add common changes

This commit is contained in:
GPUCode
2023-05-14 00:46:39 +03:00
parent e44ec20e57
commit a24cac6308
6 changed files with 968 additions and 4 deletions

View File

@ -70,6 +70,7 @@ add_library(citra_common STATIC
file_util.cpp
file_util.h
hash.h
input.h
linear_disk_cache.h
literals.h
logging/backend.cpp
@ -119,9 +120,12 @@ add_library(citra_common STATIC
thread_queue_list.h
thread_worker.h
threadsafe_queue.h
tiny_mt.h
timer.cpp
timer.h
unique_function.h
uuid.cpp
uuid.h
vector_math.h
web_result.h
x64/cpu_detect.cpp

344
src/common/input.h Normal file
View File

@ -0,0 +1,344 @@
// SPDX-FileCopyrightText: 2017 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/uuid.h"
namespace Common::Input {
// Type of data that is expected to recieve or send
enum class InputType {
None,
Button,
Stick,
Analog,
Motion,
Touch,
};
enum class PollingMode {
// Constant polling of buttons, analogs and motion data
Active,
// Only update on button change, digital analogs
Pasive,
};
// Polling mode reply from the controller
enum class PollingError {
None,
NotSupported,
Unknown,
};
// Analog properties for calibration
struct AnalogProperties {
// Anything below this value will be detected as zero
float deadzone{};
// Anyting above this values will be detected as one
float range{1.0f};
// Minimum value to be detected as active
float threshold{0.5f};
// Drift correction applied to the raw data
float offset{};
// Invert direction of the sensor data
bool inverted{};
// Press once to activate, press again to release
bool toggle{};
};
// Single analog sensor data
struct AnalogStatus {
float value{};
float raw_value{};
AnalogProperties properties{};
};
// Button data
struct ButtonStatus {
Common::UUID uuid{};
bool value{};
// Invert value of the button
bool inverted{};
// Press once to activate, press again to release
bool toggle{};
// Internal lock for the toggle status
bool locked{};
};
// Analog and digital joystick data
struct StickStatus {
Common::UUID uuid{};
AnalogStatus x{};
AnalogStatus y{};
bool left{};
bool right{};
bool up{};
bool down{};
};
// Analog and digital trigger data
struct TriggerStatus {
Common::UUID uuid{};
AnalogStatus analog{};
ButtonStatus pressed{};
};
// 3D vector representing motion input
struct MotionSensor {
AnalogStatus x{};
AnalogStatus y{};
AnalogStatus z{};
};
// Motion data used to calculate controller orientation
struct MotionStatus {
// Gyroscope vector measurement in radians/s.
MotionSensor gyro{};
// Acceleration vector measurement in G force
MotionSensor accel{};
// Time since last measurement in microseconds
u64 delta_timestamp{};
// Request to update after reading the value
bool force_update{};
};
// Data of a single point on a touch screen
struct TouchStatus {
ButtonStatus pressed{};
AnalogStatus x{};
AnalogStatus y{};
int id{};
};
// List of buttons to be passed to Qt that can be translated
enum class ButtonNames {
Undefined,
Invalid,
// This will display the engine name instead of the button name
Engine,
// This will display the button by value instead of the button name
Value,
ButtonLeft,
ButtonRight,
ButtonDown,
ButtonUp,
TriggerZ,
TriggerR,
TriggerL,
ButtonA,
ButtonB,
ButtonX,
ButtonY,
ButtonStart,
// DS4 button names
L1,
L2,
L3,
R1,
R2,
R3,
Circle,
Cross,
Square,
Triangle,
Share,
Options,
Home,
Touch,
// Mouse buttons
ButtonMouseWheel,
ButtonBackward,
ButtonForward,
ButtonTask,
ButtonExtra,
};
// Callback data consisting of an input type and the equivalent data status
struct CallbackStatus {
InputType type{InputType::None};
ButtonStatus button_status{};
StickStatus stick_status{};
AnalogStatus analog_status{};
MotionStatus motion_status{};
TouchStatus touch_status{};
std::vector<u8> raw_data{};
};
// Triggered once every input change
struct InputCallback {
std::function<void(const CallbackStatus&)> on_change;
};
/// An abstract class template for an input device (a button, an analog input, etc.).
class InputDevice {
public:
virtual ~InputDevice() = default;
// Request input device to update if necessary
virtual void SoftUpdate() {}
// Force input device to update data regardless of the current state
virtual void ForceUpdate() {}
// Sets the function to be triggered when input changes
void SetCallback(InputCallback callback_) {
callback = std::move(callback_);
}
// Triggers the function set in the callback
void TriggerOnChange(const CallbackStatus& status) {
if (callback.on_change) {
callback.on_change(status);
}
}
private:
InputCallback callback;
};
/// An abstract class template for an output device (rumble, LED pattern, polling mode).
class OutputDevice {
public:
virtual ~OutputDevice() = default;
virtual PollingError SetPollingMode([[maybe_unused]] PollingMode polling_mode) {
return PollingError::NotSupported;
}
};
/// An abstract class template for a factory that can create input devices.
template <typename InputDeviceType>
class Factory {
public:
virtual ~Factory() = default;
virtual std::unique_ptr<InputDeviceType> Create(const Common::ParamPackage&) = 0;
};
namespace Impl {
template <typename InputDeviceType>
using FactoryListType = std::unordered_map<std::string, std::shared_ptr<Factory<InputDeviceType>>>;
template <typename InputDeviceType>
struct FactoryList {
static FactoryListType<InputDeviceType> list;
};
template <typename InputDeviceType>
FactoryListType<InputDeviceType> FactoryList<InputDeviceType>::list;
} // namespace Impl
/**
* Registers an input device factory.
* @tparam InputDeviceType the type of input devices the factory can create
* @param name the name of the factory. Will be used to match the "engine" parameter when creating
* a device
* @param factory the factory object to register
*/
template <typename InputDeviceType>
void RegisterFactory(const std::string& name, std::shared_ptr<Factory<InputDeviceType>> factory) {
auto pair = std::make_pair(name, std::move(factory));
if (!Impl::FactoryList<InputDeviceType>::list.insert(std::move(pair)).second) {
LOG_ERROR(Input, "Factory '{}' already registered", name);
}
}
inline void RegisterInputFactory(const std::string& name,
std::shared_ptr<Factory<InputDevice>> factory) {
RegisterFactory<InputDevice>(name, std::move(factory));
}
inline void RegisterOutputFactory(const std::string& name,
std::shared_ptr<Factory<OutputDevice>> factory) {
RegisterFactory<OutputDevice>(name, std::move(factory));
}
/**
* Unregisters an input device factory.
* @tparam InputDeviceType the type of input devices the factory can create
* @param name the name of the factory to unregister
*/
template <typename InputDeviceType>
void UnregisterFactory(const std::string& name) {
if (Impl::FactoryList<InputDeviceType>::list.erase(name) == 0) {
LOG_ERROR(Input, "Factory '{}' not registered", name);
}
}
inline void UnregisterInputFactory(const std::string& name) {
UnregisterFactory<InputDevice>(name);
}
inline void UnregisterOutputFactory(const std::string& name) {
UnregisterFactory<OutputDevice>(name);
}
/**
* Create an input device from given paramters.
* @tparam InputDeviceType the type of input devices to create
* @param params a serialized ParamPackage string that contains all parameters for creating the
* device
*/
template <typename InputDeviceType>
std::unique_ptr<InputDeviceType> CreateDeviceFromString(const std::string& params) {
const Common::ParamPackage package(params);
const std::string engine = package.Get("engine", "null");
const auto& factory_list = Impl::FactoryList<InputDeviceType>::list;
const auto pair = factory_list.find(engine);
if (pair == factory_list.end()) {
if (engine != "null") {
LOG_ERROR(Input, "Unknown engine name: {}", engine);
}
return std::make_unique<InputDeviceType>();
}
return pair->second->Create(package);
}
inline std::unique_ptr<InputDevice> CreateInputDeviceFromString(const std::string& params) {
return CreateDeviceFromString<InputDevice>(params);
}
inline std::unique_ptr<OutputDevice> CreateOutputDeviceFromString(const std::string& params) {
return CreateDeviceFromString<OutputDevice>(params);
}
/**
* Create an input device from given parameters.
* @tparam InputDeviceType the type of input devices to create
* @param package A ParamPackage that contains all parameters for creating the device
*/
template <typename InputDeviceType>
std::unique_ptr<InputDeviceType> CreateDevice(const ParamPackage& package) {
const std::string engine = package.Get("engine", "null");
const auto& factory_list = Impl::FactoryList<InputDeviceType>::list;
const auto pair = factory_list.find(engine);
if (pair == factory_list.end()) {
if (engine != "null") {
LOG_ERROR(Input, "Unknown engine name: {}", engine);
}
return std::make_unique<InputDeviceType>();
}
return pair->second->Create(package);
}
inline std::unique_ptr<InputDevice> CreateInputDevice(const ParamPackage& package) {
return CreateDevice<InputDevice>(package);
}
inline std::unique_ptr<OutputDevice> CreateOutputDevice(const ParamPackage& package) {
return CreateDevice<OutputDevice>(package);
}
} // namespace Common::Input

View File

@ -82,10 +82,10 @@ enum Values {
B,
X,
Y,
Up,
Down,
Left,
Right,
DUp,
DDown,
DLeft,
DRight,
L,
R,
Start,
@ -148,6 +148,21 @@ constexpr std::array<const char*, NumAnalogs> mapping = {{
}};
} // namespace NativeAnalog
namespace NativeMotion {
enum Values : int {
MotionLeft,
MotionRight,
NumMotions,
};
constexpr int MOTION_HID_BEGIN = MotionLeft;
constexpr int MOTION_HID_END = NumMotions;
constexpr int NUM_MOTIONS_HID = NumMotions;
extern const std::array<const char*, NumMotions> mapping;
} // namespace NativeMotion
/** The Setting class is a simple resource manager. It defines a label and default value alongside
* the actual value of the setting for simpler and less-error prone use with frontend
* configurations. Specifying a default value and label is required. A minimum and maximum range can

249
src/common/tiny_mt.h Normal file
View File

@ -0,0 +1,249 @@
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include "common/alignment.h"
#include "common/common_types.h"
namespace Common {
// Implementation of TinyMT (mersenne twister RNG).
// Like Nintendo, we will use the sample parameters.
class TinyMT {
public:
static constexpr std::size_t NumStateWords = 4;
struct State {
std::array<u32, NumStateWords> data{};
};
private:
static constexpr u32 ParamMat1 = 0x8F7011EE;
static constexpr u32 ParamMat2 = 0xFC78FF1F;
static constexpr u32 ParamTmat = 0x3793FDFF;
static constexpr u32 ParamMult = 0x6C078965;
static constexpr u32 ParamPlus = 0x0019660D;
static constexpr u32 ParamXor = 0x5D588B65;
static constexpr u32 TopBitmask = 0x7FFFFFFF;
static constexpr int MinimumInitIterations = 8;
static constexpr int NumDiscardedInitOutputs = 8;
static constexpr u32 XorByShifted27(u32 value) {
return value ^ (value >> 27);
}
static constexpr u32 XorByShifted30(u32 value) {
return value ^ (value >> 30);
}
private:
State state{};
private:
// Internal API.
void FinalizeInitialization() {
const u32 state0 = this->state.data[0] & TopBitmask;
const u32 state1 = this->state.data[1];
const u32 state2 = this->state.data[2];
const u32 state3 = this->state.data[3];
if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) {
this->state.data[0] = 'T';
this->state.data[1] = 'I';
this->state.data[2] = 'N';
this->state.data[3] = 'Y';
}
for (int i = 0; i < NumDiscardedInitOutputs; i++) {
this->GenerateRandomU32();
}
}
u32 GenerateRandomU24() {
return (this->GenerateRandomU32() >> 8);
}
static void GenerateInitialValuePlus(TinyMT::State* state, int index, u32 value) {
u32& state0 = state->data[(index + 0) % NumStateWords];
u32& state1 = state->data[(index + 1) % NumStateWords];
u32& state2 = state->data[(index + 2) % NumStateWords];
u32& state3 = state->data[(index + 3) % NumStateWords];
const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus;
const u32 y = x + index + value;
state0 = y;
state1 += x;
state2 += y;
}
static void GenerateInitialValueXor(TinyMT::State* state, int index) {
u32& state0 = state->data[(index + 0) % NumStateWords];
u32& state1 = state->data[(index + 1) % NumStateWords];
u32& state2 = state->data[(index + 2) % NumStateWords];
u32& state3 = state->data[(index + 3) % NumStateWords];
const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor;
const u32 y = x - index;
state0 = y;
state1 ^= x;
state2 ^= y;
}
public:
constexpr TinyMT() = default;
// Public API.
// Initialization.
void Initialize(u32 seed) {
this->state.data[0] = seed;
this->state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat;
for (int i = 1; i < MinimumInitIterations; i++) {
const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]);
this->state.data[i % NumStateWords] ^= mixed * ParamMult + i;
}
this->FinalizeInitialization();
}
void Initialize(const u32* seed, int seed_count) {
this->state.data[0] = 0;
this->state.data[1] = ParamMat1;
this->state.data[2] = ParamMat2;
this->state.data[3] = ParamTmat;
{
const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1;
GenerateInitialValuePlus(&this->state, 0, seed_count);
for (int i = 0; i < num_init_iterations; i++) {
GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords,
(i < seed_count) ? seed[i] : 0);
}
for (int i = 0; i < static_cast<int>(NumStateWords); i++) {
GenerateInitialValueXor(&this->state,
(i + 1 + num_init_iterations) % NumStateWords);
}
}
this->FinalizeInitialization();
}
// State management.
void GetState(TinyMT::State& out) const {
out.data = this->state.data;
}
void SetState(const TinyMT::State& state_) {
this->state.data = state_.data;
}
// Random generation.
void GenerateRandomBytes(void* dst, std::size_t size) {
const uintptr_t start = reinterpret_cast<uintptr_t>(dst);
const uintptr_t end = start + size;
const uintptr_t aligned_start = Common::AlignUp(start, 4);
const uintptr_t aligned_end = Common::AlignDown(end, 4);
// Make sure we're aligned.
if (start < aligned_start) {
const u32 rnd = this->GenerateRandomU32();
std::memcpy(dst, &rnd, aligned_start - start);
}
// Write as many aligned u32s as we can.
{
u32* cur_dst = reinterpret_cast<u32*>(aligned_start);
u32* const end_dst = reinterpret_cast<u32*>(aligned_end);
while (cur_dst < end_dst) {
*(cur_dst++) = this->GenerateRandomU32();
}
}
// Handle any leftover unaligned data.
if (aligned_end < end) {
const u32 rnd = this->GenerateRandomU32();
std::memcpy(reinterpret_cast<void*>(aligned_end), &rnd, end - aligned_end);
}
}
u32 GenerateRandomU32() {
// Advance state.
const u32 x0 =
(this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2];
const u32 y0 = this->state.data[3];
const u32 x1 = x0 ^ (x0 << 1);
const u32 y1 = y0 ^ (y0 >> 1) ^ x1;
const u32 state0 = this->state.data[1];
u32 state1 = this->state.data[2];
u32 state2 = x1 ^ (y1 << 10);
const u32 state3 = y1;
if ((y1 & 1) != 0) {
state1 ^= ParamMat1;
state2 ^= ParamMat2;
}
this->state.data[0] = state0;
this->state.data[1] = state1;
this->state.data[2] = state2;
this->state.data[3] = state3;
// Temper.
const u32 t1 = state0 + (state2 >> 8);
u32 t0 = state3 ^ t1;
if ((t1 & 1) != 0) {
t0 ^= ParamTmat;
}
return t0;
}
u64 GenerateRandomU64() {
const u32 lo = this->GenerateRandomU32();
const u32 hi = this->GenerateRandomU32();
return (u64{hi} << 32) | u64{lo};
}
float GenerateRandomF32() {
// Floats have 24 bits of mantissa.
constexpr u32 MantissaBits = 24;
return static_cast<float>(GenerateRandomU24()) * (1.0f / (1U << MantissaBits));
}
double GenerateRandomF64() {
// Doubles have 53 bits of mantissa.
// The smart way to generate 53 bits of random would be to use 32 bits
// from the first rnd32() call, and then 21 from the second.
// Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32()
// call, and (32 - 6) bits from the second. We'll do what they do, but
// There's not a clear reason why.
constexpr u32 MantissaBits = 53;
constexpr u32 Shift1st = (64 - MantissaBits) / 2;
constexpr u32 Shift2nd = (64 - MantissaBits) - Shift1st;
const u32 first = (this->GenerateRandomU32() >> Shift1st);
const u32 second = (this->GenerateRandomU32() >> Shift2nd);
return (1.0 * first * (u64{1} << (32 - Shift2nd)) + second) *
(1.0 / (u64{1} << MantissaBits));
}
};
} // namespace Common

212
src/common/uuid.cpp Normal file
View File

@ -0,0 +1,212 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <bit>
#include <optional>
#include <random>
#include <fmt/format.h>
#include "common/assert.h"
#include "common/tiny_mt.h"
#include "common/uuid.h"
namespace Common {
namespace {
constexpr size_t RawStringSize = sizeof(UUID) * 2;
constexpr size_t FormattedStringSize = RawStringSize + 4;
std::optional<u8> HexCharToByte(char c) {
if (c >= '0' && c <= '9') {
return static_cast<u8>(c - '0');
}
if (c >= 'a' && c <= 'f') {
return static_cast<u8>(c - 'a' + 10);
}
if (c >= 'A' && c <= 'F') {
return static_cast<u8>(c - 'A' + 10);
}
ASSERT_MSG(false, "{} is not a hexadecimal digit!", c);
return std::nullopt;
}
std::array<u8, 0x10> ConstructFromRawString(std::string_view raw_string) {
std::array<u8, 0x10> uuid;
for (size_t i = 0; i < RawStringSize; i += 2) {
const auto upper = HexCharToByte(raw_string[i]);
const auto lower = HexCharToByte(raw_string[i + 1]);
if (!upper || !lower) {
return {};
}
uuid[i / 2] = static_cast<u8>((*upper << 4) | *lower);
}
return uuid;
}
std::array<u8, 0x10> ConstructFromFormattedString(std::string_view formatted_string) {
std::array<u8, 0x10> uuid;
size_t i = 0;
// Process the first 8 characters.
const auto* str = formatted_string.data();
for (; i < 4; ++i) {
const auto upper = HexCharToByte(*(str++));
const auto lower = HexCharToByte(*(str++));
if (!upper || !lower) {
return {};
}
uuid[i] = static_cast<u8>((*upper << 4) | *lower);
}
// Process the next 4 characters.
++str;
for (; i < 6; ++i) {
const auto upper = HexCharToByte(*(str++));
const auto lower = HexCharToByte(*(str++));
if (!upper || !lower) {
return {};
}
uuid[i] = static_cast<u8>((*upper << 4) | *lower);
}
// Process the next 4 characters.
++str;
for (; i < 8; ++i) {
const auto upper = HexCharToByte(*(str++));
const auto lower = HexCharToByte(*(str++));
if (!upper || !lower) {
return {};
}
uuid[i] = static_cast<u8>((*upper << 4) | *lower);
}
// Process the next 4 characters.
++str;
for (; i < 10; ++i) {
const auto upper = HexCharToByte(*(str++));
const auto lower = HexCharToByte(*(str++));
if (!upper || !lower) {
return {};
}
uuid[i] = static_cast<u8>((*upper << 4) | *lower);
}
// Process the last 12 characters.
++str;
for (; i < 16; ++i) {
const auto upper = HexCharToByte(*(str++));
const auto lower = HexCharToByte(*(str++));
if (!upper || !lower) {
return {};
}
uuid[i] = static_cast<u8>((*upper << 4) | *lower);
}
return uuid;
}
std::array<u8, 0x10> ConstructUUID(std::string_view uuid_string) {
const auto length = uuid_string.length();
if (length == 0) {
return {};
}
// Check if the input string contains 32 hexadecimal characters.
if (length == RawStringSize) {
return ConstructFromRawString(uuid_string);
}
// Check if the input string has the length of a RFC 4122 formatted UUID string.
if (length == FormattedStringSize) {
return ConstructFromFormattedString(uuid_string);
}
ASSERT_MSG(false, "UUID string has an invalid length of {} characters!", length);
return {};
}
} // Anonymous namespace
UUID::UUID(std::string_view uuid_string) : uuid{ConstructUUID(uuid_string)} {}
std::string UUID::RawString() const {
return fmt::format("{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}"
"{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}",
uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7],
uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],
uuid[15]);
}
std::string UUID::FormattedString() const {
return fmt::format("{:02x}{:02x}{:02x}{:02x}"
"-{:02x}{:02x}-{:02x}{:02x}-{:02x}{:02x}-"
"{:02x}{:02x}{:02x}{:02x}{:02x}{:02x}",
uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7],
uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],
uuid[15]);
}
size_t UUID::Hash() const noexcept {
u64 upper_hash;
u64 lower_hash;
std::memcpy(&upper_hash, uuid.data(), sizeof(u64));
std::memcpy(&lower_hash, uuid.data() + sizeof(u64), sizeof(u64));
return upper_hash ^ std::rotl(lower_hash, 1);
}
u128 UUID::AsU128() const {
u128 uuid_old;
std::memcpy(&uuid_old, uuid.data(), sizeof(UUID));
return uuid_old;
}
UUID UUID::MakeRandom() {
std::random_device device;
return MakeRandomWithSeed(device());
}
UUID UUID::MakeRandomWithSeed(u32 seed) {
// Create and initialize our RNG.
TinyMT rng;
rng.Initialize(seed);
UUID uuid;
// Populate the UUID with random bytes.
rng.GenerateRandomBytes(uuid.uuid.data(), sizeof(UUID));
return uuid;
}
UUID UUID::MakeRandomRFC4122V4() {
auto uuid = MakeRandom();
// According to Proposed Standard RFC 4122 Section 4.4, we must:
// 1. Set the two most significant bits (bits 6 and 7) of the
// clock_seq_hi_and_reserved to zero and one, respectively.
uuid.uuid[8] = 0x80 | (uuid.uuid[8] & 0x3F);
// 2. Set the four most significant bits (bits 12 through 15) of the
// time_hi_and_version field to the 4-bit version number from Section 4.1.3.
uuid.uuid[6] = 0x40 | (uuid.uuid[6] & 0xF);
return uuid;
}
} // namespace Common

140
src/common/uuid.h Normal file
View File

@ -0,0 +1,140 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <functional>
#include <string>
#include "common/common_types.h"
namespace Common {
struct UUID {
std::array<u8, 0x10> uuid{};
/// Constructs an invalid UUID.
constexpr UUID() = default;
/// Constructs a UUID from a reference to a 128 bit array.
constexpr explicit UUID(const std::array<u8, 16>& uuid_) : uuid{uuid_} {}
/**
* Constructs a UUID from either:
* 1. A 32 hexadecimal character string representing the bytes of the UUID
* 2. A RFC 4122 formatted UUID string, in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
*
* The input string may contain uppercase or lowercase characters, but they must:
* 1. Contain valid hexadecimal characters (0-9, a-f, A-F)
* 2. Not contain the "0x" hexadecimal prefix
*
* Should the input string not meet the above requirements,
* an assert will be triggered and an invalid UUID is set instead.
*/
explicit UUID(std::string_view uuid_string);
~UUID() = default;
constexpr UUID(const UUID&) noexcept = default;
constexpr UUID(UUID&&) noexcept = default;
constexpr UUID& operator=(const UUID&) noexcept = default;
constexpr UUID& operator=(UUID&&) noexcept = default;
/**
* Returns whether the stored UUID is valid or not.
*
* @returns True if the stored UUID is valid, false otherwise.
*/
constexpr bool IsValid() const {
return uuid != std::array<u8, 0x10>{};
}
/**
* Returns whether the stored UUID is invalid or not.
*
* @returns True if the stored UUID is invalid, false otherwise.
*/
constexpr bool IsInvalid() const {
return !IsValid();
}
/**
* Returns a 32 hexadecimal character string representing the bytes of the UUID.
*
* @returns A 32 hexadecimal character string of the UUID.
*/
std::string RawString() const;
/**
* Returns a RFC 4122 formatted UUID string in the format
* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
*
* @returns A RFC 4122 formatted UUID string.
*/
std::string FormattedString() const;
/**
* Returns a 64-bit hash of the UUID for use in hash table data structures.
*
* @returns A 64-bit hash of the UUID.
*/
size_t Hash() const noexcept;
/// DO NOT USE. Copies the contents of the UUID into a u128.
u128 AsU128() const;
/**
* Creates a default UUID "yuzu Default UID".
*
* @returns A UUID with its bytes set to the ASCII values of "yuzu Default UID".
*/
static constexpr UUID MakeDefault() {
return UUID{
{'y', 'u', 'z', 'u', ' ', 'D', 'e', 'f', 'a', 'u', 'l', 't', ' ', 'U', 'I', 'D'},
};
}
/**
* Creates a random UUID.
*
* @returns A random UUID.
*/
static UUID MakeRandom();
/**
* Creates a random UUID with a seed.
*
* @param seed A seed to initialize the Mersenne-Twister RNG
*
* @returns A random UUID.
*/
static UUID MakeRandomWithSeed(u32 seed);
/**
* Creates a random UUID. The generated UUID is RFC 4122 Version 4 compliant.
*
* @returns A random UUID that is RFC 4122 Version 4 compliant.
*/
static UUID MakeRandomRFC4122V4();
friend constexpr bool operator==(const UUID& lhs, const UUID& rhs) = default;
};
static_assert(sizeof(UUID) == 0x10, "UUID has incorrect size.");
/// An invalid UUID. This UUID has all its bytes set to 0.
constexpr UUID InvalidUUID = {};
} // namespace Common
namespace std {
template <>
struct hash<Common::UUID> {
size_t operator()(const Common::UUID& uuid) const noexcept {
return uuid.Hash();
}
};
} // namespace std