Revert Coretiming PRs 8531 and 7454 (#8591)
This commit is contained in:
		@@ -30,10 +30,6 @@ namespace Common {
 | 
			
		||||
#else
 | 
			
		||||
    return _udiv128(r[1], r[0], d, &remainder);
 | 
			
		||||
#endif
 | 
			
		||||
#else
 | 
			
		||||
#ifdef __SIZEOF_INT128__
 | 
			
		||||
    const auto product = static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b);
 | 
			
		||||
    return static_cast<u64>(product / d);
 | 
			
		||||
#else
 | 
			
		||||
    const u64 diva = a / d;
 | 
			
		||||
    const u64 moda = a % d;
 | 
			
		||||
@@ -41,7 +37,6 @@ namespace Common {
 | 
			
		||||
    const u64 modb = b % d;
 | 
			
		||||
    return diva * b + moda * divb + moda * modb / d;
 | 
			
		||||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// This function multiplies 2 u64 values and produces a u128 value;
 | 
			
		||||
 
 | 
			
		||||
@@ -75,8 +75,8 @@ NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequen
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
u64 NativeClock::GetRTSC() {
 | 
			
		||||
    TimePoint current_time_point{};
 | 
			
		||||
    TimePoint new_time_point{};
 | 
			
		||||
    TimePoint current_time_point{};
 | 
			
		||||
 | 
			
		||||
    current_time_point.pack = Common::AtomicLoad128(time_point.pack.data());
 | 
			
		||||
    do {
 | 
			
		||||
 
 | 
			
		||||
@@ -6,9 +6,7 @@
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <tuple>
 | 
			
		||||
 | 
			
		||||
#include "common/logging/log.h"
 | 
			
		||||
#include "common/microprofile.h"
 | 
			
		||||
#include "common/thread.h"
 | 
			
		||||
#include "core/core_timing.h"
 | 
			
		||||
#include "core/core_timing_util.h"
 | 
			
		||||
#include "core/hardware_properties.h"
 | 
			
		||||
@@ -44,10 +42,10 @@ CoreTiming::CoreTiming()
 | 
			
		||||
 | 
			
		||||
CoreTiming::~CoreTiming() = default;
 | 
			
		||||
 | 
			
		||||
void CoreTiming::ThreadEntry(CoreTiming& instance, size_t id) {
 | 
			
		||||
    const std::string name = "yuzu:HostTiming_" + std::to_string(id);
 | 
			
		||||
    MicroProfileOnThreadCreate(name.c_str());
 | 
			
		||||
    Common::SetCurrentThreadName(name.c_str());
 | 
			
		||||
void CoreTiming::ThreadEntry(CoreTiming& instance) {
 | 
			
		||||
    constexpr char name[] = "yuzu:HostTiming";
 | 
			
		||||
    MicroProfileOnThreadCreate(name);
 | 
			
		||||
    Common::SetCurrentThreadName(name);
 | 
			
		||||
    Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);
 | 
			
		||||
    instance.on_thread_init();
 | 
			
		||||
    instance.ThreadLoop();
 | 
			
		||||
@@ -63,127 +61,100 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
 | 
			
		||||
        -> std::optional<std::chrono::nanoseconds> { return std::nullopt; };
 | 
			
		||||
    ev_lost = CreateEvent("_lost_event", empty_timed_callback);
 | 
			
		||||
    if (is_multicore) {
 | 
			
		||||
        worker_threads.emplace_back(ThreadEntry, std::ref(*this), 0);
 | 
			
		||||
        timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::Shutdown() {
 | 
			
		||||
    is_paused = true;
 | 
			
		||||
    paused = true;
 | 
			
		||||
    shutting_down = true;
 | 
			
		||||
    std::atomic_thread_fence(std::memory_order_release);
 | 
			
		||||
 | 
			
		||||
    event_cv.notify_all();
 | 
			
		||||
    wait_pause_cv.notify_all();
 | 
			
		||||
    for (auto& thread : worker_threads) {
 | 
			
		||||
        thread.join();
 | 
			
		||||
    pause_event.Set();
 | 
			
		||||
    event.Set();
 | 
			
		||||
    if (timer_thread) {
 | 
			
		||||
        timer_thread->join();
 | 
			
		||||
    }
 | 
			
		||||
    worker_threads.clear();
 | 
			
		||||
    pause_callbacks.clear();
 | 
			
		||||
    ClearPendingEvents();
 | 
			
		||||
    timer_thread.reset();
 | 
			
		||||
    has_started = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::Pause(bool is_paused_) {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
    if (is_multicore) {
 | 
			
		||||
        is_paused = is_paused_;
 | 
			
		||||
        event_cv.notify_all();
 | 
			
		||||
        if (!is_paused_) {
 | 
			
		||||
            wait_pause_cv.notify_all();
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    paused_state.store(is_paused_, std::memory_order_relaxed);
 | 
			
		||||
void CoreTiming::Pause(bool is_paused) {
 | 
			
		||||
    paused = is_paused;
 | 
			
		||||
    pause_event.Set();
 | 
			
		||||
 | 
			
		||||
    if (!is_paused_) {
 | 
			
		||||
    if (!is_paused) {
 | 
			
		||||
        pause_end_time = GetGlobalTimeNs().count();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (auto& cb : pause_callbacks) {
 | 
			
		||||
        cb(is_paused_);
 | 
			
		||||
        cb(is_paused);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::SyncPause(bool is_paused_) {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
 | 
			
		||||
void CoreTiming::SyncPause(bool is_paused) {
 | 
			
		||||
    if (is_paused == paused && paused_set == paused) {
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (is_multicore) {
 | 
			
		||||
        is_paused = is_paused_;
 | 
			
		||||
        event_cv.notify_all();
 | 
			
		||||
        if (!is_paused_) {
 | 
			
		||||
            wait_pause_cv.notify_all();
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    paused_state.store(is_paused_, std::memory_order_relaxed);
 | 
			
		||||
    if (is_multicore) {
 | 
			
		||||
        if (is_paused_) {
 | 
			
		||||
            wait_signal_cv.wait(main_lock, [this] { return pause_count == worker_threads.size(); });
 | 
			
		||||
        } else {
 | 
			
		||||
            wait_signal_cv.wait(main_lock, [this] { return pause_count == 0; });
 | 
			
		||||
    Pause(is_paused);
 | 
			
		||||
    if (timer_thread) {
 | 
			
		||||
        if (!is_paused) {
 | 
			
		||||
            pause_event.Set();
 | 
			
		||||
        }
 | 
			
		||||
        event.Set();
 | 
			
		||||
        while (paused_set != is_paused)
 | 
			
		||||
            ;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (!is_paused_) {
 | 
			
		||||
    if (!is_paused) {
 | 
			
		||||
        pause_end_time = GetGlobalTimeNs().count();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for (auto& cb : pause_callbacks) {
 | 
			
		||||
        cb(is_paused_);
 | 
			
		||||
        cb(is_paused);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool CoreTiming::IsRunning() const {
 | 
			
		||||
    return !paused_state.load(std::memory_order_acquire);
 | 
			
		||||
    return !paused_set;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool CoreTiming::HasPendingEvents() const {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    return !event_queue.empty() || pending_events.load(std::memory_order_relaxed) != 0;
 | 
			
		||||
    return !(wait_set && event_queue.empty());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
 | 
			
		||||
                               const std::shared_ptr<EventType>& event_type,
 | 
			
		||||
                               std::uintptr_t user_data, bool absolute_time) {
 | 
			
		||||
    {
 | 
			
		||||
        std::scoped_lock scope{basic_lock};
 | 
			
		||||
        const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
 | 
			
		||||
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
 | 
			
		||||
 | 
			
		||||
    event_queue.emplace_back(Event{next_time.count(), event_fifo_id++, user_data, event_type, 0});
 | 
			
		||||
    pending_events.fetch_add(1, std::memory_order_relaxed);
 | 
			
		||||
 | 
			
		||||
    std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
 | 
			
		||||
 | 
			
		||||
    if (is_multicore) {
 | 
			
		||||
        event_cv.notify_one();
 | 
			
		||||
        event_queue.emplace_back(
 | 
			
		||||
            Event{next_time.count(), event_fifo_id++, user_data, event_type, 0});
 | 
			
		||||
        std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    event.Set();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
 | 
			
		||||
                                      std::chrono::nanoseconds resched_time,
 | 
			
		||||
                                      const std::shared_ptr<EventType>& event_type,
 | 
			
		||||
                                      std::uintptr_t user_data, bool absolute_time) {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    std::scoped_lock scope{basic_lock};
 | 
			
		||||
    const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};
 | 
			
		||||
 | 
			
		||||
    event_queue.emplace_back(
 | 
			
		||||
        Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()});
 | 
			
		||||
    pending_events.fetch_add(1, std::memory_order_relaxed);
 | 
			
		||||
 | 
			
		||||
    std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
 | 
			
		||||
 | 
			
		||||
    if (is_multicore) {
 | 
			
		||||
        event_cv.notify_one();
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
 | 
			
		||||
                                 std::uintptr_t user_data) {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    std::scoped_lock scope{basic_lock};
 | 
			
		||||
    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
 | 
			
		||||
        return e.type.lock().get() == event_type.get() && e.user_data == user_data;
 | 
			
		||||
    });
 | 
			
		||||
@@ -192,7 +163,6 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
 | 
			
		||||
    if (itr != event_queue.end()) {
 | 
			
		||||
        event_queue.erase(itr, event_queue.end());
 | 
			
		||||
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
 | 
			
		||||
        pending_events.fetch_sub(1, std::memory_order_relaxed);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -232,12 +202,11 @@ u64 CoreTiming::GetClockTicks() const {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::ClearPendingEvents() {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    event_queue.clear();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    std::scoped_lock lock{basic_lock};
 | 
			
		||||
 | 
			
		||||
    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
 | 
			
		||||
        return e.type.lock().get() == event_type.get();
 | 
			
		||||
@@ -251,28 +220,27 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::RegisterPauseCallback(PauseCallback&& callback) {
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    std::scoped_lock lock{basic_lock};
 | 
			
		||||
    pause_callbacks.emplace_back(std::move(callback));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::optional<s64> CoreTiming::Advance() {
 | 
			
		||||
    std::scoped_lock lock{advance_lock, basic_lock};
 | 
			
		||||
    global_timer = GetGlobalTimeNs().count();
 | 
			
		||||
 | 
			
		||||
    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
    while (!event_queue.empty() && event_queue.front().time <= global_timer) {
 | 
			
		||||
        Event evt = std::move(event_queue.front());
 | 
			
		||||
        std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
 | 
			
		||||
        event_queue.pop_back();
 | 
			
		||||
 | 
			
		||||
        if (const auto event_type{evt.type.lock()}) {
 | 
			
		||||
            event_mutex.unlock();
 | 
			
		||||
            basic_lock.unlock();
 | 
			
		||||
 | 
			
		||||
            const auto new_schedule_time{event_type->callback(
 | 
			
		||||
                evt.user_data, evt.time,
 | 
			
		||||
                std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt.time})};
 | 
			
		||||
 | 
			
		||||
            event_mutex.lock();
 | 
			
		||||
            pending_events.fetch_sub(1, std::memory_order_relaxed);
 | 
			
		||||
            basic_lock.lock();
 | 
			
		||||
 | 
			
		||||
            if (evt.reschedule_time != 0) {
 | 
			
		||||
                // If this event was scheduled into a pause, its time now is going to be way behind.
 | 
			
		||||
@@ -285,9 +253,9 @@ std::optional<s64> CoreTiming::Advance() {
 | 
			
		||||
                const auto next_schedule_time{new_schedule_time.has_value()
 | 
			
		||||
                                                  ? new_schedule_time.value().count()
 | 
			
		||||
                                                  : evt.reschedule_time};
 | 
			
		||||
 | 
			
		||||
                event_queue.emplace_back(
 | 
			
		||||
                    Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
 | 
			
		||||
                pending_events.fetch_add(1, std::memory_order_relaxed);
 | 
			
		||||
                std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
@@ -304,34 +272,27 @@ std::optional<s64> CoreTiming::Advance() {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void CoreTiming::ThreadLoop() {
 | 
			
		||||
    const auto predicate = [this] { return !event_queue.empty() || is_paused; };
 | 
			
		||||
    has_started = true;
 | 
			
		||||
    while (!shutting_down) {
 | 
			
		||||
        while (!is_paused && !shutting_down) {
 | 
			
		||||
        while (!paused) {
 | 
			
		||||
            paused_set = false;
 | 
			
		||||
            const auto next_time = Advance();
 | 
			
		||||
            if (next_time) {
 | 
			
		||||
                if (*next_time > 0) {
 | 
			
		||||
                    std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
 | 
			
		||||
                    std::unique_lock main_lock(event_mutex);
 | 
			
		||||
                    event_cv.wait_for(main_lock, next_time_ns, predicate);
 | 
			
		||||
                    event.WaitFor(next_time_ns);
 | 
			
		||||
                }
 | 
			
		||||
            } else {
 | 
			
		||||
                std::unique_lock main_lock(event_mutex);
 | 
			
		||||
                event_cv.wait(main_lock, predicate);
 | 
			
		||||
                wait_set = true;
 | 
			
		||||
                event.Wait();
 | 
			
		||||
            }
 | 
			
		||||
            wait_set = false;
 | 
			
		||||
        }
 | 
			
		||||
        std::unique_lock main_lock(event_mutex);
 | 
			
		||||
        pause_count++;
 | 
			
		||||
        if (pause_count == worker_threads.size()) {
 | 
			
		||||
            clock->Pause(true);
 | 
			
		||||
            wait_signal_cv.notify_all();
 | 
			
		||||
        }
 | 
			
		||||
        wait_pause_cv.wait(main_lock, [this] { return !is_paused || shutting_down; });
 | 
			
		||||
        pause_count--;
 | 
			
		||||
        if (pause_count == 0) {
 | 
			
		||||
            clock->Pause(false);
 | 
			
		||||
            wait_signal_cv.notify_all();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        paused_set = true;
 | 
			
		||||
        clock->Pause(true);
 | 
			
		||||
        pause_event.Wait();
 | 
			
		||||
        clock->Pause(false);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -5,7 +5,6 @@
 | 
			
		||||
 | 
			
		||||
#include <atomic>
 | 
			
		||||
#include <chrono>
 | 
			
		||||
#include <condition_variable>
 | 
			
		||||
#include <functional>
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include <mutex>
 | 
			
		||||
@@ -15,6 +14,7 @@
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
#include "common/common_types.h"
 | 
			
		||||
#include "common/thread.h"
 | 
			
		||||
#include "common/wall_clock.h"
 | 
			
		||||
 | 
			
		||||
namespace Core::Timing {
 | 
			
		||||
@@ -143,7 +143,7 @@ private:
 | 
			
		||||
    /// Clear all pending events. This should ONLY be done on exit.
 | 
			
		||||
    void ClearPendingEvents();
 | 
			
		||||
 | 
			
		||||
    static void ThreadEntry(CoreTiming& instance, size_t id);
 | 
			
		||||
    static void ThreadEntry(CoreTiming& instance);
 | 
			
		||||
    void ThreadLoop();
 | 
			
		||||
 | 
			
		||||
    std::unique_ptr<Common::WallClock> clock;
 | 
			
		||||
@@ -156,24 +156,21 @@ private:
 | 
			
		||||
    // accomodated by the standard adaptor class.
 | 
			
		||||
    std::vector<Event> event_queue;
 | 
			
		||||
    u64 event_fifo_id = 0;
 | 
			
		||||
    std::atomic<size_t> pending_events{};
 | 
			
		||||
 | 
			
		||||
    std::shared_ptr<EventType> ev_lost;
 | 
			
		||||
    Common::Event event{};
 | 
			
		||||
    Common::Event pause_event{};
 | 
			
		||||
    std::mutex basic_lock;
 | 
			
		||||
    std::mutex advance_lock;
 | 
			
		||||
    std::unique_ptr<std::thread> timer_thread;
 | 
			
		||||
    std::atomic<bool> paused{};
 | 
			
		||||
    std::atomic<bool> paused_set{};
 | 
			
		||||
    std::atomic<bool> wait_set{};
 | 
			
		||||
    std::atomic<bool> shutting_down{};
 | 
			
		||||
    std::atomic<bool> has_started{};
 | 
			
		||||
    std::function<void()> on_thread_init{};
 | 
			
		||||
 | 
			
		||||
    std::vector<std::thread> worker_threads;
 | 
			
		||||
 | 
			
		||||
    std::condition_variable event_cv;
 | 
			
		||||
    std::condition_variable wait_pause_cv;
 | 
			
		||||
    std::condition_variable wait_signal_cv;
 | 
			
		||||
    mutable std::mutex event_mutex;
 | 
			
		||||
 | 
			
		||||
    std::atomic<bool> paused_state{};
 | 
			
		||||
    bool is_paused{};
 | 
			
		||||
    bool shutting_down{};
 | 
			
		||||
    bool is_multicore{};
 | 
			
		||||
    size_t pause_count{};
 | 
			
		||||
    s64 pause_end_time{};
 | 
			
		||||
 | 
			
		||||
    /// Cycle timing
 | 
			
		||||
 
 | 
			
		||||
@@ -8,7 +8,6 @@
 | 
			
		||||
#include <chrono>
 | 
			
		||||
#include <cstdlib>
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include <mutex>
 | 
			
		||||
#include <optional>
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
@@ -23,15 +22,14 @@ std::array<s64, 5> delays{};
 | 
			
		||||
 | 
			
		||||
std::bitset<CB_IDS.size()> callbacks_ran_flags;
 | 
			
		||||
u64 expected_callback = 0;
 | 
			
		||||
std::mutex control_mutex;
 | 
			
		||||
 | 
			
		||||
template <unsigned int IDX>
 | 
			
		||||
std::optional<std::chrono::nanoseconds> HostCallbackTemplate(std::uintptr_t user_data, s64 time,
 | 
			
		||||
                                                             std::chrono::nanoseconds ns_late) {
 | 
			
		||||
    std::unique_lock<std::mutex> lk(control_mutex);
 | 
			
		||||
    static_assert(IDX < CB_IDS.size(), "IDX out of range");
 | 
			
		||||
    callbacks_ran_flags.set(IDX);
 | 
			
		||||
    REQUIRE(CB_IDS[IDX] == user_data);
 | 
			
		||||
    REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
 | 
			
		||||
    delays[IDX] = ns_late.count();
 | 
			
		||||
    ++expected_callback;
 | 
			
		||||
    return std::nullopt;
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user