32 width,
u32 height, u32 depth, bool convert_astc, bool convert_s8z24);
} // namespace Tegra::Texture

View File

@ -154,7 +154,7 @@ void SwizzledData(u8* const swizzled_data, u8* const unswizzled_data, const bool
for (u32 xb = 0; xb < blocks_on_x; xb++) {
const u32 x_start = xb * block_x_elements;
const u32 x_end = std::min(width, x_start + block_x_elements);
if (fast) {
if constexpr (fast) {
FastProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);