Merge pull request #88 from archshift/remove-atomic
Removed common/atomic, instead using std::atomic
This commit is contained in:
		| @@ -23,9 +23,6 @@ set(SRCS | ||||
|             ) | ||||
|  | ||||
| set(HEADERS | ||||
|             atomic.h | ||||
|             atomic_gcc.h | ||||
|             atomic_win32.h | ||||
|             bit_field.h | ||||
|             break_points.h | ||||
|             chunk_file.h | ||||
|   | ||||
| @@ -1,16 +0,0 @@ | ||||
| // Copyright 2013 Dolphin Emulator Project | ||||
| // Licensed under GPLv2 | ||||
| // Refer to the license.txt file included. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #ifdef _WIN32 | ||||
|  | ||||
| #include "common/atomic_win32.h" | ||||
|  | ||||
| #else | ||||
|  | ||||
| // GCC-compatible compiler assumed! | ||||
| #include "common/atomic_gcc.h" | ||||
|  | ||||
| #endif | ||||
| @@ -1,110 +0,0 @@ | ||||
| // Copyright 2013 Dolphin Emulator Project | ||||
| // Licensed under GPLv2 | ||||
| // Refer to the license.txt file included. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include "common/common.h" | ||||
|  | ||||
| // Atomic operations are performed in a single step by the CPU. It is | ||||
| // impossible for other threads to see the operation "half-done." | ||||
| // | ||||
| // Some atomic operations can be combined with different types of memory | ||||
| // barriers called "Acquire semantics" and "Release semantics", defined below. | ||||
| // | ||||
| // Acquire semantics: Future memory accesses cannot be relocated to before the | ||||
| //                    operation. | ||||
| // | ||||
| // Release semantics: Past memory accesses cannot be relocated to after the | ||||
| //                    operation. | ||||
| // | ||||
| // These barriers affect not only the compiler, but also the CPU. | ||||
|  | ||||
| namespace Common | ||||
| { | ||||
|  | ||||
| inline void AtomicAdd(volatile u32& target, u32 value) { | ||||
|     __sync_add_and_fetch(&target, value); | ||||
| } | ||||
|  | ||||
| inline void AtomicAnd(volatile u32& target, u32 value) { | ||||
|     __sync_and_and_fetch(&target, value); | ||||
| } | ||||
|  | ||||
| inline void AtomicDecrement(volatile u32& target) { | ||||
|     __sync_add_and_fetch(&target, -1); | ||||
| } | ||||
|  | ||||
| inline void AtomicIncrement(volatile u32& target) { | ||||
|     __sync_add_and_fetch(&target, 1); | ||||
| } | ||||
|  | ||||
| inline u32 AtomicLoad(volatile u32& src) { | ||||
|     return src; // 32-bit reads are always atomic. | ||||
| } | ||||
| inline u32 AtomicLoadAcquire(volatile u32& src) { | ||||
|     //keep the compiler from caching any memory references | ||||
|     u32 result = src; // 32-bit reads are always atomic. | ||||
|     //__sync_synchronize(); // TODO: May not be necessary. | ||||
|     // Compiler instruction only. x86 loads always have acquire semantics. | ||||
|     __asm__ __volatile__ ( "":::"memory" ); | ||||
|     return result; | ||||
| } | ||||
|  | ||||
| inline void AtomicOr(volatile u32& target, u32 value) { | ||||
|     __sync_or_and_fetch(&target, value); | ||||
| } | ||||
|  | ||||
| inline void AtomicStore(volatile u32& dest, u32 value) { | ||||
|     dest = value; // 32-bit writes are always atomic. | ||||
| } | ||||
| inline void AtomicStoreRelease(volatile u32& dest, u32 value) { | ||||
|     __sync_lock_test_and_set(&dest, value); // TODO: Wrong! This function is has acquire semantics. | ||||
| } | ||||
|  | ||||
| } | ||||
|  | ||||
| // Old code kept here for reference in case we need the parts with __asm__ __volatile__. | ||||
| #if 0 | ||||
| LONG SyncInterlockedIncrement(LONG *Dest) | ||||
| { | ||||
| #if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__)) | ||||
|   return  __sync_add_and_fetch(Dest, 1); | ||||
| #else | ||||
|   register int result; | ||||
|   __asm__ __volatile__("lock; xadd %0,%1" | ||||
|                        : "=r" (result), "=m" (*Dest) | ||||
|                        : "0" (1), "m" (*Dest) | ||||
|                        : "memory"); | ||||
|   return result; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val) | ||||
| { | ||||
| #if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__)) | ||||
|   return  __sync_add_and_fetch(Dest, Val); | ||||
| #else | ||||
|   register int result; | ||||
|   __asm__ __volatile__("lock; xadd %0,%1" | ||||
|                        : "=r" (result), "=m" (*Dest) | ||||
|                        : "0" (Val), "m" (*Dest) | ||||
|                        : "memory"); | ||||
|   return result; | ||||
| #endif | ||||
| } | ||||
|  | ||||
| LONG SyncInterlockedExchange(LONG *Dest, LONG Val) | ||||
| { | ||||
| #if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__)) | ||||
|   return  __sync_lock_test_and_set(Dest, Val); | ||||
| #else | ||||
|   register int result; | ||||
|   __asm__ __volatile__("lock; xchg %0,%1" | ||||
|                        : "=r" (result), "=m" (*Dest) | ||||
|                        : "0" (Val), "m" (*Dest) | ||||
|                        : "memory"); | ||||
|   return result; | ||||
| #endif | ||||
| } | ||||
| #endif | ||||
| @@ -1,69 +0,0 @@ | ||||
| // Copyright 2013 Dolphin Emulator Project | ||||
| // Licensed under GPLv2 | ||||
| // Refer to the license.txt file included. | ||||
|  | ||||
| #pragma once | ||||
|  | ||||
| #include "common/common.h" | ||||
| #include <intrin.h> | ||||
| #include <Windows.h> | ||||
|  | ||||
| // Atomic operations are performed in a single step by the CPU. It is | ||||
| // impossible for other threads to see the operation "half-done." | ||||
| // | ||||
| // Some atomic operations can be combined with different types of memory | ||||
| // barriers called "Acquire semantics" and "Release semantics", defined below. | ||||
| // | ||||
| // Acquire semantics: Future memory accesses cannot be relocated to before the | ||||
| //                    operation. | ||||
| // | ||||
| // Release semantics: Past memory accesses cannot be relocated to after the | ||||
| //                    operation. | ||||
| // | ||||
| // These barriers affect not only the compiler, but also the CPU. | ||||
| // | ||||
| // NOTE: Acquire and Release are not differentiated right now. They perform a | ||||
| // full memory barrier instead of a "one-way" memory barrier. The newest | ||||
| // Windows SDK has Acquire and Release versions of some Interlocked* functions. | ||||
|  | ||||
| namespace Common | ||||
| { | ||||
|  | ||||
| inline void AtomicAdd(volatile u32& target, u32 value) { | ||||
|     InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value); | ||||
| } | ||||
|  | ||||
| inline void AtomicAnd(volatile u32& target, u32 value) { | ||||
|     _InterlockedAnd((volatile LONG*)&target, (LONG)value); | ||||
| } | ||||
|  | ||||
| inline void AtomicIncrement(volatile u32& target) { | ||||
|     InterlockedIncrement((volatile LONG*)&target); | ||||
| } | ||||
|  | ||||
| inline void AtomicDecrement(volatile u32& target) { | ||||
|     InterlockedDecrement((volatile LONG*)&target); | ||||
| } | ||||
|  | ||||
| inline u32 AtomicLoad(volatile u32& src) { | ||||
|     return src; // 32-bit reads are always atomic. | ||||
| } | ||||
| inline u32 AtomicLoadAcquire(volatile u32& src) { | ||||
|     u32 result = src; // 32-bit reads are always atomic. | ||||
|     _ReadBarrier(); // Compiler instruction only. x86 loads always have acquire semantics. | ||||
|     return result; | ||||
| } | ||||
|  | ||||
| inline void AtomicOr(volatile u32& target, u32 value) { | ||||
|     _InterlockedOr((volatile LONG*)&target, (LONG)value); | ||||
| } | ||||
|  | ||||
| inline void AtomicStore(volatile u32& dest, u32 value) { | ||||
|     dest = value; // 32-bit writes are always atomic. | ||||
| } | ||||
| inline void AtomicStoreRelease(volatile u32& dest, u32 value) { | ||||
|     _WriteBarrier(); // Compiler instruction only. x86 stores always have release semantics. | ||||
|     dest = value; // 32-bit writes are always atomic. | ||||
| } | ||||
|  | ||||
| } | ||||
| @@ -4,10 +4,10 @@ | ||||
|  | ||||
| #include <vector> | ||||
| #include <cstdio> | ||||
| #include <atomic> | ||||
|  | ||||
| #include "common/msg_handler.h" | ||||
| #include "common/std_mutex.h" | ||||
| #include "common/atomic.h" | ||||
| #include "common/chunk_file.h" | ||||
|  | ||||
| #include "core/core_timing.h" | ||||
| @@ -54,7 +54,7 @@ Event *eventPool = 0; | ||||
| Event *eventTsPool = 0; | ||||
| int allocatedTsEvents = 0; | ||||
| // Optimization to skip MoveEvents when possible. | ||||
| volatile u32 hasTsEvents = false; | ||||
| std::atomic<u32> hasTsEvents; | ||||
|  | ||||
| // Downcount has been moved to currentMIPS, to save a couple of clocks in every ARM JIT block | ||||
| // as we can already reach that structure through a register. | ||||
| @@ -202,7 +202,7 @@ void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata | ||||
|         tsLast->next = ne; | ||||
|     tsLast = ne; | ||||
|  | ||||
|     Common::AtomicStoreRelease(hasTsEvents, 1); | ||||
|     hasTsEvents.store(1, std::memory_order_release); | ||||
| } | ||||
|  | ||||
| // Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread | ||||
| @@ -484,7 +484,7 @@ void ProcessFifoWaitEvents() | ||||
|  | ||||
| void MoveEvents() | ||||
| { | ||||
|     Common::AtomicStoreRelease(hasTsEvents, 0); | ||||
|     hasTsEvents.store(0, std::memory_order_release); | ||||
|  | ||||
|     std::lock_guard<std::recursive_mutex> lk(externalEventSection); | ||||
|     // Move events from async queue into main queue | ||||
|   | ||||
		Reference in New Issue
	
	Block a user