Compare commits

..

1 Commits

Author SHA1 Message Date
11c51b8d69 Android #40 2023-08-15 00:58:01 +00:00
26 changed files with 56 additions and 277 deletions

View File

@ -134,7 +134,7 @@ else()
endif()
# GCC bugs
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL "11" AND CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL "12" AND CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
# These diagnostics would be great if they worked, but are just completely broken
# and produce bogus errors on external libraries like fmt.
add_compile_options(

View File

@ -263,23 +263,6 @@ void GDBStub::ExecuteCommand(std::string_view packet, std::vector<DebuggerAction
std::vector<u8> mem(size);
if (system.ApplicationMemory().ReadBlock(addr, mem.data(), size)) {
// Restore any bytes belonging to replaced instructions.
auto it = replaced_instructions.lower_bound(addr);
for (; it != replaced_instructions.end() && it->first < addr + size; it++) {
// Get the bytes of the instruction we previously replaced.
const u32 original_bytes = it->second;
// Calculate where to start writing to the output buffer.
const size_t output_offset = it->first - addr;
// Calculate how many bytes to write.
// The loop condition ensures output_offset < size.
const size_t n = std::min<size_t>(size - output_offset, sizeof(u32));
// Write the bytes to the output buffer.
std::memcpy(mem.data() + output_offset, &original_bytes, n);
}
SendReply(Common::HexToString(mem));
} else {
SendReply(GDB_STUB_REPLY_ERR);

View File

@ -19,7 +19,13 @@ public:
void Initialize();
void Finalize();
s64 GetTick() const;
s64 GetCount() const {
return GetTick();
}
void RegisterTask(KTimerTask* task, s64 time_from_now) {
this->RegisterAbsoluteTask(task, GetTick() + time_from_now);
}
void RegisterAbsoluteTask(KTimerTask* task, s64 task_time) {
KScopedDisableDispatch dd{m_kernel};
@ -36,6 +42,7 @@ private:
void EnableInterrupt(s64 wakeup_time);
void DisableInterrupt();
bool GetInterruptEnabled();
s64 GetTick() const;
void DoTask();
private:

View File

@ -5,7 +5,6 @@
#include "common/overflow.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/svc_results.h"
@ -16,7 +15,9 @@ KResourceLimit::KResourceLimit(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_lock{m_kernel}, m_cond_var{m_kernel} {}
KResourceLimit::~KResourceLimit() = default;
void KResourceLimit::Initialize() {}
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing) {
m_core_timing = core_timing;
}
void KResourceLimit::Finalize() {}
@ -85,7 +86,7 @@ Result KResourceLimit::SetLimitValue(LimitableResource which, s64 value) {
}
bool KResourceLimit::Reserve(LimitableResource which, s64 value) {
return Reserve(which, value, m_kernel.HardwareTimer().GetTick() + DefaultTimeout);
return Reserve(which, value, m_core_timing->GetGlobalTimeNs().count() + DefaultTimeout);
}
bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
@ -116,7 +117,7 @@ bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
}
if (m_current_hints[index] + value <= m_limit_values[index] &&
(timeout < 0 || m_kernel.HardwareTimer().GetTick() < timeout)) {
(timeout < 0 || m_core_timing->GetGlobalTimeNs().count() < timeout)) {
m_waiter_count++;
m_cond_var.Wait(std::addressof(m_lock), timeout, false);
m_waiter_count--;
@ -153,7 +154,7 @@ void KResourceLimit::Release(LimitableResource which, s64 value, s64 hint) {
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size) {
auto* resource_limit = KResourceLimit::Create(system.Kernel());
resource_limit->Initialize();
resource_limit->Initialize(std::addressof(system.CoreTiming()));
// Initialize default resource limit values.
// TODO(bunnei): These values are the system defaults, the limits for service processes are

View File

@ -31,7 +31,7 @@ public:
explicit KResourceLimit(KernelCore& kernel);
~KResourceLimit() override;
void Initialize();
void Initialize(const Core::Timing::CoreTiming* core_timing);
void Finalize() override;
s64 GetLimitValue(LimitableResource which) const;
@ -57,6 +57,7 @@ private:
mutable KLightLock m_lock;
s32 m_waiter_count{};
KLightConditionVariable m_cond_var;
const Core::Timing::CoreTiming* m_core_timing{};
};
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size);

View File

@ -28,7 +28,7 @@ public:
~KScopedSchedulerLockAndSleep() {
// Register the sleep.
if (m_timeout_tick > 0) {
m_timer->RegisterAbsoluteTask(m_thread, m_timeout_tick);
m_timer->RegisterTask(m_thread, m_timeout_tick);
}
// Unlock the scheduler.

View File

@ -231,7 +231,7 @@ struct KernelCore::Impl {
void InitializeSystemResourceLimit(KernelCore& kernel,
const Core::Timing::CoreTiming& core_timing) {
system_resource_limit = KResourceLimit::Create(system.Kernel());
system_resource_limit->Initialize();
system_resource_limit->Initialize(&core_timing);
KResourceLimit::Register(kernel, system_resource_limit);
const auto sizes{memory_layout->GetTotalAndKernelMemorySizes()};

View File

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/kernel.h"
@ -53,7 +52,7 @@ Result WaitForAddress(Core::System& system, u64 address, ArbitrationType arb_typ
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = system.Kernel().HardwareTimer().GetTick() + offset_tick + 2;
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}

View File

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/kernel.h"
@ -26,7 +25,7 @@ Result WaitProcessWideKeyAtomic(Core::System& system, u64 address, u64 cv_key, u
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = system.Kernel().HardwareTimer().GetTick() + offset_tick + 2;
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}

View File

@ -5,7 +5,6 @@
#include "common/scratch_buffer.h"
#include "core/core.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/svc.h"
@ -83,29 +82,12 @@ Result ReplyAndReceive(Core::System& system, s32* out_index, uint64_t handles_ad
R_TRY(session->SendReply());
}
// Convert the timeout from nanoseconds to ticks.
// NOTE: Nintendo does not use this conversion logic in WaitSynchronization...
s64 timeout;
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = kernel.HardwareTimer().GetTick() + offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
}
// Wait for a message.
while (true) {
// Wait for an object.
s32 index;
Result result = KSynchronizationObject::Wait(kernel, std::addressof(index), objs.data(),
num_handles, timeout);
num_handles, timeout_ns);
if (result == ResultTimedOut) {
R_RETURN(result);
}

View File

@ -21,7 +21,7 @@ Result CreateResourceLimit(Core::System& system, Handle* out_handle) {
SCOPE_EXIT({ resource_limit->Close(); });
// Initialize the resource limit.
resource_limit->Initialize();
resource_limit->Initialize(std::addressof(system.CoreTiming()));
// Register the limit.
KResourceLimit::Register(kernel, resource_limit);

View File

@ -4,7 +4,6 @@
#include "common/scope_exit.h"
#include "common/scratch_buffer.h"
#include "core/core.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_readable_event.h"
#include "core/hle/kernel/svc.h"
@ -84,20 +83,9 @@ Result WaitSynchronization(Core::System& system, int32_t* out_index, u64 user_ha
}
});
// Convert the timeout from nanoseconds to ticks.
s64 timeout;
if (timeout_ns > 0) {
u64 ticks = kernel.HardwareTimer().GetTick();
ticks += timeout_ns;
ticks += 2;
timeout = ticks;
} else {
timeout = timeout_ns;
}
// Wait on the objects.
Result res = KSynchronizationObject::Wait(kernel, out_index, objs.data(), num_handles, timeout);
Result res =
KSynchronizationObject::Wait(kernel, out_index, objs.data(), num_handles, timeout_ns);
R_SUCCEED_IF(res == ResultSessionClosed);
R_RETURN(res);

View File

@ -4,7 +4,6 @@
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_thread.h"
@ -43,9 +42,9 @@ Result CreateThread(Core::System& system, Handle* out_handle, u64 entry_point, u
R_UNLESS(process.CheckThreadPriority(priority), ResultInvalidPriority);
// Reserve a new thread from the process resource limit (waiting up to 100ms).
KScopedResourceReservation thread_reservation(std::addressof(process),
LimitableResource::ThreadCountMax, 1,
kernel.HardwareTimer().GetTick() + 100000000);
KScopedResourceReservation thread_reservation(
std::addressof(process), LimitableResource::ThreadCountMax, 1,
system.CoreTiming().GetGlobalTimeNs().count() + 100000000);
R_UNLESS(thread_reservation.Succeeded(), ResultLimitReached);
// Create the thread.
@ -103,31 +102,20 @@ void ExitThread(Core::System& system) {
}
/// Sleep the current thread
void SleepThread(Core::System& system, s64 ns) {
void SleepThread(Core::System& system, s64 nanoseconds) {
auto& kernel = system.Kernel();
const auto yield_type = static_cast<Svc::YieldType>(ns);
const auto yield_type = static_cast<Svc::YieldType>(nanoseconds);
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", ns);
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
// When the input tick is positive, sleep.
if (ns > 0) {
if (nanoseconds > 0) {
// Convert the timeout from nanoseconds to ticks.
// NOTE: Nintendo does not use this conversion logic in WaitSynchronization...
s64 timeout;
const s64 offset_tick(ns);
if (offset_tick > 0) {
timeout = kernel.HardwareTimer().GetTick() + offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
// Sleep.
// NOTE: Nintendo does not check the result of this sleep.
static_cast<void>(GetCurrentThread(kernel).Sleep(timeout));
static_cast<void>(GetCurrentThread(kernel).Sleep(nanoseconds));
} else if (yield_type == Svc::YieldType::WithoutCoreMigration) {
KScheduler::YieldWithoutCoreMigration(kernel);
} else if (yield_type == Svc::YieldType::WithCoreMigration) {
@ -136,6 +124,7 @@ void SleepThread(Core::System& system, s64 ns) {
KScheduler::YieldToAnyThread(kernel);
} else {
// Nintendo does nothing at all if an otherwise invalid value is passed.
ASSERT_MSG(false, "Unimplemented sleep yield type '{:016X}'!", nanoseconds);
}
}

View File

@ -18,9 +18,7 @@ enum class Errno : u32 {
AGAIN = 11,
INVAL = 22,
MFILE = 24,
PIPE = 32,
MSGSIZE = 90,
CONNABORTED = 103,
CONNRESET = 104,
NOTCONN = 107,
TIMEDOUT = 110,

View File

@ -23,14 +23,10 @@ Errno Translate(Network::Errno value) {
return Errno::INVAL;
case Network::Errno::MFILE:
return Errno::MFILE;
case Network::Errno::PIPE:
return Errno::PIPE;
case Network::Errno::NOTCONN:
return Errno::NOTCONN;
case Network::Errno::TIMEDOUT:
return Errno::TIMEDOUT;
case Network::Errno::CONNABORTED:
return Errno::CONNABORTED;
case Network::Errno::CONNRESET:
return Errno::CONNRESET;
case Network::Errno::INPROGRESS:

View File

@ -39,11 +39,6 @@ namespace Network {
namespace {
enum class CallType {
Send,
Other,
};
#ifdef _WIN32
using socklen_t = int;
@ -101,7 +96,7 @@ bool EnableNonBlock(SOCKET fd, bool enable) {
return ioctlsocket(fd, FIONBIO, &value) != SOCKET_ERROR;
}
Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
Errno TranslateNativeError(int e) {
switch (e) {
case 0:
return Errno::SUCCESS;
@ -117,14 +112,6 @@ Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
return Errno::AGAIN;
case WSAECONNREFUSED:
return Errno::CONNREFUSED;
case WSAECONNABORTED:
if (call_type == CallType::Send) {
// Winsock yields WSAECONNABORTED from `send` in situations where Unix
// systems, and actual Switches, yield EPIPE.
return Errno::PIPE;
} else {
return Errno::CONNABORTED;
}
case WSAECONNRESET:
return Errno::CONNRESET;
case WSAEHOSTUNREACH:
@ -211,7 +198,7 @@ bool EnableNonBlock(int fd, bool enable) {
return fcntl(fd, F_SETFL, flags) == 0;
}
Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
Errno TranslateNativeError(int e) {
switch (e) {
case 0:
return Errno::SUCCESS;
@ -221,10 +208,6 @@ Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
return Errno::INVAL;
case EMFILE:
return Errno::MFILE;
case EPIPE:
return Errno::PIPE;
case ECONNABORTED:
return Errno::CONNABORTED;
case ENOTCONN:
return Errno::NOTCONN;
case EAGAIN:
@ -253,13 +236,13 @@ Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
#endif
Errno GetAndLogLastError(CallType call_type = CallType::Other) {
Errno GetAndLogLastError() {
#ifdef _WIN32
int e = WSAGetLastError();
#else
int e = errno;
#endif
const Errno err = TranslateNativeError(e, call_type);
const Errno err = TranslateNativeError(e);
if (err == Errno::AGAIN || err == Errno::TIMEDOUT || err == Errno::INPROGRESS) {
// These happen during normal operation, so only log them at debug level.
LOG_DEBUG(Network, "Socket operation error: {}", Common::NativeErrorToString(e));
@ -748,17 +731,13 @@ std::pair<s32, Errno> Socket::Send(std::span<const u8> message, int flags) {
ASSERT(message.size() < static_cast<size_t>(std::numeric_limits<int>::max()));
ASSERT(flags == 0);
int native_flags = 0;
#if YUZU_UNIX
native_flags |= MSG_NOSIGNAL; // do not send us SIGPIPE
#endif
const auto result = send(fd, reinterpret_cast<const char*>(message.data()),
static_cast<int>(message.size()), native_flags);
static_cast<int>(message.size()), 0);
if (result != SOCKET_ERROR) {
return {static_cast<s32>(result), Errno::SUCCESS};
}
return {-1, GetAndLogLastError(CallType::Send)};
return {-1, GetAndLogLastError()};
}
std::pair<s32, Errno> Socket::SendTo(u32 flags, std::span<const u8> message,
@ -780,7 +759,7 @@ std::pair<s32, Errno> Socket::SendTo(u32 flags, std::span<const u8> message,
return {static_cast<s32>(result), Errno::SUCCESS};
}
return {-1, GetAndLogLastError(CallType::Send)};
return {-1, GetAndLogLastError()};
}
Errno Socket::Close() {

View File

@ -33,12 +33,10 @@ enum class Errno {
BADF,
INVAL,
MFILE,
PIPE,
NOTCONN,
AGAIN,
CONNREFUSED,
CONNRESET,
CONNABORTED,
HOSTUNREACH,
NETDOWN,
NETUNREACH,

View File

@ -50,7 +50,6 @@ set(SHADER_FILES
vulkan_blit_depth_stencil.frag
vulkan_color_clear.frag
vulkan_color_clear.vert
vulkan_depthstencil_clear.frag
vulkan_fidelityfx_fsr_easu_fp16.comp
vulkan_fidelityfx_fsr_easu_fp32.comp
vulkan_fidelityfx_fsr_rcas_fp16.comp

View File

@ -1,12 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#version 460 core
layout (push_constant) uniform PushConstants {
vec4 clear_depth;
};
void main() {
gl_FragDepth = clear_depth.x;
}

View File

@ -1335,8 +1335,7 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
}
const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height);
static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize;
const auto post_op = IS_IMAGE_UPLOAD ? VideoCommon::ObtainBufferOperation::DoNothing
: VideoCommon::ObtainBufferOperation::MarkAsWritten;
const auto post_op = VideoCommon::ObtainBufferOperation::DoNothing;
const auto [buffer, offset] =
buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op);
@ -1345,12 +1344,8 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
const std::span copy_span{&copy, 1};
if constexpr (IS_IMAGE_UPLOAD) {
texture_cache.PrepareImage(image_id, true, false);
image->UploadMemory(buffer->Handle(), offset, copy_span);
} else {
if (offset % BytesPerBlock(image->info.format)) {
return false;
}
texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span,
buffer_operand.address, buffer_size);
}

View File

@ -16,7 +16,6 @@
#include "video_core/host_shaders/vulkan_blit_depth_stencil_frag_spv.h"
#include "video_core/host_shaders/vulkan_color_clear_frag_spv.h"
#include "video_core/host_shaders/vulkan_color_clear_vert_spv.h"
#include "video_core/host_shaders/vulkan_depthstencil_clear_frag_spv.h"
#include "video_core/renderer_vulkan/blit_image.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
@ -429,7 +428,6 @@ BlitImageHelper::BlitImageHelper(const Device& device_, Scheduler& scheduler_,
blit_depth_stencil_frag(BuildShader(device, VULKAN_BLIT_DEPTH_STENCIL_FRAG_SPV)),
clear_color_vert(BuildShader(device, VULKAN_COLOR_CLEAR_VERT_SPV)),
clear_color_frag(BuildShader(device, VULKAN_COLOR_CLEAR_FRAG_SPV)),
clear_stencil_frag(BuildShader(device, VULKAN_DEPTHSTENCIL_CLEAR_FRAG_SPV)),
convert_depth_to_float_frag(BuildShader(device, CONVERT_DEPTH_TO_FLOAT_FRAG_SPV)),
convert_float_to_depth_frag(BuildShader(device, CONVERT_FLOAT_TO_DEPTH_FRAG_SPV)),
convert_abgr8_to_d24s8_frag(BuildShader(device, CONVERT_ABGR8_TO_D24S8_FRAG_SPV)),
@ -595,28 +593,6 @@ void BlitImageHelper::ClearColor(const Framebuffer* dst_framebuffer, u8 color_ma
scheduler.InvalidateState();
}
void BlitImageHelper::ClearDepthStencil(const Framebuffer* dst_framebuffer, bool depth_clear,
f32 clear_depth, u8 stencil_mask, u32 stencil_ref,
u32 stencil_compare_mask, const Region2D& dst_region) {
const BlitDepthStencilPipelineKey key{
.renderpass = dst_framebuffer->RenderPass(),
.depth_clear = depth_clear,
.stencil_mask = stencil_mask,
.stencil_compare_mask = stencil_compare_mask,
.stencil_ref = stencil_ref,
};
const VkPipeline pipeline = FindOrEmplaceClearStencilPipeline(key);
const VkPipelineLayout layout = *clear_color_pipeline_layout;
scheduler.RequestRenderpass(dst_framebuffer);
scheduler.Record([pipeline, layout, clear_depth, dst_region](vk::CommandBuffer cmdbuf) {
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
BindBlitState(cmdbuf, dst_region);
cmdbuf.PushConstants(layout, VK_SHADER_STAGE_FRAGMENT_BIT, clear_depth);
cmdbuf.Draw(3, 1, 0, 0);
});
scheduler.InvalidateState();
}
void BlitImageHelper::Convert(VkPipeline pipeline, const Framebuffer* dst_framebuffer,
const ImageView& src_image_view) {
const VkPipelineLayout layout = *one_texture_pipeline_layout;
@ -844,61 +820,6 @@ VkPipeline BlitImageHelper::FindOrEmplaceClearColorPipeline(const BlitImagePipel
return *clear_color_pipelines.back();
}
VkPipeline BlitImageHelper::FindOrEmplaceClearStencilPipeline(
const BlitDepthStencilPipelineKey& key) {
const auto it = std::ranges::find(clear_stencil_keys, key);
if (it != clear_stencil_keys.end()) {
return *clear_stencil_pipelines[std::distance(clear_stencil_keys.begin(), it)];
}
clear_stencil_keys.push_back(key);
const std::array stages = MakeStages(*clear_color_vert, *clear_stencil_frag);
const auto stencil = VkStencilOpState{
.failOp = VK_STENCIL_OP_KEEP,
.passOp = VK_STENCIL_OP_REPLACE,
.depthFailOp = VK_STENCIL_OP_KEEP,
.compareOp = VK_COMPARE_OP_ALWAYS,
.compareMask = key.stencil_compare_mask,
.writeMask = key.stencil_mask,
.reference = key.stencil_ref,
};
const VkPipelineDepthStencilStateCreateInfo depth_stencil_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.depthTestEnable = VK_FALSE,
.depthWriteEnable = key.depth_clear,
.depthCompareOp = VK_COMPARE_OP_ALWAYS,
.depthBoundsTestEnable = VK_FALSE,
.stencilTestEnable = VK_TRUE,
.front = stencil,
.back = stencil,
.minDepthBounds = 0.0f,
.maxDepthBounds = 0.0f,
};
clear_stencil_pipelines.push_back(device.GetLogical().CreateGraphicsPipeline({
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(stages.size()),
.pStages = stages.data(),
.pVertexInputState = &PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.pInputAssemblyState = &PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.pTessellationState = nullptr,
.pViewportState = &PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.pRasterizationState = &PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.pMultisampleState = &PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.pDepthStencilState = &depth_stencil_ci,
.pColorBlendState = &PIPELINE_COLOR_BLEND_STATE_GENERIC_CREATE_INFO,
.pDynamicState = &PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.layout = *clear_color_pipeline_layout,
.renderPass = key.renderpass,
.subpass = 0,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = 0,
}));
return *clear_stencil_pipelines.back();
}
void BlitImageHelper::ConvertPipeline(vk::Pipeline& pipeline, VkRenderPass renderpass,
bool is_target_depth) {
if (pipeline) {

View File

@ -27,16 +27,6 @@ struct BlitImagePipelineKey {
Tegra::Engines::Fermi2D::Operation operation;
};
struct BlitDepthStencilPipelineKey {
constexpr auto operator<=>(const BlitDepthStencilPipelineKey&) const noexcept = default;
VkRenderPass renderpass;
bool depth_clear;
u8 stencil_mask;
u32 stencil_compare_mask;
u32 stencil_ref;
};
class BlitImageHelper {
public:
explicit BlitImageHelper(const Device& device, Scheduler& scheduler,
@ -74,10 +64,6 @@ public:
void ClearColor(const Framebuffer* dst_framebuffer, u8 color_mask,
const std::array<f32, 4>& clear_color, const Region2D& dst_region);
void ClearDepthStencil(const Framebuffer* dst_framebuffer, bool depth_clear, f32 clear_depth,
u8 stencil_mask, u32 stencil_ref, u32 stencil_compare_mask,
const Region2D& dst_region);
private:
void Convert(VkPipeline pipeline, const Framebuffer* dst_framebuffer,
const ImageView& src_image_view);
@ -90,8 +76,6 @@ private:
[[nodiscard]] VkPipeline FindOrEmplaceDepthStencilPipeline(const BlitImagePipelineKey& key);
[[nodiscard]] VkPipeline FindOrEmplaceClearColorPipeline(const BlitImagePipelineKey& key);
[[nodiscard]] VkPipeline FindOrEmplaceClearStencilPipeline(
const BlitDepthStencilPipelineKey& key);
void ConvertPipeline(vk::Pipeline& pipeline, VkRenderPass renderpass, bool is_target_depth);
@ -124,7 +108,6 @@ private:
vk::ShaderModule blit_depth_stencil_frag;
vk::ShaderModule clear_color_vert;
vk::ShaderModule clear_color_frag;
vk::ShaderModule clear_stencil_frag;
vk::ShaderModule convert_depth_to_float_frag;
vk::ShaderModule convert_float_to_depth_frag;
vk::ShaderModule convert_abgr8_to_d24s8_frag;
@ -139,8 +122,6 @@ private:
std::vector<vk::Pipeline> blit_depth_stencil_pipelines;
std::vector<BlitImagePipelineKey> clear_color_keys;
std::vector<vk::Pipeline> clear_color_pipelines;
std::vector<BlitDepthStencilPipelineKey> clear_stencil_keys;
std::vector<vk::Pipeline> clear_stencil_pipelines;
vk::Pipeline convert_d32_to_r32_pipeline;
vk::Pipeline convert_r32_to_d32_pipeline;
vk::Pipeline convert_d16_to_r16_pipeline;

View File

@ -126,7 +126,7 @@ struct FormatTuple {
{VK_FORMAT_A1R5G5B5_UNORM_PACK16, Attachable}, // A1R5G5B5_UNORM
{VK_FORMAT_A2B10G10R10_UNORM_PACK32, Attachable | Storage}, // A2B10G10R10_UNORM
{VK_FORMAT_A2B10G10R10_UINT_PACK32, Attachable | Storage}, // A2B10G10R10_UINT
{VK_FORMAT_A2R10G10B10_UNORM_PACK32, Attachable}, // A2R10G10B10_UNORM
{VK_FORMAT_A2R10G10B10_UNORM_PACK32, Attachable | Storage}, // A2R10G10B10_UNORM
{VK_FORMAT_A1R5G5B5_UNORM_PACK16, Attachable}, // A1B5G5R5_UNORM (flipped with swizzle)
{VK_FORMAT_R5G5B5A1_UNORM_PACK16}, // A5B5G5R1_UNORM (specially swizzled)
{VK_FORMAT_R8_UNORM, Attachable | Storage}, // R8_UNORM

View File

@ -428,27 +428,15 @@ void RasterizerVulkan::Clear(u32 layer_count) {
if (aspect_flags == 0) {
return;
}
if (use_stencil && regs.stencil_front_mask != 0xFF && regs.stencil_front_mask != 0) {
Region2D dst_region = {
Offset2D{.x = clear_rect.rect.offset.x, .y = clear_rect.rect.offset.y},
Offset2D{.x = clear_rect.rect.offset.x + static_cast<s32>(clear_rect.rect.extent.width),
.y = clear_rect.rect.offset.y +
static_cast<s32>(clear_rect.rect.extent.height)}};
blit_image.ClearDepthStencil(framebuffer, use_depth, regs.clear_depth,
static_cast<u8>(regs.stencil_front_mask), regs.clear_stencil,
regs.stencil_front_func_mask, dst_region);
} else {
scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil,
clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) {
VkClearAttachment attachment;
attachment.aspectMask = aspect_flags;
attachment.colorAttachment = 0;
attachment.clearValue.depthStencil.depth = clear_depth;
attachment.clearValue.depthStencil.stencil = clear_stencil;
cmdbuf.ClearAttachments(attachment, clear_rect);
});
}
scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil,
clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) {
VkClearAttachment attachment;
attachment.aspectMask = aspect_flags;
attachment.colorAttachment = 0;
attachment.clearValue.depthStencil.depth = clear_depth;
attachment.clearValue.depthStencil.stencil = clear_stencil;
cmdbuf.ClearAttachments(attachment, clear_rect);
});
}
void RasterizerVulkan::DispatchCompute() {
@ -842,8 +830,7 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
}
const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height);
static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize;
const auto post_op = IS_IMAGE_UPLOAD ? VideoCommon::ObtainBufferOperation::DoNothing
: VideoCommon::ObtainBufferOperation::MarkAsWritten;
const auto post_op = VideoCommon::ObtainBufferOperation::DoNothing;
const auto [buffer, offset] =
buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op);
@ -852,12 +839,8 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
const std::span copy_span{&copy, 1};
if constexpr (IS_IMAGE_UPLOAD) {
texture_cache.PrepareImage(image_id, true, false);
image->UploadMemory(buffer->Handle(), offset, copy_span);
} else {
if (offset % BytesPerBlock(image->info.format)) {
return false;
}
texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span,
buffer_operand.address, buffer_size);
}

View File

@ -243,9 +243,6 @@ public:
/// Create channel state.
void CreateChannel(Tegra::Control::ChannelState& channel) final override;
/// Prepare an image to be used
void PrepareImage(ImageId image_id, bool is_modification, bool invalidate);
std::recursive_mutex mutex;
private:
@ -390,6 +387,9 @@ private:
/// Synchronize image aliases, copying data if needed
void SynchronizeAliases(ImageId image_id);
/// Prepare an image to be used
void PrepareImage(ImageId image_id, bool is_modification, bool invalidate);
/// Prepare an image view to be used
void PrepareImageView(ImageViewId image_view_id, bool is_modification, bool invalidate);

View File

@ -71,11 +71,6 @@ constexpr std::array R8G8B8_SSCALED{
VK_FORMAT_UNDEFINED,
};
constexpr std::array VK_FORMAT_R32G32B32_SFLOAT{
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_UNDEFINED,
};
} // namespace Alternatives
enum class NvidiaArchitecture {
@ -108,8 +103,6 @@ constexpr const VkFormat* GetFormatAlternatives(VkFormat format) {
return Alternatives::R16G16B16_SSCALED.data();
case VK_FORMAT_R8G8B8_SSCALED:
return Alternatives::R8G8B8_SSCALED.data();
case VK_FORMAT_R32G32B32_SFLOAT:
return Alternatives::VK_FORMAT_R32G32B32_SFLOAT.data();
default:
return nullptr;
}
@ -137,7 +130,6 @@ std::unordered_map<VkFormat, VkFormatProperties> GetFormatProperties(vk::Physica
VK_FORMAT_A2B10G10R10_UINT_PACK32,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2B10G10R10_USCALED_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_A8B8G8R8_SINT_PACK32,
VK_FORMAT_A8B8G8R8_SNORM_PACK32,
VK_FORMAT_A8B8G8R8_SRGB_PACK32,