Compare commits

..

1 Commits

Author SHA1 Message Date
23fb2a268e Android #41 2023-08-16 00:57:35 +00:00
21 changed files with 47 additions and 128 deletions

View File

@ -134,7 +134,7 @@ else()
endif()
# GCC bugs
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL "11" AND CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL "12" AND CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
# These diagnostics would be great if they worked, but are just completely broken
# and produce bogus errors on external libraries like fmt.
add_compile_options(

View File

@ -19,7 +19,13 @@ public:
void Initialize();
void Finalize();
s64 GetTick() const;
s64 GetCount() const {
return GetTick();
}
void RegisterTask(KTimerTask* task, s64 time_from_now) {
this->RegisterAbsoluteTask(task, GetTick() + time_from_now);
}
void RegisterAbsoluteTask(KTimerTask* task, s64 task_time) {
KScopedDisableDispatch dd{m_kernel};
@ -36,6 +42,7 @@ private:
void EnableInterrupt(s64 wakeup_time);
void DisableInterrupt();
bool GetInterruptEnabled();
s64 GetTick() const;
void DoTask();
private:

View File

@ -5,7 +5,6 @@
#include "common/overflow.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/svc_results.h"
@ -16,7 +15,9 @@ KResourceLimit::KResourceLimit(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_lock{m_kernel}, m_cond_var{m_kernel} {}
KResourceLimit::~KResourceLimit() = default;
void KResourceLimit::Initialize() {}
void KResourceLimit::Initialize(const Core::Timing::CoreTiming* core_timing) {
m_core_timing = core_timing;
}
void KResourceLimit::Finalize() {}
@ -85,7 +86,7 @@ Result KResourceLimit::SetLimitValue(LimitableResource which, s64 value) {
}
bool KResourceLimit::Reserve(LimitableResource which, s64 value) {
return Reserve(which, value, m_kernel.HardwareTimer().GetTick() + DefaultTimeout);
return Reserve(which, value, m_core_timing->GetGlobalTimeNs().count() + DefaultTimeout);
}
bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
@ -116,7 +117,7 @@ bool KResourceLimit::Reserve(LimitableResource which, s64 value, s64 timeout) {
}
if (m_current_hints[index] + value <= m_limit_values[index] &&
(timeout < 0 || m_kernel.HardwareTimer().GetTick() < timeout)) {
(timeout < 0 || m_core_timing->GetGlobalTimeNs().count() < timeout)) {
m_waiter_count++;
m_cond_var.Wait(std::addressof(m_lock), timeout, false);
m_waiter_count--;
@ -153,7 +154,7 @@ void KResourceLimit::Release(LimitableResource which, s64 value, s64 hint) {
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size) {
auto* resource_limit = KResourceLimit::Create(system.Kernel());
resource_limit->Initialize();
resource_limit->Initialize(std::addressof(system.CoreTiming()));
// Initialize default resource limit values.
// TODO(bunnei): These values are the system defaults, the limits for service processes are

View File

@ -31,7 +31,7 @@ public:
explicit KResourceLimit(KernelCore& kernel);
~KResourceLimit() override;
void Initialize();
void Initialize(const Core::Timing::CoreTiming* core_timing);
void Finalize() override;
s64 GetLimitValue(LimitableResource which) const;
@ -57,6 +57,7 @@ private:
mutable KLightLock m_lock;
s32 m_waiter_count{};
KLightConditionVariable m_cond_var;
const Core::Timing::CoreTiming* m_core_timing{};
};
KResourceLimit* CreateResourceLimitForProcess(Core::System& system, s64 physical_memory_size);

View File

@ -28,7 +28,7 @@ public:
~KScopedSchedulerLockAndSleep() {
// Register the sleep.
if (m_timeout_tick > 0) {
m_timer->RegisterAbsoluteTask(m_thread, m_timeout_tick);
m_timer->RegisterTask(m_thread, m_timeout_tick);
}
// Unlock the scheduler.

View File

@ -231,7 +231,7 @@ struct KernelCore::Impl {
void InitializeSystemResourceLimit(KernelCore& kernel,
const Core::Timing::CoreTiming& core_timing) {
system_resource_limit = KResourceLimit::Create(system.Kernel());
system_resource_limit->Initialize();
system_resource_limit->Initialize(&core_timing);
KResourceLimit::Register(kernel, system_resource_limit);
const auto sizes{memory_layout->GetTotalAndKernelMemorySizes()};

View File

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/kernel.h"
@ -53,7 +52,7 @@ Result WaitForAddress(Core::System& system, u64 address, ArbitrationType arb_typ
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = system.Kernel().HardwareTimer().GetTick() + offset_tick + 2;
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}

View File

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/kernel.h"
@ -26,7 +25,7 @@ Result WaitProcessWideKeyAtomic(Core::System& system, u64 address, u64 cv_key, u
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = system.Kernel().HardwareTimer().GetTick() + offset_tick + 2;
timeout = offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}

View File

@ -5,7 +5,6 @@
#include "common/scratch_buffer.h"
#include "core/core.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/svc.h"
@ -83,29 +82,12 @@ Result ReplyAndReceive(Core::System& system, s32* out_index, uint64_t handles_ad
R_TRY(session->SendReply());
}
// Convert the timeout from nanoseconds to ticks.
// NOTE: Nintendo does not use this conversion logic in WaitSynchronization...
s64 timeout;
if (timeout_ns > 0) {
const s64 offset_tick(timeout_ns);
if (offset_tick > 0) {
timeout = kernel.HardwareTimer().GetTick() + offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = timeout_ns;
}
// Wait for a message.
while (true) {
// Wait for an object.
s32 index;
Result result = KSynchronizationObject::Wait(kernel, std::addressof(index), objs.data(),
num_handles, timeout);
num_handles, timeout_ns);
if (result == ResultTimedOut) {
R_RETURN(result);
}

View File

@ -21,7 +21,7 @@ Result CreateResourceLimit(Core::System& system, Handle* out_handle) {
SCOPE_EXIT({ resource_limit->Close(); });
// Initialize the resource limit.
resource_limit->Initialize();
resource_limit->Initialize(std::addressof(system.CoreTiming()));
// Register the limit.
KResourceLimit::Register(kernel, resource_limit);

View File

@ -4,7 +4,6 @@
#include "common/scope_exit.h"
#include "common/scratch_buffer.h"
#include "core/core.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_readable_event.h"
#include "core/hle/kernel/svc.h"
@ -84,20 +83,9 @@ Result WaitSynchronization(Core::System& system, int32_t* out_index, u64 user_ha
}
});
// Convert the timeout from nanoseconds to ticks.
s64 timeout;
if (timeout_ns > 0) {
u64 ticks = kernel.HardwareTimer().GetTick();
ticks += timeout_ns;
ticks += 2;
timeout = ticks;
} else {
timeout = timeout_ns;
}
// Wait on the objects.
Result res = KSynchronizationObject::Wait(kernel, out_index, objs.data(), num_handles, timeout);
Result res =
KSynchronizationObject::Wait(kernel, out_index, objs.data(), num_handles, timeout_ns);
R_SUCCEED_IF(res == ResultSessionClosed);
R_RETURN(res);

View File

@ -4,7 +4,6 @@
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_hardware_timer.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_thread.h"
@ -43,9 +42,9 @@ Result CreateThread(Core::System& system, Handle* out_handle, u64 entry_point, u
R_UNLESS(process.CheckThreadPriority(priority), ResultInvalidPriority);
// Reserve a new thread from the process resource limit (waiting up to 100ms).
KScopedResourceReservation thread_reservation(std::addressof(process),
LimitableResource::ThreadCountMax, 1,
kernel.HardwareTimer().GetTick() + 100000000);
KScopedResourceReservation thread_reservation(
std::addressof(process), LimitableResource::ThreadCountMax, 1,
system.CoreTiming().GetGlobalTimeNs().count() + 100000000);
R_UNLESS(thread_reservation.Succeeded(), ResultLimitReached);
// Create the thread.
@ -103,31 +102,20 @@ void ExitThread(Core::System& system) {
}
/// Sleep the current thread
void SleepThread(Core::System& system, s64 ns) {
void SleepThread(Core::System& system, s64 nanoseconds) {
auto& kernel = system.Kernel();
const auto yield_type = static_cast<Svc::YieldType>(ns);
const auto yield_type = static_cast<Svc::YieldType>(nanoseconds);
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", ns);
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
// When the input tick is positive, sleep.
if (ns > 0) {
if (nanoseconds > 0) {
// Convert the timeout from nanoseconds to ticks.
// NOTE: Nintendo does not use this conversion logic in WaitSynchronization...
s64 timeout;
const s64 offset_tick(ns);
if (offset_tick > 0) {
timeout = kernel.HardwareTimer().GetTick() + offset_tick + 2;
if (timeout <= 0) {
timeout = std::numeric_limits<s64>::max();
}
} else {
timeout = std::numeric_limits<s64>::max();
}
// Sleep.
// NOTE: Nintendo does not check the result of this sleep.
static_cast<void>(GetCurrentThread(kernel).Sleep(timeout));
static_cast<void>(GetCurrentThread(kernel).Sleep(nanoseconds));
} else if (yield_type == Svc::YieldType::WithoutCoreMigration) {
KScheduler::YieldWithoutCoreMigration(kernel);
} else if (yield_type == Svc::YieldType::WithCoreMigration) {
@ -136,6 +124,7 @@ void SleepThread(Core::System& system, s64 ns) {
KScheduler::YieldToAnyThread(kernel);
} else {
// Nintendo does nothing at all if an otherwise invalid value is passed.
ASSERT_MSG(false, "Unimplemented sleep yield type '{:016X}'!", nanoseconds);
}
}

View File

@ -18,9 +18,7 @@ enum class Errno : u32 {
AGAIN = 11,
INVAL = 22,
MFILE = 24,
PIPE = 32,
MSGSIZE = 90,
CONNABORTED = 103,
CONNRESET = 104,
NOTCONN = 107,
TIMEDOUT = 110,

View File

@ -23,14 +23,10 @@ Errno Translate(Network::Errno value) {
return Errno::INVAL;
case Network::Errno::MFILE:
return Errno::MFILE;
case Network::Errno::PIPE:
return Errno::PIPE;
case Network::Errno::NOTCONN:
return Errno::NOTCONN;
case Network::Errno::TIMEDOUT:
return Errno::TIMEDOUT;
case Network::Errno::CONNABORTED:
return Errno::CONNABORTED;
case Network::Errno::CONNRESET:
return Errno::CONNRESET;
case Network::Errno::INPROGRESS:

View File

@ -39,11 +39,6 @@ namespace Network {
namespace {
enum class CallType {
Send,
Other,
};
#ifdef _WIN32
using socklen_t = int;
@ -101,7 +96,7 @@ bool EnableNonBlock(SOCKET fd, bool enable) {
return ioctlsocket(fd, FIONBIO, &value) != SOCKET_ERROR;
}
Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
Errno TranslateNativeError(int e) {
switch (e) {
case 0:
return Errno::SUCCESS;
@ -117,14 +112,6 @@ Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
return Errno::AGAIN;
case WSAECONNREFUSED:
return Errno::CONNREFUSED;
case WSAECONNABORTED:
if (call_type == CallType::Send) {
// Winsock yields WSAECONNABORTED from `send` in situations where Unix
// systems, and actual Switches, yield EPIPE.
return Errno::PIPE;
} else {
return Errno::CONNABORTED;
}
case WSAECONNRESET:
return Errno::CONNRESET;
case WSAEHOSTUNREACH:
@ -211,7 +198,7 @@ bool EnableNonBlock(int fd, bool enable) {
return fcntl(fd, F_SETFL, flags) == 0;
}
Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
Errno TranslateNativeError(int e) {
switch (e) {
case 0:
return Errno::SUCCESS;
@ -221,10 +208,6 @@ Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
return Errno::INVAL;
case EMFILE:
return Errno::MFILE;
case EPIPE:
return Errno::PIPE;
case ECONNABORTED:
return Errno::CONNABORTED;
case ENOTCONN:
return Errno::NOTCONN;
case EAGAIN:
@ -253,13 +236,13 @@ Errno TranslateNativeError(int e, CallType call_type = CallType::Other) {
#endif
Errno GetAndLogLastError(CallType call_type = CallType::Other) {
Errno GetAndLogLastError() {
#ifdef _WIN32
int e = WSAGetLastError();
#else
int e = errno;
#endif
const Errno err = TranslateNativeError(e, call_type);
const Errno err = TranslateNativeError(e);
if (err == Errno::AGAIN || err == Errno::TIMEDOUT || err == Errno::INPROGRESS) {
// These happen during normal operation, so only log them at debug level.
LOG_DEBUG(Network, "Socket operation error: {}", Common::NativeErrorToString(e));
@ -748,17 +731,13 @@ std::pair<s32, Errno> Socket::Send(std::span<const u8> message, int flags) {
ASSERT(message.size() < static_cast<size_t>(std::numeric_limits<int>::max()));
ASSERT(flags == 0);
int native_flags = 0;
#if YUZU_UNIX
native_flags |= MSG_NOSIGNAL; // do not send us SIGPIPE
#endif
const auto result = send(fd, reinterpret_cast<const char*>(message.data()),
static_cast<int>(message.size()), native_flags);
static_cast<int>(message.size()), 0);
if (result != SOCKET_ERROR) {
return {static_cast<s32>(result), Errno::SUCCESS};
}
return {-1, GetAndLogLastError(CallType::Send)};
return {-1, GetAndLogLastError()};
}
std::pair<s32, Errno> Socket::SendTo(u32 flags, std::span<const u8> message,
@ -780,7 +759,7 @@ std::pair<s32, Errno> Socket::SendTo(u32 flags, std::span<const u8> message,
return {static_cast<s32>(result), Errno::SUCCESS};
}
return {-1, GetAndLogLastError(CallType::Send)};
return {-1, GetAndLogLastError()};
}
Errno Socket::Close() {

View File

@ -33,12 +33,10 @@ enum class Errno {
BADF,
INVAL,
MFILE,
PIPE,
NOTCONN,
AGAIN,
CONNREFUSED,
CONNRESET,
CONNABORTED,
HOSTUNREACH,
NETDOWN,
NETUNREACH,

View File

@ -1335,8 +1335,7 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
}
const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height);
static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize;
const auto post_op = IS_IMAGE_UPLOAD ? VideoCommon::ObtainBufferOperation::DoNothing
: VideoCommon::ObtainBufferOperation::MarkAsWritten;
const auto post_op = VideoCommon::ObtainBufferOperation::DoNothing;
const auto [buffer, offset] =
buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op);
@ -1345,12 +1344,8 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
const std::span copy_span{&copy, 1};
if constexpr (IS_IMAGE_UPLOAD) {
texture_cache.PrepareImage(image_id, true, false);
image->UploadMemory(buffer->Handle(), offset, copy_span);
} else {
if (offset % BytesPerBlock(image->info.format)) {
return false;
}
texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span,
buffer_operand.address, buffer_size);
}

View File

@ -126,7 +126,7 @@ struct FormatTuple {
{VK_FORMAT_A1R5G5B5_UNORM_PACK16, Attachable}, // A1R5G5B5_UNORM
{VK_FORMAT_A2B10G10R10_UNORM_PACK32, Attachable | Storage}, // A2B10G10R10_UNORM
{VK_FORMAT_A2B10G10R10_UINT_PACK32, Attachable | Storage}, // A2B10G10R10_UINT
{VK_FORMAT_A2R10G10B10_UNORM_PACK32, Attachable}, // A2R10G10B10_UNORM
{VK_FORMAT_A2R10G10B10_UNORM_PACK32, Attachable | Storage}, // A2R10G10B10_UNORM
{VK_FORMAT_A1R5G5B5_UNORM_PACK16, Attachable}, // A1B5G5R5_UNORM (flipped with swizzle)
{VK_FORMAT_R5G5B5A1_UNORM_PACK16}, // A5B5G5R1_UNORM (specially swizzled)
{VK_FORMAT_R8_UNORM, Attachable | Storage}, // R8_UNORM

View File

@ -830,8 +830,7 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
}
const u32 buffer_size = static_cast<u32>(buffer_operand.pitch * buffer_operand.height);
static constexpr auto sync_info = VideoCommon::ObtainBufferSynchronize::FullSynchronize;
const auto post_op = IS_IMAGE_UPLOAD ? VideoCommon::ObtainBufferOperation::DoNothing
: VideoCommon::ObtainBufferOperation::MarkAsWritten;
const auto post_op = VideoCommon::ObtainBufferOperation::DoNothing;
const auto [buffer, offset] =
buffer_cache.ObtainBuffer(buffer_operand.address, buffer_size, sync_info, post_op);
@ -840,12 +839,8 @@ bool AccelerateDMA::DmaBufferImageCopy(const Tegra::DMA::ImageCopy& copy_info,
const std::span copy_span{&copy, 1};
if constexpr (IS_IMAGE_UPLOAD) {
texture_cache.PrepareImage(image_id, true, false);
image->UploadMemory(buffer->Handle(), offset, copy_span);
} else {
if (offset % BytesPerBlock(image->info.format)) {
return false;
}
texture_cache.DownloadImageIntoBuffer(image, buffer->Handle(), offset, copy_span,
buffer_operand.address, buffer_size);
}

View File

@ -243,9 +243,6 @@ public:
/// Create channel state.
void CreateChannel(Tegra::Control::ChannelState& channel) final override;
/// Prepare an image to be used
void PrepareImage(ImageId image_id, bool is_modification, bool invalidate);
std::recursive_mutex mutex;
private:
@ -390,6 +387,9 @@ private:
/// Synchronize image aliases, copying data if needed
void SynchronizeAliases(ImageId image_id);
/// Prepare an image to be used
void PrepareImage(ImageId image_id, bool is_modification, bool invalidate);
/// Prepare an image view to be used
void PrepareImageView(ImageViewId image_view_id, bool is_modification, bool invalidate);

View File

@ -71,11 +71,6 @@ constexpr std::array R8G8B8_SSCALED{
VK_FORMAT_UNDEFINED,
};
constexpr std::array VK_FORMAT_R32G32B32_SFLOAT{
VK_FORMAT_R32G32B32A32_SFLOAT,
VK_FORMAT_UNDEFINED,
};
} // namespace Alternatives
enum class NvidiaArchitecture {
@ -108,8 +103,6 @@ constexpr const VkFormat* GetFormatAlternatives(VkFormat format) {
return Alternatives::R16G16B16_SSCALED.data();
case VK_FORMAT_R8G8B8_SSCALED:
return Alternatives::R8G8B8_SSCALED.data();
case VK_FORMAT_R32G32B32_SFLOAT:
return Alternatives::VK_FORMAT_R32G32B32_SFLOAT.data();
default:
return nullptr;
}
@ -137,7 +130,6 @@ std::unordered_map<VkFormat, VkFormatProperties> GetFormatProperties(vk::Physica
VK_FORMAT_A2B10G10R10_UINT_PACK32,
VK_FORMAT_A2B10G10R10_UNORM_PACK32,
VK_FORMAT_A2B10G10R10_USCALED_PACK32,
VK_FORMAT_A2R10G10B10_UNORM_PACK32,
VK_FORMAT_A8B8G8R8_SINT_PACK32,
VK_FORMAT_A8B8G8R8_SNORM_PACK32,
VK_FORMAT_A8B8G8R8_SRGB_PACK32,