Kernel: Properly implement ControlMemory FREE and COMMIT
This commit is contained in:
		@@ -36,8 +36,7 @@ SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) {
 | 
			
		||||
    process->codeset = std::move(code_set);
 | 
			
		||||
    process->flags.raw = 0;
 | 
			
		||||
    process->flags.memory_region = MemoryRegion::APPLICATION;
 | 
			
		||||
    process->address_space = Common::make_unique<VMManager>();
 | 
			
		||||
    Memory::InitLegacyAddressSpace(*process->address_space);
 | 
			
		||||
    Memory::InitLegacyAddressSpace(process->vm_manager);
 | 
			
		||||
 | 
			
		||||
    return process;
 | 
			
		||||
}
 | 
			
		||||
@@ -104,19 +103,130 @@ void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
 | 
			
		||||
 | 
			
		||||
void Process::Run(s32 main_thread_priority, u32 stack_size) {
 | 
			
		||||
    auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) {
 | 
			
		||||
        auto vma = address_space->MapMemoryBlock(segment.addr, codeset->memory,
 | 
			
		||||
        auto vma = vm_manager.MapMemoryBlock(segment.addr, codeset->memory,
 | 
			
		||||
                segment.offset, segment.size, memory_state).Unwrap();
 | 
			
		||||
        address_space->Reprotect(vma, permissions);
 | 
			
		||||
        vm_manager.Reprotect(vma, permissions);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // Map CodeSet segments
 | 
			
		||||
    MapSegment(codeset->code,   VMAPermission::ReadExecute, MemoryState::Code);
 | 
			
		||||
    MapSegment(codeset->rodata, VMAPermission::Read,        MemoryState::Code);
 | 
			
		||||
    MapSegment(codeset->data,   VMAPermission::ReadWrite,   MemoryState::Private);
 | 
			
		||||
 | 
			
		||||
    address_space->LogLayout(Log::Level::Debug);
 | 
			
		||||
    // Allocate and map stack
 | 
			
		||||
    vm_manager.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
 | 
			
		||||
            std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size, MemoryState::Locked
 | 
			
		||||
            ).Unwrap();
 | 
			
		||||
 | 
			
		||||
    vm_manager.LogLayout(Log::Level::Debug);
 | 
			
		||||
    Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
 | 
			
		||||
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
 | 
			
		||||
        return ERR_INVALID_ADDRESS;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (heap_memory == nullptr) {
 | 
			
		||||
        // Initialize heap
 | 
			
		||||
        heap_memory = std::make_shared<std::vector<u8>>();
 | 
			
		||||
        heap_start = heap_end = target;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // If necessary, expand backing vector to cover new heap extents.
 | 
			
		||||
    if (target < heap_start) {
 | 
			
		||||
        heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
 | 
			
		||||
        heap_start = target;
 | 
			
		||||
        vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
 | 
			
		||||
    }
 | 
			
		||||
    if (target + size > heap_end) {
 | 
			
		||||
        heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
 | 
			
		||||
        heap_end = target + size;
 | 
			
		||||
        vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
 | 
			
		||||
    }
 | 
			
		||||
    ASSERT(heap_end - heap_start == heap_memory->size());
 | 
			
		||||
 | 
			
		||||
    CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private));
 | 
			
		||||
    vm_manager.Reprotect(vma, perms);
 | 
			
		||||
 | 
			
		||||
    return MakeResult<VAddr>(heap_end - size);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultCode Process::HeapFree(VAddr target, u32 size) {
 | 
			
		||||
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
 | 
			
		||||
        return ERR_INVALID_ADDRESS;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ResultCode result = vm_manager.UnmapRange(target, size);
 | 
			
		||||
    if (result.IsError()) return result;
 | 
			
		||||
 | 
			
		||||
    return RESULT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
 | 
			
		||||
    if (linear_heap_memory == nullptr) {
 | 
			
		||||
        // Initialize heap
 | 
			
		||||
        linear_heap_memory = std::make_shared<std::vector<u8>>();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
 | 
			
		||||
    // Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
 | 
			
		||||
    // but explicit addresses are also accepted and respected.
 | 
			
		||||
    if (target == 0) {
 | 
			
		||||
        target = heap_end;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END ||
 | 
			
		||||
        target > heap_end || target + size < target) {
 | 
			
		||||
 | 
			
		||||
        return ERR_INVALID_ADDRESS;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Expansion of the linear heap is only allowed if you do an allocation immediatelly at its
 | 
			
		||||
    // end. It's possible to free gaps in the middle of the heap and then reallocate them later,
 | 
			
		||||
    // but expansions are only allowed at the end.
 | 
			
		||||
    if (target == heap_end) {
 | 
			
		||||
        linear_heap_memory->insert(linear_heap_memory->end(), size, 0);
 | 
			
		||||
        vm_manager.RefreshMemoryBlockMappings(linear_heap_memory.get());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    size_t offset = target - Memory::LINEAR_HEAP_VADDR;
 | 
			
		||||
    CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linear_heap_memory, offset, size, MemoryState::Continuous));
 | 
			
		||||
    vm_manager.Reprotect(vma, perms);
 | 
			
		||||
 | 
			
		||||
    return MakeResult<VAddr>(target);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultCode Process::LinearFree(VAddr target, u32 size) {
 | 
			
		||||
    if (linear_heap_memory == nullptr || target < Memory::LINEAR_HEAP_VADDR ||
 | 
			
		||||
        target + size > Memory::LINEAR_HEAP_VADDR_END || target + size < target) {
 | 
			
		||||
 | 
			
		||||
        return ERR_INVALID_ADDRESS;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
 | 
			
		||||
    if (target + size > heap_end) {
 | 
			
		||||
        return ERR_INVALID_ADDRESS_STATE;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ResultCode result = vm_manager.UnmapRange(target, size);
 | 
			
		||||
    if (result.IsError()) return result;
 | 
			
		||||
 | 
			
		||||
    if (target + size == heap_end) {
 | 
			
		||||
        // End of linear heap has been freed, so check what's the last allocated block in it and
 | 
			
		||||
        // reduce the size.
 | 
			
		||||
        auto vma = vm_manager.FindVMA(target);
 | 
			
		||||
        ASSERT(vma != vm_manager.vma_map.end());
 | 
			
		||||
        ASSERT(vma->second.type == VMAType::Free);
 | 
			
		||||
        VAddr new_end = vma->second.base;
 | 
			
		||||
        if (new_end >= Memory::LINEAR_HEAP_VADDR) {
 | 
			
		||||
            linear_heap_memory->resize(new_end - Memory::LINEAR_HEAP_VADDR);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return RESULT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Kernel::Process::Process() {}
 | 
			
		||||
Kernel::Process::~Process() {}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -15,6 +15,7 @@
 | 
			
		||||
#include "common/common_types.h"
 | 
			
		||||
 | 
			
		||||
#include "core/hle/kernel/kernel.h"
 | 
			
		||||
#include "core/hle/kernel/vm_manager.h"
 | 
			
		||||
 | 
			
		||||
namespace Kernel {
 | 
			
		||||
 | 
			
		||||
@@ -48,7 +49,6 @@ union ProcessFlags {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class ResourceLimit;
 | 
			
		||||
class VMManager;
 | 
			
		||||
 | 
			
		||||
struct CodeSet final : public Object {
 | 
			
		||||
    static SharedPtr<CodeSet> Create(std::string name, u64 program_id);
 | 
			
		||||
@@ -108,10 +108,6 @@ public:
 | 
			
		||||
    /// The id of this process
 | 
			
		||||
    u32 process_id = next_process_id++;
 | 
			
		||||
 | 
			
		||||
    /// Bitmask of the used TLS slots
 | 
			
		||||
    std::bitset<300> used_tls_slots;
 | 
			
		||||
    std::unique_ptr<VMManager> address_space;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them
 | 
			
		||||
     * to this process.
 | 
			
		||||
@@ -123,6 +119,31 @@ public:
 | 
			
		||||
     */
 | 
			
		||||
    void Run(s32 main_thread_priority, u32 stack_size);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    ///////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Memory Management
 | 
			
		||||
 | 
			
		||||
    VMManager vm_manager;
 | 
			
		||||
 | 
			
		||||
    // Memory used to back the allocations in the regular heap. A single vector is used to cover
 | 
			
		||||
    // the entire virtual address space extents that bound the allocations, including any holes.
 | 
			
		||||
    // This makes deallocation and reallocation of holes fast and keeps process memory contiguous
 | 
			
		||||
    // in the emulator address space, allowing Memory::GetPointer to be reasonably safe.
 | 
			
		||||
    std::shared_ptr<std::vector<u8>> heap_memory;
 | 
			
		||||
    // The left/right bounds of the address space covered by heap_memory.
 | 
			
		||||
    VAddr heap_start = 0, heap_end = 0;
 | 
			
		||||
 | 
			
		||||
    std::shared_ptr<std::vector<u8>> linear_heap_memory;
 | 
			
		||||
 | 
			
		||||
    /// Bitmask of the used TLS slots
 | 
			
		||||
    std::bitset<300> used_tls_slots;
 | 
			
		||||
 | 
			
		||||
    ResultVal<VAddr> HeapAllocate(VAddr target, u32 size, VMAPermission perms);
 | 
			
		||||
    ResultCode HeapFree(VAddr target, u32 size);
 | 
			
		||||
 | 
			
		||||
    ResultVal<VAddr> LinearAllocate(VAddr target, u32 size, VMAPermission perms);
 | 
			
		||||
    ResultCode LinearFree(VAddr target, u32 size);
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    Process();
 | 
			
		||||
    ~Process() override;
 | 
			
		||||
 
 | 
			
		||||
@@ -60,7 +60,11 @@ void VMManager::Reset() {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
 | 
			
		||||
    return std::prev(vma_map.upper_bound(target));
 | 
			
		||||
    if (target >= MAX_ADDRESS) {
 | 
			
		||||
        return vma_map.end();
 | 
			
		||||
    } else {
 | 
			
		||||
        return std::prev(vma_map.upper_bound(target));
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
 | 
			
		||||
@@ -115,10 +119,8 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u3
 | 
			
		||||
    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void VMManager::Unmap(VMAHandle vma_handle) {
 | 
			
		||||
    VMAIter iter = StripIterConstness(vma_handle);
 | 
			
		||||
 | 
			
		||||
    VirtualMemoryArea& vma = iter->second;
 | 
			
		||||
VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
 | 
			
		||||
    VirtualMemoryArea& vma = vma_handle->second;
 | 
			
		||||
    vma.type = VMAType::Free;
 | 
			
		||||
    vma.permissions = VMAPermission::None;
 | 
			
		||||
    vma.meminfo_state = MemoryState::Free;
 | 
			
		||||
@@ -130,17 +132,57 @@ void VMManager::Unmap(VMAHandle vma_handle) {
 | 
			
		||||
 | 
			
		||||
    UpdatePageTableForVMA(vma);
 | 
			
		||||
 | 
			
		||||
    MergeAdjacent(iter);
 | 
			
		||||
    return MergeAdjacent(vma_handle);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
 | 
			
		||||
ResultCode VMManager::UnmapRange(VAddr target, u32 size) {
 | 
			
		||||
    CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
 | 
			
		||||
    VAddr target_end = target + size;
 | 
			
		||||
 | 
			
		||||
    VMAIter end = vma_map.end();
 | 
			
		||||
    // The comparison against the end of the range must be done using addresses since VMAs can be
 | 
			
		||||
    // merged during this process, causing invalidation of the iterators.
 | 
			
		||||
    while (vma != end && vma->second.base < target_end) {
 | 
			
		||||
        vma = std::next(Unmap(vma));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ASSERT(FindVMA(target)->second.size >= size);
 | 
			
		||||
    return RESULT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
 | 
			
		||||
    VMAIter iter = StripIterConstness(vma_handle);
 | 
			
		||||
 | 
			
		||||
    VirtualMemoryArea& vma = iter->second;
 | 
			
		||||
    vma.permissions = new_perms;
 | 
			
		||||
    UpdatePageTableForVMA(vma);
 | 
			
		||||
 | 
			
		||||
    MergeAdjacent(iter);
 | 
			
		||||
    return MergeAdjacent(iter);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) {
 | 
			
		||||
    CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
 | 
			
		||||
    VAddr target_end = target + size;
 | 
			
		||||
 | 
			
		||||
    VMAIter end = vma_map.end();
 | 
			
		||||
    // The comparison against the end of the range must be done using addresses since VMAs can be
 | 
			
		||||
    // merged during this process, causing invalidation of the iterators.
 | 
			
		||||
    while (vma != end && vma->second.base < target_end) {
 | 
			
		||||
        vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return RESULT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
 | 
			
		||||
    // If this ever proves to have a noticeable performance impact, allow users of the function to
 | 
			
		||||
    // specify a specific range of addresses to limit the scan to.
 | 
			
		||||
    for (const auto& p : vma_map) {
 | 
			
		||||
        const VirtualMemoryArea& vma = p.second;
 | 
			
		||||
        if (block == vma.backing_block.get()) {
 | 
			
		||||
            UpdatePageTableForVMA(vma);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void VMManager::LogLayout(Log::Level log_level) const {
 | 
			
		||||
@@ -161,8 +203,8 @@ VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
 | 
			
		||||
    ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size);
 | 
			
		||||
    ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base);
 | 
			
		||||
    ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
 | 
			
		||||
    ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
 | 
			
		||||
 | 
			
		||||
    VMAIter vma_handle = StripIterConstness(FindVMA(base));
 | 
			
		||||
    if (vma_handle == vma_map.end()) {
 | 
			
		||||
@@ -196,6 +238,35 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
 | 
			
		||||
    return MakeResult<VMAIter>(vma_handle);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) {
 | 
			
		||||
    ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
 | 
			
		||||
    ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
 | 
			
		||||
 | 
			
		||||
    VAddr target_end = target + size;
 | 
			
		||||
    ASSERT(target_end >= target);
 | 
			
		||||
    ASSERT(target_end <= MAX_ADDRESS);
 | 
			
		||||
    ASSERT(size > 0);
 | 
			
		||||
 | 
			
		||||
    VMAIter begin_vma = StripIterConstness(FindVMA(target));
 | 
			
		||||
    VMAIter i_end = vma_map.lower_bound(target_end);
 | 
			
		||||
    for (auto i = begin_vma; i != i_end; ++i) {
 | 
			
		||||
        if (i->second.type == VMAType::Free) {
 | 
			
		||||
            return ERR_INVALID_ADDRESS_STATE;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (target != begin_vma->second.base) {
 | 
			
		||||
        begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    VMAIter end_vma = StripIterConstness(FindVMA(target_end));
 | 
			
		||||
    if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
 | 
			
		||||
        end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return MakeResult<VMAIter>(begin_vma);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
 | 
			
		||||
    VirtualMemoryArea& old_vma = vma_handle->second;
 | 
			
		||||
    VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
 | 
			
		||||
 
 | 
			
		||||
@@ -171,11 +171,20 @@ public:
 | 
			
		||||
     */
 | 
			
		||||
    ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state);
 | 
			
		||||
 | 
			
		||||
    /// Unmaps the given VMA.
 | 
			
		||||
    void Unmap(VMAHandle vma);
 | 
			
		||||
    /// Unmaps a range of addresses, splitting VMAs as necessary.
 | 
			
		||||
    ResultCode UnmapRange(VAddr target, u32 size);
 | 
			
		||||
 | 
			
		||||
    /// Changes the permissions of the given VMA.
 | 
			
		||||
    void Reprotect(VMAHandle vma, VMAPermission new_perms);
 | 
			
		||||
    VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
 | 
			
		||||
 | 
			
		||||
    /// Changes the permissions of a range of addresses, splitting VMAs as necessary.
 | 
			
		||||
    ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms);
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Scans all VMAs and updates the page table range of any that use the given vector as backing
 | 
			
		||||
     * memory. This should be called after any operation that causes reallocation of the vector.
 | 
			
		||||
     */
 | 
			
		||||
    void RefreshMemoryBlockMappings(const std::vector<u8>* block);
 | 
			
		||||
 | 
			
		||||
    /// Dumps the address space layout to the log, for debugging
 | 
			
		||||
    void LogLayout(Log::Level log_level) const;
 | 
			
		||||
@@ -186,12 +195,21 @@ private:
 | 
			
		||||
    /// Converts a VMAHandle to a mutable VMAIter.
 | 
			
		||||
    VMAIter StripIterConstness(const VMAHandle& iter);
 | 
			
		||||
 | 
			
		||||
    /// Unmaps the given VMA.
 | 
			
		||||
    VMAIter Unmap(VMAIter vma);
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
 | 
			
		||||
     * the appropriate error checking.
 | 
			
		||||
     */
 | 
			
		||||
    ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
 | 
			
		||||
     * end of the range.
 | 
			
		||||
     */
 | 
			
		||||
    ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size);
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
     * Splits a VMA in two, at the specified offset.
 | 
			
		||||
     * @returns the right side of the split, with the original iterator becoming the left side.
 | 
			
		||||
 
 | 
			
		||||
@@ -41,32 +41,114 @@ const ResultCode ERR_NOT_FOUND(ErrorDescription::NotFound, ErrorModule::Kernel,
 | 
			
		||||
const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
 | 
			
		||||
        ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E
 | 
			
		||||
 | 
			
		||||
const ResultCode ERR_MISALIGNED_ADDRESS{ // 0xE0E01BF1
 | 
			
		||||
        ErrorDescription::MisalignedAddress, ErrorModule::OS,
 | 
			
		||||
        ErrorSummary::InvalidArgument, ErrorLevel::Usage};
 | 
			
		||||
const ResultCode ERR_MISALIGNED_SIZE{ // 0xE0E01BF2
 | 
			
		||||
        ErrorDescription::MisalignedSize, ErrorModule::OS,
 | 
			
		||||
        ErrorSummary::InvalidArgument, ErrorLevel::Usage};
 | 
			
		||||
const ResultCode ERR_INVALID_COMBINATION{ // 0xE0E01BEE
 | 
			
		||||
        ErrorDescription::InvalidCombination, ErrorModule::OS,
 | 
			
		||||
        ErrorSummary::InvalidArgument, ErrorLevel::Usage};
 | 
			
		||||
 | 
			
		||||
enum ControlMemoryOperation {
 | 
			
		||||
    MEMORY_OPERATION_HEAP       = 0x00000003,
 | 
			
		||||
    MEMORY_OPERATION_GSP_HEAP   = 0x00010003,
 | 
			
		||||
    MEMOP_FREE    = 1,
 | 
			
		||||
    MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
 | 
			
		||||
    MEMOP_COMMIT  = 3,
 | 
			
		||||
    MEMOP_MAP     = 4,
 | 
			
		||||
    MEMOP_UNMAP   = 5,
 | 
			
		||||
    MEMOP_PROTECT = 6,
 | 
			
		||||
    MEMOP_OPERATION_MASK = 0xFF,
 | 
			
		||||
 | 
			
		||||
    MEMOP_REGION_APP    = 0x100,
 | 
			
		||||
    MEMOP_REGION_SYSTEM = 0x200,
 | 
			
		||||
    MEMOP_REGION_BASE   = 0x300,
 | 
			
		||||
    MEMOP_REGION_MASK   = 0xF00,
 | 
			
		||||
 | 
			
		||||
    MEMOP_LINEAR = 0x10000,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Map application or GSP heap memory
 | 
			
		||||
static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
 | 
			
		||||
    LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X",
 | 
			
		||||
    using namespace Kernel;
 | 
			
		||||
 | 
			
		||||
    LOG_DEBUG(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=0x%X, permissions=0x%08X",
 | 
			
		||||
        operation, addr0, addr1, size, permissions);
 | 
			
		||||
 | 
			
		||||
    switch (operation) {
 | 
			
		||||
    if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
 | 
			
		||||
        return ERR_MISALIGNED_ADDRESS;
 | 
			
		||||
    }
 | 
			
		||||
    if ((size & Memory::PAGE_MASK) != 0) {
 | 
			
		||||
        return ERR_MISALIGNED_SIZE;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Map normal heap memory
 | 
			
		||||
    case MEMORY_OPERATION_HEAP:
 | 
			
		||||
        *out_addr = Memory::MapBlock_Heap(size, operation, permissions);
 | 
			
		||||
    u32 region = operation & MEMOP_REGION_MASK;
 | 
			
		||||
    operation &= ~MEMOP_REGION_MASK;
 | 
			
		||||
 | 
			
		||||
    if (region != 0) {
 | 
			
		||||
        LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region=%X", region);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
 | 
			
		||||
        return ERR_INVALID_COMBINATION;
 | 
			
		||||
    }
 | 
			
		||||
    VMAPermission vma_permissions = (VMAPermission)permissions;
 | 
			
		||||
 | 
			
		||||
    auto& process = *g_current_process;
 | 
			
		||||
 | 
			
		||||
    switch (operation & MEMOP_OPERATION_MASK) {
 | 
			
		||||
    case MEMOP_FREE:
 | 
			
		||||
    {
 | 
			
		||||
        if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
 | 
			
		||||
            ResultCode result = process.HeapFree(addr0, size);
 | 
			
		||||
            if (result.IsError()) return result;
 | 
			
		||||
        } else if (addr0 >= Memory::LINEAR_HEAP_VADDR && addr0 < Memory::LINEAR_HEAP_VADDR_END) {
 | 
			
		||||
            ResultCode result = process.LinearFree(addr0, size);
 | 
			
		||||
            if (result.IsError()) return result;
 | 
			
		||||
        } else {
 | 
			
		||||
            return ERR_INVALID_ADDRESS;
 | 
			
		||||
        }
 | 
			
		||||
        *out_addr = addr0;
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Map GSP heap memory
 | 
			
		||||
    case MEMORY_OPERATION_GSP_HEAP:
 | 
			
		||||
        *out_addr = Memory::MapBlock_HeapLinear(size, operation, permissions);
 | 
			
		||||
    case MEMOP_COMMIT:
 | 
			
		||||
    {
 | 
			
		||||
        if (operation & MEMOP_LINEAR) {
 | 
			
		||||
            CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
 | 
			
		||||
        } else {
 | 
			
		||||
            CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    case MEMOP_MAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
 | 
			
		||||
    {
 | 
			
		||||
        CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    case MEMOP_UNMAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
 | 
			
		||||
    {
 | 
			
		||||
        ResultCode result = process.HeapFree(addr0, size);
 | 
			
		||||
        if (result.IsError()) return result;
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    case MEMOP_PROTECT:
 | 
			
		||||
    {
 | 
			
		||||
        ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
 | 
			
		||||
        if (result.IsError()) return result;
 | 
			
		||||
        break;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Unknown ControlMemory operation
 | 
			
		||||
    default:
 | 
			
		||||
        LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
 | 
			
		||||
        return ERR_INVALID_COMBINATION;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    process.vm_manager.LogLayout(Log::Level::Trace);
 | 
			
		||||
 | 
			
		||||
    return RESULT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -537,9 +619,9 @@ static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_inf
 | 
			
		||||
    if (process == nullptr)
 | 
			
		||||
        return ERR_INVALID_HANDLE;
 | 
			
		||||
 | 
			
		||||
    auto vma = process->address_space->FindVMA(addr);
 | 
			
		||||
    auto vma = process->vm_manager.FindVMA(addr);
 | 
			
		||||
 | 
			
		||||
    if (vma == process->address_space->vma_map.end())
 | 
			
		||||
    if (vma == Kernel::g_current_process->vm_manager.vma_map.end())
 | 
			
		||||
        return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
 | 
			
		||||
 | 
			
		||||
    memory_info->base_address = vma->second.base;
 | 
			
		||||
 
 | 
			
		||||
@@ -32,9 +32,7 @@ struct MemoryArea {
 | 
			
		||||
 | 
			
		||||
// We don't declare the IO regions in here since its handled by other means.
 | 
			
		||||
static MemoryArea memory_areas[] = {
 | 
			
		||||
    {HEAP_VADDR,          HEAP_SIZE,              "Heap"},          // Application heap (main memory)
 | 
			
		||||
    {SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE,     "Shared Memory"}, // Shared memory
 | 
			
		||||
    {LINEAR_HEAP_VADDR,   LINEAR_HEAP_SIZE,       "Linear Heap"},   // Linear heap (main memory)
 | 
			
		||||
    {VRAM_VADDR,          VRAM_SIZE,              "VRAM"},          // Video memory (VRAM)
 | 
			
		||||
    {DSP_RAM_VADDR,       DSP_RAM_SIZE,           "DSP RAM"},       // DSP memory
 | 
			
		||||
    {TLS_AREA_VADDR,      TLS_AREA_SIZE,          "TLS Area"},      // TLS memory
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user