SVC: Change return type of handlers to ResultCode

This commit is contained in:
Yuri Kunde Schlesner 2015-01-23 03:36:58 -02:00
parent d52d859936
commit 44f90340dc
2 changed files with 127 additions and 132 deletions

View File

@ -33,114 +33,109 @@ static inline void FuncReturn64(u64 res) {
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Function wrappers that return type s32
// Function wrappers that return type ResultCode
template<s32 func(u32, u32, u32, u32)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3)));
template<ResultCode func(u32, u32, u32, u32)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3)).raw);
}
template<s32 func(u32, u32, u32, u32, u32)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4)));
template<ResultCode func(u32, u32, u32, u32, u32)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4)).raw);
}
template<s32 func(u32*, u32, u32, u32, u32, u32)> void Wrap(){
template<ResultCode func(u32*, u32, u32, u32, u32, u32)> void Wrap(){
u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4));
u32 retval = func(&param_1, PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4)).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(s32*, u32*, s32, bool, s64)> void Wrap() {
template<ResultCode func(s32*, u32*, s32, bool, s64)> void Wrap() {
s32 param_1 = 0;
s32 retval = func(&param_1, (Handle*)Memory::GetPointer(PARAM(1)), (s32)PARAM(2),
(PARAM(3) != 0), (((s64)PARAM(4) << 32) | PARAM(0)));
(PARAM(3) != 0), (((s64)PARAM(4) << 32) | PARAM(0))).raw;
Core::g_app_core->SetReg(1, (u32)param_1);
FuncReturn(retval);
}
// TODO(bunnei): Is this correct? Probably not - Last parameter looks wrong for ArbitrateAddress
template<s32 func(u32, u32, u32, u32, s64)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), (((s64)PARAM(5) << 32) | PARAM(4))));
template<ResultCode func(u32, u32, u32, u32, s64)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), (((s64)PARAM(5) << 32) | PARAM(4))).raw);
}
template<s32 func(u32*)> void Wrap(){
template<ResultCode func(u32*)> void Wrap(){
u32 param_1 = 0;
u32 retval = func(&param_1);
u32 retval = func(&param_1).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(u32, s64)> void Wrap() {
FuncReturn(func(PARAM(0), (((s64)PARAM(3) << 32) | PARAM(2))));
template<ResultCode func(u32, s64)> void Wrap() {
FuncReturn(func(PARAM(0), (((s64)PARAM(3) << 32) | PARAM(2))).raw);
}
template<s32 func(void*, void*, u32)> void Wrap(){
FuncReturn(func(Memory::GetPointer(PARAM(0)), Memory::GetPointer(PARAM(1)), PARAM(2)));
template<ResultCode func(void*, void*, u32)> void Wrap(){
FuncReturn(func(Memory::GetPointer(PARAM(0)), Memory::GetPointer(PARAM(1)), PARAM(2)).raw);
}
template<s32 func(s32*, u32)> void Wrap(){
template<ResultCode func(s32*, u32)> void Wrap(){
s32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1));
u32 retval = func(&param_1, PARAM(1)).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(u32, s32)> void Wrap() {
FuncReturn(func(PARAM(0), (s32)PARAM(1)));
template<ResultCode func(u32, s32)> void Wrap() {
FuncReturn(func(PARAM(0), (s32)PARAM(1)).raw);
}
template<s32 func(u32*, u32)> void Wrap(){
template<ResultCode func(u32*, u32)> void Wrap(){
u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1));
u32 retval = func(&param_1, PARAM(1)).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(u32)> void Wrap() {
FuncReturn(func(PARAM(0)));
template<ResultCode func(u32)> void Wrap() {
FuncReturn(func(PARAM(0)).raw);
}
template<s32 func(void*)> void Wrap() {
FuncReturn(func(Memory::GetPointer(PARAM(0))));
}
template<s32 func(s64*, u32, void*, s32)> void Wrap(){
template<ResultCode func(s64*, u32, void*, s32)> void Wrap(){
FuncReturn(func((s64*)Memory::GetPointer(PARAM(0)), PARAM(1), Memory::GetPointer(PARAM(2)),
(s32)PARAM(3)));
(s32)PARAM(3)).raw);
}
template<s32 func(u32*, const char*)> void Wrap() {
template<ResultCode func(u32*, const char*)> void Wrap() {
u32 param_1 = 0;
u32 retval = func(&param_1, Memory::GetCharPointer(PARAM(1)));
u32 retval = func(&param_1, Memory::GetCharPointer(PARAM(1))).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(u32*, s32, s32)> void Wrap() {
template<ResultCode func(u32*, s32, s32)> void Wrap() {
u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2));
u32 retval = func(&param_1, PARAM(1), PARAM(2)).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(s32*, u32, s32)> void Wrap() {
template<ResultCode func(s32*, u32, s32)> void Wrap() {
s32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2));
u32 retval = func(&param_1, PARAM(1), PARAM(2)).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(u32*, u32, u32, u32, u32)> void Wrap() {
template<ResultCode func(u32*, u32, u32, u32, u32)> void Wrap() {
u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3), PARAM(4));
u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3), PARAM(4)).raw;
Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval);
}
template<s32 func(u32, s64, s64)> void Wrap() {
template<ResultCode func(u32, s64, s64)> void Wrap() {
s64 param1 = ((u64)PARAM(3) << 32) | PARAM(2);
s64 param2 = ((u64)PARAM(4) << 32) | PARAM(1);
FuncReturn(func(PARAM(0), param1, param2));
FuncReturn(func(PARAM(0), param1, param2).raw);
}
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -38,7 +38,7 @@ enum ControlMemoryOperation {
};
/// Map application or GSP heap memory
static Result ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X",
operation, addr0, addr1, size, permissions);
@ -58,11 +58,11 @@ static Result ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1,
default:
LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
}
return 0;
return RESULT_SUCCESS;
}
/// Maps a memory block to specified address
static Result MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) {
static ResultCode MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) {
using Kernel::SharedMemory;
using Kernel::MemoryPermission;
@ -71,7 +71,7 @@ static Result MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other
SharedPtr<SharedMemory> shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle);
if (shared_memory == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
MemoryPermission permissions_type = static_cast<MemoryPermission>(permissions);
switch (permissions_type) {
@ -89,11 +89,11 @@ static Result MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other
default:
LOG_ERROR(Kernel_SVC, "unknown permissions=0x%08X", permissions);
}
return 0;
return RESULT_SUCCESS;
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static Result ConnectToPort(Handle* out, const char* port_name) {
static ResultCode ConnectToPort(Handle* out, const char* port_name) {
Service::Interface* service = Service::g_manager->FetchFromPortName(port_name);
LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name);
@ -101,33 +101,33 @@ static Result ConnectToPort(Handle* out, const char* port_name) {
*out = service->GetHandle();
return 0;
return RESULT_SUCCESS;
}
/// Synchronize to an OS service
static Result SendSyncRequest(Handle handle) {
static ResultCode SendSyncRequest(Handle handle) {
SharedPtr<Kernel::Session> session = Kernel::g_handle_table.Get<Kernel::Session>(handle);
if (session == nullptr) {
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
}
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s)", handle, session->GetName().c_str());
return session->SyncRequest().Code().raw;
return session->SyncRequest().Code();
}
/// Close a handle
static Result CloseHandle(Handle handle) {
static ResultCode CloseHandle(Handle handle) {
// ImplementMe
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called handle=0x%08X", handle);
return 0;
return RESULT_SUCCESS;
}
/// Wait for a handle to synchronize, timeout after the specified nanoseconds
static Result WaitSynchronization1(Handle handle, s64 nano_seconds) {
static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
auto object = Kernel::g_handle_table.GetWaitObject(handle);
if (object == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s:%s), nanoseconds=%lld", handle,
object->GetTypeName().c_str(), object->GetName().c_str(), nano_seconds);
@ -144,22 +144,22 @@ static Result WaitSynchronization1(Handle handle, s64 nano_seconds) {
HLE::Reschedule(__func__);
// NOTE: output of this SVC will be set later depending on how the thread resumes
return RESULT_INVALID.raw;
return RESULT_INVALID;
}
object->Acquire();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all, s64 nano_seconds) {
static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all, s64 nano_seconds) {
bool wait_thread = !wait_all;
int handle_index = 0;
// Check if 'handles' is invalid
if (handles == nullptr)
return ResultCode(ErrorDescription::InvalidPointer, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent).raw;
return ResultCode(ErrorDescription::InvalidPointer, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
// NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If
// this happens, the running application will crash.
@ -167,7 +167,7 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
// Check if 'handle_count' is invalid
if (handle_count < 0)
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage).raw;
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
// If 'handle_count' is non-zero, iterate through each handle and wait the current thread if
// necessary
@ -176,7 +176,7 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
for (int i = 0; i < handle_count; ++i) {
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
if (object == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
// Check if the current thread should wait on this object...
if (object->ShouldWait()) {
@ -220,7 +220,7 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
HLE::Reschedule(__func__);
// NOTE: output of this SVC will be set later depending on how the thread resumes
return RESULT_INVALID.raw;
return RESULT_INVALID;
}
// Acquire objects if we did not wait...
@ -242,29 +242,29 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
// not seem to set it to any meaningful value.
*out = wait_all ? 0 : handle_index;
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Create an address arbiter (to allocate access to shared resources)
static Result CreateAddressArbiter(u32* arbiter) {
static ResultCode CreateAddressArbiter(u32* arbiter) {
using Kernel::AddressArbiter;
ResultVal<SharedPtr<AddressArbiter>> arbiter_res = AddressArbiter::Create();
if (arbiter_res.Failed())
return arbiter_res.Code().raw;
return arbiter_res.Code();
ResultVal<Handle> handle_res = Kernel::g_handle_table.Create(*arbiter_res);
if (handle_res.Failed())
return handle_res.Code().raw;
return handle_res.Code();
LOG_TRACE(Kernel_SVC, "returned handle=0x%08X", *handle_res);
*arbiter = *handle_res;
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Arbitrate address
static Result ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) {
static ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) {
using Kernel::AddressArbiter;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X, address=0x%08X, type=0x%08X, value=0x%08X", handle,
@ -272,10 +272,10 @@ static Result ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value,
SharedPtr<AddressArbiter> arbiter = Kernel::g_handle_table.Get<AddressArbiter>(handle);
if (arbiter == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
return arbiter->ArbitrateAddress(static_cast<Kernel::ArbitrationType>(type),
address, value, nanoseconds).raw;
address, value, nanoseconds);
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
@ -284,26 +284,26 @@ static void OutputDebugString(const char* string) {
}
/// Get resource limit
static Result GetResourceLimit(Handle* resource_limit, Handle process) {
static ResultCode GetResourceLimit(Handle* resource_limit, Handle process) {
// With regards to proceess values:
// 0xFFFF8001 is a handle alias for the current KProcess, and 0xFFFF8000 is a handle alias for
// the current KThread.
*resource_limit = 0xDEADBEEF;
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called process=0x%08X", process);
return 0;
return RESULT_SUCCESS;
}
/// Get resource limit current values
static Result GetResourceLimitCurrentValues(s64* values, Handle resource_limit, void* names,
static ResultCode GetResourceLimitCurrentValues(s64* values, Handle resource_limit, void* names,
s32 name_count) {
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called resource_limit=%08X, names=%s, name_count=%d",
resource_limit, names, name_count);
Memory::Write32(Core::g_app_core->GetReg(0), 0); // Normmatt: Set used memory to 0 for now
return 0;
return RESULT_SUCCESS;
}
/// Creates a new thread
static Result CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top, u32 processor_id) {
static ResultCode CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top, u32 processor_id) {
using Kernel::Thread;
std::string name;
@ -317,7 +317,7 @@ static Result CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top
ResultVal<SharedPtr<Thread>> thread_res = Kernel::Thread::Create(
name, entry_point, priority, arg, processor_id, stack_top, Kernel::DEFAULT_STACK_SIZE);
if (thread_res.Failed())
return thread_res.Code().raw;
return thread_res.Code();
SharedPtr<Thread> thread = std::move(*thread_res);
// TODO(yuriks): Create new handle instead of using built-in
@ -332,7 +332,7 @@ static Result CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top
"thread designated for system CPU core (UNIMPLEMENTED) will be run with app core scheduling");
}
return 0;
return RESULT_SUCCESS;
}
/// Called when a thread exits
@ -344,214 +344,214 @@ static void ExitThread() {
}
/// Gets the priority for the specified thread
static Result GetThreadPriority(s32* priority, Handle handle) {
static ResultCode GetThreadPriority(s32* priority, Handle handle) {
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
*priority = thread->GetPriority();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Sets the priority for the specified thread
static Result SetThreadPriority(Handle handle, s32 priority) {
static ResultCode SetThreadPriority(Handle handle, s32 priority) {
SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
thread->SetPriority(priority);
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Create a mutex
static Result CreateMutex(Handle* handle, u32 initial_locked) {
static ResultCode CreateMutex(Handle* handle, u32 initial_locked) {
using Kernel::Mutex;
auto mutex_res = Mutex::Create(initial_locked != 0);
if (mutex_res.Failed())
return mutex_res.Code().raw;
return mutex_res.Code();
SharedPtr<Mutex> mutex = mutex_res.MoveFrom();
*handle = Kernel::g_handle_table.Create(mutex).MoveFrom();
LOG_TRACE(Kernel_SVC, "called initial_locked=%s : created handle=0x%08X",
initial_locked ? "true" : "false", *handle);
return 0;
return RESULT_SUCCESS;
}
/// Release a mutex
static Result ReleaseMutex(Handle handle) {
static ResultCode ReleaseMutex(Handle handle) {
using Kernel::Mutex;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X", handle);
SharedPtr<Mutex> mutex = Kernel::g_handle_table.Get<Mutex>(handle);
if (mutex == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
mutex->Release();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Get the ID for the specified thread.
static Result GetThreadId(u32* thread_id, Handle handle) {
static ResultCode GetThreadId(u32* thread_id, Handle handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle);
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
*thread_id = thread->GetThreadId();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Creates a semaphore
static Result CreateSemaphore(Handle* semaphore, s32 initial_count, s32 max_count) {
static ResultCode CreateSemaphore(Handle* semaphore, s32 initial_count, s32 max_count) {
using Kernel::Semaphore;
ResultVal<SharedPtr<Semaphore>> semaphore_res = Semaphore::Create(initial_count, max_count);
if (semaphore_res.Failed())
return semaphore_res.Code().raw;
return semaphore_res.Code();
ResultVal<Handle> handle_res = Kernel::g_handle_table.Create(*semaphore_res);
if (handle_res.Failed())
return handle_res.Code().raw;
return handle_res.Code();
*semaphore = *handle_res;
LOG_TRACE(Kernel_SVC, "called initial_count=%d, max_count=%d, created handle=0x%08X",
initial_count, max_count, *semaphore);
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Releases a certain number of slots in a semaphore
static Result ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
static ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
using Kernel::Semaphore;
LOG_TRACE(Kernel_SVC, "called release_count=%d, handle=0x%08X", release_count, handle);
SharedPtr<Semaphore> semaphore = Kernel::g_handle_table.Get<Semaphore>(handle);
if (semaphore == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
ResultVal<s32> release_res = semaphore->Release(release_count);
if (release_res.Failed())
return release_res.Code().raw;
return release_res.Code();
*count = *release_res;
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Query memory
static Result QueryMemory(void* info, void* out, u32 addr) {
static ResultCode QueryMemory(void* info, void* out, u32 addr) {
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called addr=0x%08X", addr);
return 0;
return RESULT_SUCCESS;
}
/// Create an event
static Result CreateEvent(Handle* handle, u32 reset_type) {
static ResultCode CreateEvent(Handle* handle, u32 reset_type) {
auto evt_res = Kernel::Event::Create(static_cast<ResetType>(reset_type));
if (evt_res.Failed())
return evt_res.Code().raw;
return evt_res.Code();
auto handle_res = Kernel::g_handle_table.Create(evt_res.MoveFrom());
if (handle_res.Failed())
return handle_res.Code().raw;
return handle_res.Code();
*handle = handle_res.MoveFrom();
LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X", reset_type, *handle);
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Duplicates a kernel handle
static Result DuplicateHandle(Handle* out, Handle handle) {
static ResultCode DuplicateHandle(Handle* out, Handle handle) {
ResultVal<Handle> out_h = Kernel::g_handle_table.Duplicate(handle);
if (out_h.Succeeded()) {
*out = *out_h;
LOG_TRACE(Kernel_SVC, "duplicated 0x%08X to 0x%08X", handle, *out);
}
return out_h.Code().raw;
return out_h.Code();
}
/// Signals an event
static Result SignalEvent(Handle handle) {
static ResultCode SignalEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);
auto evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
if (evt == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
evt->Signal();
HLE::Reschedule(__func__);
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Clears an event
static Result ClearEvent(Handle handle) {
static ResultCode ClearEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);
auto evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
if (evt == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
evt->Clear();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Creates a timer
static Result CreateTimer(Handle* handle, u32 reset_type) {
static ResultCode CreateTimer(Handle* handle, u32 reset_type) {
using Kernel::Timer;
auto timer_res = Timer::Create(static_cast<ResetType>(reset_type));
if (timer_res.Failed())
return timer_res.Code().raw;
return timer_res.Code();
auto handle_res = Kernel::g_handle_table.Create(timer_res.MoveFrom());
if (handle_res.Failed())
return handle_res.Code().raw;
return handle_res.Code();
*handle = handle_res.MoveFrom();
LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X", reset_type, *handle);
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Clears a timer
static Result ClearTimer(Handle handle) {
static ResultCode ClearTimer(Handle handle) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
timer->Clear();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Starts a timer
static Result SetTimer(Handle handle, s64 initial, s64 interval) {
static ResultCode SetTimer(Handle handle, s64 initial, s64 interval) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
timer->Set(initial, interval);
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Cancels a timer
static Result CancelTimer(Handle handle) {
static ResultCode CancelTimer(Handle handle) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
return InvalidHandle(ErrorModule::Kernel);
timer->Cancel();
return RESULT_SUCCESS.raw;
return RESULT_SUCCESS;
}
/// Sleep the current thread
@ -573,22 +573,22 @@ static s64 GetSystemTick() {
}
/// Creates a memory block at the specified address with the specified permissions and size
static Result CreateMemoryBlock(Handle* memblock, u32 addr, u32 size, u32 my_permission,
static ResultCode CreateMemoryBlock(Handle* memblock, u32 addr, u32 size, u32 my_permission,
u32 other_permission) {
using Kernel::SharedMemory;
// TODO(Subv): Implement this function
ResultVal<SharedPtr<SharedMemory>> shared_memory_res = SharedMemory::Create();
if (shared_memory_res.Failed())
return shared_memory_res.Code().raw;
return shared_memory_res.Code();
ResultVal<Handle> handle_res = Kernel::g_handle_table.Create(*shared_memory_res);
if (handle_res.Failed())
return handle_res.Code().raw;
return handle_res.Code();
*memblock = *handle_res;
LOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x%08X", addr);
return 0;
return RESULT_SUCCESS;
}
const HLE::FunctionDef SVC_Table[] = {