Compare commits
	
		
			3 Commits
		
	
	
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|  | cfdb10a7ba | ||
|  | 8012b28b92 | ||
|  | 531d280461 | 
| @@ -95,6 +95,8 @@ add_library(video_core STATIC | ||||
|     renderer_software/sw_proctex.h | ||||
|     renderer_software/sw_rasterizer.cpp | ||||
|     renderer_software/sw_rasterizer.h | ||||
|     renderer_software/sw_tev_jit.cpp | ||||
|     renderer_software/sw_tev_jit.h | ||||
|     renderer_software/sw_texturing.cpp | ||||
|     renderer_software/sw_texturing.h | ||||
|     renderer_vulkan/pica_to_vk.h | ||||
|   | ||||
| @@ -8,6 +8,7 @@ | ||||
| #include "core/hw/hw.h" | ||||
| #include "core/hw/lcd.h" | ||||
| #include "video_core/renderer_software/renderer_software.h" | ||||
| #include "video_core/renderer_software/sw_rasterizer.h" | ||||
|  | ||||
| namespace SwRenderer { | ||||
|  | ||||
| @@ -17,6 +18,10 @@ RendererSoftware::RendererSoftware(Core::System& system, Frontend::EmuWindow& wi | ||||
|  | ||||
| RendererSoftware::~RendererSoftware() = default; | ||||
|  | ||||
| VideoCore::RasterizerInterface* RendererSoftware::Rasterizer() const { | ||||
|     return rasterizer.get(); | ||||
| } | ||||
|  | ||||
| void RendererSoftware::SwapBuffers() { | ||||
|     PrepareRenderTarget(); | ||||
|     EndFrame(); | ||||
|   | ||||
| @@ -5,7 +5,6 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "video_core/renderer_base.h" | ||||
| #include "video_core/renderer_software/sw_rasterizer.h" | ||||
|  | ||||
| namespace Core { | ||||
| class System; | ||||
| @@ -19,19 +18,18 @@ struct ScreenInfo { | ||||
|     std::vector<u8> pixels; | ||||
| }; | ||||
|  | ||||
| class RasterizerSoftware; | ||||
|  | ||||
| class RendererSoftware : public VideoCore::RendererBase { | ||||
| public: | ||||
|     explicit RendererSoftware(Core::System& system, Frontend::EmuWindow& window); | ||||
|     ~RendererSoftware() override; | ||||
|  | ||||
|     [[nodiscard]] VideoCore::RasterizerInterface* Rasterizer() const override { | ||||
|         return rasterizer.get(); | ||||
|     } | ||||
|  | ||||
|     [[nodiscard]] const ScreenInfo& Screen(VideoCore::ScreenId id) const noexcept { | ||||
|         return screen_infos[static_cast<u32>(id)]; | ||||
|     } | ||||
|  | ||||
|     VideoCore::RasterizerInterface* Rasterizer() const override; | ||||
|     void SwapBuffers() override; | ||||
|     void TryPresent(int timeout_ms, bool is_secondary) override {} | ||||
|     void Sync() override {} | ||||
|   | ||||
| @@ -41,10 +41,22 @@ Framebuffer::Framebuffer(Memory::MemorySystem& memory_, const Pica::FramebufferR | ||||
|  | ||||
| Framebuffer::~Framebuffer() = default; | ||||
|  | ||||
| void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||||
| void Framebuffer::Bind() { | ||||
|     PAddr addr = regs.framebuffer.GetColorBufferPhysicalAddress(); | ||||
|     if (color_addr != addr) [[unlikely]] { | ||||
|         color_addr = addr; | ||||
|         color_buffer = memory.GetPhysicalPointer(color_addr); | ||||
|     } | ||||
|  | ||||
|     addr = regs.framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|     if (depth_addr != addr) [[unlikely]] { | ||||
|         depth_addr = addr; | ||||
|         depth_buffer = memory.GetPhysicalPointer(depth_addr); | ||||
|     } | ||||
| } | ||||
|  | ||||
| void Framebuffer::DrawPixel(u32 x, u32 y, const Common::Vec4<u8>& color) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     // Similarly to textures, the render framebuffer is laid out from bottom to top, too. | ||||
|     // NOTE: The framebuffer height register contains the actual FB height minus one. | ||||
|     y = framebuffer.height - y; | ||||
| @@ -54,8 +66,7 @@ void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const { | ||||
|         GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value())); | ||||
|     const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + | ||||
|                            coarse_y * framebuffer.width * bytes_per_pixel; | ||||
|     u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     u8* dst_pixel = depth_buffer + dst_offset; | ||||
|     u8* dst_pixel = color_buffer + dst_offset; | ||||
|  | ||||
|     switch (framebuffer.color_format) { | ||||
|     case FramebufferRegs::ColorFormat::RGBA8: | ||||
| @@ -80,10 +91,8 @@ void Framebuffer::DrawPixel(int x, int y, const Common::Vec4<u8>& color) const { | ||||
|     } | ||||
| } | ||||
|  | ||||
| const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const { | ||||
| const Common::Vec4<u8> Framebuffer::GetPixel(u32 x, u32 y) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||||
|  | ||||
|     y = framebuffer.height - y; | ||||
|  | ||||
|     const u32 coarse_y = y & ~7; | ||||
| @@ -91,7 +100,6 @@ const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const { | ||||
|         GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value())); | ||||
|     const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + | ||||
|                            coarse_y * framebuffer.width * bytes_per_pixel; | ||||
|     const u8* color_buffer = memory.GetPhysicalPointer(addr); | ||||
|     const u8* src_pixel = color_buffer + src_offset; | ||||
|  | ||||
|     switch (framebuffer.color_format) { | ||||
| @@ -114,10 +122,8 @@ const Common::Vec4<u8> Framebuffer::GetPixel(int x, int y) const { | ||||
|     return {0, 0, 0, 0}; | ||||
| } | ||||
|  | ||||
| u32 Framebuffer::GetDepth(int x, int y) const { | ||||
| u32 Framebuffer::GetDepth(u32 x, u32 y) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|  | ||||
|     y = framebuffer.height - y; | ||||
|  | ||||
|     const u32 coarse_y = y & ~7; | ||||
| @@ -125,7 +131,6 @@ u32 Framebuffer::GetDepth(int x, int y) const { | ||||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
|  | ||||
|     const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     const u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     const u8* src_pixel = depth_buffer + src_offset; | ||||
|  | ||||
|     switch (framebuffer.depth_format) { | ||||
| @@ -143,10 +148,8 @@ u32 Framebuffer::GetDepth(int x, int y) const { | ||||
|     } | ||||
| } | ||||
|  | ||||
| u8 Framebuffer::GetStencil(int x, int y) const { | ||||
| u8 Framebuffer::GetStencil(u32 x, u32 y) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|  | ||||
|     y = framebuffer.height - y; | ||||
|  | ||||
|     const u32 coarse_y = y & ~7; | ||||
| @@ -154,7 +157,6 @@ u8 Framebuffer::GetStencil(int x, int y) const { | ||||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
|  | ||||
|     const u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     const u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     const u8* src_pixel = depth_buffer + src_offset; | ||||
|  | ||||
|     switch (framebuffer.depth_format) { | ||||
| @@ -169,10 +171,8 @@ u8 Framebuffer::GetStencil(int x, int y) const { | ||||
|     } | ||||
| } | ||||
|  | ||||
| void Framebuffer::SetDepth(int x, int y, u32 value) const { | ||||
| void Framebuffer::SetDepth(u32 x, u32 y, u32 value) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|  | ||||
|     y = framebuffer.height - y; | ||||
|  | ||||
|     const u32 coarse_y = y & ~7; | ||||
| @@ -180,7 +180,6 @@ void Framebuffer::SetDepth(int x, int y, u32 value) const { | ||||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
|  | ||||
|     const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     u8* dst_pixel = depth_buffer + dst_offset; | ||||
|  | ||||
|     switch (framebuffer.depth_format) { | ||||
| @@ -201,10 +200,8 @@ void Framebuffer::SetDepth(int x, int y, u32 value) const { | ||||
|     } | ||||
| } | ||||
|  | ||||
| void Framebuffer::SetStencil(int x, int y, u8 value) const { | ||||
| void Framebuffer::SetStencil(u32 x, u32 y, u8 value) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|  | ||||
|     y = framebuffer.height - y; | ||||
|  | ||||
|     const u32 coarse_y = y & ~7; | ||||
| @@ -212,7 +209,6 @@ void Framebuffer::SetStencil(int x, int y, u8 value) const { | ||||
|     const u32 stride = framebuffer.width * bytes_per_pixel; | ||||
|  | ||||
|     const u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; | ||||
|     u8* depth_buffer = memory.GetPhysicalPointer(addr); | ||||
|     u8* dst_pixel = depth_buffer + dst_offset; | ||||
|  | ||||
|     switch (framebuffer.depth_format) { | ||||
| @@ -231,7 +227,7 @@ void Framebuffer::SetStencil(int x, int y, u8 value) const { | ||||
|     } | ||||
| } | ||||
|  | ||||
| void Framebuffer::DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) const { | ||||
| void Framebuffer::DrawShadowMapPixel(u32 x, u32 y, u32 depth, u8 stencil) const { | ||||
|     const auto& framebuffer = regs.framebuffer; | ||||
|     const auto& shadow = regs.shadow; | ||||
|     const PAddr addr = framebuffer.GetColorBufferPhysicalAddress(); | ||||
|   | ||||
| @@ -23,30 +23,37 @@ public: | ||||
|     explicit Framebuffer(Memory::MemorySystem& memory, const Pica::FramebufferRegs& framebuffer); | ||||
|     ~Framebuffer(); | ||||
|  | ||||
|     /// Updates the framebuffer addresses from the PICA registers. | ||||
|     void Bind(); | ||||
|  | ||||
|     /// Draws a pixel at the specified coordinates. | ||||
|     void DrawPixel(int x, int y, const Common::Vec4<u8>& color) const; | ||||
|     void DrawPixel(u32 x, u32 y, const Common::Vec4<u8>& color) const; | ||||
|  | ||||
|     /// Returns the current color at the specified coordinates. | ||||
|     [[nodiscard]] const Common::Vec4<u8> GetPixel(int x, int y) const; | ||||
|     [[nodiscard]] const Common::Vec4<u8> GetPixel(u32 x, u32 y) const; | ||||
|  | ||||
|     /// Returns the depth value at the specified coordinates. | ||||
|     [[nodiscard]] u32 GetDepth(int x, int y) const; | ||||
|     [[nodiscard]] u32 GetDepth(u32 x, u32 y) const; | ||||
|  | ||||
|     /// Returns the stencil value at the specified coordinates. | ||||
|     [[nodiscard]] u8 GetStencil(int x, int y) const; | ||||
|     [[nodiscard]] u8 GetStencil(u32 x, u32 y) const; | ||||
|  | ||||
|     /// Stores the provided depth value at the specified coordinates. | ||||
|     void SetDepth(int x, int y, u32 value) const; | ||||
|     void SetDepth(u32 x, u32 y, u32 value) const; | ||||
|  | ||||
|     /// Stores the provided stencil value at the specified coordinates. | ||||
|     void SetStencil(int x, int y, u8 value) const; | ||||
|     void SetStencil(u32 x, u32 y, u8 value) const; | ||||
|  | ||||
|     /// Draws a pixel to the shadow buffer. | ||||
|     void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) const; | ||||
|     void DrawShadowMapPixel(u32 x, u32 y, u32 depth, u8 stencil) const; | ||||
|  | ||||
| private: | ||||
|     Memory::MemorySystem& memory; | ||||
|     const Pica::FramebufferRegs& regs; | ||||
|     PAddr color_addr; | ||||
|     u8* color_buffer{}; | ||||
|     PAddr depth_addr; | ||||
|     u8* depth_buffer{}; | ||||
| }; | ||||
|  | ||||
| u8 PerformStencilAction(Pica::FramebufferRegs::StencilAction action, u8 old_stencil, u8 ref); | ||||
|   | ||||
| @@ -95,8 +95,14 @@ private: | ||||
|  | ||||
| } // Anonymous namespace | ||||
|  | ||||
| // Kirby Blowout Blast relies on the combiner output of a previous draw | ||||
| // in order to render the sky correctly. | ||||
| static thread_local Common::Vec4<u8> combiner_output{}; | ||||
|  | ||||
| RasterizerSoftware::RasterizerSoftware(Memory::MemorySystem& memory_) | ||||
|     : memory{memory_}, state{Pica::g_state}, regs{state.regs}, fb{memory, regs.framebuffer} {} | ||||
|     : memory{memory_}, state{Pica::g_state}, regs{state.regs}, | ||||
|       num_sw_threads{std::max(std::thread::hardware_concurrency(), 2U)}, | ||||
|       sw_workers{num_sw_threads, "SwRenderer workers"}, fb{memory, regs.framebuffer} {} | ||||
|  | ||||
| void RasterizerSoftware::AddTriangle(const Pica::Shader::OutputVertex& v0, | ||||
|                                      const Pica::Shader::OutputVertex& v1, | ||||
| @@ -289,167 +295,194 @@ void RasterizerSoftware::ProcessTriangle(const Vertex& v0, const Vertex& v1, con | ||||
|  | ||||
|     const auto w_inverse = Common::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); | ||||
|  | ||||
|     auto textures = regs.texturing.GetTextures(); | ||||
|     const auto textures = regs.texturing.GetTextures(); | ||||
|     const auto tev_stages = regs.texturing.GetTevStages(); | ||||
|     for (u32 i = 0; i < texture_data.size(); i++) { | ||||
|         const PAddr addr = textures[i].config.GetPhysicalAddress(); | ||||
|         if (addr) { | ||||
|             texture_data[i] = memory.GetPhysicalPointer(addr); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     fb.Bind(); | ||||
|  | ||||
|     if (use_jit) { | ||||
|         const TevConfigKey key{regs.texturing}; | ||||
|         auto [it, new_fun] = tev_cache.try_emplace(key.Hash()); | ||||
|         if (new_fun) { | ||||
|             it->second = std::make_unique<TevConfig>(regs, key); | ||||
|         } | ||||
|         tev_config = it->second.get(); | ||||
|     } | ||||
|  | ||||
|     // Enter rasterization loop, starting at the center of the topleft bounding box corner. | ||||
|     // TODO: Not sure if looping through x first might be faster | ||||
|     for (u16 y = min_y + 8; y < max_y; y += 0x10) { | ||||
|         for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||||
|             // Do not process the pixel if it's inside the scissor box and the scissor mode is set | ||||
|             // to Exclude. | ||||
|             if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { | ||||
|                 if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) { | ||||
|         const auto process_scanline = [&, y] { | ||||
|             for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||||
|                 // Do not process the pixel if it's inside the scissor box and the scissor mode is | ||||
|                 // set to Exclude. | ||||
|                 if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { | ||||
|                     if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) { | ||||
|                         continue; | ||||
|                     } | ||||
|                 } | ||||
|  | ||||
|                 // Calculate the barycentric coordinates w0, w1 and w2 | ||||
|                 const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||||
|                 const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); | ||||
|                 const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); | ||||
|                 const s32 wsum = w0 + w1 + w2; | ||||
|  | ||||
|                 // If current pixel is not covered by the current primitive | ||||
|                 if (w0 < 0 || w1 < 0 || w2 < 0) { | ||||
|                     continue; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             // Calculate the barycentric coordinates w0, w1 and w2 | ||||
|             const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||||
|             const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); | ||||
|             const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); | ||||
|             const s32 wsum = w0 + w1 + w2; | ||||
|                 const auto baricentric_coordinates = Common::MakeVec( | ||||
|                     f24::FromFloat32(static_cast<f32>(w0)), f24::FromFloat32(static_cast<f32>(w1)), | ||||
|                     f24::FromFloat32(static_cast<f32>(w2))); | ||||
|                 const f24 interpolated_w_inverse = | ||||
|                     f24::One() / Common::Dot(w_inverse, baricentric_coordinates); | ||||
|  | ||||
|             // If current pixel is not covered by the current primitive | ||||
|             if (w0 < 0 || w1 < 0 || w2 < 0) { | ||||
|                 continue; | ||||
|             } | ||||
|                 // interpolated_z = z / w | ||||
|                 const float interpolated_z_over_w = | ||||
|                     (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + | ||||
|                      v2.screenpos[2].ToFloat32() * w2) / | ||||
|                     wsum; | ||||
|  | ||||
|             const auto baricentric_coordinates = Common::MakeVec( | ||||
|                 f24::FromFloat32(static_cast<f32>(w0)), f24::FromFloat32(static_cast<f32>(w1)), | ||||
|                 f24::FromFloat32(static_cast<f32>(w2))); | ||||
|             const f24 interpolated_w_inverse = | ||||
|                 f24::One() / Common::Dot(w_inverse, baricentric_coordinates); | ||||
|                 // Not fully accurate. About 3 bits in precision are missing. | ||||
|                 // Z-Buffer (z / w * scale + offset) | ||||
|                 const float depth_scale = | ||||
|                     f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); | ||||
|                 const float depth_offset = | ||||
|                     f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); | ||||
|                 float depth = interpolated_z_over_w * depth_scale + depth_offset; | ||||
|  | ||||
|             // interpolated_z = z / w | ||||
|             const float interpolated_z_over_w = | ||||
|                 (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + | ||||
|                  v2.screenpos[2].ToFloat32() * w2) / | ||||
|                 wsum; | ||||
|                 // Potentially switch to W-Buffer | ||||
|                 if (regs.rasterizer.depthmap_enable == | ||||
|                     Pica::RasterizerRegs::DepthBuffering::WBuffering) { | ||||
|                     // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) | ||||
|                     depth *= interpolated_w_inverse.ToFloat32() * wsum; | ||||
|                 } | ||||
|  | ||||
|             // Not fully accurate. About 3 bits in precision are missing. | ||||
|             // Z-Buffer (z / w * scale + offset) | ||||
|             const float depth_scale = | ||||
|                 f24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); | ||||
|             const float depth_offset = | ||||
|                 f24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); | ||||
|             float depth = interpolated_z_over_w * depth_scale + depth_offset; | ||||
|                 // Clamp the result | ||||
|                 depth = std::clamp(depth, 0.0f, 1.0f); | ||||
|  | ||||
|             // Potentially switch to W-Buffer | ||||
|             if (regs.rasterizer.depthmap_enable == | ||||
|                 Pica::RasterizerRegs::DepthBuffering::WBuffering) { | ||||
|                 // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) | ||||
|                 depth *= interpolated_w_inverse.ToFloat32() * wsum; | ||||
|             } | ||||
|  | ||||
|             // Clamp the result | ||||
|             depth = std::clamp(depth, 0.0f, 1.0f); | ||||
|  | ||||
|             /** | ||||
|              * Perspective correct attribute interpolation: | ||||
|              * Attribute values cannot be calculated by simple linear interpolation since | ||||
|              * they are not linear in screen space. For example, when interpolating a | ||||
|              * texture coordinate across two vertices, something simple like | ||||
|              *     u = (u0*w0 + u1*w1)/(w0+w1) | ||||
|              * will not work. However, the attribute value divided by the | ||||
|              * clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear | ||||
|              * in screenspace. Hence, we can linearly interpolate these two independently and | ||||
|              * calculate the interpolated attribute by dividing the results. | ||||
|              * I.e. | ||||
|              *     u_over_w   = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) | ||||
|              *     one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) | ||||
|              *     u = u_over_w / one_over_w | ||||
|              * | ||||
|              * The generalization to three vertices is straightforward in baricentric coordinates. | ||||
|              **/ | ||||
|             const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) { | ||||
|                 auto attr_over_w = Common::MakeVec(attr0, attr1, attr2); | ||||
|                 f24 interpolated_attr_over_w = Common::Dot(attr_over_w, baricentric_coordinates); | ||||
|                 return interpolated_attr_over_w * interpolated_w_inverse; | ||||
|             }; | ||||
|  | ||||
|             const Common::Vec4<u8> primary_color{ | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|                 static_cast<u8>( | ||||
|                     round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a()) | ||||
|                               .ToFloat32() * | ||||
|                           255)), | ||||
|             }; | ||||
|  | ||||
|             std::array<Common::Vec2<f24>, 3> uv; | ||||
|             uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); | ||||
|             uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); | ||||
|             uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); | ||||
|             uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); | ||||
|             uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); | ||||
|             uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); | ||||
|  | ||||
|             // Sample bound texture units. | ||||
|             const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||||
|             const auto texture_color = TextureColor(uv, textures, tc0_w); | ||||
|  | ||||
|             Common::Vec4<u8> primary_fragment_color = {0, 0, 0, 0}; | ||||
|             Common::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0}; | ||||
|  | ||||
|             if (!regs.lighting.disable) { | ||||
|                 const auto normquat = | ||||
|                     Common::Quaternion<f32>{ | ||||
|                         {get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(), | ||||
|                          get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(), | ||||
|                          get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()}, | ||||
|                         get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), | ||||
|                     } | ||||
|                         .Normalized(); | ||||
|  | ||||
|                 const Common::Vec3f view{ | ||||
|                     get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), | ||||
|                     get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), | ||||
|                     get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), | ||||
|                 /** | ||||
|                  * Perspective correct attribute interpolation: | ||||
|                  * Attribute values cannot be calculated by simple linear interpolation since | ||||
|                  * they are not linear in screen space. For example, when interpolating a | ||||
|                  * texture coordinate across two vertices, something simple like | ||||
|                  *     u = (u0*w0 + u1*w1)/(w0+w1) | ||||
|                  * will not work. However, the attribute value divided by the | ||||
|                  * clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear | ||||
|                  * in screenspace. Hence, we can linearly interpolate these two independently and | ||||
|                  * calculate the interpolated attribute by dividing the results. | ||||
|                  * I.e. | ||||
|                  *     u_over_w   = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) | ||||
|                  *     one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) | ||||
|                  *     u = u_over_w / one_over_w | ||||
|                  * | ||||
|                  * The generalization to three vertices is straightforward in baricentric | ||||
|                  *coordinates. | ||||
|                  **/ | ||||
|                 const auto get_interpolated_attribute = [&](f24 attr0, f24 attr1, f24 attr2) { | ||||
|                     auto attr_over_w = Common::MakeVec(attr0, attr1, attr2); | ||||
|                     f24 interpolated_attr_over_w = | ||||
|                         Common::Dot(attr_over_w, baricentric_coordinates); | ||||
|                     return interpolated_attr_over_w * interpolated_w_inverse; | ||||
|                 }; | ||||
|                 std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors( | ||||
|                     regs.lighting, state.lighting, normquat, view, texture_color); | ||||
|             } | ||||
|  | ||||
|             // Write the TEV stages. | ||||
|             WriteTevConfig(texture_color, tev_stages, primary_color, primary_fragment_color, | ||||
|                            secondary_fragment_color); | ||||
|                 const Common::Vec4<u8> primary_color{ | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.r(), v1.color.r(), v2.color.r()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.g(), v1.color.g(), v2.color.g()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.b(), v1.color.b(), v2.color.b()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                     static_cast<u8>( | ||||
|                         round(get_interpolated_attribute(v0.color.a(), v1.color.a(), v2.color.a()) | ||||
|                                   .ToFloat32() * | ||||
|                               255)), | ||||
|                 }; | ||||
|  | ||||
|             const auto& output_merger = regs.framebuffer.output_merger; | ||||
|             if (output_merger.fragment_operation_mode == | ||||
|                 FramebufferRegs::FragmentOperationMode::Shadow) { | ||||
|                 u32 depth_int = static_cast<u32>(depth * 0xFFFFFF); | ||||
|                 // Use green color as the shadow intensity | ||||
|                 u8 stencil = combiner_output.y; | ||||
|                 fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil); | ||||
|                 // Skip the normal output merger pipeline if it is in shadow mode | ||||
|                 continue; | ||||
|             } | ||||
|                 std::array<Common::Vec2<f24>, 3> uv; | ||||
|                 uv[0].u() = get_interpolated_attribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); | ||||
|                 uv[0].v() = get_interpolated_attribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); | ||||
|                 uv[1].u() = get_interpolated_attribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); | ||||
|                 uv[1].v() = get_interpolated_attribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); | ||||
|                 uv[2].u() = get_interpolated_attribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); | ||||
|                 uv[2].v() = get_interpolated_attribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); | ||||
|  | ||||
|             // Does alpha testing happen before or after stencil? | ||||
|             if (!DoAlphaTest(combiner_output.a())) { | ||||
|                 continue; | ||||
|                 // Sample bound texture units. | ||||
|                 const f24 tc0_w = get_interpolated_attribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); | ||||
|                 auto texture_color = TextureColor(uv, textures, tc0_w); | ||||
|  | ||||
|                 Common::Vec4<u8> primary_fragment_color = {0, 0, 0, 0}; | ||||
|                 Common::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0}; | ||||
|  | ||||
|                 if (!regs.lighting.disable) { | ||||
|                     const auto normquat = | ||||
|                         Common::Quaternion<f32>{ | ||||
|                             {get_interpolated_attribute(v0.quat.x, v1.quat.x, v2.quat.x) | ||||
|                                  .ToFloat32(), | ||||
|                              get_interpolated_attribute(v0.quat.y, v1.quat.y, v2.quat.y) | ||||
|                                  .ToFloat32(), | ||||
|                              get_interpolated_attribute(v0.quat.z, v1.quat.z, v2.quat.z) | ||||
|                                  .ToFloat32()}, | ||||
|                             get_interpolated_attribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), | ||||
|                         } | ||||
|                             .Normalized(); | ||||
|  | ||||
|                     const Common::Vec3f view{ | ||||
|                         get_interpolated_attribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), | ||||
|                         get_interpolated_attribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), | ||||
|                         get_interpolated_attribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), | ||||
|                     }; | ||||
|                     std::tie(primary_fragment_color, secondary_fragment_color) = | ||||
|                         ComputeFragmentsColors(regs.lighting, state.lighting, normquat, view, | ||||
|                                                texture_color); | ||||
|                 } | ||||
|  | ||||
|                 // Write the TEV stages. | ||||
|                 WriteTevConfig(texture_color, tev_stages, primary_color, primary_fragment_color, | ||||
|                                secondary_fragment_color); | ||||
|  | ||||
|                 const auto& output_merger = regs.framebuffer.output_merger; | ||||
|                 if (output_merger.fragment_operation_mode == | ||||
|                     FramebufferRegs::FragmentOperationMode::Shadow) { | ||||
|                     u32 depth_int = static_cast<u32>(depth * 0xFFFFFF); | ||||
|                     // Use green color as the shadow intensity | ||||
|                     u8 stencil = combiner_output.y; | ||||
|                     fb.DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil); | ||||
|                     // Skip the normal output merger pipeline if it is in shadow mode | ||||
|                     continue; | ||||
|                 } | ||||
|  | ||||
|                 // Does alpha testing happen before or after stencil? | ||||
|                 if (!DoAlphaTest(combiner_output.a())) { | ||||
|                     continue; | ||||
|                 } | ||||
|                 WriteFog(depth); | ||||
|                 if (!DoDepthStencilTest(x, y, depth)) { | ||||
|                     continue; | ||||
|                 } | ||||
|                 const auto result = PixelColor(x, y); | ||||
|                 if (regs.framebuffer.framebuffer.allow_color_write != 0) { | ||||
|                     fb.DrawPixel(x >> 4, y >> 4, result); | ||||
|                 } | ||||
|             } | ||||
|             WriteFog(combiner_output, depth); | ||||
|             if (!DoDepthStencilTest(x, y, depth)) { | ||||
|                 continue; | ||||
|             } | ||||
|             const auto result = PixelColor(x, y, combiner_output); | ||||
|             if (regs.framebuffer.framebuffer.allow_color_write != 0) { | ||||
|                 fb.DrawPixel(x >> 4, y >> 4, result); | ||||
|             } | ||||
|         } | ||||
|         }; | ||||
|         sw_workers.QueueWork(std::move(process_scanline)); | ||||
|     } | ||||
|     sw_workers.WaitForRequests(); | ||||
| } | ||||
|  | ||||
| std::array<Common::Vec4<u8>, 4> RasterizerSoftware::TextureColor( | ||||
| @@ -538,11 +571,10 @@ std::array<Common::Vec4<u8>, 4> RasterizerSoftware::TextureColor( | ||||
|             t = texture.config.height - 1 - | ||||
|                 GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); | ||||
|  | ||||
|             const u8* texture_data = memory.GetPhysicalPointer(texture_address); | ||||
|             const auto info = TextureInfo::FromPicaRegister(texture.config, texture.format); | ||||
|  | ||||
|             // TODO: Apply the min and mag filters to the texture | ||||
|             texture_color[i] = LookupTexture(texture_data, s, t, info); | ||||
|             texture_color[i] = LookupTexture(texture_data[i], s, t, info); | ||||
|         } | ||||
|  | ||||
|         if (i == 0 && (texture.config.type == TexturingRegs::TextureConfig::Shadow2D || | ||||
| @@ -572,8 +604,7 @@ std::array<Common::Vec4<u8>, 4> RasterizerSoftware::TextureColor( | ||||
|     return texture_color; | ||||
| } | ||||
|  | ||||
| Common::Vec4<u8> RasterizerSoftware::PixelColor(u16 x, u16 y, | ||||
|                                                 Common::Vec4<u8>& combiner_output) const { | ||||
| Common::Vec4<u8> RasterizerSoftware::PixelColor(u16 x, u16 y) const { | ||||
|     const auto dest = fb.GetPixel(x >> 4, y >> 4); | ||||
|     Common::Vec4<u8> blend_output = combiner_output; | ||||
|  | ||||
| @@ -664,10 +695,20 @@ Common::Vec4<u8> RasterizerSoftware::PixelColor(u16 x, u16 y, | ||||
| } | ||||
|  | ||||
| void RasterizerSoftware::WriteTevConfig( | ||||
|     std::span<const Common::Vec4<u8>, 4> texture_color, | ||||
|     std::span<Common::Vec4<u8>, 4> texture_color, | ||||
|     std::span<const Pica::TexturingRegs::TevStageConfig, 6> tev_stages, | ||||
|     Common::Vec4<u8> primary_color, Common::Vec4<u8> primary_fragment_color, | ||||
|     Common::Vec4<u8> secondary_fragment_color) { | ||||
|  | ||||
| #if CITRA_ARCH(x86_64) | ||||
|     if (use_jit) { | ||||
|         const u32 tev_combiner_buffer_color = regs.texturing.tev_combiner_buffer_color.raw; | ||||
|         combiner_output = tev_config->Run(texture_color, primary_color, primary_fragment_color, | ||||
|                                           secondary_fragment_color, tev_combiner_buffer_color); | ||||
|         return; | ||||
|     } | ||||
| #endif | ||||
|  | ||||
|     /** | ||||
|      * Texture environment - consists of 6 stages of color and alpha combining. | ||||
|      * Color combiners take three input color values from some source (e.g. interpolated | ||||
| @@ -731,6 +772,7 @@ void RasterizerSoftware::WriteTevConfig( | ||||
|             GetColorModifier(tev_stage.color_modifier2, get_source(tev_stage.color_source2)), | ||||
|             GetColorModifier(tev_stage.color_modifier3, get_source(tev_stage.color_source3)), | ||||
|         }; | ||||
|  | ||||
|         const Common::Vec3<u8> color_output = ColorCombine(tev_stage.color_op, color_result); | ||||
|  | ||||
|         u8 alpha_output; | ||||
| @@ -768,7 +810,7 @@ void RasterizerSoftware::WriteTevConfig( | ||||
|     } | ||||
| } | ||||
|  | ||||
| void RasterizerSoftware::WriteFog(Common::Vec4<u8>& combiner_output, float depth) const { | ||||
| void RasterizerSoftware::WriteFog(float depth) const { | ||||
|     /** | ||||
|      * Apply fog combiner. Not fully accurate. We'd have to know what data type is used to | ||||
|      * store the depth etc. Using float for now until we know more about Pica datatypes. | ||||
|   | ||||
| @@ -4,13 +4,20 @@ | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include <memory> | ||||
| #include <span> | ||||
| #include <unordered_map> | ||||
|  | ||||
| #include "common/arch.h" | ||||
| #include "common/thread_worker.h" | ||||
| #include "video_core/rasterizer_interface.h" | ||||
| #include "video_core/regs_texturing.h" | ||||
| #include "video_core/renderer_software/sw_clipper.h" | ||||
| #include "video_core/renderer_software/sw_framebuffer.h" | ||||
|  | ||||
| #if CITRA_ARCH(x86_64) | ||||
| #include "video_core/renderer_software/sw_tev_jit.h" | ||||
| #endif | ||||
|  | ||||
| namespace Pica::Shader { | ||||
| struct OutputVertex; | ||||
| } | ||||
| @@ -52,16 +59,16 @@ private: | ||||
|         std::span<const Pica::TexturingRegs::FullTextureConfig, 3> textures, f24 tc0_w) const; | ||||
|  | ||||
|     /// Returns the final pixel color with blending or logic ops applied. | ||||
|     Common::Vec4<u8> PixelColor(u16 x, u16 y, Common::Vec4<u8>& combiner_output) const; | ||||
|     Common::Vec4<u8> PixelColor(u16 x, u16 y) const; | ||||
|  | ||||
|     /// Emulates the TEV configuration and returns the combiner output. | ||||
|     void WriteTevConfig(std::span<const Common::Vec4<u8>, 4> texture_color, | ||||
|     void WriteTevConfig(std::span<Common::Vec4<u8>, 4> texture_color, | ||||
|                         std::span<const Pica::TexturingRegs::TevStageConfig, 6> tev_stages, | ||||
|                         Common::Vec4<u8> primary_color, Common::Vec4<u8> primary_fragment_color, | ||||
|                         Common::Vec4<u8> secondary_fragment_color); | ||||
|  | ||||
|     /// Blends fog to the combiner output if enabled. | ||||
|     void WriteFog(Common::Vec4<u8>& combiner_output, float depth) const; | ||||
|     void WriteFog(float depth) const; | ||||
|  | ||||
|     /// Performs the alpha test. Returns false if the test failed. | ||||
|     bool DoAlphaTest(u8 alpha) const; | ||||
| @@ -73,10 +80,13 @@ private: | ||||
|     Memory::MemorySystem& memory; | ||||
|     Pica::State& state; | ||||
|     const Pica::Regs& regs; | ||||
|     bool use_jit{true}; | ||||
|     size_t num_sw_threads; | ||||
|     Common::ThreadWorker sw_workers; | ||||
|     Framebuffer fb; | ||||
|     // Kirby Blowout Blast relies on the combiner output of a previous draw | ||||
|     // in order to render the sky correctly. | ||||
|     Common::Vec4<u8> combiner_output{}; | ||||
|     TevCache tev_cache; | ||||
|     TevConfig* tev_config{}; | ||||
|     std::array<const u8*, 3> texture_data{}; | ||||
| }; | ||||
|  | ||||
| } // namespace SwRenderer | ||||
|   | ||||
							
								
								
									
										473
									
								
								src/video_core/renderer_software/sw_tev_jit.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										473
									
								
								src/video_core/renderer_software/sw_tev_jit.cpp
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,473 @@ | ||||
| // Copyright 2023 Citra Emulator Project | ||||
| // Licensed under GPLv2 or any later version | ||||
| // Refer to the license.txt file included. | ||||
|  | ||||
| #include <bit> | ||||
| #include <emmintrin.h> | ||||
| #include "common/x64/xbyak_abi.h" | ||||
| #include "video_core/regs.h" | ||||
| #include "video_core/renderer_software/sw_tev_jit.h" | ||||
|  | ||||
| namespace SwRenderer { | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| using namespace Common::X64; | ||||
| using namespace Xbyak::util; | ||||
| using Pica::TexturingRegs; | ||||
| using Xbyak::Reg32; | ||||
| using Xbyak::Reg64; | ||||
| using Xbyak::Xmm; | ||||
| using TevStageConfig = Pica::TexturingRegs::TevStageConfig; | ||||
|  | ||||
| constexpr Reg32 A0 = r11d; | ||||
| constexpr Reg32 A1 = r12d; | ||||
| constexpr Reg32 A2 = r13d; | ||||
| constexpr Reg32 ALPHA_OUTPUT = r14d; | ||||
| constexpr Xmm COMBINER_OUTPUT = xmm0; | ||||
| constexpr Xmm COMBINER_BUFFER = xmm1; | ||||
| constexpr Xmm NEXT_COMBINER_BUFFER = xmm2; | ||||
| constexpr Xmm VEC0 = xmm3; | ||||
| constexpr Xmm VEC1 = xmm4; | ||||
| constexpr Xmm VEC2 = xmm5; | ||||
| constexpr Xmm COLOR_OUTPUT = xmm6; | ||||
| constexpr Xmm ZERO = xmm13; | ||||
| constexpr Xmm MID_COLOR = xmm14; | ||||
| constexpr Xmm MAX_COLOR = xmm15; | ||||
|  | ||||
| bool IsPassThroughTevStage(const TevStageConfig& stage) { | ||||
|     return (stage.color_op == TevStageConfig::Operation::Replace && | ||||
|             stage.alpha_op == TevStageConfig::Operation::Replace && | ||||
|             stage.color_source1 == TevStageConfig::Source::Previous && | ||||
|             stage.alpha_source1 == TevStageConfig::Source::Previous && | ||||
|             stage.color_modifier1 == TevStageConfig::ColorModifier::SourceColor && | ||||
|             stage.alpha_modifier1 == TevStageConfig::AlphaModifier::SourceAlpha && | ||||
|             stage.GetColorMultiplier() == 1 && stage.GetAlphaMultiplier() == 1); | ||||
| } | ||||
|  | ||||
| } // Anonymous namespace | ||||
|  | ||||
| TevConfigKey::TevConfigKey(const Pica::TexturingRegs& regs) { | ||||
|     const auto& tev_stages = regs.GetTevStages(); | ||||
|     for (size_t i = 0; i < tev_stages.size(); i++) { | ||||
|         const auto& tev_stage = tev_stages[i]; | ||||
|         stages[i].sources_raw = tev_stage.sources_raw; | ||||
|         stages[i].modifiers_raw = tev_stage.modifiers_raw; | ||||
|         stages[i].ops_raw = tev_stage.ops_raw; | ||||
|         stages[i].const_color = tev_stage.const_color; | ||||
|         stages[i].scales_raw = tev_stage.scales_raw; | ||||
|     } | ||||
| } | ||||
|  | ||||
| TevConfig::TevConfig(const Pica::Regs& regs_, const TevConfigKey& key) : regs{regs_} { | ||||
|     WriteTevConfig(key); | ||||
| } | ||||
|  | ||||
| TevConfig::~TevConfig() = default; | ||||
|  | ||||
| Common::Vec4<u8> TevConfig::Run(std::span<Common::Vec4<u8>, 4> texture_color_, | ||||
|                                 Common::Vec4<u8> primary_color_, | ||||
|                                 Common::Vec4<u8> primary_fragment_color_, | ||||
|                                 Common::Vec4<u8> secondary_fragment_color_, | ||||
|                                 u64 tev_combiner_buffer_color) { | ||||
|     u32* texture_color = reinterpret_cast<u32*>(texture_color_.data()); | ||||
|     const u32 primary_color = std::bit_cast<u32>(primary_color_); | ||||
|     const u32 primary_fragment_color = std::bit_cast<u32>(primary_fragment_color_); | ||||
|     const u32 secondary_fragment_color = std::bit_cast<u32>(secondary_fragment_color_); | ||||
|     const u64 secondary_fragment_color_and_tev_combiner_buffer_color = | ||||
|         secondary_fragment_color | (tev_combiner_buffer_color << 32); | ||||
|     const u32 result = program(texture_color, primary_color, primary_fragment_color, | ||||
|                                secondary_fragment_color_and_tev_combiner_buffer_color); | ||||
|     return std::bit_cast<Common::Vec4<u8>>(result); | ||||
| } | ||||
|  | ||||
| void TevConfig::WriteTevConfig(const TevConfigKey& key) { | ||||
|     program = (CompiledTevFun*)getCurr(); | ||||
|  | ||||
|     constexpr Xbyak::Reg TEXTURE_COLOR = ABI_PARAM1; | ||||
|     constexpr Xbyak::Reg PRIMARY_COLOR = ABI_PARAM2; | ||||
|     constexpr Xbyak::Reg PRIMARY_FRAGMENT_COLOR = ABI_PARAM3; | ||||
|     constexpr Xbyak::Reg SECONDARY_FRAGMENT_COLOR = ABI_PARAM4; | ||||
|  | ||||
|     // Save calle state | ||||
|     ABI_PushRegistersAndAdjustStack(*this, ABI_ALL_CALLEE_SAVED, 8, 16); | ||||
|  | ||||
|     // Clear the combiner registers and zero constant | ||||
|     pxor(COMBINER_OUTPUT, COMBINER_OUTPUT); | ||||
|     pxor(COMBINER_BUFFER, COMBINER_BUFFER); | ||||
|     pxor(ZERO, ZERO); | ||||
|  | ||||
|     // Used to set an xmm register to the max color | ||||
|     static const __m128i max = _mm_set1_epi32(255); | ||||
|     mov(rax, reinterpret_cast<size_t>(&max)); | ||||
|     movdqu(MAX_COLOR, xword[rax]); | ||||
|  | ||||
|     // Used to set an xmm register to the mid color | ||||
|     static const __m128i mid = _mm_set1_epi32(128); | ||||
|     mov(rax, reinterpret_cast<size_t>(&mid)); | ||||
|     movdqu(MID_COLOR, xword[rax]); | ||||
|  | ||||
|     // Load next_combiner_buffer | ||||
|     mov(rax, ABI_PARAM4); | ||||
|     shr(rax, 32); | ||||
|     vmovd(NEXT_COMBINER_BUFFER, eax); | ||||
|     pmovzxbd(NEXT_COMBINER_BUFFER, NEXT_COMBINER_BUFFER); | ||||
|  | ||||
|     for (u32 tev_stage_index = 0; tev_stage_index < key.stages.size(); ++tev_stage_index) { | ||||
|         const auto& tev_stage = key.stages[tev_stage_index]; | ||||
|         if (!IsPassThroughTevStage(tev_stage)) { | ||||
|             using Source = TexturingRegs::TevStageConfig::Source; | ||||
|  | ||||
|             const auto get_source = [&](const Xbyak::Xmm& dest, Source source) { | ||||
|                 switch (source) { | ||||
|                 case Source::PrimaryColor: | ||||
|                     vmovd(dest, PRIMARY_COLOR.cvt32()); | ||||
|                     pmovzxbd(dest, dest); | ||||
|                     break; | ||||
|                 case Source::PrimaryFragmentColor: | ||||
|                     vmovd(dest, PRIMARY_FRAGMENT_COLOR.cvt32()); | ||||
|                     pmovzxbd(dest, dest); | ||||
|                     break; | ||||
|                 case Source::SecondaryFragmentColor: | ||||
|                     vmovd(dest, SECONDARY_FRAGMENT_COLOR.cvt32()); | ||||
|                     pmovzxbd(dest, dest); | ||||
|                     break; | ||||
|                 case Source::Texture0: | ||||
|                 case Source::Texture1: | ||||
|                 case Source::Texture2: | ||||
|                 case Source::Texture3: { | ||||
|                     const u32 index = static_cast<u32>(source) - static_cast<u32>(Source::Texture0); | ||||
|                     vmovd(dest, dword[TEXTURE_COLOR + index * sizeof(u32)]); | ||||
|                     pmovzxbd(dest, dest); | ||||
|                     break; | ||||
|                 } | ||||
|                 case Source::PreviousBuffer: | ||||
|                     vmovdqa(dest, COMBINER_BUFFER); | ||||
|                     break; | ||||
|                 case Source::Constant: | ||||
|                     mov(eax, tev_stage.const_color); | ||||
|                     vmovd(dest, eax); | ||||
|                     pmovzxbd(dest, dest); | ||||
|                     break; | ||||
|                 case Source::Previous: | ||||
|                     vmovdqa(dest, COMBINER_OUTPUT); | ||||
|                     break; | ||||
|                 default: | ||||
|                     LOG_ERROR(HW_GPU, "Unknown color combiner source {}", source); | ||||
|                     UNIMPLEMENTED(); | ||||
|                     vmovdqa(dest, ZERO); | ||||
|                 } | ||||
|                 return dest; | ||||
|             }; | ||||
|  | ||||
|             // Load the color modifiers to VEC0/1/2. | ||||
|             GetColorModifier(get_source(VEC0, tev_stage.color_source1), tev_stage.color_modifier1); | ||||
|             GetColorModifier(get_source(VEC1, tev_stage.color_source2), tev_stage.color_modifier2); | ||||
|             GetColorModifier(get_source(VEC2, tev_stage.color_source3), tev_stage.color_modifier3); | ||||
|  | ||||
|             // Combine the texture colors to COLOR_OUTPUT. | ||||
|             ColorCombine(COLOR_OUTPUT, tev_stage.color_op); | ||||
|  | ||||
|             if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) { | ||||
|                 // Result of Dot3_RGBA operation is also placed to the alpha component | ||||
|                 vmovd(ALPHA_OUTPUT.cvt32(), COLOR_OUTPUT); | ||||
|             } else { | ||||
|                 // Load the alpha modifers to VEC0/1/2. | ||||
|                 GetAlphaModifier(get_source(VEC0, tev_stage.alpha_source1), A0, | ||||
|                                  tev_stage.alpha_modifier1); | ||||
|                 GetAlphaModifier(get_source(VEC1, tev_stage.alpha_source2), A1, | ||||
|                                  tev_stage.alpha_modifier2); | ||||
|                 GetAlphaModifier(get_source(VEC2, tev_stage.alpha_source3), A2, | ||||
|                                  tev_stage.alpha_modifier3); | ||||
|  | ||||
|                 // Combine the alpha values to ALPHA_OUTPUT. | ||||
|                 AlphaCombine(ALPHA_OUTPUT, tev_stage.alpha_op); | ||||
|             } | ||||
|  | ||||
|             // Load the color multipler to an SSE vector. | ||||
|             mov(eax, tev_stage.GetColorMultiplier()); | ||||
|             movd(VEC0, eax); | ||||
|             pshufd(VEC0, VEC0, 0); | ||||
|  | ||||
|             // Multiply color output with the multiplier and take the minimum. | ||||
|             pmulld(COLOR_OUTPUT, VEC0); | ||||
|             pminsd(COLOR_OUTPUT, MAX_COLOR); | ||||
|  | ||||
|             // Load the alpha multiplier, multiply it with the alpha output. | ||||
|             mov(eax, tev_stage.GetAlphaMultiplier()); | ||||
|             imul(ALPHA_OUTPUT, eax); | ||||
|  | ||||
|             // Load result to a vector and take the minimum | ||||
|             movd(VEC0, ALPHA_OUTPUT); | ||||
|             pshufd(VEC0, VEC0, 0); | ||||
|             pminsd(VEC0, MAX_COLOR); | ||||
|  | ||||
|             // Blend vectors to get the combiner output | ||||
|             vpblendd(COMBINER_OUTPUT, COLOR_OUTPUT, VEC0, 0b1000); | ||||
|         } | ||||
|  | ||||
|         // Set combiner buffer to the next buffer | ||||
|         movq(COMBINER_BUFFER, NEXT_COMBINER_BUFFER); | ||||
|  | ||||
|         if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor( | ||||
|                 tev_stage_index)) { | ||||
|             vpblendd(NEXT_COMBINER_BUFFER, COMBINER_OUTPUT, NEXT_COMBINER_BUFFER, 0b1000); | ||||
|         } | ||||
|  | ||||
|         if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha( | ||||
|                 tev_stage_index)) { | ||||
|             vpblendd(NEXT_COMBINER_BUFFER, COMBINER_OUTPUT, NEXT_COMBINER_BUFFER, 0b0111); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     // Pack combiner output to a u32 to be returned. | ||||
|     vpextrd(edx, COMBINER_OUTPUT, 3); | ||||
|     vpextrd(eax, COMBINER_OUTPUT, 2); | ||||
|     sal(edx, 8); | ||||
|     or_(eax, edx); | ||||
|     vpextrd(edx, COMBINER_OUTPUT, 1); | ||||
|     sal(eax, 8); | ||||
|     or_(edx, eax); | ||||
|     vmovd(eax, COMBINER_OUTPUT); | ||||
|     sal(edx, 8); | ||||
|     or_(eax, edx); | ||||
|  | ||||
|     ABI_PopRegistersAndAdjustStack(*this, ABI_ALL_CALLEE_SAVED, 8, 16); | ||||
|     ret(); | ||||
|     ready(); | ||||
| } | ||||
|  | ||||
| void TevConfig::GetColorModifier(const Xbyak::Xmm& dest, TevStageConfig::ColorModifier factor) { | ||||
|     using ColorModifier = TevStageConfig::ColorModifier; | ||||
|  | ||||
|     const auto broadcast = [&](u32 comp) { | ||||
|         const u8 mask = comp | (comp << 2) | (comp << 4); | ||||
|         vpshufd(dest, dest, mask); | ||||
|     }; | ||||
|  | ||||
|     switch (factor) { | ||||
|     case ColorModifier::SourceColor: | ||||
|         vpblendd(dest, dest, ZERO, 0b1000); | ||||
|         break; | ||||
|     case ColorModifier::OneMinusSourceColor: | ||||
|         vpsubd(dest, MAX_COLOR, dest); | ||||
|         break; | ||||
|     case ColorModifier::SourceAlpha: | ||||
|         broadcast(3); | ||||
|         break; | ||||
|     case ColorModifier::OneMinusSourceAlpha: | ||||
|         broadcast(3); | ||||
|         vpsubd(dest, MAX_COLOR, dest); | ||||
|         break; | ||||
|     case ColorModifier::SourceRed: | ||||
|         broadcast(0); | ||||
|         break; | ||||
|     case ColorModifier::OneMinusSourceRed: | ||||
|         broadcast(0); | ||||
|         vpsubd(dest, MAX_COLOR, dest); | ||||
|         break; | ||||
|     case ColorModifier::SourceGreen: | ||||
|         broadcast(1); | ||||
|         break; | ||||
|     case ColorModifier::OneMinusSourceGreen: | ||||
|         broadcast(1); | ||||
|         vpsubd(dest, MAX_COLOR, dest); | ||||
|         break; | ||||
|     case ColorModifier::SourceBlue: | ||||
|         broadcast(2); | ||||
|         break; | ||||
|     case ColorModifier::OneMinusSourceBlue: | ||||
|         broadcast(2); | ||||
|         vpsubd(dest, MAX_COLOR, dest); | ||||
|         break; | ||||
|     default: | ||||
|         UNREACHABLE(); | ||||
|     } | ||||
|     pand(dest, MAX_COLOR); | ||||
| }; | ||||
|  | ||||
| void TevConfig::ColorCombine(const Xbyak::Xmm& dest, TevStageConfig::Operation op) { | ||||
|     using Operation = TevStageConfig::Operation; | ||||
|  | ||||
|     switch (op) { | ||||
|     case Operation::Replace: | ||||
|         vmovdqa(dest, VEC0); | ||||
|         break; | ||||
|     case Operation::Modulate: | ||||
|         pmulld(VEC0, VEC1); | ||||
|         vpsrlq(dest, VEC0, 8); // TODO: This is a very crude approximation of division by 255 | ||||
|         break; | ||||
|     case Operation::Add: | ||||
|         vpaddd(VEC0, VEC0, VEC1); | ||||
|         vpminsd(dest, MAX_COLOR, VEC0); | ||||
|         break; | ||||
|     case Operation::AddSigned: | ||||
|         vpaddd(VEC0, VEC0, VEC1); | ||||
|         vpsubd(VEC0, VEC0, MID_COLOR); | ||||
|         vpminsd(VEC0, VEC0, MAX_COLOR); | ||||
|         vpmaxsd(dest, VEC0, ZERO); | ||||
|         break; | ||||
|     case Operation::Lerp: | ||||
|         pmulld(VEC0, VEC2); | ||||
|         psubd(VEC2, MAX_COLOR); | ||||
|         pmulld(VEC1, VEC2); | ||||
|         vpaddd(dest, VEC0, VEC1); | ||||
|         vpsrlq(dest, VEC0, 8); // TODO: This is a very crude approximation of division by 255 | ||||
|         break; | ||||
|     case Operation::Subtract: | ||||
|         psubd(VEC0, VEC1); | ||||
|         vpmaxsd(dest, VEC0, ZERO); | ||||
|         break; | ||||
|     case Operation::MultiplyThenAdd: | ||||
|         pmulld(VEC0, VEC1); | ||||
|         pmulld(VEC2, MAX_COLOR); | ||||
|         paddd(VEC0, VEC2); | ||||
|         pminsd(VEC0, MAX_COLOR); | ||||
|         vpsrlq(dest, VEC0, 8); // TODO: This is a very crude approximation of division by 255 | ||||
|         break; | ||||
|     case Operation::AddThenMultiply: | ||||
|         paddd(VEC0, VEC1); | ||||
|         pminsd(VEC0, MAX_COLOR); | ||||
|         pmulld(VEC0, VEC2); | ||||
|         vpsrlq(dest, VEC0, 8); // TODO: This is a very crude approximation of division by 255 | ||||
|         break; | ||||
|     case Operation::Dot3_RGB: | ||||
|     case Operation::Dot3_RGBA: | ||||
|         pslld(VEC0, 1); | ||||
|         psubd(VEC0, MAX_COLOR); | ||||
|         pslld(VEC1, 1); | ||||
|         psubd(VEC1, MAX_COLOR); | ||||
|         pmulld(VEC0, VEC1); | ||||
|         paddd(VEC0, MID_COLOR); | ||||
|         psrld(VEC0, 8); | ||||
|         vpblendd(VEC0, VEC0, ZERO, 0b1000); | ||||
|         phaddd(VEC0, VEC0); | ||||
|         phaddd(VEC0, VEC0); | ||||
|         pminsd(VEC0, MAX_COLOR); | ||||
|         pmaxsd(VEC0, ZERO); | ||||
|         pshufd(dest, VEC0, 0); | ||||
|         break; | ||||
|     default: | ||||
|         LOG_ERROR(HW_GPU, "Unknown color combiner operation {}", (int)op); | ||||
|         UNIMPLEMENTED(); | ||||
|     } | ||||
|     pand(dest, MAX_COLOR); | ||||
| }; | ||||
|  | ||||
| void TevConfig::GetAlphaModifier(const Xbyak::Xmm& src, const Xbyak::Reg32& dest, | ||||
|                                  TevStageConfig::AlphaModifier factor) { | ||||
|     using AlphaModifier = TevStageConfig::AlphaModifier; | ||||
|  | ||||
|     const auto get_comp = [&](u32 comp, bool minus = false) { | ||||
|         const auto& reg = minus ? eax : dest; | ||||
|         vpextrd(reg, src, comp); | ||||
|         if (minus) { | ||||
|             mov(dest, 255); | ||||
|             sub(dest, reg); | ||||
|         } | ||||
|     }; | ||||
|  | ||||
|     switch (factor) { | ||||
|     case AlphaModifier::SourceAlpha: | ||||
|         get_comp(3); | ||||
|         break; | ||||
|     case AlphaModifier::OneMinusSourceAlpha: | ||||
|         get_comp(3, true); | ||||
|         break; | ||||
|     case AlphaModifier::SourceRed: | ||||
|         get_comp(0); | ||||
|         break; | ||||
|     case AlphaModifier::OneMinusSourceRed: | ||||
|         get_comp(0, true); | ||||
|         break; | ||||
|     case AlphaModifier::SourceGreen: | ||||
|         get_comp(1); | ||||
|         break; | ||||
|     case AlphaModifier::OneMinusSourceGreen: | ||||
|         get_comp(1, true); | ||||
|         break; | ||||
|     case AlphaModifier::SourceBlue: | ||||
|         get_comp(2); | ||||
|         break; | ||||
|     case AlphaModifier::OneMinusSourceBlue: | ||||
|         get_comp(2, true); | ||||
|         break; | ||||
|     default: | ||||
|         UNREACHABLE(); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| void TevConfig::AlphaCombine(const Xbyak::Reg32& dest, TevStageConfig::Operation op) { | ||||
|     using Operation = TevStageConfig::Operation; | ||||
|  | ||||
|     const auto div_255 = [&](const Reg32& dst, const Reg32& src) { | ||||
|         mov(dst, 0x80808081); | ||||
|         imul(dst.cvt64(), src.cvt64()); | ||||
|         shr(dst.cvt64(), 39); | ||||
|     }; | ||||
|  | ||||
|     switch (op) { | ||||
|     case Operation::Replace: | ||||
|         mov(dest, A0); | ||||
|         break; | ||||
|     case Operation::Modulate: | ||||
|         imul(A0, A1); | ||||
|         div_255(dest, A0); | ||||
|         break; | ||||
|     case Operation::Add: | ||||
|         add(A0, A1); | ||||
|         cmp(A0, 255); | ||||
|         mov(eax, 255); | ||||
|         cmovb(A0, eax); | ||||
|         break; | ||||
|     case Operation::AddSigned: | ||||
|         xor_(eax, eax); | ||||
|         add(A0, A1); | ||||
|         sub(A0, 128); | ||||
|         test(A0, A0); | ||||
|         cmovg(eax, A0); | ||||
|         cmp(eax, 255); | ||||
|         mov(A0, 255); | ||||
|         cmovb(A0, eax); | ||||
|         break; | ||||
|     case Operation::Lerp: | ||||
|         imul(A0, A2); | ||||
|         mov(eax, 255); | ||||
|         sub(eax, A2); | ||||
|         imul(A1, eax); | ||||
|         add(A0, A1); | ||||
|         div_255(dest, A0); | ||||
|         break; | ||||
|     case Operation::Subtract: | ||||
|         sub(A0, A1); | ||||
|         xor_(eax, eax); | ||||
|         test(A0, A0); | ||||
|         cmovl(A0, eax); | ||||
|         mov(dest, A0); | ||||
|         break; | ||||
|     case Operation::MultiplyThenAdd: | ||||
|         imul(A0, A1); | ||||
|         mov(dest, A2); | ||||
|         shl(dest, 8); | ||||
|         sub(dest, A2); | ||||
|         add(dest, A0); | ||||
|         div_255(eax, dest); | ||||
|         cmp(eax, 255); | ||||
|         mov(dest, 255); | ||||
|         cmovb(dest, eax); | ||||
|         break; | ||||
|     case Operation::AddThenMultiply: | ||||
|         add(A0, A1); | ||||
|         cmp(A0, 255); | ||||
|         mov(eax, 255); | ||||
|         cmovg(A0, eax); | ||||
|         imul(A0, A2); | ||||
|         div_255(dest, A0); | ||||
|         break; | ||||
|     default: | ||||
|         LOG_ERROR(HW_GPU, "Unknown alpha combiner operation {}", (int)op); | ||||
|         UNIMPLEMENTED(); | ||||
|     } | ||||
| }; | ||||
|  | ||||
| } // namespace SwRenderer | ||||
							
								
								
									
										64
									
								
								src/video_core/renderer_software/sw_tev_jit.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										64
									
								
								src/video_core/renderer_software/sw_tev_jit.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,64 @@ | ||||
| // Copyright 2023 Citra Emulator Project | ||||
| // Licensed under GPLv2 or any later version | ||||
| // Refer to the license.txt file included. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include <span> | ||||
| #include <xbyak/xbyak.h> | ||||
|  | ||||
| #include "common/hash.h" | ||||
| #include "common/vector_math.h" | ||||
| #include "video_core/regs_texturing.h" | ||||
|  | ||||
| namespace Pica { | ||||
| struct State; | ||||
| struct Regs; | ||||
| } // namespace Pica | ||||
|  | ||||
| namespace SwRenderer { | ||||
|  | ||||
| struct TevConfigKey { | ||||
|     explicit TevConfigKey(const Pica::TexturingRegs& regs); | ||||
|  | ||||
|     u64 Hash() const noexcept { | ||||
|         return Common::ComputeHash64(this, sizeof(TevConfigKey)); | ||||
|     } | ||||
|  | ||||
|     std::array<Pica::TexturingRegs::TevStageConfig, 6> stages; | ||||
| }; | ||||
|  | ||||
| class TevConfig : public Xbyak::CodeGenerator { | ||||
| public: | ||||
|     explicit TevConfig(const Pica::Regs& regs, const TevConfigKey& key); | ||||
|     ~TevConfig(); | ||||
|  | ||||
|     Common::Vec4<u8> Run(std::span<Common::Vec4<u8>, 4> texture_color_, | ||||
|                          Common::Vec4<u8> primary_color_, Common::Vec4<u8> primary_fragment_color_, | ||||
|                          Common::Vec4<u8> secondary_fragment_color_, u64 tev_combiner_buffer_color); | ||||
|  | ||||
| private: | ||||
|     void WriteTevConfig(const TevConfigKey& key); | ||||
|  | ||||
|     void GetColorModifier(const Xbyak::Xmm& dest, | ||||
|                           Pica::TexturingRegs::TevStageConfig::ColorModifier factor); | ||||
|  | ||||
|     void GetAlphaModifier(const Xbyak::Xmm& src, const Xbyak::Reg32& dest, | ||||
|                           Pica::TexturingRegs::TevStageConfig::AlphaModifier factor); | ||||
|  | ||||
|     void ColorCombine(const Xbyak::Xmm& dest, Pica::TexturingRegs::TevStageConfig::Operation op); | ||||
|  | ||||
|     void AlphaCombine(const Xbyak::Reg32& dest, Pica::TexturingRegs::TevStageConfig::Operation op); | ||||
|  | ||||
| private: | ||||
|     const Pica::Regs& regs; | ||||
|  | ||||
|     using CompiledTevFun = u32(u32* texture_color, u32 primary_color, u32 primary_fragment_color, | ||||
|                                u64 secondary_fragment_color_and_tev_combiner_buffer_color); | ||||
|  | ||||
|     CompiledTevFun* program = nullptr; | ||||
| }; | ||||
|  | ||||
| using TevCache = std::unordered_map<u64, std::unique_ptr<TevConfig>, Common::IdentityHash<u64>>; | ||||
|  | ||||
| } // namespace SwRenderer | ||||
		Reference in New Issue
	
	Block a user